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Abstract

Russell and Wefald (Russell & Wefald 1991) propose that the study of resource-bounded intelligent
systems should be central to artificial intelligence. A resource-bounded agent acting in a time-
critical domain must decide what to reason about, when, and for how long. Too little reasoning
can lead to mistakes, while too much can lead to lost opportunities. We use the term bounded
rationality to mean reasoning that is optimal in a utility-maximizing sense, given the bounded-
resources of the agent, and the dynamic environment within which the agent is situated. Bounded
rationality necessarily requires optimal meta-reasoning, that is reasoning about reasoning. This
paper surveys recent research into resource-bounded rationality for artificial intelligent agents. The
central thesis of this work is that it is not appropriate to design agents using a normative theory
of rationality, such as decision-theoretic inference, and then add heuristics to allow the agents to
operate in time-dependent environments.

Russell and Wefald present a general framework for decision-theoretic metareasoning, that is rea-
soning about reasoning. Russell and Wefald use probability and decision theory to develop a
general formula for the utility of computation. The utility of a computational action is derived
from its effect on the agent’s choice of action in the world. Their work is related to some early
work in the decision sciences by Good (Good 1971) and Simon (Simon 1976). The problem is cast
as search, with the marginal value of computation determining the optimal sequence of compu-
tations. Russell and Wefald present an application to competitive game-playing, and are able to
demonstrate a substantial improvement in search efficiency when compared to alpha-beta search.
Boddy and Dean (Boddy & Dean 1989), and Horvitz (Horvitz 1987), independently developed
an approach to meta-reasoning for a special class of decision procedures, known as flexible com-
putations, or anytime algorithms. Anytime algorithms guarantee that the quality of a solution
increases monotonically with time, and can be interrupted at any time. The flexibility simplifies
the problem of balancing computation time and quality in an uncertain environment. Boddy and
Dean present a class of efficient algorithms for optimal deliberation-scheduling on a set of anytime
algorithms that compute the best response of an agent to a series of events in the world. Horvitz
presents an application to time-critical medical decision making, and Boddy and Dean present an
application to a robot courier domain. The decision-theoretic meta-level of Russell and Wefald
can be seen as a means to construct a near-optimal anytime algorithm.

Zilberstein addresses the composition problem, that is how to schedule deliberation to a system of



dependent anytime algorithms. The general composition problem is shown to be NP-complete,
but solutions are provided for restricted cases. Zilberstein also introduces the idea of monitors that
allow the resource-allocation strategy to be dynamically adjusted as the computation progresses.
An active monitor can be viewed as an extension of the decision-theoretic control proposed by

Russell and Wefald, since control decisions are taken on the basis of marginal value.
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1 Introduction

Artificial Intelligence is the discipline that is concerned with programming computers to

do clever, humanoid things - but not necessarily to do them in a humanoid way. (Simon

1978)

It seems pertinent to begin our discussion of resource-bounded rationality, and what it
means to be intelligent, with the man-machine contest on the 35th floor of the Equitable
Center, mid-town Manhattan, that has been dominating the media all week. Gary Kas-
parov, chess world champion, succumbed to the powers of Deep Blue, the machine designed
and trained by researchers and chess experts at [.LB.M. Although the timing of this victory
was perhaps surprising, its ultimate inevitability was never in doubt.

Many commentators are insisting that Deep Blue has no intelligence whatsoever, be-
cause it does not “understand” a chess position, but searches through billions of moves
“blindly”. But what better indication is there of “understanding” a position than to play
the best move? Taking the functionalist position, it seems that the ability of Deep Blue to
play chess better than any human is evidence enough of its intelligence. We can view Deep
Blue as a black box, able to choose good moves, in just the same way that the brain of a
grandmaster is “wired” to produce good moves. The brain works because billions of neurons
carry out hundreds of tiny operations each second, none of which in isolation demonstrates
any intelligence.

Perfect rationality, that is making the best move in response to the move of one’s op-
ponent, cannot make a distinction between intelligent behavior that does the right thing
by some means, and intelligent behavior as the result of intelligent cognition. Perfect ra-
tionality is judged solely on the external actions of the agent in the world. But when
we have bounded-resources we cannot really judge an agent that fails to make the best

move as irrational. We need a weaker version of rationality that judges an agent not only



only the actions that it takes, but also by the reasoning it uses and the resources that
are available. We use the term “bounded rationality” to mean reasoning that is optimal
in a utility-maximizing sense, given the bounded-resources of the agent, and the dynamic
environment within which the agent is situated. Bounded rationality necessarily requires
optimal meta-reasoning, that is reasoning about reasoning. The reasoning process becomes
important precisely when we have bounded-resources. The game of chess has been esti-
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mated to have at least 1 possible paths: a search space which will always make artificial

agents resource-bounded.

There is good evidence that grandmasters compare up to 50,000 board positions that
they have studied to the current situation, and that they are able to choose the right move
“intuitively”, because they are unaware of the reasoning process that is occurring in the brain
(Chase & Simon 1973). If the computer did the same thing the trick would be revealed -
but would it not still be “intelligent”? The metareasoning that happens unconsciously in

the brain must be explicitly considered in an artificial agent.

We also need the concept of resource-bounded rationality for the design of intelligent
artificial agents. The work on the decision-theoretic control of computation that we survey
here seeks to design systems that account for their own bounded computational resources
during problem solving. Deep Blue can analyze 300 million chess positions in a second,
and is also endowed with expert knowledge to guide its search. The importance of good
search control is highlighted by what it still cannot do. During the third game in the series
Kasparov played a bold pawn sacrifice that I.B.M. researchers said Deep Blue would never
have made because “it gave too much away, too quickly”. Kasparov was able to use pattern
matching and intuition to recognize the move, while Deep Blue would have needed to do a
very deep search to recognize its value. The combinatorial explosion of the search domain
for chess makes the control of search critical. Russell and Wefald (Russell & Wefald 1991)
apply decision-theoretic principles to the control of search, and are able to show significant

gains over a heuristic control technique such as alpha-beta pruning for competitive-game
playing.
A resource-bounded agent acting in a time-critical domain must decide what to reason

about, when, and for how long. Too little reasoning can lead to mistakes, while too much

can lead to lost opportunities. This paper surveys recent research into resource-bounded



rationality for artificial intelligent agents. The central thesis is that it is not appropriate to
design agents using a normative theory of rationality, such as decision-theoretic inference,
and then add heuristics to allow the agents to operate in time-dependent environments.
Russell and Wefald (Russell & Wefald 1991) propose that the study of resource-bounded

intelligent systems should be central to artificial intelligence.

1.1 A brief history of rationality within AI

In artificial intelligence the logical approach provided the first formal definition of rationality
(McCarthy 1958). Logical rationality assumes that an agent can be described in terms of
its beliefs and goals, and that an agent is rational if it satisfies one of the goals entailed by
its beliefs. The emphasis within Al in the early days was on normative reasoning, that is on
giving a consistent set of rules under which the agent could reason. Formal intractability
results in computation were unknown, and the aim was to reason using a consistent set
of axioms, and generate provably correct plans. The emphasis was on finding a satisficing
solution, that is any solution to a problem that solved the goal, and there was no notion of

quality. The approach is summarized by Newell:
If one of the available actions leads to one of the goals, take it! (Newell 1981).

Another view of rationality is termed economic rationality (Doyle 1989). Economic
rationality provides formal tools for understanding heuristics and reasoning, and a rigorous
normative framework for analyzing utility and probability. We use utility theory to represent
degrees of goodness: an agent is rational if it chooses the action with the maximum expected
utility. Economic rationality can be viewed as generalizing the logical approach to allow
for goal conflicts and uncertainty. Instead of competing as normative theories, logical and
economic notions of rationality fill complementary needs. Logic describes the possibilities for
reasoning and action, and economics allows an agent to make choices among these. However,
decision-theoretic reasoning is in general NP-hard (Cooper 1990). The normative use of
decision theory provides a standard for rationality, but one which is often unattainable due
to limitations on the available information or resources.

There have been two main approaches to solving the problem of what a bounded-
rational agent should do do in real-time domains, when the ability to trade-off quality

and speed of response is critical. The first approach is known as reactive reasoning (Agre



& Chapman 1991; Brooks 1986). Explicit reasoning, problem solving and maintaining a
world model are abandoned. Instead agents have reactive mechanisms that generate actions
in response to interactions with the physical world. Brooks argues that we can achieve
intelligence in this way without reason, that agents can be right by design. A similar
approach is that of Universal Planning (Schoppers 1987). Agents determine what to do
next by finding a result in a large look-up table. This solution to the problem of bounded-
resource agents in time-critical environments seems unsatisfying, and is also infeasible in
complex domains where the look-up table quickly becomes too large. Reactive systems
provide responsiveness at the cost of inflexible and shallow decision making. It seems
inconceivable that such an approach could ever be used for complex medical domains, path-
planning, or chess. The approach is not very useful either, as it transfers the complexity to

the design phase, and ignores the complexity of the designer (Zilberstein 1993).

The second approach is to add heuristics to normative reasoning methods in an attempt
to reduce the complexity of the problem. This approach can be criticized as inadequate
because it makes little sense to design a normative decision system only to arbitrarily
add heuristics to make it useful to a resource-bounded agent. Most heuristic methods are
thought to increase utility, but are used without any real information about their probability

of usefulness (e.g., A* search, constraint propagation, alpha-beta pruning, etc.).

With resource-bounded agents we need a new model of rationality, that judges agents
not only by their actions in the world, but also by the reasoning process by which they choose
those actions. We must consider the reasoning process in our concept of rationality, without
that we are left with an inadequate theory for designing intelligent systems. Consider the
haphazard logical approach of deducing new conclusions until termination (success), or a
deadline is reached(failure), or the decision-theoretic approach that assumes that we are able
to compute NP-hard probabilistic reasoning results, and considers an agent as irrational if

it does not take the best action.

The new approach presented here uses a normative analysis at the meta-level to control
reasoning in real-time environments for resource-bounded agents. The goal of this work is
to provide a rational approach to rational reasoning under scare resources. Rationality for
a resource-bounded agent differs from the pure decision-theoretic notion of rationality, in

that it explicitly allows for finite computation resources. The value of a decision is judged in



terms of the effect that it has on actions performed by the agent, noting that both actions

and computation have time value.

1.2 Views from the Decision Sciences

Early discussion of bounded rationality within the decision sciences presumed that a nor-
mative approach to metareasoning would be too costly. Good (Good 1971) provided the
earliest discussion of the explicit integration of the costs of inference within the framework
of normative rationality. Good made a distinction between classical, or “Type I” rationality,
and what he called “Type II” rationality, or the maximization of expected utility taking
into account deliberation costs. “Type I” inference is consistent with the axioms of decision
theory without regard to the cost of inference, and “Type II” is behavior that takes into
consideration the costs of reasoning. “Type I” agents are judged as rational if the results
satisfy their preferences, “Type II” agents are judged as rational if they use their limited

resources optimally with regard to their preferences.

Simon (Simon 1976) also considers two types of rationality: procedural rationality where
the agent must compute the rational thing to do, and substantive rationality where the
agent must simply do the right thing, and rationality is judged by actions in the world.
Substantive rationality depends only on the preferences of the agent, while procedural
rationality depends both on the preferences of the agent, and the process by which it reasons.
Simon notes that the shift of emphasis from substantive to procedural rationality, that he
advocates, also requires a shift from concern for optimal solutions to a concern for good
solutions. Simon uses chess as an example that human behavior is not substantively rational,
but procedurally rational. Procedural rationality of a grandmaster in chess comes from
heuristics for selective search, and knowledge of significant patterns. Search is terminated
when a satisfactory solution is found, not when the optimal solution is found (Newell &

Simon 1972).

The theory of information value (Howard 1966) has many parallels with the work on
metareasoning that we survey here. Howard proposes the idea of computing the decision-
theoretic value of an additional piece of information by simulating the decision procedure
that will follow, given each possible outcome of the information request, and thereby esti-

mating the expected value of the information.



1.3 Rationality and Intelligence

Russell (Russell, Subramanian, & Parr 1993; Russell 1995) outlines four candidates for the
formal definition of intelligence. The first is perfect rationality, which defines rationality
as the ability to perform the action with the best expected utility given available informa-
tion about the environment. This is Good’s “Type I” rationality, and Simon’s “substantive
rationality”. The second is calculative rationality, which is the ability to achieve perfect
rationality if the decision process is executed infinitely fast. This has been the main focus
of much research in Al: it concentrates on “epistemological adequacy” before “heuristic
adequacy”. Logical planning systems using situation calculus, and systems based on influ-
ence diagrams (belief nets with embedded actions), are calculatively rational. The third
definition is meta-level rationality, which views rationality as the ability to take rational
decisions at the meta-level, this is what Good meant by “Type II” rationality. A meta-level
rational agent selects computations according to the expected utility. The fourth is bounded
optimality, which is a term originated by Horvitz (Horvitz 1987). Bounded optimality is
really the ultimate goal for a real artificial intelligent agent. A decision process is bounded
optimal if the expected utility of the actions it recommends is at least as high as any other

decision process with the same resource-bounds, and in the same environment.

2 Russell and Wefald: Decision-theoretic Control of Inference

Russell and Wefald present a general framework for the control of reasoning for a resource-
bounded rational agent. A resource-bounded agent in a time-critical environment must
necessarily perform metareasoning, with a view to using its computational resources on
the base-level reasoning that has the greatest expected utility. In a uniform approach,
Russell and Wefald propose that the meta-level problem, of reasoning about reasoning,
should be cast in the same language as the base-level problem, or reasoning about actions.
A bounded-rational agent should take the computational actions that have the highest
expected utility. Russell and Wefald view the value of a computation as deriving from
the effect that the computation has on the actions that an agent chooses to take in the
world. Computation refines the beliefs that an agent has about the value of an action.
Russell and Wefald correctly note that reasoning about a computation without doing it

necessarily involves uncertainty as to its outcome, so probability and decision theory are the



main tools of normative metareasoning. Probability and utility theory provide a normative
basis (accepted in several disciplines as the right thing to do, a consistent axiomatic basis
that is optimal) for a rational theory of belief and action. Russell and Wefald present
normative methods to control metareasoning. The base-level problem is cast as search, and
the principles of metareasoning propose that the marginal value of expanding a node should
be the basis for search control. Expanding a node in a decision tree corresponds to refining
the assessment of utility that an agent assigns to the base-level actions.

In general, meta-reasoning itself is costly, and a normative approach requires that we
also choose the amount of deliberation to spend on meta-reasoning, with an explicit as-
sessment of its expected value to the agent. There is a clear problem of infinite regress
when suggesting normative control at all levels of the agent. In practice, the deliberative
information available at lower levels decreases rapidly, and most systems rely on well-chosen
default actions at the first or second levels. Russell and Wefald make a number of simpli-
fying assumptions at the meta-level, and claim that the costs of metareasoning are small

enough to ignore.
2.1 A general framework of metareasoning

Let © denote the set of possible states of the world. A state of the world includes the
environment (possibly dynamic) and the agent’s internal state (beliefs). The agent has a

utility function that expresses its preferences over states in the world.
U:Q—[0,1] (1)

An agent prefers state we to w1, written w; < we, precisely when U(wi) < U(wz). The
agent has a set of possible base-level actions, A, that affect its environment, and at any
time an action, o € A, that is estimated to transform the current state to a new state with
the highest expected utility. The other actions that the agent might choose are denoted
{B1,-..,0n}, where 31 is the current second-best action for the agent.

The agent also has a set {S;} of computational actions which refine the estimate of
value that an agent assigns to each base-level action. We denote the outcome of an action
(computational or base-level) X, performed in state w, by [X,w] or just [X] if the action is
performed in the current state. Russell and Wefald consider the case where each action has

a deterministic outcome.



Let S denote a sequence of computational actions, and S.S; a sequence of actions S
followed by action S;. The meta-level decision facing the agent is whether to perform
a computational action Sj, or take the current best base-level action . The value of a
computation derives from any improvement in base-level action due to the refinement of
the values assigned to individual actions.

We first assume that the computations {S;} are complete, that is no further compu-
tation will take place following any of the computations. The utility associated with a
complete computation S; in the current state is defined as the utility of the state that
results from taking the new assessment of best action, ag;, from the state resulting from
the computation, [S;].

U([S;]) = U(les;, [S51) (2)
In general, the computation may be part of a sequence of computations, and the utility
of the action is defined as the expected utility of the base-level action that the agent will

finally take, given the computation sequences T that the agent might take as a result of

computation S;:

U([s;) = >_ Pr(T)U([ar, [S;.T])) (3)
TeT

where Pr(T) is the probability that the agent will perform the computation sequence T
subsequent to Sj. The marginal value of a computation is given by the difference in utility
between the state that results from the computation, and the current state. The utility
associated with the current state is just the utility of taking the current best action, «,

from that state.

V(S;) = U([85]) = U([a)) (4)

The marginal value of a computational action computed here is very general, and allows
for the cost of deliberation in the real world (since the utility of the action after computation
S; is explicitly conditioned on the state after the computation, while the utility of action, «,
is conditioned on the state before the computation). We can reason qualitatively about when
further reasoning is valuable. Consider an agent that is faced with a choice between two
actions in the world. The agent currently has an estimate of the utility of each action, but

the estimates are subject to some uncertainty. Figure 1 illustrates three possible probability



distributions for utilities assigned to the actions. In (a) the agent should stop reasoning,
because the possibility of a change in action preference with any reasonable amount of
computation is negligible. In (b) the agent should also stop reasoning, because although
the agent cannot be sure which is best, the current utility estimates are close and the
uncertainty small enough that further computation can be expected to reveal no significant
difference between the two actions. In (c) there is considerable uncertainty, and considerable

overlap in the utility estimates for each action, and further deliberation is recommended.

{a) terminate {b) terminate {c) continue

Figure 1: Termination condition using rational metareasoning

2.2 Normative metareasoning for bounded-rational agents

In general the agent does not know the exact utilities or probabilities at any stage in its
computations, it can only compute estimates. Let QS denote the estimate of quantity Q
following computation S. At each point in time the agent decides how to act based on the
estimates that it currently has, using a meta-reasoning decision procedure whose time cost
is considered negligible. The meta-reasoning decides on further deliberation on the basis of

the estimated value of computation. The value of computation (equation 4) becomes:

VS (5;) = U554 (1S]) — U5 [al) ©)

There is a subtle problem with introducing estimates of the utility of states into the
analysis. The net value of a computation must be judged relative to the (possibly revised)
estimate of the utility of taking action « in the current state. We need U([a]) = US-5i([a]),
and not U([a]) = US([a]). Consider what would happen if the computational action S,

revises only the estimate of value that we assign to our current best action, a. Clearly, when

10



as; = a, we require that V(S;) < 0, since we will take the same action in the world (with
the same value), and the time of deliberation might be costly. Also consider the case where
75-5i ([a]) > US([e). We do not want to view this as a beneficial computation because we
will still choose to take action « in the world, and the true utility of action « in the world is
unchanged. This is why we calculate the marginal value of computation with respect to the
revised value for a. Similarly, we could have the case of a revision of value for a to below
that of the current second-best action F;. This should have a positive value, and never a
negative value.

To simplify reasoning about the utility of combined computational and base-level ac-
tions, Russell and Wefald separate the intrinsic utility, the utility of an action independent

of time, from the time cost of computational actions. The utility of taking an action A; in

a state resulting from computation S; is written:

U([As [S5]]) = Ur([Ad]) — C(4s,55) (6)

where Ur([A;]) represents the intrinsic utility of the action A;, relative to the current
state, and C'(4;,S;) represents the cost associated with delaying action A; by computation
Sj. Russell and Wefald assume that C(4;,5;) = C(S;), so that computations have the
same effect on the utility of all actions. Thus is approximately true in many AI domains,
such as path-planning in a slowly changing environment, but not in domains where the
utility of different actions decreases at different rates, such as deciding between catching
the bus, cycling, or walking. Russell and Wefald also assume that the cost of a computation
depends only on the elapsed time, and write C(4;,S;) = TC(]S;|). With this in hand, we

can separate out the cost and benefit of a computation, and equation 5 becomes

V(s = US%i(las;, [S]) = U5 ([a))
~S.S; ~S.S;
= U™ (les]) = U™ ([of) — TC(]S;1) (7)
The agent cannot know the values associated with ﬁf ad ([ees;]) or ﬁIS i ([a]) without
performing the actual computation, and metareasoning must use a statistical analysis to
control reasoning. The agent also needs a model of the environment to be able to deter-

mine how the would will change during computation S;. The value of the computation

11



S; is a random variable before computation S; is performed, and the agent computes an

expectation

E[V3%i(8;)] = E[US% ([S;])] — E[U>% ([a])] (8)
2.3 An application to competitive game-playing

Russell and Wefald make a number of simplifying assumptions at the meta-meta level to
enable an application of the principles of metareasoning outlined above to a real problem.
The assumptions are necessary so that the cost of meta-level reasoning level are small. The

myopic assumptions have already been touched upon:

e Single-step assumption. Russell and Wefald view each computational action as a
complete computation: the value of a computation step is estimated as though it is the
last computation that will ever be executed before a real-world action is chosen. This gives
an inaccurate estimate of the value of a computation. Consider the case of a computation
step that has no immediate value, but is the preliminary step to a computation that
will significantly improve the values that the agent assigns to base-level actions. The
single-step assumption is myopic, and would recommend against the computation. The
policy is termed single-step because it assumes that the agent will take only one more

computation.

e Meta-greedy assumption. Russell and Wefald only consider a choice between single
computational actions, since it is intractable to consider all possible computational se-
quences that the agent could follow. The policy is termed meta-greedy, because it amounts

to a greedy choice of the next computation step at the meta-level.

We need both assumptions. If we relax the meta-greedy assumption and consider se-
quences of computations then it is no constraint to view the computations as complete.
Similarly, if we accurately compute the full expected value of a single computation step
(including the effect on future computations), then considering only the next computation
step is not a constraint.

Russell and Wefald apply decision-theoretic search control to competitive game-playing
and single-agent problem solving. The computation is readily divided into units by consid-

ering each computation step as expanding a node in a search tree, applying an evaluation
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function at that node, and then back-propagating the value up the tree to base-level actions
at the root. Statistics are used to estimate the net value of an expansion in improving the
utility estimate assigned to a base-level action, and search control proceeds using marginal
value as the decision criteria. The agent refines the estimates that it has for the utility of
its available actions, and deliberation proceeds until no computation has expected positive
marginal value, at which point the best base-level action is chosen. An efficient search
algorithm, MGSS*, is developed for Othello that soundly beats heuristic alpha-beta search
in a tournament of games, while expanding significantly fewer nodes and taking less time
(Russell & Wefald 1991).

A search program proceeds by expanding leaf nodes and propagating the value infor-
mation back to the parents. The value that will be assigned to a new leaf node depends on
the type of leaf node and the nature of the computation. Russell and Wefald statistically
estimate the local effect of a computation since it depends on the nature of the node being
expanded, and the nature of the expansion computation. The effect of the expansion on the
other nodes in the tree, and in particular on the one relevant base-level action, is then an
analytic function of the current state of the tree (the current value estimates for the nodes
on the path to the root, and their children).

Russell and Wefald assume subtree independence: a computational action can affect the
estimated utility for exactly one base-level action. A computation is beneficial if (1) we come
to prefer a new external action [ over the current preferred action «, or (2) computation
on « causes its utility estimate to be revised below that of the current second-best move.
Suppose that we are considering the computation S;, which affects only the estimated
utility of action ;. The computation will only change our choice of base-level action if
UIS'Sj (I8;]) > UP([a]). The intrinsic utility assigned to action « is assumed to be unaffected
by computation S; (subtree-independence). The expected value of the computation step S;

is therefore:

1

BV (s = [

L)\ T — 78 (0% T — 1
gy P59 = OF([a)do = TC(155) ©)

where pg; () is the probability density function for UIS'Sj ([8;])- The intuition behind this

expression for the expected value of computation S is that we will take the action 3; only

when U}S'Sj([ﬁj]) > U3 ([a]), and otherwise (for z < UP([a]) we take the existing action, «,
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and the computation has no value.
Similarly, if we perform a computation Si, that affects only the utility estimate of the
current best action «, then we will choose the current second-best action 3y if U}S([ﬂl]) >

(715'5’“ ([]) , and the expected value of computation step Sy is:

N U ((61]) A
E[V(Sk)] = /0 Pak(z) (U ([B1]) — z)dz — TC(|Sk|) (10)

where pq () is the probability density function for lessk ([e]). The intuition is that we only

take the old second-best action if UISS’“([a]) < U3([A1]), and otherwise for z > UP ([81]) we
take the existing action, «, and the computation has no value.

With the relevant probability distributions, evaluation functions, and time cost func-
tion, TC(|S;]), we can use these expression to efficiently choose the best computational
action to take next. If there are n computational actions and m base-level actions, then
each meta-level reasoning step requires mn evaluations each of the two above equations. If
the distributions for utility estimates are in simple form (parameterized distributions) then

we can calculate the results quite efficiently.
2.4 A Othello tournament: MGSS* vs. alpha-beta

Russell and Wefald derive a formula for the value of expanding a leaf node that can be
computed with very little overhead given the simplifying assumptions outlined above (Rus-
sell & Wefald 1989). The search algorithm was implemented for Othello, and Russell and
Wefald played five 32-game tournaments against an alpha-beta algorithm with depth limits
from two to six; both algorithms used the same evaluation function. The statistical data
used to estimated the probability distributions was collected on roughly 35,000 data points.
The distribution of the expected value of node expansion was found to be approximately
normal, which allowed efficient evaluation of equations 9 and 10. The results, in terms of
games won, nodes searched, and CPU time used are given in table 1 below.
Decision-theoretic search control is shown to be up to thirteen times more effective
than alpha-beta pruning (it plays slightly better than an alpha-beta search of depth 6
but expands thirteen times fewer nodes). The MGSS* search-algorithm is able to hold
its own against an alpha-beta search of depth 6, despite using a myopic metareasoning
strategy. Computing expected values for search steps is faster than computing the static

evaluation function, enabling the costs of metareasoning to be negligible in comparison
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| algorithm | wins | nodes | time(sec.) |
MGSS* 24.5 | 3.6K 40
a—p |75 | 24K |23
MGSS* 22 6.0K 68
a—p[3] |10 | 89K |82
MGSS* 20 12.0K 170
a—pPMA] |12 | 42.0K | 403
MGSS* 16.5 | 20.7K | 435
a— BB | 155 | 130.0K | 1356
MGSS* 17 44.1K | 1590
a—pl6] |15 | 567.8K | 6863

Table 1: Summary of results for Othello

to the efficiency-gains from expanding significantly fewer nodes. The main problem with
MGSS* is the single-step assumption, and this will prevent all node expansions beyond a
certain depth. As the MGSS* search tree grows larger it is highly likely that it will reach a
situation where no single node expansion can alter the choice of best move choice, and the
algorithm must conclude that no further search is worthwhile. Russell and Wefald call this
the “meta-greedy barrier”. Russell and Wefald consider extending the algorithm to allow
sequences of steps to be evaluated, and also suggest using MGSS* to selectively extend a

depth-8, say, alpha-beta search.

2.5 Russel and Wefald: Summary

Russell and Wefald present a general framework for the control of reasoning for a resource-
bounded rational agent. When the model of an agent’s decision process that they propose is
valid they show that the principles of normative metareasoning can solve the basic problems
of real-time AI. Russell and Wefald demonstrate the efficiency gains that can be achieved
with meta-level rationality.

The applicability of the decision-theoretic control of search to general reasoning requires
that decision-processes can be represented as a discrete sequence of uninterruptible chunks
of computation. This is clearly valid for domains like game-playing, where the reasoning
process is the expansion of nodes in the game tree, but less valid to continuous domains
such as medical decision making. Russell and Wefald also suppose that the time-cost of
reasoning can be represented as a simple function of the length of each computational step

- this requires fairly strong assumptions about the problem domain, such as that the value
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of all actions are subject to the same cost discounting. The time cost may also be hard
to determine in more complex domains, and the framework makes it hard to reason about
deadlines.

Russell and Wefald introduce heuristics at the metalevel to avoid the need for an infinite
regress of metareasoning. The meta-greedy and single-step assumptions that they make
seem necessary to make the problem tractable, but also introduce myopia at the meta-level.
Russell and Wefald talk about a meta-greedy barrier, and propose that the theory should
be extended to allow limited sequences of computational actions to be evaluated. With the
metalevel assumptions in hand, Russell and Wefald assume that the cost of metareasoning

can be neglected, again this is not reasonable in complex domains.
3 Boddy and Dean’s Deliberation Scheduling

The work of Boddy and Dean (Boddy & Dean 1989; 1994) can be viewed as a refinement
of the general framework for metareasoning presented by Russell and Wefald. Boddy and
Dean study the problem of metareasoning for a specific class of algorithms that have useful
properties for real-time planning with resource-bounded agents. The class of algorithms are
called anytime algorithms. Anytime algorithms are defined as algorithms that return some
answer for any allocation of computation time, and are expected to return better answers
when given more time. The metareasoning problem is then cast as one of deliberation
scheduling: a resource-bounded rational agent should allocate computational resources to
the anytime algorithm that has the highest utility.

Boddy and Dean (Boddy & Dean 1994) study deliberation scheduling for time-
dependent planning problems, when there are events in the real world that the agent must
react to, and these events are known ahead of time. As time passes the agent must make
a sequence of time-critical decisions. The solution to the deliberation scheduling problem
that Boddy and Dean propose is optimal when the events in the world are deterministi-
cally known, there is a single anytime algorithm to reason about a response to each event,
each anytime algorithm exhibits decreasing-returns, and the anytime algorithms are inde-
pendent. The robot-courier problem that Boddy and Dean consider (Boddy & Dean 1989;
Boddy 1991) is representative of a more difficult class of deliberation scheduling problems.
In this class of problems the agent is not responding to events in the world, but has a set of

tasks to complete as quickly as possible. There are no deadlines, and the agent may reason
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about the best way to do a future task while performing its current task. Boddy and Dean
are not able to present a general solution to this problem. An efficient algorithm is pre-
sented for the robot-courier problem, which is a special case where the anytime algorithms
for each task are simple and have the same performance profiles.

Anytime algorithms expand on the traditional view of a computational procedure, where
the goal has been on generating an optimal solution as quickly as possible. Anytime algo-
rithms are inherently more flexible: they have the ability to make use of any amount of time,
and they are robust to unexpected interruption. Some familiar anytime algorithms include:
search techniques such as iterative deepening; various greedy algorithms; iterative methods
such as Newton’s method; and randomized algorithms such as Monte Carlo algorithms.

Deliberation scheduling, as proposed by Boddy and Dean, is really off-line metareason-
ing, that requires a deterministic model of the world, and uses the expected performance
of anytime algorithms to choose a reasoning strategy that maximizes the expected utility
of the agent in the world. Boddy and Dean introduce the idea of a performance profile
(PP) for an anytime algorithm. This profiles the variation of intrinsic utility of the result
of a decision process against run-time. Some typical performance profiles are illustrated in

Figure 2.

(@) (b) (c)

Figure 2: Typical Performance Profiles

Boddy and Dean assume that the goal is to maximize the sum of values of responses
to a series of events, the timing of which is known in advance. The problem of optimal
scheduling to a sequence of algorithms is ANP-hard in the general case, since it subsumes
general scheduling problems. However, the deliberation scheduling problem for anytime

algorithms is not A/P-hard because the anytime algorithms can be suspended and restarted.
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This simplifies the deliberation scheduling problem considerably.

3.1 Application: The Robot-Courier Problem

Boddy and Dean (Boddy & Dean 1989; Boddy 1991) use anytime algorithms to solve the
problem of a robot courier, that must respond to delivery requests in real-time. Boddy and
Dean assume that the requests are deterministically known beforehand, and the problem
is to schedule deliberation so as to minimize the total time taken to complete all of the
tasks. The robot is able to deliberate about a later task as it performs its current task,
but Boddy and Dean assume that once the robot starts executing a task it can make no
further refinements. The robot has a set of locations that it must deliver packages to within
a known world. The world is a grid, and each point on the grid may be occupied by either
the robot or an obstacle.

The robot has two anytime algorithms to reason with. The first is a tour-improvement
algorithm for computing an order in which to visit the locations, known as a tour. The tour
improvement algorithm generates a tour S = (l1,...,l,;,): an ordered sequence of locations
in £, the set of locations that the robot must visit. The algorithm for tour improvement
is based on an iterative-improvement algorithm for the Traveling Salesperson Problem (Lin
& Kernighan 1973). The algorithm guesses an initial tour, and then produces tours that
are progressively closer to an optimal tour by exchanging small sets of edges such that the
tour is still complete, but the length of the overall tour decreases (Figure 3). The tour-
improvement algorithm has no knowledge of the length of the actual path that the robot will
take between consecutive locations, and uses the Manhattan distance between successive
locations as a lower-bound on the distance (ignoring possible obstacles).

The second algorithm that the robot may use is a path-planning algorithm. The path-
planning algorithm plans the exact path that the robot will take between consecutive lo-
cations on its tour. The algorithm is a heuristic A* search (Korf 1988), that does not
guarantee to generate an optimal path between any two locations, but does better than
the dead-reckoning, bouncing off obstacles and finding its way around them, that the robot
must otherwise use.

Boddy and Dean assume that there is no advantage in starting until the first location
is known. An optimal deliberation schedule for a given situation will be a sequence of tour-

improvement and path-planning computations, along with movements in the world, that
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Figure 3: Tour Improvement algorithm

minimizes the total time spent in deliberation and action.

3.2 Generating Performance Profiles

The performance profile of an anytime algorithm plots the expected output quality of the
algorithm against run-time. Boddy and Dean (Boddy & Dean 1989) collect statistics on
the performance of the algorithms on grid-worlds of a fixed size, with a probability of (.2)
that any given location is occupied. A simple grid-world is illustrated in Figure 4.

The performance profile of the tour-improvement algorithm is approximated by a func-
tion f(k) = 1 — e, where A depends on the size of the tour, and k is the number of
edge exchanges made. The value of X is statistically estimated for the grid-world. A per-
formance profile, showing the expected improvement in tour length as a fraction of the
maximum possible, given an allocation of deliberation time ¢ is shown in Figure 5 (ii).

The path-planning algorithm is an A* search, that uses the distance from the destination
to guide the search. The nodes in the search tree correspond to locations in the grid-world,
and paths from the root to leaves of the tree correspond to paths through the world. The
decision on which node to expand next is taken on the basis of the distance between the
node and the destination. The planning procedure terminates when it obtains a complete
path. No attempt is made to find an optimal path. A partial path can be returned at
anytime by returning the path to the node that is closest to the destination, and letting the
robot find its way from there by dead-reckoning. Analysis shows that the algorithm finds

a complete path from /; to [; in time 5;-‘ = 1.337ppd; j, where 7,, is the time for a single
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Figure 4: A Simple Grid World

i i
Travel Tour
Time Length
Reduction Reduction
Time Time

Figure 5: Performance profiles relating (i) the expected savings in travel time to time spent
in path planning (ii) the expected reduction in the length of a tour as a function of time
spent in tour improvement

iteration of search, and d, ; is the Manhattan distance from [; to [;!. A typical performance
profile is illustrated in Figure 5 (i).

Let T; ;(d;) represent the expected travel time between I; and [; given deliberation time
d;. The average travel time of a path with no planning is T; ;(0) = 3.17d; ; /v, where v

is the velocity of the robot. The expected travel time for a path after maximum useful

!The values presented here are from (Boddy 1991), and differ slightly from those in (Boddy & Dean 1989)

20



deliberation is T; j(67) = 1.17d; j /v, and the expected travel time saved, p(d;), for d; < 67,

is

WO = Ty - Tis00)

3.17d; ; 0 3.17d; ; — 1.17d; ;
v B 5_* v

3.17d; ; 1.50(5/7'pp

v v
3.17di; 9
v v

and p(0) = 1.17d; j /v otherwise. We use v to denote the gain of the algorithm.
3.3 Deliberation Scheduling Algorithms

Boddy and Dean present deliberation scheduling algorithms for three restricted versions of

the robot-courier problem:
Pr-I Path-planning only, taking the tour as given
Pr-1IT Tour-improvement followed by path-planning
Pr-IIT A limited interleaving of tour-improvement and path-planning

Boddy and Dean provide optimal deliberation schedulers for each of these models, and

compare their performance on a set of static problems.
3.3.1 Pr-I: Path-planning only

The first decision model that Boddy and Dean consider assumes that the robot can only
deliberate about path-planning. Suppose the robot is given a tour S = (lo, . ..,lx), where [y
is the robot’s current position. Let §; be the time allocated to deliberating about the path
from [;_; to l;, and let /;.begin and /;.end be the begin and end points, respectively, of the
time when the robot is traveling from [;_1 to ;. The robot must complete all deliberation
about a path between two locations before it starts to travel between the two locations, the
robot can deliberate about future paths as it moves, and the robot may stop and deliberate
at any time.

Boddy and Dean (Boddy & Dean 1994) consider a few special instances of this problem.

First consider a model where all the deliberations are performed before carrying out any
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task. Deliberation scheduling is then simple: for each task allocate time as long as the gain
of the anytime algorithm is greater than one. Now consider a problem similar to robot-
courier, but where the tasks to be completed are not the same, and the performance profile
may differ for each task. Boddy and Dean are not able to present a general solution to
the problem, but some insights can be gained into the robot-courier problem. An initial
step is to allocate a minimal allocation of deliberation to each task, the allocation that will
result in the greatest reduction in the total time spent in execution. The deliberation is
scheduled to occur during execution as much as possible. At the end of this stage there
may be free-time, time when the robot is executing, but not deliberating; and dead-time,
time when the robot is deliberating, but not executing. The goal of the algorithm is then
to shift as much dead-time processing to free-time. This is illustrated in Figure 6, where ¢
represents execution time, d dead-time, and f free-time. The unlabeled sections represent
deliberation time happening together with task execution.

The procedure (int Sched-1) in Figure 7 generates the optimal deliberation schedule
for the robot?. The procedure allocates deliberation times ¢;, 0 < i < k, and returns the
total length of the optimal tour, including deliberation time and journey time.

The correctness of the algorithm is proved by Boddy (Boddy 1991). The correctness is

based on three properties:

1. Any optimal deliberation schedule can be transformed without cost into a deliberation
schedule in which the robot deliberates about each path in turn, in the order in which

they occur.

2. Any optimal deliberation schedule can be transformed without cost into a deliberation

schedule in which the robot plans without moving only at the very start of the tour.

3. Any time allocated to deliberation d; could be allocated to J; with no increase in cost, so

long as d; < 67 and d; < &7.

An example deliberation schedule is illustrated in Figure 8. In this case, dp1 = d12 =
do3 = 100, 7pp = 1, and v > 1. Note that if v < 1 we never do any deliberation for Tp,
because deliberation time is larger than the expected decrease in travel time. Even when
v < 1 however, we should deliberate during the execution of tasks, since this deliberation

2This algorithm is from (Boddy 1991) and differs from (Boddy & Dean 1989)
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Figure 6: Reducing dead time using available free time

is essentially “free”. The optimal solution is d; = 112, and §, = §3 = 133, which gives
To, = 149, and Ty = T3 = 117. The algorithm first assigns d3 = 3 = 133, since this
deliberation can be done while traveling from [y to I, which will take at least 234 time
units. Then the scheduling algorithm assigns d2 = 5 = 133, since this deliberation can be
done while traveling from [y to /1, along with (133 — 117) = 16 units of deliberation for
d3, so long as the travel time for lo1, Tp,1(61) > 133 + 16 = 149. The optimal solution is
then found by allocating just the right amount of deliberation time to d; so that there is
no free-time while traveling from [y to /;. Hence 6; = 112 and Ty 1(d1) = 149. Notice that
if there was free-time while traveling from [y to /1, then we could reduce the time for the
overall solution by deliberating more, while §; < ¢], since v > 1. Also notice that it is not
optimal to make d; > 112, since this will cause dead-time in the schedule while the robot

is at [y, as it completes its deliberation d3. The total time (deliberation + travel) for this
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int Sched-1(S) {
t = 1[k].begin();
=k
while ( (j !'= 0) && (¢t '= 1[1].begin()) ) {
if (¢t > 1[j].begin()) {
gap = min(gamma * delta_star[jl, t - 1[j].begin());
t = 1[j1.begin();

}
else
gap = 0;
if (¢t !'= 1[1].begin()) {
() deltal[j] = min(delta_star[j], t - 1[1].begin(),
(t -1[1] .begin() + gap)/(gamma + 1) );
t =t - delta[j] - max(0, gamma * deltal[j]l - gap);

3=

}

if ( (j '= 0) && (gamma > 1) && (gap > 0) ) {
Delta = min( delta_star[j] - deltaljl, gap / gamma);
deltal[j] += Delta;

}

for (i = 1; 1 < j; i ++) deltali] = 0;

for (i = 1; i <= n; i++) total += deltali];

return Delta + total;

Figure 7: Deliberation Scheduling
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optimum schedule is 6; + Ty 1 + T1 2 + T 3.
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Figure 8: Optimal allocation for a simple deliberation problem

The procedure works backwards from the last path to be traversed, allocating deliber-
ation time as it goes. The variable gap in the algorithm maintains the length of the earliest
predicted free-time, that is travel-time with no worthwhile deliberation. The assignment of
d; in line (*) tries to close the gap by setting deliberation to no larger than: the maximum
useful time 47, the total time available ¢ —[;.begin, and (¢ —[1.begin + gap)/(y + 1). We
must be allocating deliberation time for some path j > 1, and therefore any deliberation up
to the start time of /; is useful. The third condition is derived by setting the execution time
saved by deliberation so that the total time spent in execution is equal to that needed for

deliberation. The problem can also be cast as a linear optimization problem (Boddy 1991).
3.3.2 Pr-II: Tour-improvement followed by Path-planning

We now allow the tour S to be reordered, but only before any path-planning. Given a tour &
we can generate a schedule for path-planning using Pr-1. In order to reason about the value
of tour-improvement we need to be able to reason about the expected time required (in-
cluding deliberation) to complete a revised tour S’. Remember that the tour-improvement
algorithm does not know about the obstacles in the world, and that we must use the ez-
pected performance of path-planning to guide the allocation of reasoning to the algorithm.
Boddy and Dean simplify the composition problem by assuming that the paths in tour &’
are all of equal length, d = Dg: /k, where there are k locations to visit, and Dg: is the total
length of tour §’. Boddy and Dean develop a linear expression for the expected time to
complete a tour, given the average path length d, written f(d) = ad. The performance of
the tour-improvement algorithm is represented with the function Dg = 9(S,9), where §

is the deliberation time assigned to tour-improvement. The optimal deliberation schedule
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allocates deliberation time § to solve:

0* = arg m(sin [0 + (ag(S,0)/k)] st. 6§>0 (12)

The minimization can be done easily because the performance profile of the path-

planning algorithm is smooth, convex, and monotonically increasing.

3.3.3 Pr-III: A limited interleaving of the two algorithms

The general problem of interleaving is hard, but Boddy and Dean present a polynomial-time
algorithm for a restricted case. Boddy and Dean allow a limited interleaving of the two
anytime algorithms: the robot may plan paths for locations (ly,...,I;) using Pr-I, and then
solve for locations {l;,...,lx} using Pr-II. The algorithm works by assuming initially that
all the travel time for the locations (ly,...,l;) will be used to deliberate about finding an
improved tour for {l;,...,lx}. The algorithm then updates this schedule to include deliber-
ation for path-planning, where it has a greater expected value than tour-improvement, and

seeks an optimal value for the partition {0,...,i}{7,...,k}.

3.3.4 A comparison: Pr-I, Pr-IT and Pr-III

Boddy (Boddy 1991) performed a series of experiments involving randomly-generated en-
vironments and sets of locations for the robot to visit. In both static and dynamic envi-
ronments (where the list of requests for service arrives over time), Pr-II is a substantial
improvement over Pr-I, but Pr-III has less of an advantage over Pr-II, particularly in the
dynamic case. The results for the static case are illustrated in Figure 9. The figure plots
expected time for tour-completion against the size of the tour. Clearly, Pr-IT and Pr-III are
better than Pr-I, especially as the tour size increases and the adavantage or tour-improvment
grows. The difference in performance between Pr-II and Pr-IIT is too small to see.

The algorithm presented for the robot-courier problem is optimal for a special case in
which all of the PPs are piecewise linear composed of two linear segments such that the

slope of the first segment is the same for all profiles and the slope of the second is 0.
3.4 Deliberation Scheduling in response to events in the world

Dean and Boddy are able to present an optimal solution to the simpler problem of re-

sponding to events in the world (Boddy & Dean 1994). The agent knows about some set
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Figure 9: Varying tour size

of pending events that it has to formulate a response to. This problem is simpler because
the decision processes are independent. In the robot-courier problem the decision processes
are actually dependent because a decision to spend more time reasoning on one problem
reduces the time available for reasoning on a later problem by reducing the execution time
during which deliberation is possible. Assuming a diminishing returns performance profile
Boddy and Dean are able construct optimal deliberation-schedules using a polynomial-time

algorithm (Boddy & Dean 1994). Boddy and Dean extend the algorithms to the case where
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the exact time of the occurrence of conditions is not known.

The agent constructs a schedule that allocates some amount of time to some of the
decision procedures, not allocating any time after the even occurs. Dean and Boddy describe
a pair of algorithms for finding optimal schedules (Boddy & Dean 1994). The first algorithm
(DS-1) assumes that the gain for a performance profile at any particular time is available.
The algorithm schedules backwards from the latest deadline to the current time, in fixed
increments of size A. It simply assigns each increment to the executable tasks with the
largest gain. After each A has been assigned the scheduler goes back and gives each task
a contiguous block of time. They show for any € > 0 there is a A > 0 such that DS-1
constructs a schedule within e of optimal. The second algorithm, DS-2, assumes that the
performance profiles can be described in terms of known functions. This algorithm also
schedules backwards from the last deadline, and time is allocated to each task according to
a set of linear equations. The exact structure of the equations depends on the form of the

performance profile functions.

3.5 Boddy and Dean: Summary

Boddy and Dean study the problem of metareasoning for a specific class of decision pro-
cesses. Their work on reasoning about anytime algorithms can be viewed as a refinement
of Russell and Wefald’s general framework for metareasoning. Boddy and Dean do not
consider metareasoning for a single problem, indeed that would be trivial for an anytime al-
gorithm with a known performance profile. Metareasoning for anytime algorithms is termed
“deliberation scheduling”, and the problem is cast as an optimization problem: what is the
allocation of resources to a set of anytime algorithms that maximizes the expected utility
of the agent? Boddy and Dean consider the problem of an agent responding to a sequence
of events in the world, and present an efficient algorithm for deliberation scheduling that
optimizes the response of the agent, given a set of anytime algorithms and their associated
performance profiles. Boddy and Dean ignore the cost of metareasoning, and are essentially
doing reasoning at the meta-level off-line.

The robot-courier case study is an interesting analysis of the complexity of scheduling
optimal reasoning for a resource-bounded agent acting in a real-time environment. How-
ever, the algorithms for deliberation scheduling presented are very specific, and make strong

assumptions. In particular, the scheduling algorithm Pr-I only produces an optimal sched-
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ule when the anytime algorithms for each task have identical performance profiles. This
is unreasonable for an agent acting in any interesting domain, where the agent must het-
erogeneous tasks, and could have a choice of anytime algorithms to reason about any one
task.

Boddy and Dean model deliberation in terms of continuously interruptible procedures,
so metareasoning involves what to run, when, and for how long. Boddy and Dean emphasize
events and their temporal relationships, something which is difficult to do within Russell
and Wefald’s framework, where the only explicit consideration of time is in the time cost
of reasoning. Boddy and Dean motivate the composition problem for anytime algorithms,
that is how to schedule deliberation to a system of dependent anytime algorithms , which

is the main thesis of Zilberstein’s (Zilberstein & Russell 1996) later work.

4 Horvitz: Flexible Computations

Horvitz (Horvitz 1987) takes a similar approach to that of Boddy and Dean. He also pro-
poses anytime algorithms, he terms them flezible computations, for decision processes. The
main focus of his work is on the control of probabilistic inference in medical decision-making.
There are parallels to the work of Russell and Wefald, in that Horvitz emphasizes the need
to apply normative (decision-theoretic) reasoning at the meta-level when insufficient re-
sources prohibit a complete normative analysis at the base-level. The goal is to extend the
principles of normative rationality to situations of uncertain, varying and scarce resources.

Traditional decision theory has the desirable property that it finds provably optimal
solutions to problems. Unfortunately the updating of beliefs using probabilistic inference is
NP-hard (Cooper 1990), making traditional decision-theory unsuitable for most real-time
situations. Horvitz seeks to apply normative methods to provide bounded-rational solutions
to otherwise intractable problems.

Rational reasoning at the meta-level necessarily requires knowledge about the inference
costs, and real-world costs and benefits. Horvitz terms the expected utility of computation,
the comprehensive value, V.. This is composed of the object-related value, V,, and the
inference-related value, V;. The object-related value is the expected utility associated with
the best action available to an agent, given a reference state of the world, and is exactly

Russell and Wefald’s intrinsic value. The inference-related value is the expected disutility
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of computation, due to changes in the world. The net value of computation, AV,, refers to
the change in the comprehensive value, given some computation.

Horvitz uses vectors of attributes to define a computational state. The current state
is written (¥,7) where ¥ and 7 represent object-level and inference-level attributes, re-
spectively. Since there is always uncertainty in the object-level state that results from a

computation, we must necessarily talk about the ezpected net value of computation:

AVe =Y Ve(@,7)Pr(T|7) — Ve(3,7) (13)

where ¥ and 7 are the attributes before computation, ¥ and 7' are the revised at-
tributes, and Pr(¢’|7") is the probability of the object level attributes o' given inference
level attributes 7. This is similar to equation 5 of Russell and Wefald, a computation has
value if it is expected to lead to a better base-level action. Within this framework, Horvitz
proposes using knowledge of the value structure of timewise-refinement algorithms to make
the appropriate cost-benefit tradeoffs (performance profiles). Horvitz lists some desider-
ata of decision-processes when reasoning under scarce resources, the primary of which is
flexibility. Flexible computations are robust to unexpected interruption, provide a trade-
off between output quality and computation time, and guarantee monotonically increasing
quality.

Horvitz introduces the notion of bounded optimality, and the weaker concept of bounded
strategic optimality. Bounded optimality refers to the optimization of computation util-
ity given certain assumptions about the environment, and resource constraints. Strategic
bounded optimality is the optimization of utility, given a set of strategies from which to
choose. Boddy and Dean construct a bounded strategic optimal schedule for the robot-
courier problem, the solution they generate is optimal given the two anytime algorithms
available. Horvitz also proposes the independent challenge model as a means to compare
the relative performance of different agents. The independent challenge model assesses the
performance of an agent in response to a distribution of independent problems. Given a dis-
tribution of problems, P;, over a period of time, ¢, where f(P;) is the frequency of problem

type P;, the optimal agent A* should solve

A (t) = arg max Y _tf(P) (Va(4, P) + AVe(S™(4, R))) (14)
=1
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, where Vy(A, P;) is the expected value associated with agent A taking its best default
action in response to a problem P;, and AV, (S*(A4, F;)) is the incremental value of the best
computational strategy S available to agent A. The best agent has a set of computational
reasoning strategies S(A) that maximizes its utility over the distribution of problems that
might occur. Within the independent challenge model we can reason about the relative
performance of agents, the value of learning, and the utility of adding a new capability to

an agent.
4.1 Reasoning about the Time-Precision Tradeoff

Horvitz presents a problem from medical decision making. An automated control system is
faced with a rapidly evolving set of respiratory symptoms in a patient in an intensive-care
unit. The pulmonary decision-making system must provide estimates of the probability,
p(C|E), of various conditions, C, given observed symptoms, E, so that the physician is able
to take the best action.

Horvitz uses a probabilistic bounding strategy for the computation, that determines
upper and lower bounds on point probabilities of interest through a logical analysis of
constraints acquired from partial analysis. Bounds become tighter as additional constraints
are brought into consideration (Cooper 1984). The precision of this decision procedure, S,

increases with time as illustrated in Figure 10 (a).
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Figure 10: (a) The timewise refinement of the precision of a result with additional compu-
tation. (b) The object-level utility of the refined result.

The physician then provides the expert knowledge to enable values to be assigned to
partial results. This is done on the basis of a cost analysis of the four possible outcomes of

the prediction: { true-positive, true-negative, false-positive, false-negative
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} . Horvitz is then able to create a performance profile for the decision-process using this

information. This is illustrated in Figure 10 (b).

A traditional Al system, using normative reasoning and considering only intrinsic-value,
would aim to maximize the intrinsic value of the decision, by computing the reasoning until
its decision is within pre-specified accuracies, by which time the patient could be in a critical
condition. The emphasis here, of course, is on considering the cost of deliberation explicitly
within the reasoning process. The comprehensive value of the result decreases with the
amount of time that the computation takes, and in this case the cost of deliberation to the
patient is clear. Horvitz assumes that the cost of delay can be represented as an independent
multiplicative discounting factor, Dy, ranging between one and zero. The curve is illustrated

in Figure 11 (a).
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Figure 11: (a) The inference-related cost based in delay of action. (b) The comprehensive
value of computation.

We combine the three curves to attain a profile of comprehensive value to the physician,
and it is this value that a rational pulmonary decision-making system should optimize.
Horvitz is able to present a clear analysis of the cost of time in a time-critical domain. The

result is illustrated in Figure 11 (b).

Notice that the comprehensive value has a global maximum V,___ at a particular time,

tmax- This is the period of time the computer should apply the inference scheme, before
making a recommendation to the physician. Additional time will increase precision, but

decrease the comprehensive value of the reasoning due to costs of delaying the decision.
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4.2 Multiple Decision Procedures

The framework also allows Horvitz to present a qualitative analysis of the choice between
alternative reasoning strategies, given their performance profiles. Suppose we have another
decision procedure Ss. Given a particular time constraint we might choose either S; or Ss.

This is illustrated in Figure 12.
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Figure 12: (a) The timewise refinement of another inference strategy. (b) A comparison of
the comprehensive value of computation of the two inference strategies.
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A default rule for a particular context can be made with little computation, and has
a object-related value that is constant with time since it is not refined. In situations of
extreme time criticality we can expect a default (compiled) policy with low objective-value

to be the best strategy. This tradeoff is illustrated in Figure 13.
4.3 A general framework for metareasoning

Horvitz has also looked at the general problem of partitioning resources between metareason-
ing and base-level problem solving (Horvitz & Breese 1990). In particular, he examines how
much time to devote to deliberation-scheduling when both scheduling and base-level reason-
ing are carried out using anytime algorithms. For particular classes of anytime algorithms,
Horvitz and Breese are able to find optimal solutions to the problem of metareasoning. They
also extend their analysis to incorporate decisions about learning and compilation, which
bring long-term benefits, at the meta-level. In all the cases the costs of the meta-meta- level
are a small constant because they involve plugging particular values into a mathematical
function. Russell and Wefald investigate similar problems without assuming the availability
of anytime algorithms in either the metareasoning or base-level computations. They avoid

the meta-meta problem by making the meta-greedy assumption.
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Figure 13: (a) A default reasoning strategy (marked). (b) The comprehensive value of the
default strategy. (c) Another shift in the decision horizon. (d) The dominance of the utility
of the default strategy in a more critical decision-making context.

4.4 Horvitz: Summary

Horvitz developed an approach to bounded-rationality using flexible computations, inde-
pendently of Boddy and Dean. He notes that flexible computations are useful for bounded-
rational agents that must do metareasoning because they: are robust to unexpected inter-
ruption; provide a tradeoff between output quality and computation time; and guarantee
monotonically increasing quality. The approach is, like that of Boddy and Dean, essen-
tially off-line compilation of optimal control of reasoning, in this case for a single decision
problem. Horvitz does provides a more general analysis of the time cost of deliberation
than that of Boddy and Dean, who either assume that a response must happen at a certain

time, or that the goal is to minimize total action and deliberation time, in which case the

34



cost of deliberation is simply additive. Horvitz gives a qualitative analysis of the tradeoff
between quality and time-cost in the choice between multiple decision procedures for the
same problem. Horvitz presents an example of metareasoning for a decision-process from
the medical decision-making domain, and presents an analysis of how the comprehensive

value of the anytime algorithm is developed. The main contributions of his work are:

e determining how to assign utility values to partial results

finding anytime algorithms to implement reasoning

defining the comprehensive value of a computation, and reasoning about its object-related

and inference-related components
e solving single real-time problems with flexible computations

Horvitz also originated the term bounded optimality, and discussed the problems of

traditional normative reasoning for real-time Al.
5 Zilberstein: The Composition of Anytime Algorithms

Zilberstein and Russell (Russell & Wefald 1991; Zilberstein 1993; Zilberstein & Russell
1996) focus on the composition problem, that is how to schedule deliberation to a system of
dependent anytime algorithms. The two basic problems addressed are the interruptibility
of the composed system, and how to allocate time optimally among components. The goal
is to allocate time to each algorithm so as to maximize the expected utility of the system
as a whole. Zilberstein and Russell present efficient algorithms for a restricted class of
modular anytime systems. The solutions are optimal if each of the performance profiles is
a monotonic non-decreasing function of input quality. Zilberstein and Russell also describe
heuristic algorithms for the general problem, which is shown to be N'P-complete. Zilberstein
introduces the important concept of a conditional performance profile, that maps the quality
of the output of the algorithm as a function of time, given a certain input quality.
Zilberstein and Russell construct contract anytime algorithms. A contract anytime
algorithm returns increased value as it is given more time, but must be told in advance
how much time it is going to get, and may not return any answer if it is given less time
than prescribed. Constructing contract anytime algorithms using compilation of anytime

modules is easier that constructing interruptible anytime algorithms directly. Intuitively,
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the design is easier because it is not necessary to provide for a solution at any time other
than the specified computation time. We can produce an optimal allocation of computation
from the contract time to each module, without concern for interleaving the computations
to provide partial results at any time. The result of the compilation is a schedule that
specifies the amount of run-time for each component anytime algorithm.

Zilberstein and Russell prove that an interruptible algorithm can be constructed from
any contract algorithm at some small fixed cost. Zilberstein provides a construction that
transforms any contract algorithm to an interruptible algorithm.

Theorem (Reduction). For any contract algorithm, A, an interruptible algorithm B

can be constructed such that for any particular input gz(4t) > ga(t)-

The proof is constructive. We simply run A repeatedly with exponentially increasing
time limits. If interrupted, return the best result generated so far. In the worst case the
computation is interrupted, at time ¢, just before the most recent call to A terminates, and
the quality will be at least that of ¢ 4(¢/4). In the best case we have a performance that is
only twice as bad as that of the contract algorithm, run for the same time. The contract

algorithm can achieve in time ¢ what might take up to 4t in the interruptible algorithm.

A
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o
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Figure 14: Performance profiles of interruptible and contract algorithms

5.1 Example: A simulation method to acquire a performance profile

Zilberstein and Russell present an application of an anytime algorithm for the classic TSP
problem, that is known to be N"P-complete. The iterative improvement algorithm repeat-

edly tries to exchange r edges in a feasible tour for r edges not in the solution, as long as
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the tour remains feasible, and the cost is strictly less. Zilberstein illustrates the quality map
for the algorithm, where each point (¢,q) represents an instance for which quality ¢ was
achieved with run-time t. The quality measures the percentage of tour length reduction
with respect to the initial tour. The statistics form the basis of the expected performance

profile for the algorithm. See Figure 15.
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Figure 15: The quality map of the TSP algorithm

From the quality map of the performance of an algorithm A we can generate the
expected performance profile (EPP), a function E4 : ®% — R that maps computation
time to the ezpected quality of results (this is the performance profile used by Boddy and
Dean (Boddy 1991)).

Zilberstein and Russell introduce three new types of performance profiles, that allow a
trade-off between accuracy, compactness of representation, and efficiency for reasoning. The
first is the performance distribution profile (PDP). The PDP of an algorithm A is a function
Dy : RT — Pr(R) that maps computation time to a probability distribution over results.
The performance interval profile (PIP) of an algorithm A is a function 74 : RT — R x R that

maps computation time to upper and lower bounds of the quality of results. Russell and
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Figure 16: The expected performance profile of the TSP algorithm

Zilberstein propose a conditional performance profile (CPP), that is a mapping from input
quality and run-time to probability distribution of output quality, C4 : ® x R* — Pr(R).
This is useful when composing modules whose performance depends significantly on input
quality. The input is classified according to a vector of features, and partitioned into classes,
with a separate performance profile representing each input class. The CPP allows rational
reasoning about the best allocation of resources to a set of anytime algorithms. A typical

CPP is illustrated in Figure 17.

5.2 Compilation of anytime algorithms

Zilberstein suggests compilation as a solution to the composition problem. The compiler
takes the anytime modules and performance profiles as input, and generates a deliberation
schedule for the overall system, along with a monitor, and a performance profile. A monitor
controls the run-time execution of the anytime algorithm. It is initially assumed to be
passive, but the idea generalizes to active monitors that monitor the progress of the quality
of the output from the anytime algorithms within the system, and allow for adaptive control

of reasoning.
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Figure 17: Graphical representation of a conditional performance profile

5.3 Example: Composition of sensing and path-planning

Zilberstein and Russell consider a robot navigation system that is composed of two anytime
algorithms: visual sensing and path-planning. The output quality of path-planning depends
on the input quality from sensing, and this dependence is represented using a conditional
performance profile (Figure 18). Performance profiles are represented as discrete tables,
and the compilation of the two modules is then cast as a discrete optimization problem.
The compiled algorithm is shown to be superior to two heuristic deliberation schedules. If a
discrete tabular representation is used the compilation problem grows exponentially in the

number of modules.

5.4 Compilation for the general composition problem

Zilberstein present heuristics for the general case of functional composition of anytime
algorithms. Let F be a set of anytime functions, and assume that each function f € F

has a fixed conditional performance profile. In general the complexity of the compilation
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Figure 18: (a) Expected performance profile of visual sensing (b) Conditional performance
profile of path-planning, given an input quality between 0.86 and 1.0

problem depends on the structure of the composition. Consider

Two possible representations are shown in Figure 19.
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Figure 19: Graph representation of functional expressions

When the dependencies are unrestricted, and form a directed acyclic graph, the problem
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is N'P-complete. Given a composite expression, the conditional PPs of its components, and
a total time allocation B, the composition problem is expressed as a decision problem: Is
there a schedule of the components that yields output quality greater than or equal to K7
The general problem is shown to be NP-hard by reduction from the PARTIALLY ORDERED
KNAPSACK problem (Zilberstein 1993). The meaning of this result is that the application
of the compilation technique is limited to small programs. The tree-structured problem
with no repeated sub-expressions is also shown to be N"P-complete, by reduction from the
KNAPSACK problem. There is, however, a glimmer of hope. The KNAPSACK problem is pseudo-
polynomial, that is polynomial given bounded input sizes, and can be efficiently solved using
a dynamic programming algorithm for that case.

The same technique can be applied to scheduling in a tree-structure composition prob-
lem. We use local compilation to optimize the quality of output of each elementary anytime
algorithm by considering only the PPs of its immediate subcomponents (without regard to
its wider context). Local compilation replaces the global optimization problem with a set
of simpler, local optimization problems, and reduces the complexity of the whole problem.
The tree-structured assumption is needed so that local compilation can be applied (without
it we have infinite recursions). If a subcomponent is not elementary then its performance
profile is determined by local compilation as well. Whenever we have input monotonicity
local compilation is shown to be globally optimal. Finally, when the number of inputs to
each function is bounded we have a pseudo-polynomial algorithm for the global problem.
This assumption is consistent with one of the tenets of good code design - modularity. With
a compact tabular representation of PPs, local compilation can be performed in constant
time, and the overall complexity of compilation becomes linear in the size of the program

(Zilberstein & Russell 1996).

5.5 Heuristics for the general problem

Zilberstein present three heuristic time allocation methods that deal with general
functional expressions: HILL-CLIMBING-ALLOCATION, CONDITIONING-ALLOCATION, and
TRADING-ALLOCATION. The choice of algorithm to use represents a tradeoff between guar-
anteeing optimality, and achieving an efficient algorithm. Some techniques work efficiently
on DAGs and produce near-optimal schedules, other techniques guarantee optimality when

the number of repeated subexpressions is small.
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5.6 Run-Time Monitoring

The basic approach to compilation can be viewed as off-line meta-reasoning, where a passive
monitor is used to control the deliberation of the anytime algorithms exactly as computed
off-line. The purpose of run-time monitoring is to reduce the effect of uncertainty on
the performance of the system. Monitoring can vary in the frequency of monitoring, the
approximation methods used to assess solution quality, and the degree to which the monitor
is active. More generally, monitoring allows a trade-off between off-line compilation and

run-time deliberation.

An active approach to monitoring is useful when the utility function is not predictable.
Zilberstein (Zilberstein & Russell 1996) suggests using the expected marginal value of com-
putation to continually make resource scheduling decisions. The monitor estimates the
difference between the expected utility after one more time increment and the current ex-
pected utility. This myopic approach is optimal when the PP is monotonically increasing
and concave down, and the cost of time is monotonically increasing and concave up. Zilber-
stein is applying normative control to the metareasoning problem for anytime algorithms,

in the same way the Russell and Wefald apply normative control to search.

Monitoring might involve complex computation, and in this case we need a model of
the interruptible anytime algorithm. A Markov model is used to represent reasoning, states
are identified with particular solution qualities, and transitions between states correspond
to improvement in solution quality as a result of a small increment in computation time.
This approach allows one to calculate an off-line monitoring policy that determines an
optimal action for each solution quality. Possible actions are: (1) resume the execution of
the algorithm for a certain time interval and then monitor again, (2) resume the algorithm
again for a certain time interval and then stop, or (3) stop the execution of the algorithm.

A simple example for the Traveling Salesperson Problem is shown in Figure 20.

The table specifies, for any given time step and solution quality, the amount of ad-
ditional time to be allocated to the algorithm. The letter M indicates that monitoring
should be performed again after the time allocation. An interesting property is that they
recommend monitoring more frequently near the expected stopping time of the algorithm
(intuitive). When solution quality cannot be determined at run-time, a similar policy can

be developed based on estimated solution quality (Hansen & Zilberstein 1996).
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time-step
guality | start 1 2 3 4 5 6 7 8 9 10 11
5 0 0 0 0 0 0 0 0 0 0 0
4 M IM 1M 1M IM 1M 1M 1M 1M 1 0
3 M 1M 1M 1M IM 1M 1M 1M 1M 1 0
2 iMm 3sM 3sM 3M 3M 3IM 3M 3M 2 1 0
1 AM 4M dM M dM 5 4 3 2 1 0
0 SM 5M 5M SM SM 6 5 4 3 2 1 0

Figure 20: Optimal policy based on actual solution quality

5.7 Zilberstein and Russell: Summary

Zilberstein and Russell are able to show that a system of modular anytime algorithms can be
compiled efficiently into a global anytime system, given certain constraints on the form of the
compositions. When there are no repeated sub-expressions we have an optimal algorithm
that is also efficient, using branch-and-bound techniques. The compilation process produces
an optimal contract algorithm, that can be made interruptible with only a small, constant
penalty. Solving the composition problem is important because it allows modular system
development, and solves the complex task of activation and interruption of components for
the programmer.

Zilberstein and Russell go a long way towards an operational theory of rationality, using
anytime algorithms as their model. Zilberstein is able to avoid, to some degree, the myopic
assumptions at the meta-level made by Russell and Wefald, by using dynamic programming
to generate a non-myopic stopping rule off-line. Active monitoring also allows base-level
reasoning to be controlled using estimates of the marginal value of further deliberation.
Their approach to metareasoning is a mix between the off-line metareasoning of Boddy
and Dean (passive monitors), and the dynamic metareasoning (active monitors) of Russell
and Wefald. Zilberstein and Russell allow an explicit trade-off between pre-compilation of
metareasoning and active monitoring. Active monitoring is useful when the performance
profile of an algorithm is uncertain, although it does reintroduce myopia to the meta-level
decision level.

The future goal of Zilberstein’s work is to develop a complete theory of anytime-
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rationality for an agent situated in the world. Current research efforts are aimed at studying
additional programming structures, producing a large library of anytime algorithms (Grass
& Zilberstein 1996), and extending the model to include anytime sensing and anytime ac-

tions (Zilberstein 1993).

6 Conclusions

We have argued that the concept of intelligence for resource-bounded agents must necessarily
be defined in terms of the reasoning that the agent does, given its resources, and a model of
the environment. The appropriate concept of rationality, is bounded- optimality. This states
that no agent with the same resources, and the same model of the environment, can achieve
a higher expected utility in the world. We clearly need normative control of reasoning, that
is the agent should reason about what to reason about next, and for how long. Russell calls
this operational definition of rationality meta-level rationality. The work that we survey
here is an attempt to provide normative control of reasoning for bounded-resource agents
operating in time-critical environments. We reassert the thesis of the work surveyed here:
the study of resource-bounded agents should be central to Al, since perfect rationality and

epistemological correctness provide neither an adequate theoretical or practical framework.

Russell and Wefald (Russell & Wefald 1991) present a powerful framework for metalevel
rationality, using information value theory (Howard 1966), to derive conditions that define
how the agent should deliberate at the base-level. The “external model” that they promote
underlies the theory of normative metareasoning. The idea is that we should take decisions
at the metalevel on the basis of the value of deliberation, and that the value of deliberation is
solely derived from any change in external action that further reasoning might lead to. Rus-
sell and Wefald control reasoning at the metalevel with myopic heuristics, and demonstrate,
through an application to a competitive game-playing problem, the tremendous increase in
rationality (as judged by utility in the world) that comes from principled metareasoning.
The main limitations of their work are: the uniform architecture is not appropriate for
more complex domains where chunking computations and assigning appropriate time costs
is non-trivial; the myopic assumptions that they make create a “meta-greedy” barrier for
search; and they ignore the cost of metareasoning itself. We might find ways to break the

meta-greedy barrier by considering limited sequences of computational actions, with what
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would amount to a stripped down meta-meta-level for choosing the sequences to reason

about.

Boddy and Dean (Boddy & Dean 1989; Boddy 1991; Boddy & Dean 1994) study meta-
level rationality for agents that reason with anytime algorithms. Anytime algorithms have
many useful properties that simplify meta-level reasoning, and Boddy and Dean are able
to use off-line reasoning to provide bounded strategic optimality for restricted problem do-
mains. The approach scales to reasoning about the best use of resources when an agent must
respond to a known sequence of deterministic events in the world. Horvitz (Horvitz 1987)
complements the work by providing an explicit consideration of the costs of computation.
He decomposes the utility of a computation into the object-level, that is time-independent,
and the inference-level, that reflects the time-value of a decision. Horvitz presents an ex-
ample to a time-critical decision problem in the medical-domain.

The work by Zilberstein and Russell (Zilberstein 1993; Zilberstein & Russell 1996)
represents the maturity of the concept of bounded-rationality within Al. Zilberstein builds
an operational framework that solves the important problem of the composition of anytime
modules. His approach to metareasoning is also largely off-line, although he does allow a
tradeoff to be made between off-line compilation of a metareasoning strategy, and on-line
adaptive control of reasoning through active monitoring. The results show that there is
reason to expect that the general problem of robust real-time decision-making in complex
systems can be handled in practice, at least within the relatively clean context of anytime
algorithms with well-defined performance profiles.

A long term goal of bounded-rationality within AI, and one which is totally absent at
the moment, is the need to introduce new types of reasoning, and in particular learning.
The myopic heuristics used by Russell and Wefald would clearly assess learning as costly,
since learning brings only long-term goals. The idea of an agent that can adapt to bounded-
optimal behavior is an interesting notion, and would be a very valuable direction of future

research. Then Kasparov really would have reason to worry .. ..
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