
An Auction-Based Method for Decentralized Train
Scheduling

David C. Parkes and Lyle H. Ungar
Computer and Information Science Department

University of Pennsylvania
200 South 33rd Street
Philadelphia, PA 1910

dparkes@unagi.cis.upenn.edu, ungar@cis.upenn.edu

ABSTRACT
We present a computational study of an auction-based method
for decentralized train scheduling. The method is well suited
to the natural information and control structure of mod-
ern railroads. We assume separate network territories, with
an autonomous dispatch agent responsible for the
ow of
trains over each territory. Each train is represented by a
self-interested agent that bids for the right to travel across
the network from its source to destination, submitting bids
to multiple dispatch agents along its route as necessary. The
bidding language allows trains to bid for the right to enter
and exit territories at particular times, and also to represent
indi�erence over a range of times. Computational results on
a simple network with straight-forward best-response bid-
ding strategies demonstrate that the auction computes near-
optimal system-wide schedules. In addition, the method
appears to have useful scaling properties, both with the
number of trains and with the number of dispatchers, and
generates less extremal solutions than those obtained using
traditional centralized optimization techniques.

1. INTRODUCTION
Auction-based scheduling methods are well-suited to the

decentralized information and control structure of modern
railroads. The
ow of trains over a railroad network is not
controlled by a single centralized scheduler, but rather by
the joint decisions of a number of largely autonomous dis-
patcher agents, each responsible for a local track territory.
In addition, trains are operated by competing companies,
each of which would prefer for their trains to run on-schedule
even if the trains of other companies must wait. Real train
drivers receive bonuses for on-line arrivals, and have private
information about repair schedules, etc.
Auction-based methods �ll two important needs. First,

they respect the natural autonomy and private information
within such a distributed system. Secondly, they can pro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AGENTS’01,May 28-June 1, 2001, Montréal, Quebec, Canada.
Copyright 2001 ACM 1-58113-326-X/01/0005 ...$5.00.

vide incentives for trains to reveal truthful information (in-
directly, via bids) about their values for di�erent schedules.
In a naive central implementation, a self-interested train
with private information about its time constraints, value,
and costs, cannot be expected to act truthfully, but rather
to misrepresent this information if it will improve its own
schedule in the system-wide solution.
The train scheduling problem that we address in this pa-

per falls within a hierarchy of interrelated train scheduling
problems; see [6] for a recent survey. We assume that all
strategic planning, i.e. deciding on train routes and assign-
ing values, times, and costs, is already completed. Our in-
put is a set of trains, each with a de�ned routes over a track
network, a value for completing its journey, and an optimal
departure and arrival time and cost function for o�-schedule
performance. The system-wide problem is to compute a ro-
bust and safe meet/pass schedule for the movement of trains
over the network to maximize the total cost-adjusted value
over all trains.
In constructing an optimal meet/pass schedule we depart

from earlier models for automatic train scheduling that used
�xed-priority scheduling rules. These early models have
been criticized for a \hurry up and wait" approach [7], with
high priority trains moved down lines as fast as possible,
possibly causing problems and ine�ciencies at yards further
down the line. We build instead on the pacing models of
Kraay et al. [7], which control the speed of trains in �nding
optimal schedules.
Our auction design has each dispatcher agent running a

separate auction, for the right to enter and exit its territory
at particular times. There are necessarily multiple auctions,
to respect the autonomy of individual dispatchers to make
local decisions. All auctions terminate simultaneously, when
there is quiescence across the system. A train agent must
bid for pairs of entry and exit times across multiple dispatch-
ers to complete its journey, which presents a coordination
problem. The exit time from one dispatcher must be early
enough to allow the train to enter the next dispatcher on
its route at the required entry time. In order to help in this
coordination process, we implement iterative auctions to al-
low trains to adjust towards a good solution, and we allow
trains to submit bids for sets of times, i.e. \I want to enter
your territory at any time after 10am, but leave no later
than 1.30pm, and my maximum travel speed is 100km/hr."
This constraint-based bidding language is a concise way

to handle the continuous time attribute of a bid without im-

posing an explicit discretization on time, satisfying Nisan's
[9] requirements that a language be both simple and expres-
sive.
In each round the auctioneer computes the set of bids that

maximize revenue, subject to the constraint that there must
be a feasible meet/pass schedule for trains given the entry
and exit times in accepted bids. Prices are maintained over
a discrete price lattice on pairs of entry and exit times, with
prices increased across rounds with an iBundle style price-
update [10], i.e. based on the bid prices from unsuccessful
agents.
Experimentally, we compare the quality of schedules com-

puted in the auction-based method with schedules computed
under a traditional centralized optimization approach. In
order to make a fair computational comparison across the
methods we formulate both the global scheduling problem
and the winner-determination problems as (closely related)
mixed integer programs, and solve with CPLEX. We gen-
erate a set of stochastic problem instances, and compare
the centralized solution (with complete information about
agents' problems) with the auction solution. In the auction-
based method we make a reasonable assumption about agent
bidding strategies, we assume that agents follow a myopic
best-response bidding strategy and submit bids to maximize
value given the current ask prices.
Our initial computational results demonstrate that the

auction-based method can generate better schedules than the
centralized method, and in less time. Moreover, the auction
appears to have good scaling properties with the number of
agents and dispatchers, at least for the auction parameters
selected in our tests (e.g. price update speed, time in each
round to solve winner-determination, etc.)
As a word of caution, it also seems likely that the bid-

coordination problem will become quite hard in the auction
as the number of dispatchers increase, perhaps for routes
across �ve or more dispatchers. The performance of the sim-
ple myopic bidding strategy might begin to fall-o� in these
cases, leaving agents \exposed" to times that they cannot
�t with times from other dispatchers. Further study is re-
quired to consider alternative, more sophisticated bidding
strategies in these cases.

2. THE TRAIN SCHEDULING PROBLEM
We assume that each train has a source and destination

node, a value to complete its journey, and a cost for o�-time
departure and/or arrival. The global objective is to �nd a
safe schedule that maximizes the total net value, the total
value minus cost of delay across all trains that run. We
introduce a novel mixed-integer programming (MIP) formu-
lation that allows trains to be dropped when necessary, i.e.
to allow other high-valued trains to run on-time. A very
similar formulation is adopted for the winner-determination
problem in the auction (see the next section).

2.1 Track Network: Topology and Constraints
In modeling the train scheduling problem we make a num-

ber of simplifying assumptions about the network structure
and about the types of meets and passes that we allow.
The key assumption is that of a single line operation{ a

sequence of single-track, double-track, or yard sections, sep-
arated by nodes. This simpli�es the speci�cation of the
global train-scheduling problem, and also of the winner-
determination problem in the auction-based method. In

addition, train agents must only consider tradeo�s across
multiple temporally di�erent routes, and can ignore alter-
nate paths over the network.
An interaction between a pair of trains may be a meet or

a pass, and is associated with a network location and a time.
A meet is when two trains traveling in opposite directions
are at the same location at the same time. A pass is when
two trains traveling in the same direction are at the same
location at the same time.
The feasibility of a schedule for trains across a network is

determined by the safety of meets and passes. This depends
on the type of section:
(S1) Any number of trains can meet and pass in yards.
(S2) Any number of trains can pass on double-track sections,
but no trains can meet.
(S3) No trains can meet or pass on a single-track section.
In addition, a feasible schedule must maintain a minimum

separation distance, �safety , between trains on single and
double track sections. We waive this minimum separation
distance requirement for trains in yards. Finally, no train
can exceed either its maximum speed, or the maximum safe
speed on any section.
Allowing trains to pass but not meet on double-track sec-

tions reduces problem-solving complexity; intuitively there
are many more ways for two trains to cross in the same
direction than in opposite directions. Similarly, modeling
in�nite-capacity yards and double-track sections (sidings) is
a simplifying assumption.

2.2 Schedules
A schedule speci�es the network position across time for

each train in the system. It is su�cient to to consider sched-
ules in which trains travel at a constant speed across each
section (the speed can vary from train to train and from
section to section), by the following result:

Lemma 1. Any feasible schedule can be reduced to a feasible
schedule where each train travels at a constant speed within
each track section.

The transformation which maintains feasibility is to hold
times at nodes between track sections constant, and smooth
the speed of each train between these points. The proof is
quite straightforward{ just show that the number of meets
are the same for any speed pro�le consistent with the entry
and exit points, and that the number of passes is (weakly)
less when trains travel at a constant speed. We ignore con-
straints on acceleration across sections.
This observation reduces the size of the search space in

the scheduling problem, we can simply �nd optimal times
for trains at the ends of each section.

2.3 A Mixed Integer Programming Formula-
tion

Let I denote the set of trains and N denote the set of
nodes between track sections. It is useful to view the net-
work in an west{east orientation, with nodes ordered that
j > k for j 2 N further east than k 2 N . We divide the
trains into set east � I that travel west-to-east and west
that travel east-to-west. The nodes are labeled with the
type of section to the east, e.g. the section between node j
and j+1 is a yard if j 2 yard, single-track if j 2 single, and
double-track otherwise. The minimum travel time for train
i between node j and j + 1, its free-running time r(i; j), is

de�ned by the length of the section, the maximum speed of
the train, and the maximum safe speed over the section.1

Each train i 2 I has a source node and optimal departure
time, (s(i); t�s(i)), a destination node and optimal arrival
time, (d(i); t�d(i)), a value Vi � 0 for completing its jour-
ney, and a cost penalty, costi(ts; td), for o�-schedule per-
formance. Following [5] we assume a linear additive cost
penalty for each train. Given actual source ts and destina-
tion td times, the cost for o�-schedule performance is com-
puted as:

costi(ts; td) = Ci j ts � t�s(i)j+ Ci j td � t�d(i)j

where Ci > 0 is train i's marginal cost for o�-schedule
performance.
We assume that performance is measured only on the basis

of a train's time at its source and destination nodes. This is
reasonable for a freight train with a single shipment to make,
but less appropriate for a train that must make intermediate
scheduled pick-ups and drop-o�s.
We specify a schedule with the time, t(i; j), of each train

i at node j. This is su�cient to compute the optimal sched-
ule, by Lemma 1. Let y(i) 2 f0; 1g equal 1 if train i is not
dropped from the schedule, and 0 otherwise. Let �source(i)
and �dest(i) denote the absolute error in departure and ar-
rival time for train i at source node s(i) and destination
node d(i). The system-wide objective is to maximize total
value minus cost:

max
X
i

Viy(i)�
X
i

Ci�source(i)�
X
i

Ci�dest(i)

The constraints make sure schedules are feasible, i.e. that
a schedule is safe, trains are separated, and speed constraints
are not violated. In the following (\the big M technique"),
M is a large positive number, used to make sure that dropped
trains do not restrict schedules for other trains and also to
implement disjunctive logic constraints as a mixed-integer
program.
Constraints (1a) and (1b) set the errors �source(i) and

�dest(i) for train i:

�source(i) � jt(i; s(i))� t�1(i)j �M(1� y(i)) 8i 2 I (1a)

�dest(i) � jt(i; d(i))� t�2(i)j �M(1� y(i)) 8i 2 I (1b)

Notice that if y(i) = 0 for train i then �(i) = 0 is a solution,
and we count no penalty for dropped trains. This avoids
requiring non-linear terms, such as Ci�source(i)y(i), in the
objective function. The absolute value constraint can be
implemented by writing two greater than constraints, one
for the positive term and one for the negative term.
Constraints (2a) and (2b) ensure consistency of travel

times for trains, given free running times r(i; j) for train
i between node j and j + 1. Again, neither constraint is
binding for a dropped train by the \big M" formulation.

t(i; j + 1) � t(i; j) + r(i; j)�M(1� y(i)) 8i 2 east; 8j 2 N
(2a)

t(i; j + 1) � t(i; j)� r(i; j) +M(1� y(i)) 8i 2 west; 8j 2 N
(2b)

We introduce the zero-one variables gap(i; i0; j) to make
sure that trains are a safe distance apart at all times; gap(i; i0

1Later, when we formulate the schedule problem for winner-determination
we will leave this information implicit in the bidding language to simplify
our presentation.

; j) = 1 i� train i trails train i0 by at least time safety at
node j. We capture with \big M" that either a train must
be more than safety ahead of another train, or safety behind
another train. Note that constraint (3b) is true whenever
at least one of the trains is dropped, so that the times on
dropped trains are not constrained.

t(i; j)� t(i0; j) +Mgap(i; i0; j) � safety ; 8j 2 N ; 8i; i0 2 I
(3a)

t(i0; j)� t(i; j) +M(1� gap(i; i0; j)) +M(2 � y(i)� y(i0))

� safety ; 8j 2 N ; 8i; i0 2 I (3b)

We introduce the zero-one variables after (i; i0; j) to indicate
whether train i arrives at node j after train i0; after(i; i0; j) =
1 if train i is after train i0 at node j. This indicator variable
is set by constraints (4a) and (4b) to be consistent with the
times de�ned by variables t(i; i0; j). A dropped train can
assume the same ordering with respect to all trains, allowing
them to trivially satisfy (4c) and (4d).

t(i; j)� t(i0; j) �Mafter (i; i0; j) ; 8j 2 N ; 8i; i0 2 I (4a)

t(i0; j)� t(i; j)�M(2� y(i)� y(i0)) �

M(1� after(i; i0; j)) ; 8j 2 N ; 8i; i0 2 I
(4b)

Constraint (4c) captures the restriction that trains traveling
in the same direction cannot pass on sidings or single-track
sections. East-bound train i must remain after east-bound
train i0 at node j if it is behind train i at node j + 1 and
the section between j and j + 1 is not a yard. Similarly for
west-bound trains.

after(i; i0; j) =after(i; i0; j + 1)

8j =2 yard ; 8i; i0 2 east ; 8i; i0 2 west (4c)

Finally, constraint (4d) captures the restriction that trains
traveling in opposite directions cannot meet on single-track
sections. If east-bound train i is after west-bound train i0

at node j it must also have followed west-bound train i0 at
node j + 1 for single-track sections between j and j + 1,
otherwise the trains were on the same single-track section
at the same time and traveling in opposite directions.

after(i; i0; j) =after(i; i0; j + 1)

8j 2 single; 8i 2 east; 8i0 2 west (4d)

Taken together with the objective function, the constraints
specify a mixed-integer program to solve the centralized
train scheduling problem. The optimal solution speci�es
which trains are dropped (with y(i) = 0) and the times
t(i; j) for other trains at each node j in the network.

3. AN AUCTION-BASED SOLUTION
Let us assume that the track network is divided across dis-

patcher territories, with each dispatcher responsible for the
local
ow of trains. A separate dispatcher agent auctions the
right to travel across each territory. Each train is associated
with a train agent that places bids for the right to travel
across a territory, and coordinates times across dispatchers
on its route to achieve a good schedule.
We assume that dispatch territories are separated by neu-

tral yards to allow the safety constraints on meet and con-
straints to be decoupled across dispatch territories, because
yards have in�nite capacity and allow arbitrary meets and

passes. The dispatcher on each side of connecting yards
must simply ensure that trains remain a safety distance
apart as they enter and exit their territory.

3.1 Auction Innovations
The nature of the train scheduling problem require a num-

ber of innovations in auction design:
(1) A constraint-based bidding language allows trains to
submit bids with continuous time attributes, to represent
a choice set over di�erent pairs of times, i.e. without dis-
cretization.
(2) Prices are maintained over a discrete lattice with quotes
computed on-the-
y for any pair of times, i.e. an approx-
imate representation of a continuous and non-linear price
space.
(3) The selection of revenue-maximizing bids is built on top
of a feasibility check that looks for feasible meet/pass sched-
ules given entry-exit times, i.e. the con
icts across bids are
non-trivial and checked via solving for feasible schedules.
As noted earlier we implement multiple independent auc-

tions, one for each dispatcher territory, to respect the deci-
sion autonomy of each dispatcher. Given that trains must
receive compatible entry-exit times across multiple dispatch-
ers, the auctions are necessarily iterative to allow train agents
to coordinate their bids across multiple auctions.
All auctions close simultaneously when bid quiescence is

detected across the system.

3.2 Dispatcher Auction
We allow train agents to bid for entry and exit times in

a territory, but leave the dispatcher with the
exibility to
decide exactly how a train will run, consistent with those
times.

Bidding Language
The bidding language is quite expressive: a train can bid a
price to enter a territory at time tentry and depart at time
texit, and state whether the times are �xed or
exible. With a
�xed time the train must enter (or exit) the territory at that
exact time. With a
exible entry time, any time after tentry
is acceptable; with a
exible exit time, any time before texit
is acceptable (subject to constraints on a train's minimal
travel time). Finally, a train agent can submit multiple bids
coupled with an \exclusive-or" constraint, to state that the
dispatcher can accept any one pair of times from any one
bid.
Let K denote the set of all bids, and �(i) � K the bids

received from agent i. A set of bids from agent i in a par-
ticular round are all associated with a single entry node,
nentry(i), a single exit node nexit(i), and true/false values
�xed entry and �xed exit to state whether the times are �xed
or represent constraints. Each individual bid k 2 �(i) spec-
i�es an entry time, tentry(k), an exit time texit(k), and a bid
price p(k) � 0.
Example:
Bid (5; 10; $100) xor (7; 12; $150) for entry node A and

exit node B, with �xed entry but :�xed exit, states that the
train agent is willing to pay up to $100 to enter at A at time
5 and depart before time 10, or up to $150 to enter at time
7 and depart before time 12.
To keep the winner-determination problem tractable we

also �nd it useful to restrict the number of bids that an
agent can place in any round.

Winner-determination
In each round of the auction the dispatcher solves the winner-
determination problem, computing a provisional allocation
to maximize revenue based on bids. The provisional alloca-
tion must be consistent with some feasible schedule.
The winner determination problem is formulated as a mixed-

integer program, very similar in form to that for the central-
ized train scheduling problem. However, it tends to be much
easier to solve because: the problem is restricted to the space
of solutions compatible with the bids submitted by agents;
and the problem is for only a single territory.
Mixed-Integer Program Formulation.

Borrowing as much from the earlier global MIP formula-
tion as possible, we introduce new zero-one variables x(i; k) 2
f0; 1g for agent i 2 I and bid k 2 �(i), the set of bids from
agent i, with x(i; k) = 1 i� agent i's bid k is in the provi-
sional allocation. The linear objective function is:

max
X

i;k2�(i)

p(k)x(i; k)

i.e. maximize total revenue where p(k) denotes the bid price
of bid k from agent i.
Constraints (2a, 2b, 3a, 3b, 4a, 4b, 4c, 4d) are adopted

from the MIP of the global train scheduling problem, with
train times computed on the basis of bids from agents. Al-
lowing for
exible bid times, we write:

t(i; s(i)) =
X

k2�(i)

tentry(k)x(i; k) , if �xed entry(i) (1a')

t(i; s(i)) �
X

k2�(i)

tentry(k)x(i; k) , otherwise

t(i; d(i)) =
X

k2�(i)

texit(k)x(i; k) , if �xed exit(i) (1b')

t(i; d(i)) �
X

k2�(i)

texit(k)x(i; k) , otherwise

X
k2�(i)

x(i; k) � y(i) (1c')

The source node s(i) is the entry node nentry(i), and the
destination node d(i) is the exit node, nexit(i).
Constraints (1a') constrain the schedule for train i to an

entry time consistent with its bid, similarly for (1b') for its
exit time. Constraint (1c') ensures that at most one bid
is accepted per agent, and that no bids are accepted from
dropped trains.
Winner-Determination Cache.

One useful technique to speed-up winner-determination
in iterative auctions is to maintain solutions from previous
rounds in a cache, indexed against the bids that were sub-
mitted. The cache can be checked for a solution before solv-
ing the mixed integer program.
In this problem, a hit in the cache depends on the con-

straints submitted by agents. Given a set of bids K from
agents, a match is found if a permutation (in terms of the
order of agents) of the new bids are consistent with a set of
bids in the cache. To be consistent:
(1) if bids from agent i are successful in the cached solu-

tion, then the new bids from i must support the time corre-
sponding to the successful bid, and be (weakly) less
exible
than the other times in the cached bid.2

2The other times can bemore flexible if every agent that bids is in the

(2) if bids from agent i are unsuccessful in the cached
solution, then the new bids from i must all be (weakly) less

exible than the old bids.
A bid is less
exible than another bid if it represents a

smaller set of times and at the same price or less, vice-versa
for a more
exible bid. An exclusive-or set of bids support an
accepted bid if one or more of the bids in the set is (weakly)
more
exible than the accepted bid.

Price Updates
Each dispatcher agent maintains ask prices on a discrete
price lattice. This discretization does not limit the times
that a train agent can bid because the ask price for a par-
ticular bid is determined from the price of the nearest point
on the lattice (or minimal over a set of prices in the case of
a
exible bid). The lattice structure is used to approximate
a continuous non-linear price space. A smaller unit of dis-
cretization leads to a higher computational cost and slower
convergence but perhaps to a higher schedule quality. We
choose this structure for simplicity, another structure might
explicitly maintain unsuccessful bids and compute ask prices
on-the-
y exactly.
Ask prices represent a lower-bound on the price that a

train agent must bid to have any chance of success in the
auction, but do not guarantee that a bid will be successful.
An unsuccessful bid increases the price on its nearest lattice
point, or multiple consistent lattice points in the case of an
unsuccessful constraint-based bid.
For each bid in an unsuccessful exclusive-or set of bids:

(a) �nd the point on the lattice closest to the bid, or set of
consistent points,
(b) and update the ask price at that lattice point to � above
the unsuccessful bid price,
where � > 0 is the minimal bid-increment in the auction.3

The structure of this price-update is motivated by price
updates in iBundle [10], an allocatively-e�cient ascending-
price combinatorial auction that updates prices on bundles
of items by � in response to unsuccessful exclusive-or bids.
An \in�nite" value is used to represent the case that the

safety condition will be violated with any bid close to a
particular grid point. This is used as items are sold to train
agents at particular times (under the continuous clearing
rules, see below), to move a train's bid focus away from a
time that cannot be accepted at any price.

Price Quotes
The prices on the lattice are used to compute ask prices.
The ask price for a �xed pair of times is read o� the grid as
the price at the closest point. For a bid with a
exible entry
time and/or a
exible exit time, the price is computed as
the minimal price over all compatible grid points.
The prices on
exible times have the following useful se-

mantics:

p(k1) � p(k2); if k1 � k2

for bids k1 and k2 if all times consistent with k2 are also

cache and the prices on the rejected bids from each agent are no greater than
on the accepted bids.
3We also increase the price based on bids submitted by a train agent that
is in the provisional allocation but receives the same pair of times from the
last round of the auction and is trying to shift away from that allocation. We
allow a train agent to indicate when it is merely repeating a bid because it
must under the auction rules, rather than because it really wants that pair of
times.

consistent with k1. This follows immediately from the min-
imal operator used to compute an ask price under a
exible
bid. The relationship allows a train agent to prune its local
search when considering di�erent times in its best-response
strategy.

Bidding Rules
The bidding rules are quite simple: (1) an agent must bid at
least the ask price for a good; and (2) an agent must repeat
a bid that supports a pair of times it receives in the current
provisional allocation. This ensures that progress is made
across individual rounds of the auction.

Clearing and Termination Rules
The auctions terminate simultaneously when no new bids
are placed by any train agent to any dispatcher agent. In
addition, each auction has a continuous clearing rule, in
which a dispatcher commits to a particular pair of times
for an agent that receives those times in the provisional al-
location for more than a �xed number of successive rounds,
Tclear. Continuous clearing helps to reduce bidding complex-
ity, committing trains to particular times (although they
can continue to bid for alternate times at an additional
cost), and focusing search. A countervailing force is that
early commits can also lock-in a particular pair of times too
quickly when continued search might �nd a better solution.
The MIP formulation for winner-determination is easily

adapted to include committed times. These times can be
represented with bids from a dummy agent, with acceptance
of those bids forced within the MIP solution method.4

4. THE BIDDING PROBLEM
Recall that each train i 2 I has value Vi to complete its

journey, subject to a cost costi(ts; td) for o�-schedule perfor-
mance, given optimal source and destination times t�s(i) and
t�d(i) and actual times ts and td. The bidding problem is to
purchase the right to travel across the network from source
to destination at minimal total cost, where cost is the sum of
the price it pays in each auction and the cost of o�-schedule
performance. In addition, if this cost is greater than the
train's value then it would prefer to drop out completely.
We assume that each train agent follows a myopic best-

response bidding strategy, bidding for the schedule that min-
imizes total cost given the current ask prices. Myopic best-
response provides a good starting point to analyze the per-
formance of the auction method. It would be interesting,
but probably quite di�cult, to also consider the e�ect of
fully strategic agent behavior on the quality of solutions.

4.1 Myopic Best-response Bidding Strategy
The myopic best-response bidding problem can be for-

mulated as a shortest weighted path problem. The edges in
the graph correspond to pairs of entry-exit times at each
dispatcher, �xed or
exible as appropriate. Edges are con-
nected if the exit time on one edge is consistent with the
entry time on the next edge. The cost associated with an
edge represents the sum of the current ask price, and any
cost for o�-schedule arrival or departure if the dispatcher is
at the source or destination of a train's route.

4The flexibility of mixed-integer program formulations of winner-
determination problems was previously noted by Anderssonet al. [1].

Formulation
A train's best-response, taking current prices as �xed, is to
select a path from source to destination with minimal total
cost (or no path in the case that the minimal cost is greater
than its value for completing the journey).
Given a set of dispatchers, D, let (d1; : : : ; dn) represent

the dispatchers on the route of a particular train. Let C�

1!n(t)
denote the minimal total cost to enter dispatcher d1 no ear-
lier than time t, travel from d1 to dn, and exit from dis-
patcher dn. This cost represents the cost of the best sched-
ule, given current ask prices and the train's costs for o�-
schedule performance. The solution to C� can be computed
as a recursive relationship:

C�

j!n(t) =

(
min
�>t

�
cj(t; �) +C�

(j+1)!n(�)
�

if j < n

min
�>t

cj(t; �) if j = n

where cj(t1; t2) is the cost to enter dispatcher j at time t1
(or no earlier than t1 in the case of a
exible bid time), and
exit dispatcher j at time t2 (or no later than t2 in the case
of a
exible bid time), computed as the sum of the price
for times and any additional cost penalty for o�-schedule
performance if dispatcher j is at the end of the train's route.
The price is the ask-price if the agent is not yet committed
to the good (i.e. it has not cleared), or zero otherwise (in
which case the price represents a sunk cost). Trains consider

exible bid times in the case of non-extremal nodes, but
�xed times at source or destination because a cost is incurred
for any deviation from optimal departure and arrival times.
The intermediate time � represents the time to cross from
dispatcher dj to dj+1.

5

Dynamic Programming Solution Method
We use dynamic programming to solve this problem, com-
puting the best solution over a �xed lattice of time points
(that can be di�erent for each train agent), and working
from dispatcher dn to d1, pruning any dominated solutions
(for example higher cost edges with earlier entry times). In
related work, Boutilier et al. [2] proposed a dynamic pro-
gramming algorithm for agent bidding strategies in sequen-
tial auctions with complementarities.
We bias search towards solutions consistent with times the

train receives in the current provisional allocations. This is
quite reasonable because the ask prices on times represents
a lower-bound on what might be a successful bid price but
does not guarantee that a bid will succeed. That an agent
currently receives a pair of times conveys useful information
about the \�t" of those times with bids from other agents.
This bias reduces problem complexity, limiting the size of
the dynamic programming problems to be solved.
We implement the following algorithm:

(1) determine the maximal consistent set of current o�ers
and sold items that also leave enough time for travel across
those dispatch territories without suitable times.
(2) for each maximal set, use dynamic programming to de-
termine minimal-cost routes in the gaps of the schedule, i.e.
for those contiguous sequences of dispatchers for which the
train is not currently holding a suitable pair of entry and
exit times.
(3) �ll the gaps and select the solution with the lowest total

5We have finessed detail about the time to travel across yards between
dispatch territories, which is simply incorporated into the recursion.

cost (including the cost for current o�ers/sold items used in
the solution).
Whenever a gap occurs at the start or end dispatcher on a

train's route the train considers tradeo�s between bid price
and the cost of o�-schedule performance for o�-time depar-
ture and/or arrival times.
Finally, given a solution a train will submit as many bids

that are consistent with the solution as possible, making use
of XOR logic and constraints on times to submit multiple
bids without compromising the solution. This increases its
own likelihood of success, and also helps the dispatchers to
coordinate joint search across multiple agents.

5. EXPERIMENTAL RESULTS
We ran experiments over networks consisting of linear

chains of dispatcher territories. Our goal was to compare
the quality of �nal schedules and the computational proper-
ties of the auction-based and centralized solutions. Both the
global MIP formulation and the MIP for winner-determination
in each round of the auction are solved with CPLEX. The
rest of the code (myopic best-response, price-updates, etc.)
was written in C++.

5.1 Dispatcher model
Each dispatcher territory has the same network structure,

as depicted in Figure 1. The total distance is 157.5 km, con-
sisting of a single-track section followed by a double-track
section (siding) followed by a single-track section. When
chaining dispatcher territories together we connect them
with yards. Trains have a maximal speed of 100km/hr
over single- and double-track sections, and 1km/hr within a
yard. For simplicity, we model maximal speed as 100km/hr
throughout the network and re-scale yards from size 0.5km
to a model length of 50km.

siding

70 25 62.5

Figure 1: The Network Structure for a Single Dis-

patcher, with distances of each section (in km).

5.2 Example Problem
Consider a problem with a chain of two dispatchers, and 7

trains, each with value $200 and cost $50 per hour of delay.
Trains 1, 2, 4, 5, and 6 run east with optimal departure and
arrival times (in hours) of f (1, 7), (3, 11), (8, 16), (11, 19),
(10, 17) g, while trains 3 and 7 run west with optimal times
f (1, 7), (12, 18) g. Given a maximal speed of 100km/hr the
free-running time of a train across the network is 3.66 hr,
i.e. this is how long it would take a train with no delays.
The auction-based and centralized solutions to this prob-

lem are illustrated in distance-time charts in Figure 2. Both
solutions �nd optimal solutions, with value $1400 (all trains
run on-time). This problem is quite under-constrained, with
a number of possible optimal schedules.
Notice that the auction-based solution is less extremal

than the centralized solution. This is quite typical, a re-
sult of the fact that train agents tend to bid less extreme
times than those selected with a global LP-based branch &

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

Time

D
is

ta
nc

e
fr

om
 W

es
t Y

ar
d

West Yard

East Yard

T1 T2 T3 T4 T5T6 T7

S

S

Y

(a) Auction solution.

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

Time

D
is

ta
nc

e
fr

om
 W

es
t Y

ar
d

West Yard

East Yard

T1 T2 T3 T4 T5T6 T7

S

S

Y

(b) Centralized solution.

Figure 2: Example: 7 trains, 1 dispatcher territory. Distance in 100's of kms, time in hrs.

bound method such as CPLEX, and achieve a more evenly
paced schedule from source to destination. We would expect
this property to make auction-based solutions more robust
against unexpected minor delays during the execution of a
schedule.

5.3 Results
The auction algorithm was parameterized as follows: at

most 5 bids per-agent in each round, at most 240 seconds
to solve winner-determination in each round (with the best
feasible solution used if the optimal solution is not found),
a minimal price increment of $25. The price lattice was
maintained over points with a granularity of 0.2 hrs, and we
used a time interval size of 0.3 hrs in the trains' dynamic-
programming algorithm.

Problem Generator
We propose a stochastic method to generate a set of problem
instances. Our approach is loosely based around instances
in Kraay et al. [7]. We refer the reader to Hallowell [5] for
an account of other interesting train scheduling problem sets
in the literature. In this paper we report results on problem
sets with between 2 and 4 dispatcher agents and between 5
and 15 train agents. We consider linear networks, formed
from dispatcher territories as shown in in Figure 1 and con-
nected with yards. The problem sets are parameterized by
constants: prob(E), �V , �V , �C , �C , depmax, �slack and
�slack, as described below.
All trains travel from end-to-end over the network, and

travel East with probability prob(E). A train's value is se-
lected from a normal distribution, Vi � N(�V ; �V), with
mean �V and standard deviation �V , and its marginal cost
Ci for o�-schedule performance is normally distributedN(�C ;
�C). The optimal departure time for a train, t�d(i), is uni-
formly distributed, t�d(i) � U(0; depmax). Finally, a train's
optimal arrival time, t�s(i), is computed so that the relative
slack, i.e. (available time - free-running time) / free-running
time, is normally distributed with mean �slack % and stan-
dard deviation �slack %.
The complexity of a train-scheduling problem depends

on many factors, including the slack time available to each

Model Size
2 dis 3 dis 4 dis

5 10 15 5 10 15 5 10 15
Global-time (s) 97 1438 2022 1161 2442 2495 886 2378 3155
Val-Global ($) 895 1699 2097 854 1561 1177 898 1106 1132
Auc-time (s) 15 792 2568 15 1192 2039 26.9 944 2448
Agent time (s) 0.4 0.6 2.7 0.9 2.2 3.3 1.9 4.4 8.8
Auc-value ($) 850 1893 1737 842 1855 2632 768 1832 2162
Revenue ($) 315 698 1045 470 1030 1690 700 1365 2142
rounds 12 13 25 13 16 18 16 16 23

Cache hit (%) 60 50 30 61 50 47 50 52 37

Table 1: Comparative performance: Auction vs. Cen-

tralized methods.

train, the network section types, and the number of \cross-
overs". We count a cross-over whenever two trains traveling
on-time must cross at some point in the network. As we
scaled the problems, with more train agents and more dis-
patcher agents, we adjusted the depmax parameter to main-
tain the same number of average cross-overs per-agent, in
an e�ort to maintain a similar problem complexity. An ap-
propriate depmax value was computed separately for each
problem size based on statistical analysis. Without this ad-
justment, adding more trains and more dispatchers increases
the number of cross-overs and makes problems much more
di�cult to solve.
We selected prob(E) = 0:7, �V = $200, �V = 50, �C =

$100, �C = 25, �slack = 100%, �slack = 25%, and set depmax

to give average cross-over complexity of 2 per-train.6 We
generated 10 problem instances for each problem size.

Results
We tabulate results in Table 1, with the computation time
of the centralized method bounded at 3600 secs (at which
point we take the best available solution).7 Notice that the

6The problem sets are available at
http://www.cis.upenn.edu/~dparkes/train.html.
7CPLEX also ran out of memory (at 200 MB) in a few problem instances,
stopping before 3600 secs but without an optimal solution.

quality of the schedule computed in the auction dominates
that from the centralized solution in hard problems, as the
number of dispatchers and/or the number of agents increase.
The winner-determination time in the auction (totaled

over all rounds and all dispatchers) has reasonable scaling
properties, with the number of train agents and in partic-
ular with the number of dispatchers. The auction appears
able to decompose the problem e�ectively across dispatch-
ers, such that most computation in terms of coordinating
trains is performed by one \critical" dispatcher.
It is noteworthy that the train agent best-response bid-

ding problem is quite easy, indicating that we might experi-
ment with a smaller discrete time step. Finally, notice that
the simple cache proves quite e�ective, �nding the optimal
solution around 50% of the time.
More experiments are required, both to better understand

the average-case scaling properties of the auction, and also
to look more deeply at agent strategies. Our current con-
jecture is that the average-case run time in the auction
scales quadratically with the number of train agents, and
perhaps sub-linearly with the number of dispatch territo-
ries. In terms of agent strategies, we suspect that some
agents purchase times that they cannot use as the number
of dispatchers increases, and as the bid coordination prob-
lem gets more di�cult. This belief is based on a comparison
of the revenue with value in the auction, see Table 1. If this
is the case it will be necessary to consider more sophisticated
bidding strategies to avoid this exposure problem.8

6. RELATED WORK
This is not the �rst study of auction-based methods for

train scheduling problems. Brewer & Plott [3], proposed the
BICAP ascending-price auction for distributed train schedul-
ing. Our auction is more
exible: while we allow trains to
construct arbitrary schedules across the network, BICAP re-
stricts trains to bid from a small set of �xed paths. Market-
based methods have also been advocated for other distributed
scheduling problems, such as for airport take-o� and landing
slot allocation problems [11].
Returning to centralized approaches to train scheduling,

Kreuger et al. [8] have proposed a constraint-based method
which appear to have better scaling properties than straight
applications of MIP methods, but is perhaps less suited to
making tradeo�s across schedules with di�erent qualities.
Wellman et al. [12] propose an auction-based method

for a factory-scheduling problem, in which agents compete
for periods of time on (one or more) shared machines. As
in train scheduling, agents often require a combination of
time periods, and perhaps across multiple machines. The
train scheduling problem is di�erent in nature because it
is not possible to de�ne up-front a static set of mutually-
compatible times, any of which can be safely allocated to
any agent. Instead, a feasible allocation of times to agents
must be checked for a safe underlying meet/pass schedule.
Our approach is also rather di�erent to that adopted by
Wellman et al., since we avoid imposing a discretization of
time into �nite slots, but allow agents to use a simple and
expressive constraint-based bidding language.

8A similar exposure problem is noted in the FCC spectrum
auction problem, in which agents need sets of compatible
licenses, and bid across simultaneous auctions [4].

7. CONCLUSIONS
We have introduced a novel auction mechanism for a dis-

tributed train scheduling problem, which is a better match
to the natural information and control structure of modern
railroads than traditional centralized scheduling solutions.
The auctioneer's winner-determination problem is formu-
lated as a mixed-integer program and solved with an o�-
the-shelf optimization problem, while agents' best-response
bidding strategies are solved with a dynamic-programming
algorithm. Simulations on a simple network show that the
auction-based solution can indeed generate good global sched-
ules, and preliminary empirical analysis suggests favorable
computational scaling properties in comparison with a cen-
tralized solution.

8. ACKNOWLEDGMENTS
This work represents the culmination of a long term col-

laborative project with Mei Xue, Patrick Harker, Rinaldo
Jose, Julian Kwan, Rebecca Yount, Shai Shen-Orr, Tina
Cheung, and Sharon Teo. This research was funded in part
by National Science Foundation Grant SBR 97-08965. In
addition, the �rst author gratefully acknowledges �nancial
support from an IBM Fellowship.

9. REFERENCES
[1] A. Andersson, M. Tenhunen, and F. Ygge. Integer

programming for auctions with bids for combinations. In
Proc. 4th Int. Conf. on Multi-Agent Systems (ICMAS-00),
2000.

[2] C. Boutilier, M. Goldszmidt, and B. Sabata. Sequential
auctions for the allocation of resources with
complementarities. In Proc. 16th Int. Joint Conf. on
Arti�cial Intelligence (IJCAI-99), pages 527{534, 1999.

[3] P. J. Brewer and C. R. Plott. A binary con
ict ascending
price (BICAP) mechanism for the decentralized allocation
of the right to use railroad tracks. Int. Journal of
Industrial Organization, 14:857{886, 1996.

[4] M. M. Bykowsky, R. J. Cull, and J. O. Ledyard. Mutually
destructive bidding: The FCC auction design problem. J.
of Regulatory Economics, 2000.

[5] S. F. Hallowell. Optimal Dispatching Under Uncertainty:
With Application to Railroad Scheduling. PhD thesis, The
Wharton School, University of Pennsylvania, 1993. OPIM
TR 93-12-02.

[6] D. R. Kraay and P. T. Harker. Real-time scheduling of
freight railroads. Transportation Research-B,
29B(3):213{229, 1995.

[7] D. R. Kraay, P. T. Harker, and B. Chen. Optimal pacing of
trains in freight railroads: Model formulation and solution.
Operations Research, 39:82{99, 1991.

[8] P. Kreuger, M. Carlsson, and J. Olsson. The TUFF train
scheduler{ trip scheduling on single-track networks. In
CP97 Workshop on Industrial Constraint-Directed
Scheduling, Linz, Austria, 1997.

[9] N. Nisan. Bidding and allocation in combinatorial auctions.
In Proc. 2nd ACM Conf. on Electronic Commerce
(EC-00), 2000.

[10] D. C. Parkes. iBundle: An e�cient ascending price bundle
auction. In Proc. 1st ACM Conf. on Electronic Commerce
(EC-99), pages 148{157, 1999.

[11] S. J. Rassenti, V. L. Smith, and R. L. Bul�n. A
combinatorial mechanism for airport time slot allocation.
Bell Journal of Economics, 13:402{417, 1982.

[12] M. P. Wellman, W. E. Walsh, P. R. Wurman, and J. K.
MacKie-Mason. Auction protocols for decentralized
scheduling. Games and Economic Behavior, 2000. To
appear.

