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Abstract. We study the combinatorial agency problem introduced by
Babaioff, Feldman and Nisan [5] and resolve some open questions posed
in their original paper. Our results include a characterization of the tran-
sition behavior for the class of threshold functions. This result confirms a
conjecture of [5], and generalizes their results for the transition behavior
for the OR technology and the AND technology. In addition to estab-
lishing a (tight) bound of 2 on the Price of Unaccountability (POU) for
the OR technology for the general case of n > 2 agents (the initial paper
established this for n = 2, an extended version establishes a bound of
2.5 for the general case), we establish that the POU is unbounded for
all other threshold functions (the initial paper established this only for
the case of the AND technology). We also obtain characterization re-
sults for certain compositions of anonymous technologies and establish
an unbounded POU for these cases.

1 Introduction

The classic principal-agent model of microeconomics considers an agent with un-
observable, costly actions, each with a corresponding distribution on outcomes,
and a principal with preferences over outcomes [9JI5]. The principal cannot con-
tract on the action directly (e.g. the amount of effort exerted), but only on the
final outcome of the project. The main goal is to design contracts, with a pay-
ment from the principal to the agent conditioned upon the outcome, in order to
maximize the payoff to the principal in equilibrium with a rational, self-interested
agent.

The principal-agent model is a classic problem of moral hazard, with agents
with potentially misaligned incentives and private actions. A related theory has
considered the problem of moral hazard on teams of agents [AT4IT3]. Much of
this work involves a continuous action choice by the agent (e.g., effort) and
a continuous outcome function, typically linear or concave in the effort of the
agents. Moreover, rather than considering the design of an optimal contract that
maximizes the welfare of a principal, considering the loss to the principal due
to transfers to agents, it is more typical to design contracts that maximize the
total value from the outcome net the cost of effort, and without consideration
of the transfers other than requiring some form of budget balance.
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Babaioff et al. [5] introduce the combinatorial agency problem. This a version
of the moral hazard in teams problem in which the agents have binary actions
and the outcome is binary, but where the outcome technology is a complex com-
bination of the inputs of a team of agents. Each agent is able to exert high or low
effort in its own hidden action, with the success or failure of an overall project
depending on the specific technology function. In particular, these authors con-
sider a number of natural technology functions such as the AND technology,
the OR technology, the majority technology, and nested models such as AND-
of-ORs and OR-of-ANDs. This can be conceptualized as a problem of moral
hazard in teams where agents are situated on a graph, each controlling the effort
at a particular vertex.

The combinatorial agency framework considers the social welfare, in terms
of the cost to agents and the value to the principal, that can be achieved in
equilibrium under an optimal contract where the principal seeks a contract that
maximizes payoff, i.e. value net of transfers to the agents, in equilibrium. Thus
the focus is on contracts that would be selected by a principal, not be a designer
interested in finding an equilibrium that maximizes social welfare. In particular,
Babaioff et al. consider the (social) Price of Unaccountability (POU), which is
the worst case ratio between the optimal social welfare when actions are ob-
servable as compared to when they are not observable. The worst-case is taken
over different probabilities of success for an individual agent’s actions (and thus
different, uncertain technology functions), and over the principal’s value for a
successful outcome. The optimal social welfare is obtained by requesting a par-
ticular set of agents to exert effort, in order to maximize the total expected value
to the principal minus the cost incurred by these agents. In the agency case, the
social welfare is again this value net cost, but optimized under the contract that
maximizes the expected payoff of the principal.

The main contribution of this work is to characterize the transition behavior
for the k-out-of-n (or threshold) technology, for n agents and k € {1,...,n}. The
threshold technology is anonymous, meaning that the probability of a success-
ful outcome only depends on the number of agents exerting high effort, not the
specific set of agents. Because of this, the transition behavior — a characteriza-
tion of the optimal contract, which specifies which agents to contract with, as a
function of the principal’s valuation — can be explained in terms of the number
of agents with whom the principal contracts. We establish that the transition
behavior (in both the non-strategic and agency cases) includes a transition from
contracting between 0 and ! agents for some 1 <1 < n, followed by all n — [ re-
maining transitions, for any 0 < a < 8 < 1, where « (resp. ) is the probability
that the action of a low effort (resp. high effort) action by an agent results in a
successful local outcome. This generalizes the prior result of Babaioff et al. [5]
for the AND gate (a single transition from 0 agents to all n agents contracted)
and the OR gate (all n transitions), and closes an important open question.

Considering the POU, we establish a tight bound of 2 for the OR technology,
for all values of n, a and =1 — . The initial paper established this POU for
the case of n = 2 agents only, while an extended version of the paper provides
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a bound of n = 2.5 for the general n > 2 case [6]. In addition, we establish
that the POU is unbounded for the threshold technology for the general case of
k > 2,n > 2. The initial paper established this result only for AND technology,
and so our result closes this for the more general threshold case for any 0 <
a < § < 1. In addition, we consider non-anonymous technology functions such
as Majority-of-AND, Majority-of-OR, and AND-of-Majority, and study their
transition behavior.

We believe that this work is an interesting step in extending the combinatorial
agency model in a direction of interest for crowdsourcing [T6J3ITI2]. Combinato-
rial agency is relevant to applications where neither the effort nor the individual
outcome of each worker is observable. All that is observable is the ultimate suc-
cess or failure. Perhaps the boundaries between individual contributions are hard
to define, or workers prefer to hide individual contributions in some way (e.g., to
protect their privacy.) Perhaps it is extremely costly, or even impossible, to de-
termine the quality of the work performed by an individual worker when studied
in isolation. The threshold technology seems natural in modeling crowdsourcing
problems in which success requires getting enough suitable contributions.

Related Work. A characterization of the transition behavior was first conjec-
tured for the Majority technology in Babaioff et al. [5], but almost all of the
subsequent literature is restricted to read-once networks [ZU8ITTIT2]. The combi-
natorial agency problem has also been studied under mixed Nash equilibria [7].
Babaioff et al. [§] study “free labor” and whether the principal can benefit from
having certain agents reduce their effort level, even when this effort is free. The
principal is hurt by free labor under the OR technology, because free labor can
lead to free riding. Another variation allows the principal to audit some fraction
of the agents, and discover their individual private action [10]. Some computa-
tional complexity results for identifying optimal contracts have also been devel-
oped. This problem is NP-hard for OR technology [I1], and the difficulty is later
shown to be a property of unobservable actions [12]. This is in contrast to the
AND technology, which admits a polynomial time algorithm for computing the
optimal contract. An FPTAS is developed for OR technology, and extended to
almost all series-parallel technologies [11].

2 Model

In the combinatorial agency model, a principal employs a set of n self-interested
agents. Each agent ¢ has an action space A; and a cost (of effort) associated with
each action ¢;(a;) > 0 for every a; € A;. Welet a_; = (a1,...,0i—1,Qit1,-..,0n)
denote the action profile of all other agents besides agent 4. Similar to Babaioff
et al. [5], we focus on a binary-action model. That is, agents either exert effort
(a; = 1) or do not exert effort (a; = 0), and the cost function becomes ¢; if a; = 1
and 0 if a; = 0. If agent 7 exerts effort, she succeeds with probability ;. If agent
i does not exert effort, she succeeds with probability «;, where 0 < o; < §; < 1.
We deal with the case of homogenous agents (e.g. 5; = 8, @; = o and ¢; = ¢
for all ), though some of the prior work deals with the case of heterogenous
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agents. Sometimes we use the additional assumption of [5], that 6 = 1 — «,
where 0 < a < %

Completing the description of the technology is the outcome function f, which
determines the success or failure of the overall project as a function of the success
or failure of each agent. Let © = (x1,...,2,), with z; € {0,1} to denote the
success or failure of the action of agent 7 given its selected effort level. Following
Babaioff et al. [5] we focus on a binary outcome setting, so that the outcome
is 1 (= success) or 0 (= failure.) Given this, we study the following outcome
functions:

1. AND technology: f(z1,%2,...,Zn) = Ajenx;. In other words, the project
succeeds if and only if all agents succeed in their tasks.

2. OR technology: f(z1,z2,...,2n) = Vienx;. In other words, the project suc-
ceeds if and only if at least one agent succeeds in her task.

3. Majority technology: f(z) = 1 if a majority of the z; are 1. In other words,
the project succeeds if and only if a majority of the agents succeed at their
tasks.

4. Threshold technology: We can generalize the majority technology into a
threshold technology, where f(x) = 1 if and only if at least k of the x; are
1, e.g. at least k of the n agents succeed in their tasks.

In fact, the threshold technology is a generalization of the OR, AND and majority
technologies, since the k = 1 case is equivalent to the OR technology, the k =n
case is equivalent to the AND technology, and the k = [} ] case is equivalent to
the majority technology. It should be noted that the set of threshold technologies
is exactly the set of threshold functions. It is easy to see that each of these
outcome functions is anonymous, meaning that the outcome is invariant to a
permutation on the agent identities.

Given outcome function f, and success probabilities a and g, then action
profile @ induces a probability p(a) € [0, 1] with which the project will succeed.
This is just

pla) = Eg[f(x) | z ~ a (1)

where the local outcomes x are distributed according to «, 6 and as a result of
the effort a by agents. Since p considers the combined effect of technology f, «
and (3, then we refer to p as the technology function.

The principal has a value v for a successful outcome and 0 for an unsuccessful
outcome. Like [5], we assume that the principal is risk-neutral and seeks to
maximize expected value minus expected payments to agents. The principal is
unable to observe either the actions a or the (local) outcomes x. The only thing
the principal can observe is the success or failure of the overall project. Based
on this, a contract specifies a payment t; > 0 to each agent ¢ when the project
succeeds, with a payment of zero otherwise. The principal can pay the agents,
but not fine them. It is convenient to include in a contract the set of agents that
the principal intends to exert high effort; this is the set of agents that will exert
high effort when the principal selects an appropriate payment function.
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The utility to agent ¢ under action profile a is u;(a) = t;-p(a) —¢; if the agent
exerts effort, and u;(a) = ¢; - p(a) otherwise. The principal’s expected utility is
u(a) = v-p(a)—>)_,;cyti-p(a). The principal’s task is to design a contract so that
its utility is maximized under an action profile a that is a Nash equilibrium. We
make the same assumption as Babaioff et al. [5], that if there are multiple Nash
equilibria (NE), the principal can contract for the best NE. The social welfare
for an action profile a is given by u(a) 4+ >,y ui(a) = v-p(a) = > ..y ci - ai,
with payments from the principal to the agents canceling out.

Throughout, we focus on outcome functions that are monotonic, so that
f®) =1 = f(a},xz_1) = 1 for 2§ > z1. Based on this, then the technol-
ogy function p is also monotonic in the amount of effort exerted, that is for all
i and all a_; € {0,1}""% p(1,a—;) > p(0,a_;). Similarly, a technology func-
tion p is anonymous if it symmetric with respect to the players. That is, it is
anonymous if it only depends on the number of agents that exert effort and is
indifferent to permutations of the joint action profile a. This is true whenever
the underlying outcome function is anonymous.

In the non-strategic variant of the problem, the principal can choose which
agents exert effort and these agents need not be “motivated”, the principal can
simply bear their cost of exerting effort. Let S} and S}, denote the optimal
set of agents to contract with in the agency case and the non-strategic case
respectively. That is, these sets of agents are those that maximize the expected
value to the principal net cost, first where the sets must be induced in a Nash
equilibrium and second when they can be simply selected.

Definition 1. [5] The Price of Unaccountability (POU) for an outcome func-
tion f is defined as the worst case ratio (over v, a and ) of the social welfare
in the non-strategic case and the social welfare of the agency case:
P(S3s(v) - v = Xies: () Ci
POU(f)= sup X i€Sk (v) :
v>0,a,3 p(Sa (U)) v ZiES;(v) Ci
where p is the technology function induced by f, o and B, with 0 < a < f < 1.

2)

In studying the POU, it becomes useful to characterize the transition behavior
for a technology. The transition behavior is, for a fixed technology function p,
the optimal set of contracted agents as a function of the principal’s value v. We
know that when v = 0 it is optimal to contract with 0 agents and likewise, as
v — 00, it is optimal to contract with all agents. However, we would like to
understand what are the optimal sets of agents contracted between these two
extreme cases. There are, in fact, two sets of transitions, for both the agency
and the non-strategic case. For anonymous technologies, there can be at most n
transitions in either case, since the number of agents in the optimal contract is
(weakly) monotonically increasing in the principal’s value. We seek to understand
how many transitions occur, and the nature of each “jump” (i.e. the change in
number of agents contracted with at a transition.)

We also consider compositions of these technologies such as majority-of~AND,
Majority-of-OR, and AND-of-Majority. These technologies are no longer anony-
mous. With non-anonymous technologies, one needs to specify the contracted
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set of agents, in addition to the number of agents contracted. In considering
composition of anonymous technologies, we assume we are composing identical
technology functions, e.g. each AND gate in the majority-of~AND technology
consists of the same number of agents.

3 Transition Behavior of the Optimal Contract

Below we will characterize the transition behavior of the threshold technology.
We show that there exists an ! € {1, ...,n} such that the first transition is from 0
to [ agents followed by all remaining transitions. This result holds for any value
of a, Bsuchthat 0 < a < B < 1.

Our proof builds on the framework of Babaioff et al. [5]. In Babaioff et al.,
it was shown that the AND technology always exhibits “increasing returns to
scale” (IRS) and the OR technology always exhibits “decreasing returns to scale”
(DRS). It was also shown that any anonymous technology that exhibits IRS
has a single transition from 0 to n agents for the optimal contract in the non-
strategic case and that any anonymous technology that exhibits DRS exhibits all
n transitions in the non-strategic case. Similar to the non-strategic case, it was
shown in Babaioff et al. that the AND technology always exhibits overpayment
(OP), in the agency case, where the OP condition guarantees a single transition
from 0 to n, and the OR technology always exhibits increasing relative marginal
payment (IRMP), in the agency case, where the IRMP condition guarantees all
n transitions.

We show that the threshold technology exhibits IRS up to a certain number
of agents contracted and DRS thereafter, which gives the transition characteri-
zation for the non-strategic case. Likewise, we show that the threshold function
exhibits OP to a point and IRMP in the agency case, which is sufficient to give
the transition characterization for the agency case. Our analysis is new, in the
sense that we consider the possibility that a single technology can exhibit IRS
up to a certain number of agents contracted, followed by DRS and likewise,
that it can exhibit OP up to a certain number of agents contracted, followed by
IRMP. Babaioff et al. only considered the possibility a function exhibits either
IRS or DRS, and likewise, either OP or IRMP. In addition to this insight, we use
properties of (log) convex functions to establish this result. We state our main
theorems below:

Theorem [l For any threshold technology (any k, n, ¢, @ and ) in the non-
strategic case, there exists an 1 < [,,, < n where, such that the first transition
is from 0 to [,,s agents, followed by all remaining n — l,,s transitions.

Theorem [21 For any threshold technology (any k, n, ¢, & and ) in the agency
case, there exists an 1 < [, < [,s such that the first transition is from 0 to [,
agents, followed by all remaining n — [, transitions.

The following observations give us the optimal payment rule for any technol-
ogy and establish a monotonic property for the optimal contract as a function
of v.
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Definition 2. [3] The marginal contribution of agent i for a given a_; is de-
noted by A;(a—;) = p(l,a—;) —p(0,a—_;), and is the difference in the probability
of success of the technology function when agent i exerts effort and when she
does not.

For anonymous technologies, if exactly j entries in a_; are 1, then A; = p;11—p;,
where p; is the probability of success when exactly j agents exert effort. Since p
is strictly monotone, we have A; > 0 for all 4.

Remark 1. [5] The best contracts (from the principal’s point of view) that induce
the action profile @ € {0,1}" as a Nash equilibrium are ¢; = 0 when the project
is unsuccessful and ¢; = , (Czi,-) when the project succeeds and the principal

requests effort a; = 1 from agent i.

The following lemma gives a set of sufficient conditions for an anonymous tech-
nology to have a first transition from 0 to I, for some [ € {1,...,n}, followed
by all remaining n — [ transitions. This lemma holds for both the non-strategic
case (where @Q; = i - c¢) and the agency case (where Q); = Zc) We view this
lemma as a generalization of Theorem 9 from [5] and it follows a similar proof
structure in that it uses Lemmas 12 and 13 from [5] that relate the principal’s
utility of contracting with a fixed number of agents to the @); values. This lemma
states that as long as a technology function exhibits OP up to a certain number
of agents contracted followed by IRMP, then the transition behavior involves a
first transition from 0 to , for some [ € {1,...,n}, followed by all remaining n —1
transitions.

Lemma 1. Any anonymous technology function that satisfies:

1@ > PiTho for all i # 1
9 Q=G o @

Pi+1—P1 Pi1—Po

3 %i:g > 22:2:1 for all i >1

for some | € {1,....n} has a first transition from 0 to | and then all n — 1
subsequent transitions, where Q; is defined appropriate for the non-strategic case
or the agency case.

Now that we have established a set of sufficient conditions for an anonymous
technology to exhibit a first transition from 0 to I, followed by all remaining
transitions (for either the non-strategic case or the agency case), we interpret
what these conditions are for the non-strategic case.

Lemma 2. Any anonymous technology that has a probability of success function
that satisfies:

1. PiTPo > PEURO for all 2 < i <1 and PP < PP forall i > 1

1 1 .
" Pit1—DPi Pi—Di—1 fO’I“ all i >1

for some | € {1,...,n} has a first transition from 0 to | and then all n —1
subsequent transitions for the nonstrategic version of the problem.
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In establishing that the threshold technology satisfies the conditions outlined in
Lemma [2 it becomes useful to define a property of the probability of success
function.

Definition 3. We say that a probability of success p for a particular technology
1s unimodal if it satisfies one of three alternatives:

1. pi —pi—1 > pi—1 —pi—2 for all 2 <1 < j and p; — pi—1 < pi—1 — pi—2 for all
1>

2. pi —Pi—1 > Ppi1 —pi2 forall2 <i<n

3. pi —pi-1 < pi-1 —pi—2 for all2 <i<n

Let f(i) = P";7°. This function is useful to consider, because in order to
establish the first condition of Lemma ] we need to show that f(7) is unimodal.

Lemma 3. Ifthe probability of success function is unimodal over the set {1, ...,n},
then we know that f(i) is also unimodal.

Corollary 1. For any anonymous technology function (p, c) that has a unimodal
probability of success, there exists an 1 <1 < n such that the first transition in
the non-strategic case is from 0 to | agents (where | is the smallest value that

satisfies 770 > p’ﬁ;po) followed by all remaining n — 1 transitions.

Therefore, it suffices to show that p is unimodal in order to establish that the
technology (p, ¢) exhibits a first transition from 0 to [, for some ! € {1,...,n},
followed by all remaining n — [ transitions, in the non-strategic case.

Lemma 4. The probability of success function for any threshold technology is
unimodal.

The characterization of the transition behavior of the threshold technology in
the non-strategic case follows from Lemmas 2] B and [l

Theorem 1. For any threshold technology (any k, n, ¢, « and 3) in the non-
strategic case, there exists an 1 < l,,s < n where, such that the first transition is
from 0 to l,,s agents, followed by all remaining n — l,,s transitions.

Now that we have characterized the transition behavior of the threshold technol-
ogy, for any k, in the non-strategic case, we focus on establishing the conditions
of Lemmal Il for the agency case. The following lemma is used to show that the
first condition in Lemma [ is satisfied by the threshold technology.
Lemma 5. The discrete valued function, p_ijO , 1S conver.
Lemma 6. There exists a value of 1 < l, < n such that gl > ;’l"’ipzfo for all
i .

3 3 Qi Qi+1 y Qi
Since there exists an [, such thatpl_pg > piiepo forall 1 <i <, and iy <
pﬁ%fpo for all [, <1i < n, we have the following corollary.
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Corollary 2. We have Qe+ "% 5 @ yhere 1 < 1, < n satisfies g >

Dig+1—Pl, Pig, —Po’ la
Pi—Po ;
P —po for alli #1,.

Lemma 7. We have @+ =9 > Q"’_Q“ll for all i > 1, where l, is the smallest

Pit1—Di Pi—Pi—
Qi, Qig+1

value such that .
Plg —PoO Plg+1

Lemmas [ B and [0 and Corollary Pl establish the following result.

Theorem 2. For any threshold technology (any k, n, ¢, a and ) in the agency
case, there exists an 1 < lg < l,s such that the first transition is from 0 to I,
agents, followed by all remaining n — l, transitions.

These results beg the question, how do the values of [, and [,,5 relate to k7 Below
we give the trend in transition behavior as a function of 3, when o = 0. This
remark holds for both the non-strategic and agency cases. We also provide a
technical lemma regarding the value of [, and l,,s as @« — 0. This lemma is used
in the next section to establish an unbounded POU for the threshold function.

Remark 2. For any threshold technology with fixed k > 2, n, ¢ and o = 0, we
have that [ = k for 3 close enough to 1 and I = n for 3 close enough to 0.

Lemma 8. Asa — 0, we know that k < 1, < l,s, where l, is the first transition
in the agency case and l,s is the first transition in the non-strategic case.

We note that it is not always the case that [, > k. For example, when o = é —€,

8= é + € and € is sufficiently small, we have all n transitions, regardless of the
value of k.

4 Price of Unaccountability

Lemma 9. [3] For any technology function, the price of unaccountability is
obtained at some value v which is a transition point, of either the agency or the
non-strategic cases.

We are able to improve upon this result, for the OR technology, which is needed
to establish Theorem @l

Lemma 10. For the OR technology, the price of unaccountability occurs at a
transition in the agency case, as opposed to a transition in the non-strategic case.

The following theorem is a result of Babaioff et al. [5], where they derive the
price of unaccountability for AND technology where =1 — a.

Theorem 3. [3] For the AND technology with o = 1 — (3, the price of un-
accountability occurs at the transition point of the agency case and is POU =
(o =D+ (1=,

11—«
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Remark 3. [5] The price of unaccountability for the AND technology is not
bounded. More specifically, POU — oo as a — 0 and POU — oo as 3 — 0.

Babaioff et al. [5] show that the Price of Unaccountability for the OR technology
is bounded by 2 for exactly 2 agents and give an upper bound of 2.5 for the
general case [0], when 8 = 1 — . We extend these results for the 5 = 1 — « case
and show that the Price of Unaccountability is bounded above by 2 for any OR
technology (i.e. for all n). This result is tight, namely, as « — 0, POU — 2. We
suspect that these results hold for the more general 0 < o < § < 1 case, but we
have been unable to prove it for all values of «, 3.

Theorem 4. The POU for the OR technology is bounded by 2 for all o, = 1—«
and n.

In contrast to the OR technology, we show that the POU for the threshold
technology with k& > 2 is unbounded. This result holds for any 0 < oo < 3 < 1.

Theorem 5. The Price of Unaccountability for the threshold technology is not
bounded for all values of k > 2 and n. More specifically, when o — 0, POU — 0.

5 Composition of Anonymous Technologies

5.1 Majority-of-ANDs

We prove the transition behavior for the majority-of-AND technology in the non-
strategic case. These results hold for the more general threshold-of-ORs case.
For the following assume that in the majority-of~AND technology, the majority
gate contains ¢ AND gates, each with m agents. This builds on a conjecture of
Babaioff et al. who conjecture the following behavior for both the non-strategic
and agency cases. We are unable to prove the transition behavior for the agency
case.

Lemma 11. If the principal decides to contract with j-m + a agents for some
j € ZT and some 0 < a < m, the probability of success is mazimized by fully
contracting j AND gates and contracting with a remaining agents on the same
AND gate.

Lemma 12. For any principal’s value v, the optimal contract involves a set of
fully contracted AND gate.

Theorem 6. The transition behavior for the majority-of-AND technology in the
non-strategic case has a first transition to | fully contracted AND gates, where
1 <1 < n, followed by each subsequent transition of fully contracted AND gates.

While we are unable to characterize the transition behavior for the majority-
of-AND technology in the agency case, we know that the first transition in the
agency case must involve contracting at most [-m agents. This allows us to prove
that the Price of Unaccountability is unbounded.

Theorem 7. The Price of Unaccountability is unbounded for the magjority-of-
AND technology.
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5.2 Majority of ORs

We will characterize the transition behavior for the non-strategic case of the
majority of ORs below. In what follows, we assume that each OR gate has j
agents and there are m of them comprising a majority function (i.e. n = j-m).
We also assume that k£ = [ ]. In considering the majority-of-OR case, we further
assume that f=1—-a and 0 < a < %

Lemma 13. Consider an integer i such that i = a-m + b, where 0 < b < m.
Fixzing i, the probability of success for a majority-of-ORs function is mazximized
when a + 1 agents are contracted on each of b OR gates and a agents are con-
tracted on each of n —b OR gates.

The following lemma gives the complete transition behavior in the majority-of-
OR technology in the nonstrategic case.

Lemma 14. The first transition for the non-strategic case of the majority-of-
OR technology jumps from contracting with O agents to l agents, wherel <1 <k,
followed by all remaining transitions, where the transitions proceed in such a way
so that no OR gate has more than 1 more agent contracted as compared to any
other OR gate.

We conjecture that a similar transition behavior holds in the agency case, but
we have thus far been unable to prove it. However, we do know that as a — 0,
the first transition jumps to k. This is enough to determine that the POU is
unbounded.

Theorem 8. The Price of Unaccountability is unbounded for the majority-of-
OR technology.

5.3 AND of Majority

In what follows, we will also characterize the transition behavior of AND-of-
majorities. These results hold for the more general AND-of-threshold’s. We give
a result from [5] that allows for the characterization of the transition behavior
of AND-of-majority. Let g and h be two Boolean functions on disjoint inputs
with any cost vectors, and let f = g A h. An optimal contract S for f for some
v is composed of some agents from the g-part (denoted by the set R) and some
agents from the h-part (denoted by the set T').

Lemma 15. [J] Let S be an optimal contract for f = gAh onv. Then, T is
an optimal contract for h on v - ty(R), and R is an optimal contract for g on
v-tp(T).

The previous lemma gives us a characterization of the transition behavior in the
AND-of-majorities technology. The statement of this result is analogous to the re-
sult given in [5] for the AND-of-ORs technology. Since the previous lemma holds for
both the non-strategic and agency variations of the problem, the following theorem
holds for both the non-strategic and agency variations of the problem.
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Theorem 9. Let h be an anonymous majority technology and let f = /\j:1
be the AND of majority technology that is obtained by a conjunction of n. of
these majority technology functions on disjoint inputs. Then for any value v,
an optimal contract contracts with the same number of agents in each majority
component.

Theorem [ gives us a complete characterization of the transition behavior in the
AND-of-majorities technology for both the non-strategic and the agency cases.
Since we know that the first transition in both the agency and non-strategic
cases for the AND-of-majority technology occurs to a value greater than 1, we
have the following result.

Theorem 10. The Price of Unaccountability is unbounded for the AND-of-
magjority technology.
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