Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008)

Economic Hierarchical Q-Learning
Erik G. Schultink, Ruggiero Cavallo and David C. Parkes

School of Engineering and Applied Sciences, Harvard University
Cambridge, MA USA
{schultin,cavallo,parkes } @eecs.harvard.edu

Abstract

Hierarchical state decompositions address the curse-of-
dimensionality in Q-learning methods for reinforcement
learning (RL) but can suffer from suboptimality. In address-
ing this, we introduce the Economic Hierarchical Q-Learning
(EHQ) algorithm for hierarchical RL. The EHQ algorithm
uses subsidies to align interests such that agents that would
otherwise converge to a recursively optimal policy will in-
stead be motivated to act hierarchically optimally. The essen-
tial idea is that a parent will pay a child for the relative value
to the rest of the system for “returning the world” in one state
over another state. The resulting learning framework is sim-
ple compared to other algorithms that obtain hierarchical op-
timality. Additionally, EHQ encapsulates relevant informa-
tion about value tradeoffs faced across the hierarchy at each
node and requires minimal data exchange between nodes. We
provide no theoretical proof of hierarchical optimality but are
able demonstrate success with EHQ in empirical results.

Introduction

In Hierarchical Reinforcement Learning (HRL), a human
programmer provides a task hierarchy in a domain, speci-
fying how to decompose a task into subtasks. Given such
a state decomposition, a reinforcement learning (RL) algo-
rithm can exploit the structure of a problem domain to con-
verge to a solution policy more quickly than RL with flat
state spaces (Parr & Russell 1998; Dietterich 2000a). By
piecing together policies to subtasks local to each piece of
the hierarchy, HRL algorithms construct a solution policy
for the entire problem.

But there is a tension. Not all HRL algorithms converge to
optimal policies. Some algorithms, such as MAXQQ learn-
ing (Dietterich 2000a), reason only about the effect of an
action on the local subtask. This leads to a policy that is re-
cursively optimal (Dietterich 2000a), as the solution for each
subtask can be thought of as locally optimal given the solu-
tions to the other subtasks. For example, if you are passing
a gas station on your way to the store but have enough gas
to reach the store, it is not optimal to stop if you are con-
sidering only the subtask of ‘driving to the store’. However,
from the global perspective, if you will not have enough gas
to reach a gas station from the store when you try to drive
home, then it is globally optimal to stop.

HRL algorithms that represent and learn the impact of lo-
cal actions on the entire problem can converge to hierarchi-
cally optimal policies (Dietterich 2000a; Andre & Russell
2002; Marthi, Russell, & Andre 2006). We seek to address

Copyright (© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

689

the same problem with Economic Hierarchical Q-learning
(EHQ), but seek greater simplicity and information local-
ity by appealing to economically-inspired methods to align
local and global interests. We use transfers of reward be-
tween agents solving different subtasks in the hierarchy to
alter local behavior to promote hierarchically optimal poli-
cies. These transfers are the only information exchanged be-
tween agents during learning. Upon activating a subtask, the
one or more agents representing a subtask bid for the right to
control the world in performing that subtask.! This provides
for a bottom-up flow of reward in the hierarchy. Parents also
seek to modulate the local policies of children by providing
incentive (or subsidy) payments to encourage the child to re-
turn the world in one state over another state in completing
the subtask. This provides for a top-down flow of reward.

An apt metaphor is the notion of outsourcing— agents who
must fulfill a contract either take primitive actions to fulfill
that contract or else may offer sub-contracts, as specified by
the hierarchy, to other agents. EHQ was inspired by the no-
tion that multiple sub-contractors or child agents would bid
to compete for the right to fulfill the contract. These bids
provide a flow of rewards from children to parents. How-
ever, there might be several ways the child can satisfy a con-
tract. If the child chooses the cheapest way from its per-
spective, the algorithm will be limited to a recursively opti-
mal policy. By allowing the parent to subsidize the different
(exit) states that satisfy the contract, the child can internalize
the global effect of its local actions. These exit-state subsi-
dies provide a flow of rewards from parents to children. With
appropriate exit-state rewards, the locally optimal solution
to the subtask will be hierarchically optimal. We provide no
theoretical proof that EHQ is able to converge to prices with
this property. But we are able to give empirical results that
demonstrate its success in a large learning domain.

The philosophy of our approach owes a debt to Baum and
Durdanovich’s (1998) Hayek system, which itself is a varia-
tion on the Holland (1986) classifier system. Baum consid-
ered the metaphor of auctions with one agent “buying (con-
trol of) the world” from another agent and competing in an
evolutionary setting to find complementary, effective sub-
policies for solving larger, complex problems. We adapt and
modify Baum’s approach to that of HRL and do not consider
models of evolutionary computation.

'In our current implementation, we have only one agent associ-
ated with each subtask and simply program this agent to bid its true
expected value for receiving control, i.e. simulating a competitive
economic system.

HAMQ | MAXQQ | ALispQ | EHQ
HOCQ
RO conv v
HO conv v T Vel
Value decomp. v v v
State abstr. v v v
Decentralized v

Table 1: Summary of HRL algorithms (T shown only empir-
ically).

Motivating Example. The 7axi domain of Diet-
terich (2000a) takes place in a grid world and is illustrated
in Figure 1. There are four locations, labeled R, B, G, and
Y, where the passenger may appear. The goal is to pick
the passenger up with the taxi and then drop the passenger
off at the destination (also one of R, B, G, and Y). There
are 4 primitive actions for movement (north, east,
south, and west), each yielding -1 reward. If movement
in the specified direction would cause the taxi to run into
a wall (indicated with bold), the action is a no—op with
-10 reward. The pickup action puts the passenger in the
taxi if executed when the passenger and the taxi are in the
same marked cell; otherwise pickup is a no—op. There
is an analogous putdown primitive action. Both pickup
and putdown yield -1 reward. Executing the putdown
primitive when the passenger is in the taxi and the taxi is in
the correct destination state yields reward of 100 and ends
the episode. Each episode begins with the taxi positioned at
location (0,1) in the grid-world and a passenger at a random
marked state waiting to be taken to a random destination.

The TaxiFuel domain, a variation on the Taxi domain,
adds a fuel constraint. Each movement primitive decreases
the taxi’s fuel by 1, unless the taxi has O fuel remaining, in
which case there is a reward of -10. The taxi can be refueled
to its maximum capacity of 10 units if the £i11-up prim-
itive is executed in location F. The initial fuel for the taxi is
10 units. This variation increases the state space size from
25 x 5 x 4 = 500 to 5500 states (large for flat Q-learning to
solve) and has distinct recursively optimal and hierarchically
optimal policies.

Related Work

The hierarchical planning work of Dean and Lin (1995) first
introduced the concept of breaking apart a Markov Deci-
sion Process (MDP) into subtasks. But their approach is
about planning rather than learning. HAMQ (Parr & Rus-
sell 1998) was the first application of a hierarchical struc-
ture to reinforcement learning, and has a formal proof of
convergence to a hierarchically optimal policy. But HAMQ
uses no state abstraction or value decomposition and learns
very slowly. Dietterich (2000a) subsequently introduced
MAXQQ and the MAXQ value decomposition, which im-
proved on HAMQ by allowing for state abstraction by de-
composing the Q-values for the subtasks at each node,
thereby improving learning speed. However MAXQQ is
only recursively optimal.

Existing hierarchically optimal RL methods draw on ideas
from both HAMQ and MAXQQ and include ALispQ (An-

690

Root

| Get |

|Put‘

/@naﬂnn ptdown

Navigate(t)

tfsource

pickup

north ‘ east south H west ‘

Figure 1: (a) Grid world for Taxi and TaxiFuel. (b) Hierar-
chy for TaxiFuel.

dre & Russell 2002) and HOCQ (Marthi, Russell, & An-
dre 2006).> Table 1 summarizes the convergence properties
of various HRL algorithms. Only HAMQ and Dietterich’s
MAXQQ algorithm are supported with formal proofs of
convergence. We provide experimental support in this paper
for the convergence of EHQ to transfers via bids and subsi-
dies that provide the necessary incentives to induce a hierar-
chically optimal solution. But again, while RO convergence
results are available for EHQ (by reducing to MAXQQ as
subsidies converge) we leave theoretical analysis of the hi-
erarchical optimality properties of EHQ for future work.
We believe that EHQ has several advantages over ALispQ
and HOCQ. EHQ agents interact in simple, highly structured
economic transactions, allowing for greater decoupling than
ALispQ or HOCQ, both of which use extensive sharing of
information amongst parts of the problem. These earlier
methods require that agents have access to the decomposed
value functions of all agents below them in the hierarchy,
and observe the intrinsic reward that is accrued by the sys-
tem when any agent below them takes a primitive action.

2ALispQ introduced a term, Qg, representing the expected
non-local reward for an action, and allowing an agent to reason
about its effect on the entire problem and providing convergence to
a hierarchically-optimal policy. However the use of Qg severely
limits the possibility of state abstraction and can cause slower con-
vergence than MAXQQ because agents need state information rel-
evant to the rest of the problem to learn Q . HOCQ uses the same
value decomposition as ALispQ, but does without an explicit rep-
resentation of Qg. Agents in HOCQ will instead learn the con-
ditional probability distribution for the exit-state of each subtask
given an entry state. Using this probability, it is then possible to
compute Qg directly. Through the use of fairly complex state
abstractions and approximations for this probability information,
HOCAQ can perform significantly better than ALispQ.

Thus, EHQ is not only conceptually simple, but general-
izes to massively-distributed multi-agent architectures; this
is what is intended by “decentralization” in Table 1.

Hierarchical Reinforcement Learning

In Hierarchical Reinforcement Learning (HRL), hierarchies
are used to provide structure and information about a do-
main, ultimately permitting both temporal and state ab-
stractions. For example, the hierarchy shown in Fig-
ure 1 depicts a possible hierarchy for the TaxiFuel do-
main. The hierarchy decomposes the Root task into
Get and Put tasks, which are further broken down into
pickup and Navigate (source), and putdown and
Navigate (destination), respectively. All internal
nodes represent subtasks and all leaves represent primitive
actions in A. The nodes labeled pickup and north are
examples of primitive actions shown in 1.

In our environment we associate an agent with each in-
ternal node and interchangeably adopt “node”, “agent” and
“subtask” in what follows. We represent hierarchies as
directed acyclic graphs that decompose an MDP M =
(S, A, P, R), for state space S, action space A(s) in state
s, transition function P(s,a,s’) € (0,1) from state s to
s’ given action a € A(s), and reward R(s, a) for action a
in state s, into a set of subtasks, {My, My, ..., M,}. Let
~ € [0, 1) denote the discount factor. For consistency with
Dietterich (2000a), whom our notation closely follows, we
use the convention that M is the Root subtask.

Definition 1. (Dietterich 2000a) A subtask M; is a 3-tuple,
(T3, A;, R;) defined as follows:

e T;: a termination predicate, partitioning S into a set of
active states S; and a set of exit-states E.

o A;: set of actions that can be performed to achieve M;,
that is A;(s) C A(s) U{M; : j € Child(i)} where
Child (i) denotes the children of node i.

e R;: a local-reward function, in our setting defined in
terms of reward for primitive actions and adjusted for
bid and subsidy payments made between agents.

Primitive actions in the hierarchy can be considered to
be subtasks that execute immediately and provide reward
Ri(s,a) = R(s,a). Note that not every node need have
access to every primitive action; indeed this will generally
not be the case. We also adopt the term macroaction to refer
to a subtask. The macroactions provided by the children of
a node are available in every state. Moreover, these are the
only macroactions available at this point in the control hier-
archy. The hierarchy defines the control logic: upon activat-
ing a subtask this subtask can now take available primitive
actions or call other subtasks. Eventually, upon completion
of the subtask control returns to the calling node to select ad-
ditional actions. In our setting, it is only the agents that are
“active” and have control that gain reward from the world for
taking primitive actions. Rewards only flow to other agents
via bids and subsidies. Like Dietterich, we also allow for pa-
rameterized subtasks. The Navigate (t) subtask shown
in 1 is an example of a parameterized subtask, with possible
bindings of the formal parameter ¢ to source and destination.

691

Policies and Optimality

The notion of a policy can be extended for an MDP M that
has been decomposed into a set of subtasks.

Definition 2. (Dietterich 2000a) A hierarchical policy 7 =
{70, M1, ..., Tn } is defined such that each w; is a mapping
from a state s to either a primitive action a or a policy 7;,
where m; is the policy for a subtask M that is a child of the
node corresponding to M; in the hierarchy.

Definition 3. (Dietterich 2000a) A hierarchically optimal
(HO) policy is one that selects the same primitive actions
as the optimal policy in every state, except where prevented
from doing so by the constraints imposed by the hierarchy.

Definition 4. (Dietterich 2000a) A policy is recursively opti-
mal (RO) if, for each subtask M; in the hierarchy, the policy
m; is optimal given the policies for the subtasks that corre-
spond to children of the node associated with M;, and also
their descendents.

The hierarchies that we consider always allow for the rep-
resentation of globally-optimal policies. When this is not the
case it is generally through bad design, although for certain
domains, this may represent a tradeoff between optimality
and allowing fast learning through aggressive control struc-
ture. To gain some intuition: a hierarchy cannot represent a
globally optimal policy if it prevents the optimal sequencing
of primitive actions, for instance by requiring a particular se-
quencing of subtasks each of which has access to only some
primitive actions (“first I get dressed, then I make breakfast,
then I read the paper,...”).

Example 1. The HOFuel domain, based on an example
from Dietterich (2000a), illustrates the distinction between
recursive and hierarchical optimality. HOFuel’s grid-world
and hierarchy are shown in Figure 2. Each movement prim-
itive (north, south, east, and west) gives reward of -1
and reduces the fuel level by 1 unit. If the vehicle moves with
fuel level of 0, there is additional reward of -10. The prim-
itive £i11—-up can only be executed in the left room, gives
reward -1, and fills the fuel level to 5. Reaching the goal
gives a reward of 10. Colliding with a wall is a no-op with
a reward of -10. We treat the doors as one-way passages
to avoid infinite loops. The taxi begins with fuel level 5.
HOFuel has 144 states (making it solvable by flat-Q learn-
ing) and 5 actions. In HOFuel, the RO policy will exit the
left room through the lower door without refueling, since the
agent at Leave left roomcannot see the penalties this
will incur in the right room. In contrast, the HO policy is to
refuel in the left room before exiting through the upper door.
The RO policy yields total reward of -50 and the HO policy
yields 3.

Value Decomposition. Following MAXQ, it is useful to
decompose the Q-value (s, a) updated by node ¢ during
learning (and representing its current belief about its cumu-
lative value for taking action a in state s and then following
an optimal local policy, and given the rewards it is receiv-
ing via payments to/from other nodes) into the sum of two
terms:

e Qv (i,s,a): the expected discounted reward to 7 from
action a (which might be a macroaction, in which case

‘\.\ Goal
Subsidy for fuel:
o - 55
=1- &5

" Subsidy for fuel:
-0
- 10
- 20
30
- 40
- 50

Start

L e N R e
'

fill-up

‘ Leave left room ‘ ‘ Eeach goal |

north

‘ east H south ‘ west |

.

Figure 2: (a) The HOFuel domain, with subsidies assigned to the exit states, (b) A hierarchy for the HOFuel domain.

this will include the reward from the bid made by the
child, and also be net any subsidy payment made to the
child upon completion, discounted in this case by the
number of periods that the macroaction takes to com-
plete)

e Qc(i,s,a): the expected discounted total reward to @
after a completes and until the subtask M; is completed
(this reward includes that achieved from taking primitive
actions, and also due to bids and subsidy payments).

In ALispQ and HOCQ the MAXQQ value decomposition
was extended to also include an “exit-value” term Qg to
capture the sum of reward to the rest of the system after the
current subtask exits. But as discussed earlier, this explicit
representation of Qi (ALispQ), or computation of Qg via
access to nested information in other nodes (HOCQ), leads
to complexity and loss of both state abstraction and decen-
tralization. The innovation of EHQ is that @y and Q¢ will
already reflect the value of a local agent’s policy to the entire
system because of the payments that flow between agents.

State Abstractions. In practice it is possible to augment
this HRL framework to allow for state abstractions. This
provides considerable improvement in learning speed (Diet-
terich 2000a). The intuition for the usefulness of state ab-
stractions is that not all state variables directly effect the
value of a given state-action pair. The HRL framework
makes the use of abstractions especially powerful and nat-
ural. For example, what you had for breakfast is not relevant
to the decision of turning left or right at a particular intersec-
tion when you are driving to work and thus irrelevant if the
subtask is about navigation rather than eating.

Dietterich (2000a) introduced the idea of abstract states
wherein a node (or agent) associated with a subtask reasons
about an abstracted state space in which each local state,
S, represents a subset of the underlying state space of the
MDP M. Everything else proceeds unchanged, just with
local states replaced with local abstract states. The abstrac-
tion needs to be safe (Dietterich 2000b; Andre & Russell
2002). The appropriate notion of safety depends on whether
the goal is one of hierarchical optimality or recursive opti-

692

mality.
Definition 5. (Dietterich 2000a) A state abstraction is hi-
erarchically (recursively) safe given a hierarchy, if the hier-
archically (recursively) optimal policy in the original state
space is hierarchically (recursively) optimal in the abstract
space.

HOFuel is an example of a domain in which the appropri-
ate notion of abstraction safety depends on whether the goal
is hierarchical or recursive optimality. MAXQQ, which is
only capable of learning a recursively optimal solution pol-
icy for HOFuel, can completely ignore the fuel level in its
abstraction. Either way, it will be unable to learn the effects
of the fuel level variable on its reward and will converge to
the recursively optimal policy. If EHQ used this level of
abstraction, it would similarly be limited to the recursively
optimal policy, as it would be unable to reason about the
penalty for running out of fuel.

In this paper, we develop our own abstractions where nec-
essary but adopt the conditions set out by Dietterich (2000a)
in ensuring that all of the state abstractions are hierarchically
safe, and adopt the same abstractions within both the EHQ
and MAXQQ algorithms (and noting that any abstraction
that is hierarchically safe is trivially recursively safe.)

The EHQ Algorithm

For HO convergence, the rewards to an agent in one part
of the hierarchy must represent the impact of local actions
on the global solution quality (allowing for hierarchically-
optimal policies elsewhere). An EHQ agent passes control
of the world to a child agent directly below it in the hierar-
chy, receiving control back when the child satisfies its ter-
mination predicate.’ In exchange for passing control to its
child, the parent receives a transfer of reward equal to the
bid by the child for the state.* The bid provides bottom-up

3The Root subtask has no predicate; in the episodic setting,
it finishes only when the world reaches a terminal state, and in a
problem with an infinite horizon it never completes.

“We use the term “bid” due to EHQ’s inspiration from
Hayek (Baum & Durdanovich 1998) and the possible extension

reward flow in the system and this reward is deducted from
the child’s reward and accrues to the parent. We define the
child’s bid to be its MDP value V*(i, s) for the current state
of the world, where V*(i,5) = maxqca,(5)[Qv (4, s,a) +
Qc(i,8,a)]; i.e. simulating a competitive market. The
above scheme alone can yield RO convergence. To obtain
HO convergence, we also allow the parent in EHQ to pay
the child agent in the form of a subsidy that depends on the
quality of the exit-state the child obtained. The amount of
this subsidy, which provides top-down reward flow in the
system, is deducted from the parent’s reward upon comple-
tion of the subtask and accrues to the child. This transfer of
reward aligns the incentives of the child with the parent, en-
capsulating any possible trade-off between exit-states within
the child’s local value function.

Agents in the EHQ algorithm store @y and Q¢ lo-
cally and update these values in an analogous manner to
MAXQQ. This is presented in the pseudocode for EHQ. But
the main difference between EHQ and MAXQQ is that the
reward that is used for updates of @y and Q¢ in the case of
macroactions is not simply reward for primitive actions, but
also includes these bid and subsidy payments. Specifically,
the value received from a child as a bid encapsulates the ex-
pected reward for the composite of the actions the child will
take in completing its subtask as well as the subsidy it ex-
pects to receive from the parent upon exiting.

Intuitively, the subsidy mechanism in EHQ allows the par-
ent to lead the child to the exit-state that the parent prefers by
placing an additional reward on that state. The hierarchy can
be thought of as defining contractual relationships between
nodes. For example, a contract may require that the child
produce a car for some price. The parent exercises the con-
tract when it calls the child. The child must then fulfill the
contract by providing the car, receiving the transfer as com-
pensation. However, the contract may not explicitly specify
what color the car must be, leaving the child freedom to pro-
vide whichever it can as the lowest cost. The subsidy mech-
anism provides a way for the parent to express its preference
over the color of the car: if the parent values red over blue,
it can explicitly provide its value as a subsidy for receiving
ared car. If the subsidy is more than the marginal cost to the
child of providing a blue car, the child will provide a red car
to receive the subsidy.

The parent’s ability to subsidize the child is critical for
HO convergence. More formally, we can assert that the
parent agent should be willing to pay a child agent for re-
turning the world in exit-state e’ up to the marginal value
of the parent for e’ over the exit-state e in which the child
would otherwise return the world without a subsidy. Con-
sider an agent, parent, implementing a subtask M, and an-
other agent, child, implementing a subtask) that is a child
of M;. Define SUBSIDY (parent,e), where e is an exit-
state of subtask M; (e € E; C S;), to be the expected
marginal value of e to the parent relative to the minimal

of the EHQ algorithm to have competing agents at each node that
would enter their bids in an auction to win control from the parent.
At present each child simply bids its expected discounted value
forward from the state.

693

value across exit states:>

SUBSIDY (parent,e) = V5, oni(€) —

In practice, we found it to be extremely beneficial to limit
the set of exit-states used for the purpose of defining the sub-
sidy to the reachable exit-states. The subsidy is set to zero
on all other exit-states. These states are not programmed
but discovered by the parent during learning. In many do-
mains, only a few states in E; can be reached. For instance,
HOFuel’s Leave left room subtask has only 12 reach-
able exit-states out of a total of 72. Apart from reducing the
complexity of the subsidy calculation and improving run-
ning time, this simplification appears to reduce volatility in
the subsidies in large domains.

For an example of this subsidy policy, subsidies have been
defined for several reachable exit-states in HOFuel for sub-
task Leave left roomin Figure 2. These subsidies are
sufficient to alter the locally optimal policy such that it will
exit through the upper door with a fuel level greater than 1.

We provide the following pseudo-code for EHQ, called
here for subtask M, and with a list of subsidies
EXIT_SUBSIDIES provided by the calling agent and de-
pending on the exit state achieved. « is the learning rate
(cooled over time t) and v € [0,1) is the discount fac-
tor:

EHQ(M,;, EXIT_SUBSIDIES)

while T; not satisfied in current state s do

use Q(i,s,a) = Qv(i,s,a) + Qc(i,s,a) to choose
action a from A;(s) (follow an e-greedy rule)
if @ is a primitive action then
take action a; observe reward r and state s’
observe N = 1 steps elapsed
else
EHQ(M,, SET_SUBSIDIES(M;,M,))
observe N steps elapsed during M,, exit state s’
7 :=BID(M,,s) - YN SUBSIDY (M;, s')
end if
if 7T} is satisfied in s’ then
r:=r+~yNEXIT_SUBSIDIES(s")
end if
Qv (i,s,a) := (1 —a)Qv (i, s,a) + ar
Qc(i,s,a) := (1 —ar)Qc(i,8,a)+
OZWN maXarecA,(s') [QV(Za 8/7 a/) =+ QC(iv S/a Cl/)]
end while
SET _SUBSIDIES (M;, M,) assigns subsidies from M; to
the exit-states of M, based on the subsidy policy.

The update of)y and Q¢ here is defined as in MAXQQ.
We adopt N > 1 to denote the number of periods that the
action a takes to execute. Note that the value from action
a (Qv) already includes some discounting in our setting, in

. /
er’Ié%'lj [V;arcnt(e)]

>We explored alternative definitions to adopting the worst-case
exit state as the reference point (e.g., this could be defined relative
to the maximal value across exit states, the value of an average
exit state, the value of the exit state typically selected, etc.). All
are possible because the absolute value does not matter since this
part of the reward ultimately flows back to the parent via a child’s
bid. But we found that adopting the worst-case exit state as the
reference point provides good learning speed and good robustness.

that the reward allows for the subsidy payments happening
some number of periods after the current period in the case
that a is a macroaction. The reward that accrues to this node
due to the exit subsidy that the subtask receives upon com-
pletion is also similarly discounted. Finally, also observe
that Q¢ is defined to allow for the possibility that the cur-
rent action may take N > 1 periods to complete (again, in
the case that it is a macroaction).

It is possible in this scheme for the parent to pay a much
larger subsidy than the reward the parent expects to receive
in the future. This is OK, because the subsidy will propagate
back through the child’s Q¢ values and thus into the child’s
bid, less whatever amount is necessary to change the child’s
behavior (assuming the subsidy is sufficiently large to affect
a change).

It is also interesting to note that when all agents have con-
verged, the transfer of the bid amount between the child and
the parent cancels out the expected gain or loss of the child,
leaving it with a net expected reward of 0. The root ulti-
mately takes all of the surplus. This would be different in
a system with actual competition between nodes, wherein
each subtask is associated with multiple agents with the
competency to perform the subtask and each node would
be expected to bid not V* but the minimal amount to “win
(control of) the world.”

Results

We present empirical results on the HOFuel and TaxiFuel
domains. Following the existing literature we evaluate the
performance of EHQ in terms of the number of primitive
actions required to learn a good policy (Dietterich 2000a;
Andre & Russell 2002; Marthi, Russell, & Andre 2006). The
results show that EHQ, through the use of exit-state subsi-
dies, can achieve hierarchically optimal policies, which is to
say policies that are superior to those obtained by MAXQQ.
We compare EHQ with MAXQQ and also flat Q-learning
where possible.

For all three implementations, the learning rate o; was
cooled according to the expression 1/(1 + t/C,), where
t is the number of time steps elapsed since the algorithm
was initiated and C,, is a tuning parameter. All three used
epsilon-greedy exploration policies, where € is set accord-
ing to 1/(1 4 ¢/C,), for parameter C,. All Q) values were
initialized to 0. The C\, and C, parameters were tuned for
convergence.

EHQ converges to the same policy as MAXQQ in the
Taxi domain. That this final policy is the same for EHQ
and MAXQQ is unsurprising because the RO, HO, and glob-
ally optimal policies are equivalent in the Taxi domain. We
present results for the TaxiFuel domain, which has been sug-
gested by Dietterich (2000a) as an example in which the RO
and HO policies are not the same, in Figure 3. The prob-
lem has 5500 states, making it outside of the scope of what
we could achieve with flat Q-learning. In fact, we now be-
lieve that this domain has very little difference between HO
and RO (and for several initial states there is no difference).
The result is that neither trial really shows EHQ doing sig-
nificantly better than MAXQQ. In both the Taxi and Tax-
iFuel domain we believe that the performance of EHQ is

694

e e o= g e

g
ot
#

a

——————

O_
/] - - - MAXQQ
—— EHQ

log(avg solution quality)

-10

T T T T T T T T T 1
20000 40000 60000 80000 100000

total primitives

Figure 3: EHQ and MAXQQ convergence on TaxiFuel do-
main

worse in terms of speed of convergence than MAXQQ be-
cause EHQ represents additional)y values, nodes do not
directly observe the primitive reward accrued by children
below them, and because a node’s subsidies introduce ad-
ditional non-stationarity.

Results on HOFuel, shown in Figure 4 (C, = 2000,
C. = 400, solution quality plotted is the average for last
30 trials) clearly demonstrate that EHQ and flat Q-learning
converged to HO policies while MAXQQ was limited to the
RO policy. EHQ was able to propagate information about
the penalties in the right room into the value function of the
agent in the left room. To illustrate this, we also present a
graph showing the convergence of root’s EHQ subsidies
to Leave left room. Note that the subsidies have not
converged to quite the correct values, which would be omni-
sciently set as shown in Figure 2. For HO convergence, we
need only that the subsidies be near enough to incentivize
the child to choose the exit state that makes the right global
trade-off. ©

Future work should compare the performance of EHQ
with HOCQ on the larger version of the Taxi domain (15500
states) considered by Marthi et al. (2006). A similar prob-
lem would arise as in our TaxiFuel domain, namely that both
domains are too large to be solved by flat Q-learning. These
earlier authors compare their algorithm with their own alter-
native RO and HO algorithms.

Conclusions

The EHQ algorithm provides the innovative contribution of
using a hierarchical artificial economy to align local and
global interests within a HRL setting. In a conceptually sim-

®That final subsidies are approximate is likely caused by the
learning parameters being optimized for policy convergence speed
rather than subsidy convergence. It may also be the result of in-
teractions as the subsidies and policy are learned simultaneously
by all agents in the hierarchy. Moreover, regions of the state space
that were unpromising were not fully-explored, so the V* for these
states is less refined.

:

-600 — |

T T T
1000 2000 3000 4000 5000
total primitives

>, -200
£

>

g --- FlaQ

s N MAXQQ
E —— EHQ

[

(=

B

40 e QT
s N
i \
o k
L \

30

upper exit, fuel=2
— — — - upper exit, fuel=1
rrrrrr upper exit, fuel=0
—-—-- lower exit, fuel=5

109

T T T T 1
1000 2000 3000 4000 5000
total primitives

Figure 4: (a) Performance on HOFuel. (b) Exit-state subsidy convergence.

ple structure, an agent bids its expected reward for solving a
subtask to provide a flow of rewards from primitive actions
around the system. The parent can also subsidize the possi-
ble exit-states of the child in order to get the child to produce
an exit-state it prefers. Thus, EHQ agents are dependent
on their calling context, since a child’s local value function
incorporates the expected subsidy payment from its parent.
The child ultimately returns the world in such a state if the
subsidy exceeds the additional cost the child will incur. This
simple incentive structure allows EHQ to converge in exper-
iments to hierarchically optimal solution policies, aligning
local and global interests and correcting the suboptimality
of the recursively-optimal outcomes that can so easily arise.

The chief advantage of EHQ over earlier methods such
as ALispQ and HOCAQ is its simplicity and decentralization.
All HRL algorithms that converge to hierarchically optimal
policies need to model some equivalent of Q g, i.e. the ex-
pected non-local reward for taking an action. ALispQ ex-
plicitly learns this value, but it often depends on a large num-
ber of state variables, which is reflects in ALispQ’s slower
convergence speed compared to MAXQQ. HOCQ learns the
exit-state probability distribution, P.(s,a), for each node,
from which it can compute Qp given the parent’s value
function V,(e). The subsidies in EHQ are based on the par-
ent’s value function, and it is these subsidies that provide the
equivalent of @) g, directly via rewards that are incorporated
into local values at a node for)y, and Q. EHQ nodes do
need not to have direct access to their parent’s value function
to compute the locally optimal action. The EHQ decompo-
sition provides autonomy and localization: beyond its own
action space and state abstraction, an agent need only know
the children one level below it in the hierarchy. This gives
great potential to use this approach in highly distributed or
multi-agent settings, for which earlier methods are poorly
motivated.

Acknowledgments

The first author thanks Avi Pfeffer and Rob Wood for agree-
ing to be readers of his senior thesis. We are also grateful for
the constructive comments of three anonymous reviewers.

695

References

Andre, D., and Russell, S. 2002. State abstraction for pro-
grammable reinforcement learning agents. In AAAI-02. Ed-
monton, Alberta: AAAI Press.

Baum, E. B., and Durdanovich, I. 1998. Evolution of coop-
erative problem-solving in an artificial economy. Journal
of Artificial Intelligence Research.

Dean, T., and Lin, S.-H. 1995. Decomposition techniques
for planning in stochastic domains. In IJCAI-95, 1121-
1127. San Francisco, CA: Morgan Kaufmann Publishers.

Dietterich, T. G. 2000a. Hierarchical reinforcement learn-
ing with MAXQ value function decomposition. Journal of
Artificial Intelligence Research 13:227-303.

Dietterich, T. G. 2000b. State abstraction in MAXQ hier-
archical reinforcement learning. Advances in Neural Infor-
mation Processing Systems 12:994-1000.

Holland, J. 1986. Escaping brittleness: The possibilities
of general purpose learning algorithms applied to parallel
rule-based systems. In Machine Learning, volume 2. San
Mateo, CA: Morgan Kaufmann.

Marthi, B.; Russell, S.; and Andre, D. 2006. A compact,
hierarchically optimal Q-function decomposition. In UAI-
06.

Parr, R., and Russell, S. 1998. Reinforcement learning with
hierarchies of machines. Advances in Neural Information
Processing Systems 10.

