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Abstract

Generalizedickrey mechanismé$ave receved wide atten-
tion in the literaturebecausehey areefficient and strateyy-
proof, i.e. truthful bidding is optimal whatever the bids of
otheragents.However it is well-known thatit is impossible
for an exchangewith multiple buyersandsellers to be effi-
cientandbudget-balancedvenputtingstratey-proofnesso
oneside.A market-malerin anefficientexchangemustmale
morepaymentghanit collects.We enforcebudget-balances
ahardconstraintandexplore paymentulesto distribute sur
plusafteranexchangeclearsto minimizedistanceo Vickrey
payments. Differentrules lead to differentlevels of truth-
revelationandefficiengy. Experimentabndtheoreticalanal-
ysissuggest simple Thresholdscheme which givessurplus
to agentswith paymentdurtherthana certainthresholdvalue
from theirVickrey paymentsTheschemeppearsbleto ex-
ploit agentuncertaintyaboutbidsfrom otheragentgo reduce
manipulationand boostallocative efficiency in comparison
with othersimplerules.

I ntroduction

The participantan anexchangepr agentscansubmitboth
bids i.e. requestdo buy itemsfor no morethanabid price,
andasks i.e. requestso sellitemsfor atleastanaskprice.
Exchangesllow multiple buyersto tradewith multiple sell-
ers, with aggregation acrossbids and asksas necessaryo

clearthe market. An exchangemight alsoallow agentsto

expresdogical conditionsacrosshundlesof differentitems;
for example, an agentmight want to buy “A and B”, or

sell“A and B, or C”. Following the literature on combi-
natorialauctions(Rothlkopf etal. 1998;de Vries & Vohra
2000)we call this a combinatorialexchange. Applications
of combinatorialexchangeshave beensuggestedo excess
steelinventoryprocurementKalagnananet al. 2000)and
to supplychaincoordination(Walshetal. 2000).

The market maker in an exchangecollectsbids andasks
and clearsthe exchangeby computing: (i) a setof trades,
and (ii) the paymentsmade and received by agents. In
designinga mechanismto computetradesand payments
we must considerthe bidding stratgjies of self-interested
agentsj.e. rationalagentghatfollow expected-utilitymax-
imizing stratgies. We take as our primary goal that of
allocative-eficiency to computea setof tradesthat maxi-
mizevalue.In addition,we require:
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—individual-rationality (IR), or voluntaryparticipation,such
thatall agentshave positive expectedutility to participate.
—budget-balancgBB), suchthatthe exchangedoesnot run
ataloss.

Another useful propertyis incentive-compatibility(1C),
which statesthat truthful bidding (submitting bid and ask
prices equalto an agents value) forms a Bayesian-Nash
equilibrium. In other words, every agentcan maximize
its expectedutility by bidding its true values, given that
every other agentalso bids truthfully. A strongercondi-
tion is strategy-proofness suchthat truthful bidding is op-
timal whatever the bids of otheragents.Stratey-proofness
is useful computationallybecauseagentscan avoid game-
theoreticreasoningaboutotheragents.

Unfortunately the well-known resultof Myerson& Sat-
terthwaite (1983) demonstrateghat no exchangecan be
efficient, budget-balancedeven in the average-case)and
individual-rational. This impossibility result holds with
or without incentive-compatibility’, and evenin Bayesian-
Nashequilibrium. Instead pnemust:

(a) impose BB and IR, and designa fairly efficient but
incentve-compatibl€or perhapstrateyy-proof) scheme.
(b)imposeBB andIR, anddesignafairly efficientandfairly
incentive-compatiblescheme.

We follow (b), anddesigna mechanisnior combinatorial
exchangeqwith multi-unit and regular exchangesas spe-
cial casesjhatpromoteseasonabléuth-revelationandrea-
sonableallocative-eficiency. The mechanisntcomputeghe
value-maximizingallocationgivenagentids,andcomputes
paymentgo reducethe utility for non-truthfulbidding.

Earlierauthors(Myerson& Satterthvaite 1983; McAfee
1992;Barbera& Jacksorl995)have followedapproacha),
deliberatelycomputing allocationsthat are inefficient for
truthful bids from agentsto achieve incentive-compatibility
or stratgyy-proofness We do not believe their schemesx-
tendeasilyto combinatorialproblems.Furthermoreywe be-
lieve that our schemeis particularly useful with bounded-
rational agentswith incomplete information about other
agents becausesuchagentsare unableto fully exploit the
“holes” for manipulationthatremainin our designs.

A Vickrey-Based Payment Scheme

Our particularapproachakesthe Vickrey paymentscheme,
andadaptsdt to make it budget-balancedwithout the prob-

As it must,by therevelationprinciple.



lem of BB, Vickrey paymentssupportan efficient, IR, and
stratgy-proofexchange.

We interpretVickrey paymentsasan assignmenof dis-
countsto agentsaftertheexchangeclears.BB is achievedso
long asthe market maker distributesno morethanthe avail-
ablesurpluswhenthe exchangeclears.Thepricing problem
is formulatedas an optimizationproblem,to computedis-
countsto minimize the distanceto Vickrey discounts. We
derive the paymentschemeghat correspondo optimal so-
lutionsto a numberof differentdistancdunctions.

Theoreticaland experimentalanalysiscompareghe util-
ity to an agentfor misstatingits valuein bids and asksin
eachpaymentschemeacrossa suite of probleminstances.
The results,both theoreticaland experimental,make quite
a compelling agument for a simple threshold payment
schemewhich providesdiscountsto agentswith payments
morethanathresholddistancethantheir Vickrey payments.

The Thresholdrule increaseghe amountby which an
agentwith a large degree of manipulationfreedom must
adjustits bid to have a useful effect on the price it finally
pays,while leavzing unafectedthe manipulationproperties
for agentswith a small degree of manipulationfreedom.
The effect is to reducemanipulationand boostallocative-
efficiency in comparisorwith otherschemes.

Let usintroduceanexampleproblem,thatwe will return
to laterin the paper

Example. Supposeagentsl, 2, 3, 4. Agents1 and2 want
to sell A and B respectiely, with valuesuv; (4) = $10 and
v2(B) = $5. Agents3 and4 wantto buy the bundle AB,
with valuesvs(AB) = $51 andvs(AB) = $40. The effi-
cientallocationis for agentsl and2 to tradewith agent3,
for anetincreasen valueof $36.

The mechanismdesignproblemis: given bid and ask
pricesfor A, B and AB from theagentswhattradesshould
take placeandwhatpaymentshouldbemadeandreceved?

Vickrey Based Surplus Distribution

Themarketmakerin anexchangéhastwo problemso solve:
winnerdeterminationto determinehetradesexecutedand
pricing, to determineagentpayments.A commongoal in
winnerdeterminationis to computetradesthat maximize
surplus the differencebetweenbid pricesandask prices?
Thesetradesimplementthe efficientallocationwith truthful
bidsandasks.

Thepricing problemis to determineagentpaymentsvhen
the exchangeclears. In this sectionwe describean ap-
plication of the Vickrey-Clarke-Grovespricing mechanism
(Vickrey 1961;Clarke 1971;Groves1973)to anexchange,
which often fails BB. The presentatioris for a combinato-
rial exchangejn which agentscanbid andaskfor bundles
of itemsandexpresdogical constraintse.g. “exclusive-or”
and“additive-or” constraintsacrosshidsandasks?

2Thepaymentschemegresentedn this paperarealsoapplica-
ble with ary (ex antefixed) constrainton feasibletrades;e.g. ary
level of aggreyationin matchingtradesor sideconstraintse.g.on
thevolumeof tradeor degreeof dominanceby a singleagent.

3Vickrey paymentsn exchangedor homogeneouiems,with
andwithout multi-unit bids canbe derived as specialcaseqWur-

Computingpaymentsin a Vickrey-basedexchangealso
requiressolving a numberof winnerdeterminationprob-
lems, once without each agent that trades. Winner
determinationis NP-hard for general combinatorial ex-
changeproblemsandintractableasproblemsbecomdarge.
However, our current focus is on the incentve proper
ties of novel Vickrey-basedpaymentschemes. Tractable
winnerdeterminations notour presentoncern.Thisnoted,
the paymentschemegproposedareimmediatelyapplicable
to tractablespecialcasesof combinatorialexchangeqsee
Kalagnanamet al.) Future work should explore the ef-
fect of layeringour scheme®n top of approximatevinner
determinatioralgorithms.

We first definethe Vickrey paymentsn anexchangeand
thenarguethatthefailureof BB is quitepenasivewith Vick-
rey paymentsn exchanges.

Vickrey Payments

Let £ denotethe setof agentsandg = {A, B,C,...} de-
note the set of items. We neednotationfor a trade let
T; € {-1,0,1}9! denotean indicator vectorfor a trade,
suchthatagent buysitems{z | 7;(z) = 1,z € G} andsells
items{z | Tj(z) = —1,2 € G}. LetT = (Ty,...,Tj)) de-
notea completetradebetweenrall agents.

Bids andasksdefinea reportedvalue, 9;(T;) for atrade
T;, comprisingbuys andsells. Bids indicatepositive value
for buying a bundle of items, while asksindicatenegative
valuefor selling a bundle of items. For example,if agent
1 submitsbid (AB, 10) andask(C, 5), then#,([1,1,0]) =
10,9:([0,0, -1]) = =5, 01([1,1,—-1]) = 5. Thevaluesfor
othertradesareconstructedo be consistentvith value—oo
for sellinganything otherthanitem C', zerovaluefor buying
S C {AB}, andno additionalvaluefor buying morethan
bundleAB.

Let T* denotehevalue-maximizingrade givenreported
values,9;(1T}), from eachagent,with total surplusV* =
> 0(Ty). Tradesmust be feasible so that supply and
demandis balancedgiven a model of aggreyation. Also,
let (V_;)* denotesurplusfrom the value-maximizingrade
withoutbids (or asks)from agent.

By definition,the Vickrey paymento agent is computed
as:

Dvick,l = (V—l)* - ij

whereV*, is thevalueof tradeT™ to all agentsexceptagent
l,ie. V¥ = V* —4,(T). Negatve paymentPyic,; < 0
indicatethat the agentreceivesmoney from the exchange
afterit clears.

We canexpressanagents Vickrey paymentsadiscount,
Avick,1, from the payment,; (T7*), the agentwould make
givenits bid andaskprices;i.e. pvick,; = 0i(T}") — Avick,i»
wherethe Vickrey discountis computedas:

Aviay =V* = (Vo)*

The Vickrey discountis always non-neative, representing
smallerpaymentsy buyersandhigherpaymentgo sellers.

manetal. 1998).



Economic Properties. Vickrey paymentsarelR, because
V* > (V_;)* by a simple feasibility algument,and also
stratgy-proof. The proof of strat@y-proofnesds omitted
dueto lack of spacebut closelyfollows standardVickrey
proofs, for exampleseeVarian & MacKie-Mason(1995).
However, BB will oftenfail in anexchangeaswe shawv in
the next section.

Vickrey Budget-Balance: Success & Failure

Now thatwe have definedVickrey paymentsn a combina-
torial exchangelet us outline somecasesin which BB is
achiezed and somecasesin which BB fails. We will see
that budget-balancéailure is quite penasive with Vickrey
paymentsn exchanges.

Standard Exchange. First, considera standardexchange
with bids andasksfor single units of a homogeneougem.
In this casethe exchangeis clearedby sortingbidsin order
of decreasingprice and asksin order of increasingprice.
Bids are matchedwith askswhile the bid price is greater
thanthe askprice. It is well known that Vickrey payments
arenot BB in this ervironment.

Let p9,, denotethe smallestsuccessfubid andp,,}; de-
note the largestunsuccessfubid. Similarly, let p% , de-
note the largestsuccessfuaskandp,;, denotethe small-
estunsuccessfubsk. In the Vickrey schemeevery win-
ning seller receies paymentpyick,sen = min(p%4, 050 ),
whatever its own ask price, and every winning buyer pays
Duick,buy = max(p® ., pp.4), whatever its own bid price.
Thefollowing conditionis requiredfor BB:

Claim 1. Budget-balancds achievedin a simpleexchange
for homaeneoustemsandsingle-itembidsand asksif and
only if one (or more) of the following conditionshold: (1)

. —1. —
Phia = Posis (2 Phig = Ppid> (3) Pk = Pusk .

Proof sketch. BB holdsif andonly if max(p?,,, ;) >
min(p),;,p, %), leadingto cases: (1) p2,, > p,;; and
Phia S Poui (2) P < Prig @NdPhy < pogi (3)
Pk > Prig aNADY5 > pig.

In otherwords, either one or more of the supply or de-
mandcurves mustbe “smooth” at the clearingpoint, with
thefirst excludedbid atapproximatelythe samebid priceas
thelastacceptedid, or thewinning bid andaskpricesmust
preciselycoincide. Thus,we cannotexpectBB with Vickrey
paymentsevenin a standardnon-combinatorialexchange
exceptin specialcases.

Combinatorial Exchange As anexampleof BB failure,
considetthatagentssubmittruthful bidsin theearlierexam-
ple; i.e. asks(4, $10), (B, $5) andbids (AB, $51), (AB,
$40). V* =51 —-10—-5 = 36, (V_1)* = (V_2)* =0,
(V_3)* = 25, and(V_4)* = 36. Agent1’s Vickrey pay-
mentis -10- (36 - 0) = -46, agent2’sis -5 - (36 - 0) = -41,
agent3'sis 51- (36 - 25) = 40. Theexchangeunsataloss
of $47to themarket maler.

One-Sided Vickrey-Payments First, a positive special-
case. Claim 2 gives a sufficient condition for BB in the
special-casehat Vickrey discountsare only allocatedto

agentson one-sideof an exchange;.e. to all buyersor to
all sellers(but notto buyersandsellers).

We defineaggregationon the sell-sideaswhenbidsfrom
multiple buyers can be combinedto matchan ask from a
singleseller andaggreyationon the buy-sideaswhenasks
from multiple sellerscanbe combinedto matcha bid from
asinglebuyer.

Claim 2. Budget-balanceholdsif Vickrey paymentsare im-
plementedn one-sideof an exchange, and whenthat side
hasno aggregation.

Proof sketch. Simple, just shov that this BB holdsfor
each“cluster” of tradingagentsandthereforefor the entire
exchange.

Bilateral matchingis a special-casewith no aggreyation
on eitherside;i.e. Vickrey paymentsare budget-balanced
if implementedfor at most one agentin eachtrade, for
example with tradesclearedat either the ask price (buy-
side stratgy-proofnesspr the bid price (sell-sidestrateyy-
proofness).Similarly, the single-itemVickrey auctionis a
specialcase(andstratgy-proofto buyersbut nottheseller).

The GeneralizedVickrey Auction (GVA) is the VCG
mechanismfor a combinatorialauction,in which thereis
a single seller and sell-sideaggreyation. The GVA is BB
becausehe buyers,but not the seller receive Vickrey pay-
ments. The auctioneersimply collects the total payment
madeby thebuyersandpasse#t ontotheseller As suchthe
GVA is strategy-prooffor buyersbut not for the seller An-
otherproblemis that the sellercan sometimegeceve less
thanher askprice. Considera sellerwith an ask price of
(AB, $10) andbids of (A, $8) and (B, $8) from different
buyers. Eachbuyer recevesVickrey discount$6 and pays
$2,but the sellerneedsat least$10.

One-to-N models We canstatea generalnegative result
for Vickrey paymentgo all agentgbuyersandsellers)in a
combinatoriakuction.

Claim 3. Budget-balancdails with Vickrey paymentsgo all
agentsin a combinatorialauctionexceptin the casethat no
buyerrequiresa Vickrey discount.

Proof sketch. Simple, just showv thatthe sellerextracts
all of thesurplusasits Vickrey discount.

Intuitively, BB failsin this caseunlesshe mamginal value
contributed by eachbuyer is zero, i.e. unlessthe surplus
in the exchangeis the samewith ary oneof the buyersre-
moved.

Budget-Balanced Payment Rules

In this sectionwe take BB and IR ashard constraintsand
proposemethodsto distribute surpluswhen an exchange
clearsto minimizethedistancebetweerdiscountsandVick-

rey discounts.The choiceof distancefunction hasa distri-

butional effect on the allocationof surplusandchangeghe

incentive-compatibilitypropertiesof theexchangeln alater

sectionwe demonstratesefultruth-revelationpropertiedor

theVickrey-basedschemes.

We do thefollowing:



e Formulatethe pricing problem as a mathematicalpro-
gram,to minimizethe distanceto Vickrey paymentswvith
BB andIR ashardconstraints.

¢ Introducepossibledistancdunctionsandconstructcorre-
spondingbudget-balancegaymentschemes.

e Presentatheoreticalanalysisof eachpaymentschemen
asimplebiddingmodel.

Mathematical Programming M odel

We formulatethepricing problemasalinearprogramto as-
sign surplusto agentsto minimize distanceto Vickrey dis-
counts. Let V* denotethe available surpluswhenthe ex-

changeclears beforeary discountsandL* C £ denotethe
setof agentghattrade. Eachagentmay performa number
of buys and sells, dependingon its bids and asksof other
agents.We computediscountsA = (Aq,...,Ar) to min-

imize the distanceL(A, A;.) to Vickrey discountsfor a
suitabledistanceunctionlL.

mAin L(A, Avick) [PP]
Z A <V* (BB)

leL*
A < Aviekgy ,VI€L* (VD)
A>0 NielL* (IR)

Constraint (BB) gives worst-case(or ex post) budget-
balance suchthatthe exchangenever makesa net payment
to agents. We might also substitutean expectedsurplus
V* for V* andimplementaverage-caséor ex ante)budget-
balance.Constraint{IR) ensurethattruthful bids andasks
areindividual-rationalfor anagentwith aworst-casdor ex
post)non-nejative expectedutility. ConstraintgVD) ensure
thatno agentrecevesmorethanits Vickrey discount?

In addition to the standardL, and L., distancemet-
rics, we also consider the following functions: (a)

Lre(A, Avick) = Y, ““fiik Au , arelative error function;

(b) LH(AaAvick) =
() Lre2AA, Avick) = ZZW a squaredelative

errorfunction; (d) Lwe(A, Avick) = D> Avick,i (Avick,t —
A;), aweightederrorfunction. TheL; metric provldesno
distributionalinformation.

We drop agentswith Ak, = 0 from all models,and
simply setA; = 0 for theseagents.

I v'clk’ a producterror function;

Payment Rules Ratherthan solving problem [PP] di-
rectly, we cancomputeananalyticexpressiorfor thefamily
of solutionsthatcorrespondo eachdistanceunction. Each
family of solutionsis a parameterizegaymentule. For ex-
ample,the Thresholdrule, A; = max(0, Ayia,; — C) for
someparametet”’ > 0, solves[PP]for thel , distancemet-
ric. For largeC, Thresholdallocatessmall,or no, discounts,
while for C' = 0 ThresholdallocatesVickrey discounts.

To understandheconstructiorof Thresholdrom L, con-
siderthe simplestcase whenconstraint{VD) and(IR) are

“The (VD) constraintsare not redundantfor certaindistance
metrics,suchasthelL rg(-) metric.

DistanceFunction PaymentScheme DiscountDefinition

L2, Loo Threshold  max(0, Avick, — C)
Lre Small Avick, If Avieky < C
LrE2 Fractional HAvick,1
Lwr Large Avick, if Avie,y > C

Lo Reverse min(Avic,i, C)
- No-Discount 0
- Equal D

Tablel: DistanceFunctionsandPaymentSchemes.

Rule Vick Equal Frac ThreshReverse Large  Small
Agentl -46 -22 -25.6 -28 -22.5 -460r-10-350r-10
Agent2 -41 -17 -206 -23 -175 -5 -41 -5 -30
Agent3 40 39 46.2 51 40 51 5140 40

Table2: Paymentswith DifferentRulesin the SimpleProblem.

not binding, and perform Lagrangianoptimization. Drop-
ping the outersquareroot from the L , metricandintroduc-
ing Lagrangemultiplier A > 0, we have min ), (Avick,1 —
A)? + XX, Ay — V*). Now, computingfirst deriva-
tivesw.rt. A; andsettingto zero, we have —2(Ayick,; —
A;) + X = 0 for all 1.5 Solving, this equatesthe dis-
tanceto Vickrey discountsacrossall agentsAvick,1 — A1 =
Amk 2 — Ag = ..., andwith budget-balanceve find A; =

Avick,i — (er vick,y — V*)/|L*|. Thisis the Threshold
rulewith paramete’ = (O Aviekg — V) /|IL*| = AJ2.

Tablel tabulateghepaymentulesfor eachdistanceunc-
tion, andalsoincludesthe Equalrule which is not Vickrey-
basedbut dividessurplusequallyacrossall agentsandthe
No-Discountrule (seealsoFigurel). Eachpaymentrule is
parameterizewvith C > 0, exceptfor Fractional, which has
parameted < p < 1. The parametershatgive BB in each
schemecanbe easilycomputedrom Vickrey discountsand
availablesurplus.

Example. In Table2 we comparehe paymentgnadewith
eachpaymentschemein our simple problem. Notice that
neitherthe Largeor Smallschemegrovide usefulguidance
abouthow to distribute the discountacrossthe two sellers,
this depend®n how thetie is broken.

Theoretical Analysis

In this sectionwe develop simple analytic resultsfor the
amountof manipulationan agentwill perform with each
paymentschemeThe modelpermitstractableanalysisand
provesinterestingoothfor theinsightit providesandfor the
closecorrespondencéhat we find with later experimental
resultsfor combinatorialexchangeproblems.

We chooséo analyzeanexchangen whichbidsandasks
arefor singleitems Later, in our experimentalanalysiswe
comparehe paymentschemesn combinatoriaproblems.

For buyers(the analysiss symmetricfor sellers):

(1) Every agent! hasvalue v; for a single item (dravn
from somedistribution F;(v)) andchoosedo manipulateby

SFirst-orderconditionsarenecessargndsuficient for optimal-
ity in this problembecausehe Hessiaris positive definite.
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Figurel: Bid priceb; (x-axis)againstadjustedid priceb; — A;
(y-axis) in eachpaymentscheme.Agentvaluewv, highestoutside
bid z, Paymentschemeparameter€’, p, D.

0, >0, andbid by=v,—0;.

(2) The maximumbid z; from anotheragentfor the item,
or askprice (whichever is higher),is uniformly distributed
aboutu, i.e. z; ~ U (v;—4d,v;+6) for someconstantg > 0.
(3) Theaveragesurplusavailableto the market maker when
theexchangeclearss ad peragentfor someconstanty > 0
thatdefinesheamountof surplus.

(4) In equilibrium, the market maker selectsa parameter
(e.g. C) for the paymentschemeto achiese average-case
budget-balancePaymentrulesare computedbefore agents
bid, andthe parameterareknown to biddingagents.

Agentl hasaquasi-lineautility function,u; =v;— p, for
submittingthe highestbid wherep is its paymento the ex-
changej.e. p = by — A;. Figurel illustrateseachpayment
rule in this simple model, plotting bid price b, againstad-
justedpriceb; — A;; e.g.,in Vickrey the agentpaysonly z
for any bid b; > z, in Thresholdtheagentpaysb; = = + C
forb; > x + C, andb; forx < b; < x + C, givenparameter
C, etc.

For eachpaymentschemewe determine:(a) an agents
optimal bidding stratgyy asa function of the parametersf
therule, e.g. C or y; and(b) the equilibrium parameteriza-
tion of therule,e.qg.valuefor C, thatleadsto budget-balance
giventhatagentsfollow this optimal bidding strateyy. The
analysisleadsto a relationshipbetweenthe available sur-
plus and the degree of manipulationfor eachpaymentrule
(seeFigure4).

One can be critical of our assumptions. We leave un-
definedboth the valuationdistribution functions F;(v) and
the distribution that definesthe item an individual agent
values. It is quite likely that there are no F;(v) that are
consistentwith our assumptiorof a uniformly distributed
second-highesbid in equilibrium. In addition, we adopt
average-casbudget-balancandcomputepaymentulesbe-
fore agentshid, but ignoreary effectthatruleshave on sur
plusvia agents’bidding strateyies.

However, we believe that this analysishas significant
value. Its main successs thatit clearly demonstrateshe
effectthatdifferenttypesof budget-balance®ickrey-based
paymentrulescanhave on agentmanipulation.We leave a

full equilibriumanalysisfor futurework.

Graphical Intuition. Manipulationhastwo effectson the
expectedutility for anagent: (i) the probability of the ad-
justedbid beingacceptediecreasesand(ii) thetotal utility
if thebid is acceptedango up becaus¢he agents payment
might bereduced Paymentruleschangd(ii) but not (i), and
in turneffectagentsbidsandtheefficiency of theexchange.

In Figure 2 we plot the utility for a particularbid, b =
v—40, asthe value of the outsidebid z varies,for payment
schemesVickrey, No-Discount, Thresholdand Fractional.
Eachsubplotis for a singleschemeywith individual curves
correspondingo differentbids®

1 1
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0.6 0.6
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Highest outside bid, x Highest outside bid, x
(c) Threshold (d) Fractional

Figure2: Utility of bidsb = v — @ with = {0,0.3,0.5},v =1,
as the bestoutsidebid z variesbetween0) and1. C = 0.4 in
Thresholdandy = 0.5 in Fractional.

In the Vickrey schemealower bid reducegheagents ex-
pectedutility becausdt decreasethe probability of success
withoutincreasingheutility of asuccessfubid. In compar
ison,with no discountthe agentgainsutility onall success-
ful bids by the amountof deviation from truthful bidding.
In the Thresholdschemea lower bid only reduceghe price
paidfor alimited rangeof outsidebids(closerthanC to the
bid price), while in the Fractionalschemea lower bid re-
ducesthe price paid on all successfubids (but by lessthan
in theNo Discountscheme).

Making ourassumptioraboutthedistribution of = around
anagents valuewv;, we cancomputethe expecteadutility for
differentlevels of manipulationundereachschemeas the
areaundera particularcurve in a plot like Figure2.” The
expected-utility maximizing bid correspondgo the curve
with maximumarea.ln Figure3 we plottheexpectedjainin
utility (in comparisorwith truthful bidding),Eu(8) —Eu(0),
for bid b = v — 8 in eachpaymentule. Rule parameterare
setto give BB with surplusa. = 0.1 atoptimal agentstrate-

8Although not plotted here, the curvesfor Equalaresimilar to
theNo-Discountcase(exceptshiftedhigherin utility by aconstant
amount) andLargeis similarto Threshold.

"It is at this stagethat an equilibrium analysiswould needto
useaderivedexpressiorfor thedistribution of z.
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Figure 3: ExpectedGainin Utility for differentbidsb = v — 6
undereachpaymentschemewith rule parametersetto give BB
with surplusa: = 0.1.

gies. Notice thatthe level of manipulation,f*, that maxi-
mizestheagents gainin utility is smallestin the Threshold
schemdor this valueof surplus.

The results(below) show that the Large and Threshold
rulesperformwell in this model,andleadto the following
intuitive remarksaboutpaymentules(seeFigurel):

1. A largeflat sectionfor bidscloseto theagentstruevalue
is useful,i.e. with adjustedbid price independenof the
agents bid price.

2. Nowhereshouldtheadjustecdid pricebegreaterthanthe
agents bid price (for IR with truthful bidding), which con-
strainstheline to lie to theright of the“no-discount”line.

3. It is moreimportantto implementthe flat sectionfor val-

ues,v, far from the highestoutsidebid, z, thanvaluesclose
to the highestoutsidebid (i.e. Large ratherthan Smal),

becausamanipulationis alreadymorerisky for true values
closeto v thanfarfrom z.8

It is useful to think aboutthe “degree of manipulation
freedom”availableto anagent,which in this simplesingle-
bundle modelis the differencebetweenan agents value v
andthehighestoutsidebid z. In generalthisis simply mea-
suredby the Vickrey discountto an agentthat bids truth-
fully, i.e. theamountby whichit could have reducedts bid
priceandstill participatedn thesametrades.TheLargeand
Thresholdschemesreeffective becauséhey make manipu-
lation moredifficult andlessusefulfor anagentwith alarge
degreeof manipulationfreedomwhile leaving the ability to
manipulateof agentswith a small degreeof manipulation
freedomunchanged.This is a good incentive strategy be-
causeit attacksthe “low risk” manipulationopportunities,
but leavesthe “high risk” opportunities. Agentsare uncer
tain aboutthebidsfrom otheragentsaandalwaysruntherisk
of biddingtoo low andforfeiting a profitabletrade.

Results. Table3 summarizeshe analyticalresults giving
anagents optimal bidding strateyy, 8*, asa function of the
parametetin eachscheme andthe expecteddiscountper

8Notethatin termsof efficiengy thepictureis mixed. While we
canstandmore manipulationfrom agentswith large valuescom-
paredto z, without changingthe tradesthat we implement,if the
bids from thoseagentsdoeschangethe final implementatiorthe
effecton efficiengy is likely to be quitelarge.

Rule OptimalManipulation,§* Expectediscount

No-Discount 8/2 0
Vickrey 0 §/4
. 1— : [
Fractional max [0, (ﬁ) 6] min [6/4, Wg]
. §—2C
Threshold min [C, 6/2] masx [0, $=20°
Equal =D 2o)
Small  max[0, min (§/2,8 — C)] min [§/4, C?/44]
Large 0,if C <§/V2 —C?/46 4+ 6/4,if C < 6/V2
§/2, otherwise 0, otherwise
Reverse max [0, 22¢] min [6/4, C/4]
Table3: Analytical results.
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Figure4: Optimalagentmanipulation§* (), (asa proportionof
§) undereachpaymentschemeasthe amountof availablesurplus
increasesrom 0to /2 peragent.

agentgiven that optimal strategy.® We presentan example
derivation,for the Thresholdrule, below.

In Figure4 we enforceBB, computingparameterén the
paymentschemego setthe expecteddiscountequalto sur
plusad, andplot theequilibriummanipulatiorperformedn
eachpaymentschemeasthe amountof surplusvaries. The
Vickrey paymentschemecanbe implementedwith surplus
0/4 peragentsoall schemesxceptEqualandNo-Discount
preventmanipulationcompletelyfor o > 0.25. For smaller
amountsof surplusthe market maker is forced to deviate
from Vickrey, and move left in Figure4. At @« = 0 no
schemesan provide arny discount,and the agentmanipu-
latesby /2.

First, notice that the simple minded Equal schemeap-
peargto have badincentive propertiesin fact,theThreshold
methoddominatesall other schemesn this model except
Large. Large hasan interestingbad-goodphasetransition
ata = 1/8, and can prevent manipulationcompletelyfor
1/8 < a < 1/4 eventhoughagentswvith smallVickrey dis-
countsmight have benefitedfrom manipulationwith hind-
sight. Agentuncertaintycoupledwith therisk of biddingtoo
low andeitherfalling from the flat sectionor underbidding
thehighestoutsidebid leadagentdo bid truthfully.

%It is usefulto confirmthatall expressionseduceto thatfor the
Vickrey and No-Discountrules at extreme parametevalues(e.g.
= {0,1} in Fractional,C' = {0, §/2} in Thresholdgtc.)



Example Derivation: Threshold Rule. Eachagentre-
ceives discountmax(0,b — (z + C')), for someconstant
C > 0. Theagents utility givenbid v — 8, valuew, highest
outsidebid z, and ThresholdC, is computedas:

v—(xz+C), fo—0>z+C
u(v—0,v,x,C) = { v—(v—0), fz+C>v—0>=z
0, otherwise

AssumethatC < §, sothatthe agentwill receve a dis-
countfor somechoiceof § < §. Considetthreecases.
Case(l), 8 < 6—C. Theexpectedutility for bid 8 givenC,
EU(@4,C) is:

v—0—-C v—0 v+0
/ o= (2 + O)] flz)dz + / o= (v=0)]f(z)dz + / 0f(z)dz
z=v—08 z=v—0-C z=v—0
(-6-C) 1

= +———(v—-0)—= [(v—6-C)*— (v—6)*] + i(t9 + C-9)

26 46 26

v—0
Incase(2), -C' <6<4,EU0,C) = [ [v~(v-9)]f(x)dz =
z=v—§
0(6 —6)/26. In Case(3),6 < 6, thenEU(4, C) = 0. ¢,From
this, the agents optimalbidding strateyy, denoted?*(C), by
differentiationw.r.t. # andcaseanalysisjs:

6*(C) = min[C, §/2]

The discountto the agentfor bid b = v—60 is: Alv —
0,v,z,C) = max[0,v—0—(z+ C)]. The expecteddis-
count,firstin thecasethatd < 6 — C, is:

v—0-C
EA(6, C) = / v — 6—(z + C)|f(x)de
r=v—§
R e (R Jye) S 8

or EA(,C) = 0 in thecased > J— C. Substituting
for the agents optimal bidding stratgy 6*(C) we have:

EA(6*(C),C) = max [O, W] Now, with peragent
surplusad and budget-balancesuchthat EA*(C) < ad,

the exchangeshouldsetC*(a) = min [0, 2 (2 — v16a )]
to minimize manipulation.

Experimental Analysis

In this sectionwe provide an experimentalanalysisof the
paymentschemesin a set of combinatorial problem in-

stances. Agents are either buyers or sellers, and values
are assignedo agentsfor bundlesfollowing the Random,
WeightedRandom,Decay and Uniform distributionsfrom

Sandholm(1999), adaptedin this caseto a combinatorial
exchange Eachagentsubmitsbids (asks)for multiple bun-
dles, with exclusive-or constraintsacrossbids (asks). We
testproblemswith 5, 10, and20 agentsatotal of 100 bids
and asks(evenly distributed acrossagents),50 goods,and
with differentproportionsof buyersandsellers*?

10Resultsare averagedover 80 probleminstancesfor numbers
of Buyer/Sellers {5/5,7/3,2/3,4/1,10/10,15/5}.
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Figure5: AverageSingle-AgentGainin Utility from manipula-
tion by y% (vs. truthful bidding),in a systemin which every other
agentmanipulatedy y%. Problemsize:5 buyers/5sellers.

In ourtheoreticamodelwe adoptedaverage-casbudget-
balanceto make the analysistractable. We now revert to
the more naturalworst-cas€gor every-time)budget-balance
in which the market maker distributesexactly the available
surplusevery time the exchangeis cleared. Paymentrules
arenow computedafter bidsarereceved.

We performallimited strateyic analysis.First, we assume
thatthestrategy of agent is to adjustall its bidsandasksby
thesamefractionalamount,y; %, i.e. submittingbid prices
1% below valueandaskpricesy; % above value. Second,
we look for a symmetricNashequilibriumin which every
agentfollows the samestratayy, for somey%. Finally, we
computeanapproximationto this equilibriumfor computa-
tional tractability. We computethe averageutility gainto a
singleagentfor 0% vs. y% manipulation,giventhatevery
otheragentmanipulatedy 4%, and determinethe amount
of manipulationy*, thatmaximizeghis utility gain. We as-
sumethatthis is alsothe optimal strateyy for anindividual
agentagainsta populationof agentswith fixedstrateiesy*,
andthereforethe Nashequilibrium*

Giventhis, we readoff the symmetricNashequilibrium
undera particularpaymentrule asthe peakof a plot suchas
thatin Figure5, which plotsthe gainin utility for strategy
y% vs. 0% in a systemin which every agentfollows strat-
egy y%, in this casefor the 5 buyers/5sellersproblemset.
In this case,notice that the equilibrium manipulationlevel
in Large and Thresholdis lessthan underthe otherrules,
in this casearound10% and20% in Large and Threshold,
comparedvith 30%,40%and50%in Fractional Equaland
No-Discount.In addition,theamountof utility gainin Large
andThresholds muchlessthanin theotherschemes.

In Table4 we summarizeheresultsof experimentsacross
all problemsets.We compare the averageutility gain,and
thecorrelationwith Vickrey discountsat manipulationlev-
elsof 10%, 20% and30%in eachschemeandthe average
optimal degreeof manipulationby agentsin eachscheme,

onebenefitof this techniqués thatwe have amethodto mea-
surethe degreeof manipulationevenwhenthereis in factno sym-
metric pureNashequilibrium.



No-Discount Vickrey Small Frac

Utility Gain 0.799 -0.195 0.479 0.211

Correlation 0.053 1.0 0.356 0.590
Manipulation,8* 48 0 48 32
Efficiency (%) 58 100 58 78

Threshold Equal Large Reverse

Utility Gain 0.110 0.516 0.029 0.337

Correlation 0.543 0.356 0.176 0.522
Manipulation,§* 22 46 18 44
Efficiency (%) 86 62 88 64

Table 4: Experimentakesults. Utility gainand Correlationwith
Vickrey discountscomputedfor manip. 10%, 20% and30%, and
averagedbver all probleminstancegfor 5-20agents).

andthe correspondingallocative efficiency. The allocative
efficiency in the Large and Thresholdschemess consider
ably higherthanin theotherschemes.

Discussion
Thepartialordering{Large, Threshold} > Fractional- Re-
verse- {Equal,Small} from the experimentakesultsis re-
markablyconsistentvith the resultsof our theoreticalanal-
ysis. Althoughthe Largeschemegenerateslightly lessma-
nipulation and higher allocatve efficiency than Threshold,
the correlationbetweendiscountsand Vickrey discountsis
muchgreaterin ThresholdthanLarge. An agents discount
in Large is very sensitve to its bid, andwe expectLarge
to be lessrobustthan Thresholdin practicebecausef this
all-or-nothingcharacteristic.

As discussedarlier we have madea numberof assump-
tions, both in the analytic modelsof agentmanipulation
and also in the manipulationstructureconsideredexperi-
mentally In additionto understandinghe effects of these
assumptionsin future work we would alsolike to: quan-
tify worst-caseandaverage-casatility gainsfrom manipu-
lationin eachpaymentschemegivena particularamountof
surplus;andderive optimal paymentschemesfor example
minimizing worst-casegainsfrom manipulation. One av-
enueis to askhow badwouldtheefficiengy getif everyagent
wasperfectlyinformedaboutthe otheragentsandfollowed
abest-possiblbiddingstratgy giventhepaymentules. Fi-
nally, we suspecthatstochastigpaymentrulesmight prove
to haveinterestingncentive properties.

Conclusions

We constructecbudget-balancegpaymentschemego min-
imize different distance functions to Vickrey payments,
and showved analytically and experimentallythat a simple
Thresholdule hasbetterincentive propertiegshanotherpay-
mentschemesThe effect of the paymentschemds to im-
plementa distribution of manipulation-preentingdiscounts
acrossa populationof agentsto exploit anagents inherent
uncertaintyaboutbids from otheragentsandthe degreeto
which manipulationcanbe useful. The Thresholdrule in-
creaseghe amountby which an agentwith a large degree
of manipulationfreedommustadjustits bid to have auseful
effect on the price it finally pays,while leaving unafected

the manipulationpropertiesfor agentswith a small degree
of manipulationfreedom.

Finally, we notethatthe schemesutlinedherecanalso
allow a market maker to make a small profit by taking a
sliver of budget-balancegr usedin combinationwith a par
ticipation chaige to move paymentscloserto Vickrey pay-
ments.
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