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Abstract

Mechanism design (MD) provides a useful method to im-
plement outcomes with desirable properties in systems with
self-interested computational agents. One drawback, how-
ever, is that computation is implicitly centralized in MD the-
ory, with a central planner taking all decisions. We consider
distributed implementations, in which the outcome is deter-
mined by the self-interested agents themselves. Clearly this
introduces new opportunities for manipulation. We propose
a number of principles to guide the distribution of com-
putation, focusing in particular on Vickrey-Clarke-Groves
mechanisms for implementing outcomes that maximize to-
tal value across agents. Our solutions bring the complete
implementation into anex postNash equilibrium.

1. Introduction
Mechanism design [18] is concerned with the design of

procedures to implement an outcome with desirable proper-
ties in systems with self-interested agents that have private
information about their preferences and capabilities. Mech-
anism design has largely focused on a special class of mech-
anisms in which the computation required to determine the
outcome is completely centralized.

These are thedirect-revelationmechanisms, in which
each agent reports its private information to a center that
computes the outcome and reports the solution back to the
agents. We introduce the fundamentally new problem of
distributed implementation, in which the goal is to use the
same self-interested agents to determine the outcome.

It has now been over 10 years since the first infusion of
ideas from mechanism design into distributed AI [12, 27].
Mechanism design has been adopted in many settings, for
instance for determining a shared plan of action [16], for
the allocation of shared resources [34, 26], or for structur-
ing negotiation between agents [28]. Our hope is that the
Distributed Implementation problem will facilitate the inte-
gration of methods for cooperative problem solving in Dis-
tributed AI with the methods to handle self-interest in com-

putational mechanism design. Indeed, Lesser [19] recently
described this unification, of methods in cooperative meth-
ods with self-interested methods, as one of the major chal-
lenges for multiagent systems research.

The distributed implementation of mechanisms intro-
duces new opportunities for agent manipulation. For in-
stance, consider distributing the winner-determination of a
second-price auction across bidding agents. Clearly each
agent would like to understate the maximal value of bids
from other agents to increase its chance of winning and to
decrease its payment.

A distributed implementation provides each agent with
an algorithm (or a specification of an algorithm). A suc-
cessful (orfaithful) distributed implementation must pro-
vide the right incentives, so that an agent willchooseto fol-
low the intended algorithm. We seek implementation in an
ex postNash equilibrium, such that no agent can usefully
deviate from its algorithm even if it knows the private val-
ues of other agents.

All our observations in this paper are quite simple, but
we think quite powerful. We provide three generalprin-
ciples for distributed implementation:partition-based, in
which computation is carefully distributed across agents;
information-revelation based, in which agents only per-
form restricted computation, as necessary to reveal in-
formation about their local private information; and
redundancy-based, in which multiple agents are asked
to perform the same piece of computation, with devia-
tions punished. We will often draw on examples and mo-
tivation from the Vickrey-Clarke-Groves mechanism, but
the ideas are more general. We include stylized exam-
ples to illustrate how to combine existing algorithmic
paradigms from cooperative problem solving with the prin-
ciples for faithful distributed implementation.

1.1. Related Work

Feigenbaum and colleagues [14, 13] initiated the study
of distributed algorithmic mechanism design(DAMD),
with a focus on studying particular communication topolo-



gies and providing distributed algorithms with good com-
putational complexity and good communication proper-
ties. However, DAMD has deemphasized incentive issues,
and does not consider whether an agent willchooseto fol-
low a particular algorithm.

Shneidman and Parkes [30] provided the seeds for this
work, with an early definition of the concept of “algorithm
compatibility.” More recently, Shneidman and Parkes [29]
have completed a careful case study of distributed imple-
mentation for interdomain routing, bringing an earlier algo-
rithm due to Feigenbaum et al. [13] into equilibrium.

Monderer and Tennenholtz [23] have studied a simple
single-item auction problem in which agents must forward
messages from other agents to a center, using information
hiding and redundancy to bring faithful forwarding into an
equilibrium. We focus in this paper on a model in which
agents can communicate with the center directly— on a
trusted channel —thus removing this concern.

Smorodinsky and Tennenholtz [33] consider free-riding
in multi-party computation by agents with costly compu-
tation, and provide incentives to elicit computational effort
from agents. However their work does not take animple-
mentationperspective, and there is no private information.
Perhaps the closest work in the literature to ours is Brewer’s
“computation-procuring” auction [5], in which incentives
are used to distribute winner-determination across partici-
pants in an ascending-price combinatorial auctions. Agents
that can find and submit an improved solution are paid some
share of the revenue improvement. Although Brewer does
not provide formal equilibrium analysis, an experimental
study suggests this “computation procuring” auction was ef-
fective in eliciting effort from human bidders. Similar ideas
can also be traced to the use of the bid queue to store par-
tial solutions in the AUSM mechanism [2], and (in a coop-
erative setting) to work oncomputational ecosystems[8].

Shoham and Tennenholtz [31, 32] have considered com-
putation in a system of self-interested agents with private
inputs. The agents are either reluctant to provide informa-
tion, or want to know the result of computation but prefer
to keep this from their peers. However, their goals are quite
different. All computation is centralized, and the focus is
on computation but not implementation (i.e., not on taking
decisions in a world). The notion of anEfficient Learning
Equilibrium [4] shares our idea of bringingalgorithmsinto
an equilibrium.

Combining redundancy with a commitment to imple-
ment a “bad” outcome if agents don’t send the same mes-
sage is well known in the literature on implementation in
complete informationsettings— where every agent, but not
the center, knows all private information —albeit for reveal-
ing (common) type information and not for eliciting effort
(see Jackson [17] for a survey). However, agents still re-
veal full information to the center, and the center still de-

termines the outcome of the social-choice rule (e.g. [24]).
Multi-stage game forms are used to allow equilibrium re-
finements that knock-out undesirable equilibria, so that the
outcome is implemented inall equilibria,1 but not to facili-
tate distributed computation. Recent extensions have con-
sidered implementation withincompleteinformation, but
still with centralized computation, and while adopting diffi-
cult solution concepts, for exampleperfect Bayesian imple-
mentation[6] andsequential equilibrium[1]).

2. Preliminaries
We first introduce notions from traditional (centralized)

mechanism design. A more leisurely introduction to mech-
anism design is provided by Jackson [18] and Parkes [25,
chapter 2]. Dash et al. [10] provide a recent multi-agent per-
spective on important challenges in the field of computa-
tional mechanism design.

2.1. Mechanism Design

The standard setting for mechanism design considers a
world with possible outcomesO, and agentsi ∈ I (with N
agents altogether). Agenti has private typeθi ∈ Θi, which
defines the agent’s utilityui(o; θi) for outcomeo ∈ O.

A standard (direct-revelation) mechanismM = (f,Θ)
defines a procedure in which agents report typesθ̂ ∈ Θ =
(Θ1 × . . . × ΘN ) and the mechanism rules select outcome
f(θ̂). We write θ̂ to emphasize that agents can misreport
their true types (which are not observable to the center).

A mechanism defines a non-cooperative game of incom-
plete information because agents do not know the types of
other agents. Agenti’s utility for report θ̂i given reports
θ̂−i = (θ̂1, . . . , θ̂−i, θ̂+i, . . . , θ̂N ) is ui(f(θ̂i, θ̂−i); θi). An
important concept in MD is that ofincentive-compatibility
(IC), which says that agents will choose to reveal their types
truthfully in equilibrium. A mechanism that achieves truth-
revelation in adominant-strategyequilibrium (every agent’s
strategy is best-response whatever the strategies of other
agents), is termedstrategyproof, defined as:

ui(f(θi, θ−i); θi) ≥ ui(f(θ̂i, θ−i); θi), ∀θi,∀θ̂i 6= θi,∀θ−i
Strategyproof is particularly useful because agents do

not need to model the other agents to play their best-
response. Finally, an IC mechanism is said toimplement
outcomef(θ) in equilibrium; andf(θ) is thesocial-choice
functionimplemented within the mechanism.

2.2. Vickrey-Clarke-Groves Mechanisms

In particular, consider a world in which the outcome
o = (k, p) defines both a choicek ∈ K, for some dis-

1 We are less concerned with multiple equilibrium because the center
in our model can also choose to incur some computational cost and
check whether agents deviate. Also, we assume that the intended al-
gorithm (implemented in software) helps to correlate agents on a de-
sired equilibrium, providing a focal point (see also [4].
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crete choice setK, and a paymentp = (p1, . . . , pN ) by each
agent to the center. For example, the choice could define a
set of actions to be performed by agents as part of a plan, or
an allocation of items. The type of an agent now defines its
valuevi(k; θi) for a choicek, and its utility is quasi-linear
in value and payments, defined asui(o; θi) = vi(k; θi)−pi.

In this setting, the Vickrey-Clarke-Groves (VCG) (see
[18]) mechanism is strategyproof, and implements the
social-welfare maximizing (orefficient) choice. We de-
fine economyEN to include all agents, andmarginal
economies{EN−1, EN−2, . . .} as the economies with
each agent removed in turn. The VCG defines choice rule
k∗(θ̂) = arg maxk∈K

∑
i vi(k; θ̂i), and payment rule:

pvcg,i(θ̂) = vi(k∗(θ̂); θ̂i)− {VN − VN−i} (1)

where VN = maxk∈K
∑
i vi(k; θ̂i) and VN−i =

maxk∈K
∑
j 6=i vj(k; θ̂j), i.e. the value of the efficient

choice in the marginal economy without agenti.

3. Distributed Implementations
We now describe adistributed implementation, focusing

on a setting in which there is still a center, ultimately re-
sponsible for selecting and enforcing an outcome. We will
seek to off-load as much of the computation as possible onto
the agents, but require that this computation is in an equilib-
rium. We assume that each agent can communicate directly
through the center, via a trusted channel.2

The basic model of communication assumesmessage-
passingbetween agents, and astate-based modelfor com-
putation, with each agent maintaining an internal state, per-
forming computation to modify that state, and sending mes-
sages that depend on state.3

A distributed mechanism dM = (g,Σ, sm) defines
an outcome ruleg, a feasiblestrategy spaceΣ = (Σ1 ×
. . .×ΣN ), and an intended (or “suggested”) strategysm =
(sm1 , . . . , s

m
N ). We also refer tosm as theintended imple-

mentation. It is helpful to think ofsm as the algorithm that
the designer would like every agent to follow. Given strat-
egys ∈ Σ, it is convenient to writes(θ) to denote the com-
plete sequence of actions taken by agents when following
joint strategys, given private typesθ.

The outcome ruleg defines the outcomeg(s(θ)) ∈ O,
selected when agents follow strategys and have typesθ.
The center selects outcomeg(s(θ)) based on information
provided by agents during the course of the algorithm.
Taken together, this defines a non-cooperative game.

2 Shneidman & Parkes [29] consider a more general model with no cen-
ter, and with self-enforcement of the final outcome by the agents.

3 The model can be formalized to make the games that we describe pre-
cise, for example introducing a start state and end state, and defining
state-transition functions. Such a formalism is tangential to the main
thrust of this paper, and will be avoided.

A strategysi ∈ Σi is a mapping fromstateand (private)
type to anaction. Actions may beinternal, in which case
they arecomputationalactions, orexternal, in which case
they aremessage-sendingactions. An agent’s local state in-
cludes itscomputational state, as well as a complete his-
tory of all messages ever received or sent by the agent and
its model of other agents.

Definition 1 Distributed mechanismdM = (g,Σ, sm) is
an (ex post)faithful implementationof social-choice func-
tion g(sm(θ)) ∈ O when intended algorithmsm is an ex
postNash equilibrium.

Formally, strategy profiles∗ = (s∗1, . . . , s
∗
N ) is anex post

Nash equilibrium when:

ui(g(s∗i (θi), s
∗
−i(θ−i)); θi) ≥ ui(g(s′i(θi), s

∗
−i(θ−i)); θi)

for all agents, for alls′i 6= s∗i , for every typeθi, and for
all typesθ−i of other agents. In words, no agent would like
to deviate froms∗i even with knowledge of the private type
information of the other agents. As a solution concept,ex
postNash relies on the rationality of other agents, but re-
mains useful because an agent need not model the prefer-
ences of other agents.

Given distributed mechanismdM = (g,Σ, sm), it is use-
ful to categorize the external actions in the intended im-
plementation intomessage-passing, information-revelation,
andcomputationalactions.

Definition 2 External actionsae ∈ smi (h, θi) aremessage-
passing actionswhen agenti simply forwards a message re-
ceived from another agent, unchanged, to one (or more) of
its neighbors.

Message-passing actions are included to allow for peer-
to-peer communication.

Definition 3 External actions ae ∈ smi (h, θi) are
information-revelation actions when any feasible devia-
tion from these actions by agenti is entirely equivalent to
following the intended implementation for some other re-
ported typêθi; i.e., g(s′, sm−i(θ−i)) = g(smi (θ̂i), sm−i(θ−i)),
for all θ−i, where s′ differs from smi (θi) only in these
info-revelation actions.

Informally, information-revelation actions can be exe-
cuted by a “dumb” agent that only knows typeθi and can
only respond to questions about type, such as “is choicek1

preferred to choicek2?”, “what is the value for choicek1?”,
etc. By definition, the only role that these actions play in the
implementation is in revealing private information.4

4 The definition carefully excludes actions in which useful computation
is also “smuggled” within the message, for example “solve problem
P1 if your value isv1 and solve problemP2 if your value isv2.” This
is precluded because there are presumablyarbitrary deviations from
computing the solution toP1 or P2, that are not performed inany in-
tended implementation, for any private type.
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Definition 4 External actionsae ∈ smi (h, θi) are compu-
tational actionswhen they are neither message-passing nor
information-revelation actions.

Although this definition of computational actions is
somewhat indirect, the point is that external actions (or mes-
sages) that we classify ascomputationalare doing more
than forwarding a message from another agent or reveal-
ing private information. Presumably, computational actions
(if they have any use within the implementation) are send-
ing results from local computation.

It is important to emphasize that we have only character-
ized theexternalactions. Computational agents are contin-
ually performinginternal actions— computation —to sup-
port these external actions, and these actions (or at least a
specification) are also defined in an intended strategy. For
instance, an agent must perform (internal) computation in
responding to an information-revelation action “which bun-
dle of goods maximize your utility given pricesp?”.

We can now define the important notions ofincentive-
compatibility(IC), communication compatibility(CC), and
algorithm compatibility(AC) in this context.
Definition 5 Distributed mechanismdM is CC{ resp. IC,
AC} if an agent cannot receive higher utility by deviat-
ing from the intended message-passing{ resp. information-
revelation, computational} actions in an equilibrium.

CC, IC, and AC are required properties of a faithful
distributed implementation. Moreover, a distributed mech-
anismdM = (g,Σ, sm) that is IC, CC and AC is afaith-
ful implementationof g(sm(θ)), when IC, CC and AC all
hold in asingleequilibrium.

Remark 1 The only social-choice functions that can be im-
plemented in anex postNash distributed implementation
are those implementable instrategyproofdirect-revelation
mechanisms (follows from the revelation principle [20].)

Remark 2 We assume that agents are self-interested but
benevolent, in the sense that an agent will implement the
intended strategy as long as it does notstrictly prefer some
other strategy. Thus, aweak ex postNash equilibrium is suf-
ficient for a faithful implementation. Further, a distributed
mechanism may have multiple equilibria. We are content to
achieve implementation inoneof these equilibria, which is
consistent with the mechanism design literature.

4. A Canonical Distributed Implementation
To illustrate why faithful distributed implementa-

tion can be difficult, and also to introduce a general class
of distributed VCG mechanisms, consider the follow-
ing canonical distributed algorithmfor determining the
efficient choice in economies{EN , EN−1, . . .}:

(1) Every agent is asked to report its typeθ̂i to the cen-
ter. Upon receipt, the center broadcasts these types to the
agents.

(2) Take your favorite distributed algorithm for comput-
ing the efficient choice, for instance:

(i) Distributed systematic search, such as Adopt [22],
for solving constrained optimization problems.

(ii) Mathematical-programming based decomposi-
tions, such as Dantzig-Wolfe and column generation [15].

(iii) Asynchronous Cooperative Problem Solving
with Shared Storage, such asblackboardmodels (see [7]
for a recent summary) and hint-exchange models [8]).

and use this algorithm to define an intended strat-
egy, sm, to determine the efficient choice in each of
{EN , EN−1, . . . , }. Let Cand denote these candidate
choices.

(3) The center adopts choicek∗ = arg maxk∈Cand

∑
i

vi(k; θ̂i) for EN , and choicek−i = arg maxk∈Cand

∑
j 6=i

vj(k; θ̂j) for each marginal economy.

Step (3), in which the maximal choice is taken from the
set of candidates for each economy{EN , EN−1, . . .}, can
require the center to adopt a simple heuristic to modify a
choice from one economy so that it is feasible in another.
For instance, given an allocation of goods in an auction set-
ting, the center can simply drop any allocation to agenti in
k when considering the value of this solution forEN−i.

Suppose the canonical distributed algorithm is used
to define a distributed VCG mechanism, with VCG pay-
ments computed on the basis of the final choices (denoted
k∗, k−1, k−2, . . .). Fix reports θ̂−i by agents6= i. Now,
the utility, ui(g(sm(θi, θ̂−i)); θi), to agenti from the in-
tended strategy is:

vi(k∗; θi) +
∑
j 6=i

vj(k∗; θ̂j)−
∑
j 6=i

vj(k−i; θ̂j)

In a centralized VCG the agent would choose to report its
true type in equilibrium, because its report can only influ-
ence its utility indirectly through its effect on the choice
selected by the mechanism. By the standard Groves argu-
ment, reporting a true type is optimal because the mecha-
nism will then choosek∗ to exactly maximizevi(k; θi) +∑
j 6=i vj(k; θ̂j).
In a distributed implementation, agenti can also: a)

change the choice ofk∗ through its computational and
message-passing and information-revelation actions within
the distributed algorithmsm; b) change the choice ofk−i

through its actions within the distributed algorithmsm. In-
deed, strategysm is not in equilibrium. To see this, notice
that agenti can now also influence the choice ofk−i. Agent
i will always prefer tounderstatethe total value ofVN−i,
and thus prefer to obstruct any progress towards a good so-
lution to this problem to the best of its ability. At best, the
center will then adopt the samek∗ as the choice without
agenti, so that the agent’s payment is zero because it ap-
pears that there is no better choice for the other agents even
if agenti were not present.
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5. An Easy Special Case: Groves Mechanisms
If our goal was simply to implement the social-welfare-

maximizing outcome, and if running a budget-deficit was
acceptable and the center can make a net payment to agents,
then we can use the canonical approach for a faithful dis-
tributed implementation. We can use the Groves mecha-
nism, in which payments are:

pgroves,i(θ̂) = −
∑
j 6=i

vj(k∗(θ̂); θ̂j) (2)

These are the payments from the center that align the incen-
tives of each agent with that of maximizing total value. The
VCG payments (Equation 1) are a specialization of Groves
payments, introducing the additional payment termVN−i
from agenti to the center.

Theorem 1 Distributed mechanismdM for the Groves
mechanism, in which a canonical distributed algo-
rithm is used to determine the efficient choice inEN , is an
(ex post) faithful implementation of the efficient choice and
Groves payments.

Proof: The utility to agenti, given reportŝθ−i from other
agents isvi(k∗; θi) +

∑
j 6=i vj(k

∗; θ̂j), where k∗ solves

maxk
∑
i vi(k, θ̂i). Agent i can influence the choice ofk∗

through both revelation and through its computational and
message-passing actions. But, the Groves payments align
agenti’s incentives with the efficient choicek∗ in EN , and
the agent will follow the intended strategy when this is also
pursued by other agents.

Groves mechanisms can also be easily extended to
provide a faithful distributed implementation of any
affine maximizer, with the choice selected to solve
maxk

∑
i wivi(k; θi) + bk wherewi, bk ≥ 0 are set by the

designer.

6. The Partition Principle: VCG Mechanisms
Now consider the problem of implementing the VCG

outcome as a distributed mechanism. Unlike Groves, the
VCG mechanism does not run at a deficit in many MAS
problems (for example when used for a Combinatorial Auc-
tion [34]).

Theorem 2 (Partition Principle) Distributed mechanism
dM for the VCG mechanism, in which a canonical dis-
tributed algorithm is adopted to solve{EN , EN−1, . . .},
and in which computation is partitioned so thatsm(θ)
will allow the center to solveEN−i whatever the ac-
tions of agenti, is an (ex post) faithful distributed imple-
mentation of the efficient choice and VCG payments.

Proof: The utility to agent i is vi(k∗; θi) −
(
∑
j 6=i vj(k

−i; θ̂j) −
∑
j 6=i vj(k

∗; θ̂j)). Agent i can-
not influence the choice ofk−i, and once this is fixed

the agent should followsm to maximize its total util-
ity from the standard Groves argument.

Although we describe the partition principle in the con-
text of the canonical distributed algorithm with each agent
reporting its type as a first step, the result trivially extends to
distributed mechanisms in which the center elicits dynamic
value information, as long as it finally learns the value of
the choices and shares necessary information with agents to
perform the computation.

Note that it is important that no agent can tamper with
the reports from other agents. (An agent is paid an amount
equal to theirreportedvalue, so it would always want to
overstatethe value of other agents for the selected choice.)
This is achieved in our model, because agents can report
their type directly to the center. However, the partition prin-
ciple still allows agents to send messages peer-to-peer dur-
ing theimplementationof a distributed algorithm. It is only
the initial information-revelation that must be direct to the
center along a trusted channel.

Example 1 [Distributed Systematic Search] Choose your
favorite algorithm for distributed systematic search (such as
Modi et al.’s DCOP algorithm [22]). First, form a search tree
including all agents, and have the agents solveEN . Then,
form a search tree involving all agents except agent 1 and
have them solve forEN−1. Do the same for agent 2, and
so on until all marginal economies are solved, with the cen-
ter receiving a choice from the root of the tree in each case.
Finally, implement the choice reported forEN , and VCG
payments on the basis of solutions to marginal economies.

Example 2 [Cooperative Problem Solving] Agents report
types to the center, that broadcasts this information and
also maintains ablackboard(see [9, 7]), on which it main-
tains the current best solution to{EN , EN−1, . . .}. In the
intended algorithm, agents follow a “best-effort” strategy,
searching for, and suggesting, improvements to any prob-
lem. A best-effort strategy is defined as an algorithm that
will eventually find an improvement when one exists. Here,
we suppose the centerauditsnew posts, and only accepts
solutions onto the blackboard that improve the current so-
lution. (This prevents agenti from scuppering progress to-
wards solvingEN−i.) The mechanism terminates when ev-
ery agent reports thatEN is solved correctly and every
agent except agenti reports thatEN−i is solved correctly.
Finally, the center implements the VCG outcome on the ba-
sis of the final solutions.

Many variations of this general blackboard-style ap-
proach are possible. For example, agents can be provided
with shared scratch space to post (but not overwrite)par-
tial solutions(similar to the hint-sharing methods proposed
in the cooperative problem solving methods of Clearwater
et al. [8]). A blackboard approach can also be used in anin-
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cremental revelationmode, in which agents reveal new in-
formation about their own value in posting new solutions.

Another way to think about how to write a distributed al-
gorithm for VCG that satisfies the partition principle is to
consider algorithms with the following characteristics:

(1) agents only communicate with the center by suggest-
ing candidate choices

(2) any candidate from agenti that for which agenti has
no (reported) value is ignored by the center

(3) partitioning is static, in that the computation agenti
is asked to perform does not depend on results from com-
putation from any other agent.

We refer to such paradigms asstatic-partitioning be-
cause of property (3). Property (2) is critical because
it ensures that anoptimal statically-partitioned algo-
rithm can never rely on agenti to provide computa-
tion that helps to solveEN−i. With this, it is clear
that these static-partitioning methods must satisfy the
partitioning-principle, and provide faithful implementa-
tions of the VCG outcome.5

As an example, letEN+1 denote the efficient choice
problem, maxk∈K

∑
i vi(k; θi), subject to the additional

constraint thatv1(k; θ1) > 0 (loosely, we say the solution
must “contain” agent1). Similarly, letEN+1−2 denote the
problemmaxk∈K

∑
j 6=2 vj(k; θj) s.t.v1(k; θ1) > 0.

Example 3 [static partitioning] Partition the com-
putation across agents according to the following
schedule: {EN+1, EN+1−2, EN+1−3, . . .} to agent 1,
{EN+2, EN+2−1, EN+2−3, EN+2−4, . . .} to agent 2, etc.
Each agent can adopt any sound and complete algorithm
to solve its assigned problems. Finally, the center com-
piles the solutions, e.g.VN = max

{
k+1, k+2, . . . , k+m

}
,

wherem indexes theN th agent andk+i denotes the re-
ported solution toEN+i.

7. Information-Revelation Principle
The information-revelationprinciple is a very general

observation, in no way limited to distributed implementa-
tions of efficient outcomes. Rather, it applies to the dis-
tributed implementation ofanystrategyproof social choice
function.

We need an additional property, calledinformation-
revelation consistency, which can be achieved either
through checking, or through rules that constrain the feasi-
ble strategy-space.

Definition 6 Information revelation actionsa1 anda2, by
agenti in statesh1 andh2 are consistentwhen there is a

5 We need a static partitioning to prevent results from agenti being used
to help in the computation by another agent in solvingEN−i. Simi-
larly, the center must only pick across candidates, with no additional
combination operators.

single typêθi for which the intended strategysm(h1, θ̂i) =
a1 andsm(h2, θ̂i) = a2.

As an example, consider an ascending-price auction in
which “straightforward bidding” is the intended strategy,
with an agent bidding for the item while the price is no
greater than its value and it is not winning. Consistency
requires that no agent can retract an earlier bid and that
all bids must be at the current ask price (no jump bids).
No agent would want to take either action if following a
straightforward bidding strategy.

We say that a distributed mechanismsupports consis-
tency checkingwhen every pair of information-revelation
actions must be consistent (either through constraints, or
through checking and then implementing a significantly bad
outcome in case of a violation, such as excluding an agent
from the system).

Theorem 3 (Information-Revelation Principle)
Distributed mechanismdM = (g,Σ, sm) with consistency-
checking is an (ex post) faithful implementation when the
only actions are information-revelation actions and when
f(θ) = g(sm(θ)) is strategyproof.

Proof: Since all actions are information-revelation actions,
the space of possible outcomes isg(smi (θ̂i), sm−i(θ̂−i)), but

g(smi (θ̂i), sm−i(θ̂−i)) = f(θ̂i, θ̂−i), andui(f(θi, θ̂−i); θi) ≥
ui(f(θ̂i, θ̂−i); θi) for all θ̂−i, all θi, and allθ̂i 6= θi by the
strategyproofness off(θ).

We can consider the application of this information-
revelation principle to a distributed VCG mechanism.

Corollary 1 Distributed mechanismdM = (g,Σ, sm) is
an (ex post) faithful implementation of the VCG outcome
when all actions are information-revelation actions and the
implementationg(sm(θ)) correctly computes the efficient
choice and VCG payments for all types.

The distributed mechanisms constructed around the
information-revelation principle do not fall under the
canonical distributed algorithms in§4 because the cen-
ter need not knowthe exact value of the solutions to
{EN , EN−i, . . .}. For example, in a single-item Vick-
rey auction the center only needs to know thatv1 ≥ p,
v2 = p andvj ≤ p for all j /∈ {1, 2} to implement the Vick-
rey paymentp.

Example 4 [Ascending Auctions] The ascending-price
combinatorial auctions (CA) described in Mishra &
Parkes [21] areex post Nash distributed implementa-
tions of the VCG mechanism. The ascending-price auc-
tions (implicitly) maintain pricespi(S), on every bundle
of goodsS, and the intended straightforward bidding strat-
egy has each agent responding with its demand setDi(p) =
{S : vi(S)− pi(S) ≥ vi(S′)− pi(S′), ∀S′ 6= S}, for
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all prices p. revealed-preference information from each
agent isconsistentacross rounds.

Decentralized optimization algorithms, such as Dantzig-
Wolfe, Bender’s, and column generation [15, 3] have re-
ceived much attention for solving large-scale structured op-
timization problems. A typical situation supposes that a
firm needs to determine an allocation of resources across
units, where individual units best understand their needs
but the firm must impose global resource constraints. In the
Dantzig-Wolfe decomposition, prices are published over a
sequence of rounds, with units responding with preferred
allocations. This information is aggregated in the center,
which eventually announces an optimal global solution.
These approaches are a very natural fit with the information-
revelation principle:

Example 5 Adopt a decentralized optimization algorithm,
such as Dantzig-Wolfe, and use it to compute the solution
to {EN , EN−1, . . .}. Ensureconsistency, such that revealed
preferences are consistent across rounds (this also ensures
convergence). All responses from agents in Dantzig-Wolfe
are information-revelation actions, and as such this provides
an (ex post) faithful implementation of the VCG outcome.

8. Redundancy Principle
Theredundancyprinciple is another very general obser-

vation, in no way limited to distributed implementations of
efficient choices. Rather, it applies to the distributed im-
plementation ofany strategyproofsocial-choice function in
which the computation can be usefully “chunked” into a se-
quence of steps, with each step given to two or more agents.
Consider the following “chunk, duplicate and punish” algo-
rithmic paradigm:

(1) Agents report typeŝθ = (θ̂1, . . . , θ̂N )
(2) Partition the distributed computation into “chunked”

stepssm1, sm2, . . . , smT .
(3) Give each chunked step to 2 or more agents, pro-

viding necessary inputs to allow the computation to be per-
formed.

(4) The center steps in and repeats the calculation if the
responses differ, punishing one (or both) agents when the
response differs from that in the intended algorithm.

Punishment can be by removing the agent from the sys-
tem for some period of time or some other punitive sanction,
such as imposing a fine. Note that the center is assumed to
have the computational resources to perform a check when
agents respond with two different answers.6

6 This prevents an agent from “threatening” another agent, which would
happen with a simpler scheme that punished both agents under any
disagreement. We can also do this checking even when there is agree-
ment, with some small probability, to handle the remaining issue of
multiple equilibria. However, as we already argued, we thing software
acts as a useful correlating device from this perspective.

Theorem 4 (Redundancy Principle) Distributed mech-
anism dM = (g,Σ, sm) constructed with a “chunk,
duplicate and punish” scheme is an (ex post) faithful imple-
mentation when social-choice functionf(θ) = g(sm(θ)) is
strategyproof.

Proof: Consider agenti, and fix the strategysm−i of other
agents. First, whatever the information-revelation actions,
agenti should choose a strategy that is faithful to the in-
tended computational strategy becauseany deviation will
lead to a penalty that by assumption exceeds any potential
benefit. Then, we can assume w.o.l.g. that agenti will fol-
lows the intended computational strategy, and then appeal to
the information-revelation principle and the strategyproof-
ness off(θ) = g(sm(θ)), because the only remaining ac-
tions are information-revelation actions.

Example 6 [Pair-wise Chunking] Collect reported typesθ̂,
and then ask any two agents solveEN , any two agents to
solveEN−1, and so on, for every agent. If the choices re-
ported back for any problem differ, then the center can step
in and determine the correct answer and punish.

Notice that this simple distributed implementation works
even if agent 1 is asked to solveVN−1.

Example 7 [Systematic Search] A more intricate exam-
ple is to consider a distributed version of a systematic
search algorithm, in which the center structures a search tree
and allocates pairs of agents to conduct the search under
nodes. For example state-of-the-art winner-determination
algorithms for CAs use “branch-on-bids” coupled with LP-
based heuristics to determine optimal allocations [11]. Such
a search could be structured to ask agents 2 and 3 to “con-
tinue to follow algorithmA and search under a particular
node for 20 steps and then report back the new search tree,”
and so on. . .

9. Discussion
There are many outstanding issues and lots of interesting

directions:

Costly Computation.On one hand, we assume that compu-
tation is costly (else why else would we want to distribute
it across agents?) but on the other hand, we assume that
computation is free (else why else would an agent happily
perform a computation for the center when it is indiffer-
ent about the result of the computation?). This is a tricky
place to be! Future work should strive to explicitly consider
an agent’s computational cost within implementation.

Restricted Communication Networks.The model in this pa-
per assumes that an agent can send a message to the center
without interference from another agent. What are the im-
plications of restricted communication networks, for exam-
ple multi-agent systems in which messages can only be sent
peer-to-peer [23, 29]?
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Self-Enforcing Outcomes.Can we find ways to relax the as-
sumption that the center canenforcean outcome? This has
been considered in an interdomain routing setting [29], in
which an agent’s neighbors know the outcome (and the pre-
scribed actions) and are able to monitor the agent’s actions
and report deviations to the center.

Specific Instantiations.It will be interesting to build out
specific instantiations of the stylized examples provided in
this paper, in an effort to begin to understand the com-
putational effectiveness of distributed implementations of
incentive-compatible mechanisms.

10. Conclusions
In addressing the implicit centralization of mechanism

design theory, we have described three general principles to
guide the development of faithful distributed implementa-
tions, in which self-interested agentschooseto perform the
computation and help the center to determine an appropri-
ate outcome.

We hope this work will start an interesting conversation
between researchers familiar with methods in DAI for solv-
ing distributed problems with cooperative agents with re-
searchers in DAI familiar with methods for handling agent
self-interest through centralized techniques from mecha-
nism design. The goal should be distributed implementa-
tions with good computational properties and good incen-
tive properties.
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