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Abstract

We present a new multiagent model for the multi-
period portfolio selection problem. Individual
agents receive a share of initial wealth, and follow
an investment strategy that adjusts their portfo-
lio as they observe movements of the market over
time. The agents share their wealth at the end
of the �nal investment period. We show that a
multiagent system can outperform a single agent
that invests all the wealth in a simple stochas-
tic market environment. Furthermore, a coop-
erative multiagent system, with a simple com-
munication mechanism of explicit hint exchange,
achieves a further increase in performance. Fi-
nally we show that communication is redundant
in a more realistic market that satis�es the con-
straints between volatility and return implied by
the Capital Asset Pricing Model.

1 Introduction

Portfolios are an e�ective way of increasing returns while
decreasing risk when investing in the stock market [28]. For
this reason there has been considerable attention to portfo-
lio selection strategies in the �nancial [8, 12] and statistics
literature [32, 10, 2, 11]. As a general model for the deci-
sion faced by a computational agent with limited resources
that acts in an uncertain environment, portfolio-selection
techniques have recently been applied to new problem do-
mains: the selection of portfolios of heuristics for solving
hard computational problems [17]; and portfolio strategies
for message passing to reduce risk in uncertain communica-
tion domains [27].

We introduce a new multiagent model for portfolio selec-
tion that builds on a recent computationally-e�cient portfo-
lio selection strategy with a worst-case performance guaran-
tee [15]. The multiagent model assumes a system of bounded-
rational cooperative computational agents that pool their
initial wealth, manage a share of the investment each, and
then pool their �nal wealth. The agents use a myopic strat-

egy to change their portfolio between investment periods,
based on the current market prices and their current port-
folio. We later allow the agents to communicate through
the exchange of the recent performance of their portfolio
selection strategies. An agent can switch to the portfolio
strategy of the agent that has been performing best in the
recent past. This simple mechanism of \hint exchange" has
enabled exponential performance improvements in other co-
operative problem solving domains [18, 9].

We derive a new interpretation of the multi-period port-
folio selection problem as search through portfolio space,
where an agent explores a new state in each investment pe-
riod. We present the results of a quantitative assessment of
the performance of our multiagent portfolio selection model
in a simple stochastic market that show that: (a) a system
of independent agents will outperform a single agent; (b) a
system of agents can further improve their performance by
sharing short-term portfolio strategies. This con�rms that
cooperative multiagent search improves portfolio selection
through e�cient search. Finally, we show that communica-
tion through hint exchange is redundant in stochastic mar-
kets that satisfy the Capital Asset Pricing Model (CAPM).
This model places constraints on the volatility of stock dy-
namics, imposing correlations between the price movements
of individual stocks. The CAPM model is a more realistic
market model, and this result suggests that communication
is the mechanism that leads to the observed dynamics and
e�ciencies in real markets.

2 Multi-Period Portfolio Selection

In this section we introduce a formal model of the portfolio
selection problem in a stochastic stock market. Given this
model, the traditional economic approach to portfolio selec-
tion selects optimal portfolios over time through direct op-
timization, while modern portfolio theory suggests a single-
period mean-variance approximation. In both of these ap-
proaches strong assumptions are made about the underlying
statistics of the market. The portfolio selection strategy that
is implemented by the individual agents in our multiagent
model is model-free, and its performance is robust to speci�c
assumptions about the statistics of a market.

A portfolio in a market of N stocks in a single invest-
ment period is represented as a vector w = (w1; : : : ; wN),

where wi � 0 and
PN

i=1
wi = 1. A fraction wi of wealth

is invested in stock i at the start of the period. The to-
tal change in wealth over the period depends on the change
in price of the stocks held in the portfolio. Given a vec-
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tor of \price relatives", x = (x1; : : : ; xN), where xi is ra-
tio of closing price to opening price over the period for
stock i, then the wealth of an agent with portfolio w in-

creases (or decreases) by a factor of w � x =
PN

i=1
wixi.

This is the simple gross return from portfolio w. The stan-
dard multi-period portfolio selection problem is chooses a
sequence of portfolios fwT g = (w1; : : : ;wT ) to maximize
the expected utility over return on investment, given a se-
quence of price relatives sampled from a stationary distri-
bution, fxT g = (x1; : : : ;xT ). The return on investment,
RS from portfolio selection strategy S, after T periods is

RS =
QT

t=1
w

t
S �x

t, where wt
S denotes the investment port-

folio in period t. A portfolio selection strategy maps a his-
tory of stock price observations to a portfolio selection for
the next investment period. Given a utility function U(R)
over end-period return on investment, the traditional eco-
nomic approach to multi-period portfolio selection is to fol-
low a strategy that generates a sequence of portfolios fwT g
to solve

max
fwT g

EfXT g

"
U

 
TY
t=1

w
t � xt

!#
(1)

The optimal portfolio strategy will depend on the risk-
preferences of the investor. Typically investors are risk-
averse, with concave increasing utility functions over �nal
wealth [7]. A good investment strategy makes a tradeo�
between expected �nal-period wealth and variance in �nal-
period wealth to maximize expected utility. Non-linear pro-
gramming techniques can be used to solve this optimization
problem for a restricted class of utility functions, given a sta-
tistical model for the future dynamics of the stock market
[3].

Modern portfolio theory introduces approximate \mean-
variance" analysis to simplify the portfolio selection problem
[28]. The \risk" of a portfolio is quanti�ed as the standard
deviation of return from period to period, and the portfo-
lio selection problem is reduced to computing an \e�cient"
portfolio that minimizes risk for a �xed level of return, in
a single period. While this approach is mathematically and
computationally tractable, it still requires that an investor
�rst estimates model parameters that characterize the dy-
namics of the stock market, and then computes the optimal
portfolio selection strategy given the model. The accuracy of
the underlying stock-market model and statistics are criti-
cal. For example, while a portfolio may be e�cient with
respect to a particular set of beliefs about the future dynam-
ics of stock prices, its ex post e�ciency is highly dependent
on the accuracy of those beliefs. The parameter estimation
problem for an economic random-variable is di�cult in gen-
eral [7, 8].

2.1 Model-Free Portfolio Selection Strategies

A recent game-theoretic approach to portfolio-selection de-
signs \universal" strategies that make no statistical assump-
tions about the underlying stock prices, side-step speci�c
modeling assumptions, and avoid parameter estimation prob-
lems [12]. One such strategy, Exponentiated Gradient (EG)
[15], presents a period-to-period update rule for an agent
to adjust its portfolio, without forming an explicit model
of the market. An agent updates its portfolio on the ba-
sis of its recent performance, and the stock price changes
in the previous period. The �2 strategy [15], a �rst-order
approximation to EG, generates the portfolio for the next
period, wt+1, given the current portfolio wt and recent price

relatives xt, according to the simple update-rule

wt+1
i = wt

i

�
�(

xti
wt � xt

� 1) + 1

�
(2)

where �, which we take as positive, is the \learning rate".
The update-rule increases the proportion of wealth invested
in stocks that outperformed the portfolio in the previous
period, and decreases the proportion of wealth invested in
stocks that under-performed the portfolio, i.e. wt+1

i > wt
i ,

xti > w
t � xt. A small learning rate will cause wt+1 to move

slowly towards an optimal portfolio strategy in a station-
ary market with little sensitivity to period-to-period 
uctu-
ations, and a large learning rate will cause w

t+1 to move
more quickly towards an optimal portfolio strategy, but be
more sensitive to period-to-period 
uctuations. The com-
putationally e�cient �2 strategy approximates EG well for
typical stock-market behavior [15]. The agents within our
multiagent model of portfolio selection use the �2 strategy.

With a carefully chosen learning rate the EG portfolio
selection strategy gives worst-case optimal performance, in
a well-de�ned sense. It will achieve the same long-term per-
period growth rate as the best possible growth rate from
a constant rebalanced portfolio with hindsight, against an
\adversarial" market [15]. A constant rebalanced portfolio
(CRP) maintains the same proportion of wealth invested
in each stock across all periods by selling stocks that out-
perform the market, and buying stocks that under-perform
the market. The best constant rebalanced portfolio with
hindsight is the CRP that maximizes �nal wealth, given the
actual sequence of stock prices that occurred. Although the
set of CRP strategies disallows strategies that transfer all
investment at the beginning of each period to the single
stock that will show the greatest return, the best CRP is as
good as the best non-anticipating strategy for a market with
non-negative, independent and identically distributed price
relatives from period to period [30]. The best constant re-
balanced portfolio is therefore a worthy performance target.

2.2 Economic and Search-theoretic Interpretations

In a stationary stochastic market we can derive an economic
interpretation for the performance of a universal portfo-
lio selection strategy, such as EG. In such a market the
long term optimal CRP (that maximizes per-period growth
rate) is also the CRP that maximizes the expected utility
of single-period return on investment, for a logarithmic util-
ity function. Furthermore, the portfolio that maximizes the
single-period expected log return also maximizes expected
end-period log return in the limit, as the number of periods
gets large. Proofs of these claims, and other claims in this
section are presented in the Appendix. The EG portfolio se-
lection strategy is able to select the long-term optimal CRP
for an investor with a logarithmic utility over return on in-
vestment, without explicitly modeling the underlying price
distributions.

There is an interesting search-theoretic interpretation of
the long-term portfolio selection problem in a stationary
stochastic market: as a search through constant rebalanced
portfolio space for the CRP that maximizes single-period
expected log return. This optimal CRP will also maximize
with expectation the end-period log return after a �nite
number of investment periods. However, when an investor
cares about her return in the short to medium-term, the
speed of convergence to the optimal portfolio is important 1.

1When the investor has long-term preferences, then any mecha-
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Similarly, when the market has non-stationary statistics the
long-term optimal CRP is ill-de�ned, and (assuming peri-
odic quasi-stationarity) it is again the speed of convergence,
to the short-term optimal CRP, that is important.

We conjectured that through (a) parallel agent search;
and (b) promoting cooperative search through hint exchange,
the agents in our multiagent investment model would con-
verge to the optimal portfolio more quickly than either a
single agent, or a system of independent agents. This col-
lective search mechanism has been an extremely successful
strategy in other hard problem solving domains [9]. Viewed
as search, the performance of a portfolio selection strategy
depends on the utility of the sequence of states explored
during the �rst T iterations. The particular market model
determines the utility-structure of the search space, and the
distribution of input problems. Some market models can
be expected to present more di�cult search problems than
other market models.

We present quantitative results for a medium-termmulti-
period investment problem in a simulated market with sta-
tionary statistics. We measure the performance Perf S , of
a portfolio selection strategy S after T investment periods
as the end-period log return on investment, averaged over J
trials:

Perf S =
1

J

X
log (RS(j)) (3)

where RS(j) is the return from strategy S in the jth

trial. We also compute the optimal CRP for the simulated
markets, that is the constant rebalanced portfolio that max-
imizes performance for a large number of trials given knowl-
edge of the statistics of the market.

3 Cooperative Multiagent Search for Portfolio Selection

In this section we present the results of a quantitative analy-
sis that compares, for a simple stock market model, the per-
formance of a system of non-adaptive, adaptive, and adap-
tive and communicating agents as the number of agents in
the model increases. The non-adaptive agents maintain the
same (random) constant-portfolio across all investment pe-
riods, trading to rebalance the portfolio from period to pe-
riod. The adaptive agents receive a random initial port-
folio and invest from period to period according to the �2

portfolio selection strategy. The communicating adaptive
agents also exchange portfolio strategies and can switch to
the portfolio strategy of another agent. The agents post
their current strategy and its recent performance to a cen-
tral \blackboard", which is read by all agents. Recent per-
formance is measured as the return on investment achieved
with the portfolio selection strategy over the past � invest-
ment periods, termed the \performance-window". An agent
will choose to switch to the portfolio strategy of the agent
with the best recent performance with �xed probability p,
termed the \switching probability". The cooperation pa-
rameters for each agent are drawn from a distribution that
is optimized o�-line for the market volatility, the size of the
multiagent system, and the number of investment periods
(see Section 3.2).

An agent that switches to the current portfolio of an-
other agent in the system will approximate the strategy of
that agent because the agents all use the same history-free
�2 update-rule (with di�erent learning rates) to adjust the
portfolio on the basis of current prices. We do not limit the

nism that converges to the optimal CRP in a �nite number of periods
will give asymptotically optimal performance.

number of times that an agent can change strategies, other
than forcing an agent to use a new strategy for at least � in-
vestment periods before posting to the blackboard or switch-
ing to another strategy. We conjectured that this exchange
of recently successful strategies and random switching be-
tween strategies would cause the overall portfolio selection
strategy of the multiagent system to move more quickly (on
average) than a single agent towards an optimal strategy.
The model shows how a group of investors might behave in
a complex and uncertain environment2.

3.1 Quantitative Results

We initially simulated a market of N geometric Brown-
ian motion stocks with normally distributed price relatives,
x = (x1; : : : ; xN). The �rst and second moments of the dis-
tribution for each stock, Xi � N(�i; �

2
i ), are represented by

the vectors � = (�1; : : : ; �N ), and � = (�1; : : : ; �N) respec-
tively. Geometric Brownian motion is often used to model
the dynamics of stock prices [13]. It satis�es the \E�cient
Market Hypothesis" (EMH), which holds that an informa-
tionally e�cient market has random price changes, and de-
nies the possibility of \beating the market" [8]. The prob-
ability distribution in geometric Brownian motion over all
future prices depends only on the current price relatives, and
therefore the history of past price changes carry no future
predictive value.

We simulate a market of 10 stocks, over 2000 invest-
ment periods. In order to assure the statistical signi�cance
of our results we averaged the performance of each multia-
gent portfolio selection model over 2000 independent market
trials. The stochastic parameters for each trial are drawn
from uniform distributions, �i � U(0:9995; 1:01), and �i �
U(0:0; 0:2). These statistics are appropriate for the monthly
returns on real stocks. For example, the mean monthly re-
turn on stock in IBM between 1962 and 1994 was 1.0081,
and the standard deviation in monthly return was 0.062 [8,
Page 21]. In each trial we �rst generate the stochastic pa-
rameters, and then the stock prices. The investment models
are all compared on the same sequences of stock prices.

The number of agents in our model varies between 1 and
800, with the same initial wealth shared equally among all
agents for all models and trials. We assign a random initial
portfolio to each agent, and allow each adaptive agent to use
a di�erent learning rate, � � U(0:1; 0:15). This distribution
of learning rates was found experimentally to give good per-
formance for a wide range of multiagent model sizes, and
helps to maintain a diversity of strategies within the sys-
tem. In general the choice of learning-rate represents a clas-
sic tradeo� between return and risk. A high learning rate
enables adaptive agents to perform well on average, but with
a high chance of performing worse than non-adaptive agents
(see Section 3.2). The switching rate and performance win-
dow size are the same for every agent within a system,
and optimized for the number of agents, with switching-
probability p = 0:004 and performance-window � = 400
typical.

The performance of each model is compared in Figure 1.
We see that: (a) a single adaptive agent outperforms a sin-
gle non-adaptive agent; (b) a system of independent adap-
tive agents outperforms a single adaptive agent; (c) a sys-
tem of adaptive communicating agents outperforms a system
of adaptive non-communicating agents for large numbers of

2Of course, there is nothing to prevent one agent modeling a co-
operative multiagent system internally for a small and completely
observable market space.
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Figure 6: Distribution of the ratio of the �nal wealth of 400 adaptive and communicating agents to 400 non-communicating agents, over
2000 market trials. (a) Simple Market Model. Communication improves the �nal wealth in 75% of the trials, with an average wealth
1.47 times greater. (b) CAPM Market. Communication improves the �nal wealth in 53% of the trials, with an average wealth 1.05 times
greater.

However the independent mutliagent systems perform
just as well as the cooperative multiagent systems. Com-
munication through hint exchange appears redundant for
an adaptive multiagent system in this market model. Figure
6 compares the performance of adaptive and communicat-
ing agents in the standard market model and the simulated
CAPM market. While communicating agents outperform
non-communicating agents in the simple market, the com-
municating agents in the CAPM market under-perform the
non-communicating agents as often as they over-perform,
and achieve approximately the same average �nal wealth.
The di�erence in mean end-period log wealth between the
cooperative multiagent system and the independent multia-
gent system in the CAPMmarket (Figure 5) is not signi�cant5.

The relative performance of all multiagent portfolio se-
lection models, adjusted with respect to the best possible
performance in each market, is better in the CAPM market
than in the simple market. We de�ne relative performance
over a set of market simulations as Perf RS = Perf S=Perf w��
100%. The performance of the best constant rebalanced
portfolio, Perf

w� , given the statistics of the market, is com-
puted o�-line. Table 1 shows the relative performance of
each multiagent portfolio selection system of 800 agents, for
the standard market model and the CAPM market.

Table 1: Relative performance over 2000 trials in the standard
market model and the CAPM market model, for multiagent sys-
tems with 800 agents.
Market Model Investment Model

Non- Adaptive Communicating
adaptive agents and adaptive
agents agents

Simple 55% 64% 67%

CAPM 59% 67% 67%

5There is only weak support for rejecting the null hypothesis that
the independent and communicating systems of agents have the same
performance, with a minimum signi�cance level of around 0.3 for sys-
tems with 50 or more agents.

Paradoxically, although the CAPM markets have more
structure, the investment problem appears easier { and the
independent multiagent system performs as well as the best
cooperative multiagent system in the standard market (Ta-
ble 1). From a multiagent perspective, the ine�ectiveness of
communication in the CAPM market is an interesting exam-
ple of how the geometry of a search space can in
uence the
e�ectiveness of parallel cooperative search techniques. The
CAPM market model is derived under assumptions that in-
vestors hold homogeneous beliefs about the future dynamics
of stocks. Communication between investors is implicit in
the simulated price dynamics of stocks. We conjecture that
it is the \closed loop" of the CAPM model, that includes
feedback between investor actions and price dynamics to
predict equilibrium statistics, that makes further communi-
cation worthless.
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Figure 7: Expected return versus variance in return for the Mar-
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adaptive agents, and adaptive and communicating agents. All
adaptive portfolio selection-strategies, and the market portfolio,
lie on the same line in mean-variance space.
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Finally, we compare the performance of our multiagent
model to the performance of the market portfolio. In a mar-
ket that satis�es CAPM, such as the second set of simulated
markets, all adequately diversi�ed portfolios, including the
market portfolio, will have the same \Sharpe ratio", ratio
of excess expected return to variance in return [35]. Fig-
ure 7 shows that this is the case, the overall portfolios of
the multiagent portfolio investment systems and the mar-
ket portfolio all plot along the same line in mean-variance
space. Only the non-adaptive agents are less mean-variance
e�cient than the market, due to a lack of diversi�cation.
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Figure 8: Distribution of �nal log wealth of the market portfo-
lio and a system of 400 adaptive agents in a simulated CAPM
market.

However, the independent multiagent model outperforms
the market in terms of expected utility for an investor with a
logarithmic utility function over �nal wealth. Figure 8 com-
pares the distribution of the logarithm of �nal wealth for the
market portfolio and a system of 400 adaptive agents. We
see that the multiagent system of independent agents is able
to signi�cantly outperform the market portfolio, achieving
a mean log-wealth of 8.19, while the market only achieves
a mean log-wealth of 5.31, despite being mean-variance ef-
�cient. Indeed, the buy and hold strategy of the market
portfolio performs worse than the average performance of a
single investor with a random constant rebalanced portfolio
(see Figure 5).

Modern portfolio theory reduces portfolio selection to
the set of portfolios that lie on the \e�cient frontier" in
mean-variance space, but provides no insight into how to
select between e�cient portfolios. All the adaptive portfolio
strategies, and the market portfolio, lie on the e�cient fron-
tier in Figure 7. Although we can expect the performance of
the market portfolio to improve through borrowing (or lend-
ing) a risk-free asset to move the overall portfolio statistics
on the e�cient frontier, the relatively poor performance of
the market portfolio is also explained by a closer inspec-
tion of the distributional properties of the �nal wealth from
the market portfolio and the multiagent portfolio selection
models.

The ratio of the �rst two moments of a distribution is not
a su�cient statistic with which to compare the expected log
of a distribution. There are other important distributional
di�erences, and we get some insight by comparing the corre-
lation of �nal wealth with the end-period wealth of the best

CRP in each trial across portfolio selection strategies. Table
2 shows that while the performance of the market portfolio
remains almost uncorrelated with the best CRP across mul-
tiple trials, the adaptive agents are able to achieve a wealth
that is almost perfectly correlated with the wealth of the
best CRP strategy. The agents are able to \boost" the per-
formance at the tail of the wealth distribution by tracking
the best possible gain that they can achieve very closely.

5 Related Work

To the best of our knowledge this is the �rst work to consider
the performance of a system of multiple adaptive agents for
the portfolio-selection problem. Blum and Kalai [5] recog-
nize that a system of non-adaptive agents will approximate
the worst-case optimal performance of a single EG-adaptive
agent as the number of agents gets large, but do not con-
sider either an adaptive multiagent system, or the e�ects of
cooperation.

There has been previous work on using multiple heuris-
tics to solve search problems: sequential methods with possi-
ble restart [33, 26, 19, 6]; parallel independent methods [31,
25, 20, 23, 17]; and cooperative parallel multiagent search
[22, 1, 16, 9]. A general theory predicts superlinear speedup
in the performance of individual agents when the search
methods are diverse and the agents are able to utilize in-
formation found in other parts of the search space [18].

6 Conclusions and Future Work

In this paper we have introduced a new multiagent model
for portfolio selection that mixes parallel search with hint
exchange. The model assumes a system of bounded rational
cooperative agents that pool their initial wealth, each man-
age a share, and then pool their �nal wealth. The quanti-
tative results show that a system of adaptive agents with
simple update-rules, that start with random portfolios and
exchange portfolio strategies with good recent performance,
will outperform a single adaptive agent in a simple market
model with no global structure relating the expected return
and volatility of each stock.

These results are also applicable to economic approaches
to hard computational problems, where it has been shown
that a suitable portfolio of heuristics can improve the per-
formance of programs for solving very hard problems [17]. If
individual processes choosing among possible heuristics are
allowed to communicate, the �nal portfolio to which they
converge will have the same optimal characteristics as the
one we considered in this paper.

When the market statistics have more structure, such as
in the CAPM market, an adaptive multiagent system will
still outperform a system of non-adaptive agents or a sin-
gle adaptive agent. However, communication between the
agents becomes redundant, and cooperating agents do no
better than independent agents. Finally, we showed that

Table 2: Correlation of �nal wealth with the best CRP wealth
over 2000 trials in a simulated CAPM market, for multiagent
systems with 800 agents.

Investment Model
Market Non- Adaptive Communicating
Portfolio adaptive agents and adaptive

agents agents
0.1281 0.6872 0.9988 0.9956
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while the \market portfolio" that invests across all stocks
equally will achieve an optimal ratio of expected wealth to
variance in wealth, its performance in terms of expected end-
period log wealth is worse than that of our multiagent port-
folio selection model. The end-period wealth from the in-
dependent multiagent cooperative selection models is highly
correlated with end-period wealth of the best CRP, and we
believe that this favorably skews the distribution of end-
period wealth.

In future work we will investigate how the performance of
our cooperative multiagent portfolio selection model scales
with the number of stocks in the market space. We also pro-
pose further analysis of the micro- and macro-properties of
the search algorithm that is implemented by the multiagent
portfolio selection model, focusing at the micro-level at the
occurrence and frequency of strategy switching between the
agents, and at the macro-level on the e�ciency of the search
algorithm through aggregate portfolio space.

7 Appendix

In this appendix we prove a number of optimality properties
for the constant rebalanced portfolio (CRP) that optimizes
asymptotic per-period return in a stationary stochastic mar-
ket:

w
� = argmax

w

lim
T!1

 
TY
t=1

w � xt

!1=T

(4)

where, w = (w1; : : : ; wN ) represents a constant rebal-
anced portfolio across N stocks, with investment wi main-
tained in stock i across all investment periods, wi � 0,P

N
wi = 1; xt = (xt1; : : : ; x

t
N) represents the price rela-

tives in period t, xti is the ratio of closing price to opening
price of stock i in period t, i.i.d. across periods; T is the
number of investment periods.

Claim 1. The best CRP, w�, also maximizes expected single
period log return.

Proof.

w
� = argmax

w

lim
T!1

 
TY
t=1

w � xt

!1=T

= argmax
w

lim
T!1

 
1

T

TX
t=1

logw � xt

!

= argmax
w

EX logw � x 2

Claim 2. The CRP that maximizes expected single period
log return also maximizes expected end period log return,
asymptotically for large numbers of investment periods.

Proof.

w
� = argmax

w

lim
T!1

 
EfXT g log

TY
t=1

w � xt

!

= argmax
w

lim
T!1

 
EfXT g

TX
t=1

logw � xt

!

= argmax
w

lim
T!1

 
TX
t=1

EX logw � x

!

= argmax
w

EX logw � x 2

Claim 3. The CRP that maximizes expected single period
log return also maximizes expected end period log return for
any number of investment periods.

Proof.

w
� = argmax

w

EfXT g log

TY
t=1

w � xt

= argmax
w

EfXT g

TX
t=1

logw � xt

= argmax
w

TX
t=1

EX logw � x

= argmax
w

EX logw � x 2

Claim 4. Any portfolio selection strategy S that converges
to the best CRP in a �nite number of investment periods will
achieve an optimal per-period growth rate asymptotically, as
the number of investment periods gets large.

Proof. We prove (equivalently, from Claim 1) that the
average per-period log return from strategy S approaches
the optimal expected per-period log return as the number
of investment periods, T , gets large. Let T1 represent the
number of periods that pass before strategy S selects the op-
timal CRP, w�; �1 denote the average per-period log return
received during those periods; and �� denote the expected
per-period log return from w

�. Then the average per-period
log return from strategy S as the number of investment pe-
riods gets large is

lim
T!1

1

T

TX
t=1

logwS � x
t

= lim
T!1

1

T
(T1�1 + (T � T1)�

�)

= �� 2
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