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ABSTRACT

Establishing trust amongst agents is of central importémtiee de-
velopment of well-functioning multi-agent systems. Foample,
the anonymity of transactions on the Internet can lead tifidnen-
cies; e.g., a seller on eBay failing to ship a good as promised
a user free-riding on a file-sharing network. Trust (or ragioh)
mechanisms can help by aggregating and sharing trust iatgym
between agents. Unfortunately these mechanisms can @terab
nipulated by strategic agents. Existing mechanisms anereiery
robust to manipulation (i.e., manipulations are not berafior
strategic agents), or they are very informative (i.e., gabdggre-
gating trust data), but never both. This paper exploregrhite-off
between these competing desiderata. First, we introduarécrto
evaluate the informativeness of existing trust mechanisifesthen
show analytically that trust mechanisms can be combineckin g
erate newhybrid mechanismwith intermediate robustness proper-
ties. We establish through simulation that hybrid mechasisan
achieve higher overall efficiency in environments with yiskans-
actions and mixtures of agent types (some cooperative, stetie
cious, and some strategic) than any previously known mestman
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1. INTRODUCTION

We often interact with anonymous parties over the Internet a
in many environments this can lead to fraudulent behavior.ef-
ample, on e-commerce websites a seller might advertisedugiro
with false information, or in P2P networks a malicious uséghh
distribute a virus. Online, it is difficult to know whom to su In-
formation from other users with previous experience in tame
online system can help separate malicious from trustwauters
and incentivize all users to act cooperatively. On eBay fane
ple, user feedback about the quality of sellers and buyeagis
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gregated. Research has shown that consumers take the atggreg
information regarding a seller into account when purctmgirod-
ucts [12]. Mechanisms that aggregate information and coenpu
a score for each agent are calledst mechanisméor reputation
mechanisms In this paper we focus on the designtadnsitive
trust mechanisms, i.e., we assume that if agent A trusts B, and B
trusts C, then A also trusts C to some degree.

1.1 Informativeness vs. Strategyproofness

We aim to design trust mechanisms that have gaéarmative-
nessas well asstrategyproofnesproperties. A mechanism is in-
formative if it aggregates the available information welich that
agents using it can successfully separate good from bathgrad
partners. A mechanism is strategyproof if agents cannotauep
their utility in the system by manipulating the trust medkam
Strategyproofness is important here because we considgnane
nisms that must rely on information provided voluntarily the
agents and where the outcome of individual transactionsatdre
monitored centrally. Depending on the particular trust nagism,
agents might be able to manipulate by spreading bad infesmat
about other agents in the system, or by creating fake ageytigy)
that spread good information about themselves.

Existing trust mechanisms represent distinct tradeoffavden
robustness and informativeness. This can be problematwérall
system efficiency. On the one hand, if a mechanism is notrmder
tive then it is not very helpful in identifying good and badeats,
resulting in poor trading decisions and low overall efficignOn
the other hand, if a mechanism can be easily manipulated, the
many agents may choose to influence a mechanism to their-advan
tage, which in turn decreases overall efficiency as well. €al r
environments with risky transactions, there is likely toebenix-
ture of different kinds of agents. Some agents will be highigt-
worthy andcooperative likely to complete a transaction in good
faith. Some agents will be less trustworthy amdlicious with a
greater probability of participating in an incomplete aafdulent
transaction. Depending on how costly manipulations ansesof
the malicious agents will acttrategicallyand manipulate a trust
mechanism to their advantage.

Previous research has primarily focused on a formal arsabfsi
the strategyproofness properties of different mechanishiew-
ever, a formal instrument for measuring and comparing mgor
tiveness was missing. In this paper, we propose a simpléaietr
measuring the informativeness of a trust mechanism, incbgpe
from how this information is being used for making decisigms
the environment. This gives us a way to evaluate how wekchffit

The terminology is in fact used more or less interchangeably
the literature. Here we use “trust mechanisms” because wiéhes
concept of transitive trust.
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Figure 1: (a) A simple trust graph with three agents (edge wejhts are omitted). (b) Agent 2 manipulated the trust graph bycutting
its outlink to agent 3, i.e., decreasing its trust report to 0 (c) Agent 2 manipulated the trust graph further by adding sybil agents.

mechanisms aggregate trust information. We then combiist-ex
ing transitive trust mechanisms introducing nbybrid transitive
trust mechanisms, enabling a new continuum of tradeoffsdet
the competing desiderata of informativeness and strategfiess.
This is desirable in order to make the tradeoff that is bestafo
given environment with a particular agent population. Weles
lish analytically that these hybrid mechanisms have inestiate
strategyproofness properties and we show experimentshythey
also have good informativeness properties. Ultimatelyyewer,
we are interested in the overall efficiency resulting from tise of
hybrid mechanisms. We study this in two different simuladee
mains (file-sharing with viruses, and website surfing). @sutts
show that in some settings, hybrid mechanisms can outpefoe-
viously known mechanisms, with efficiency gains up to 7%.

1.2 Related Work

Many transitive trust mechanisms have been introduceckititth
erature (for a recent survey see Friedman et al. [8]). The meks
known mechanism is PageRank [10] originally used by Goagle t

DEFINITION 3 (TRUSTGRAPH). AtrustgraphG = (V, E, w)
is a set of verticey” and directed edge&;, v;) € E,v;,v; € V.
Each edgdv;, v;) has an associated weight(v;, v;) € [0, 1].

In a trust graph, vertices are individual agents, and thetei
of an edge(v;, v;) corresponds to the last claim thathas made
regarding its direct trust in agent (see Figure 1(a) for a simple ex-
ample). To simplify notation we sometimes usg directly instead
of v;, v;. Atrust graph is constructed to correspond to agent reports
as follows: for each vertex;, given repor(f@ t:), create a directed
edge(v;, v;) € E for eachv; € V; and definao(vi, v;) = £;(v;).
If agentwv; has reported truthfully, we call the corresponding trust
graph aw;-truthful trust graph If all agents have reported truth-
fully, we call the corresponding trust graplrathful trust graph

DEFINITION4  (TRANSITIVE TRUSTMECHANISM). LetGy
denote the set of trust graplis = (V, E,w) on V. A transitive
trust mechanismV/ is a function that for every set of agenis
and for every individual agent; € V mapsGy to a vector of
trust scores for all other agents; € V,v; # v;. More formally:

rank websites. However, PageRank was soon found to be highly yr . g\, x v — [0,1)"~!. EachM; (G, v;) denotes the trust score

susceptible to manipulation, and thus subsequent work trasp
ily focused on solving the manipulability problem [6, 7, 13It-
man et al. [1] presented the first axiomatic approach to tiseggde
of trust mechanisms, providing systematic insight into diesign
space. Guha et al. [9] present the first large-scale empgiady
on trust mechanisms using transitive trust networks. Sardi a
Resnick [11] study the dynamics of transitive trust meckasi in
environments with risky transactions, looking to limit themula-
tive effect of an attack by a powerful adversary.

2. TRANSITIVE TRUST MECHANISMS

We consider multi-agent systems where agents engage in risk
transactions with many other agents, but rarely have rapeat
actions with the same other agent. An agent who contactfi@not
agent puts itself at risk in terms of whether the second agéht
complete the transaction correctly or not. A good outcoraddeo
a gain in utility by the first agent, a bad outcome to a lossiityt

DEFINITION1 (AGENTMODEL). Each agenw; has a (pri-
vate) typef; € [0, 1], which represents its goodness, or trustwor-
thiness. This is the probability that an agent will generatgood
outcome when participating in a transaction with anotheemaiy

By sharing their direct experiences via the trust mechanibm
agents can help each other identify and thus avoid bad agents

DEFINITION 2 (AGENTINFORMATION & REPORTY. Given
a set of agenty” = {v1,...,vn}, let V; denote the agents that
has direct trust informationt; about, where; : V; — [0,1], i.e.,
ti(v;) is the trust agent; has in agent;. Agentv; makes reports
(Vi, ;) to a transitive trust mechanism. Agentis truthful if and
only if (Vi, t;) = (Vi, &).

assigned to agent; from the perspective af;. We letM (G, v;)
denote the vector of all trust scores from ageris perspective.

This allows for personalized trust mechanisms where thst tru
score assigned to some agentlepends on which agent’s perspec-
tive v; # v; is adopted. This might make sense for an environment
where agents trust their own direct experiences more thameth
ported experiences of others

The goal of using a trust mechanism is to maximize overaH sys
tem efficiency. We measure the efficiency of a trust mechanism
as the fraction of transactions by non-strategic agentsatieasuc-
cessful. This depends on the strategyproofness and infivenass
properties of the mechanism as well as the details of eadiigrmo
domain. The strategyproofness and informativeness of @anec
nism are formally defined in Sections 2.1 and 4, respectively

2.1 Manipulations and Strategyproofness

Following earlier work, we consider two different classéma-
nipulations by strategic agents.

DEFINITION5  (MISREPORY). GiventrustgraphG = (V, E, w),
define the seb_, = {(z,y) : (z,y) € E,z # v} (i.e., the set of
all edges inz that do not start ab). A misreport strategy for agent
v € Visatupleoc = (E,,w,) whereE, = {(v,u) : u € V}
andw, : E, — [0, 1]. Applying the strategy to G results in trust
graphG|loc =G = (V,E_, U E,,w") wherew’(e) = w(e) for
alle € E_y, andw’(e') = wy(e') forall ¢’ € E,.

See Figure 1(b) for an example of a misreport attack.

We now define a sybil manipulation (see Cheng and Friedman [6]
which involves the creation of multiple fake nodes and assed
fake edges in the trust graph. Figure 1(c) shows an exampe of
sybil manipulation.



DEFINITION 6  (SYBIL MANIPULATION ). Givenatrustgraph
G = (V, E,w), a sybil manipulation for agent € V is a tuple
o = (S,Es,ws) whereS = {s1, ..., sm } is a set of sybil agents,
Es is a set of edge&ls = {(z,y) : © € SU{v},y € VUS},
andws : Es — [0, 1] are the weights on the edgesify. Apply-
ing the sybil manipulatiow to G results in a modified trust graph
Glo=G = (VUS,EUEg,w"), wherew'(e) = w(e) for
e € E,andw’(e') = ws(e') fore’ € Es.

Note that in general, an agent can manipulate a trust mezhani
via a combination of misreports and sybil manipulations. these
combinations(Z | o is defined analogously.

We can now define appropriate concepts of strategyproafness
We use two different concepts, similar to the ones introduce
Cheng and Friedman [6]. The first one, rank-strategyprastne
compares the relative trust scores of agents. The secongaine-
strategyproofness, considers an agent’s absolute tros.sc

DEFINITION 7 (RANK-STRATEGYPROOBR. A transitive trust
mechanism is rank-strategyproof if for amy-truthful trust graph
G = (V, E,w) wherev; € V, and for every strategy by nodev;
st.Glo =G, foralv; # v, forall v, # v; : Mi(G,v;) <
My (G,v;) = M;(G' v;) < My(G',v;), i.e., an agent cannot
increase its position in a rank-order from the perspectifeany
such agenb; # v;.

DEFINITION 8 (VALUE-STRATEGYPROOR. A transitive trust
mechanism is value-strategyproof if for amytruthful trust graph
G = (V, E,w) withv; € V, and for every strategy by nodev;
st.Glo =G forallv; # v;: M;(G,v;) > M;(G',v;), i.e., an
agent cannot increase its absolute trust score from thepeets/e
of any agent; # v;.

Rank-strategyproofness is appropriate, for example, wdren
agent can choose from a list of agents and onlyrédiative trust
scores are important to identify the most trustworthy onalu®-
strategyproofness is appropriate, for example, when agesd a
threshold approach to decide which other agents to tramgttt
e.g., any agent with a trust score above a threshold may lepacc
able. Itis easy to show that neither of these concepts daesimae
another. For many applications, however, rank-stratampfpess is
a more natural requirement, but it is also harder to achieve.

2.2 Existing Transitive Trust Mechanisms

We now review four transitive trust mechanisms that havenbee
introduced in this form or very similarly before. The trusbses
produced by the mechanisms are normalized to be, iti.

DEFINITION9 (PAGERANK [10]). Given a trust graptG =
(V, E,w), PageRank conducts a random walk from a random node
v; € V that at each step, with probability (for A € [0, 1)) follows
a random outlink with probability proportional to weight(v;, v;),
as a fraction of the total weight on all outlinks, and with padil-
ity 1 — X jumps to another node with uniform probability. If the
random walk reaches a node with no outgoing links then PageR-
ank randomly jumps to another node in the trust graph with uni
form probability. The trust scord/; (G, v;) = 7(G,v;) of a node
v; is the same, irrespective of, and is given by the probability
w(G,v;) of being in nodev; in the stationary distribution of the
Markov process described by the random walk.

DEFINITION 10 (HITTINGTIME [13]). Given a trust graph
G, the hitting time of a node;, H(v;), is the number of steps
before a random walk oi first reachesv;. A hitting time trust
mechanism has a set of pre-trusted nodes, and after eaclstepge
the random walk jumps back to one of the pre-trusted nodds wit
some probabilityh. The random variable/ denotes the number of
time steps before the random walk performs a jump. The tooses
of nodev; is the probability that the random walk reachebefore
jumping, i.e.Vi: M;(G,v;) = Pr(H(v;) < J).

DEFINITION 11 (MAXFLOW MECHANISM [6]). Given a
trust graphG = (V, E,w) and nodesy;,v; € V, let MF (v, vj;)
denote the maximum flow from nodeto nodewv;. The maxflow
transitive trust mechanism sets; (G, v;) = MF (vs, vj).

DEFINITION 12 (SHORTESTPATH MECHANISM [3]).
Given a trust graphG = (V,E,w), define the trust graph
G' = (V,E,w') with w'(,j) = o7, i-e., all edge weights
are flipped such that low trust scores lead to high edge wsight
G’. Now, letSPgs/(v;,v;) denote the length of the shortest path
between agents; andv; in G’. The shortest-path mechanism sets

1

M;(Gyvi) = spetorapy

Each of theses mechanisms makes a distinct tradeoff beineen
formativeness and strategyproofness. Previous reseasciieady
established their strategyproofness properties: ShbBa#sis best
being rank-strategyproof and value-strategyproof; MewFand
HittingTime are both value-strategyproof, and finally FRgek is
last with no formal strategyproofness properties (seeeTahl

| Mechanism| Rank-SP] Value-SP)|

ShortestPath)  Yes Yes
MaxFlow No Yes
HittingTime No Yes
PageRank No No

Table 1: Strategyproofness of Existing Trust Mechanisms

We investigate the informativeness properties of all foecha-
nisms in Section 4. We find that the order of the mechanismis wit
respect to informativeness is roughly reversed. This maitegive
sense: the more information a mechanism ignores when cemput
ing trust scores, the better its strategyproofness priegeout the
worse its informativeness properties. This illustrates tfade-off
we make when designing trust mechanisms.

3. HYBRID MECHANISMS

We now introduce the idea of a hybrid transitive trust mecha-
nism, which is defined as a linear combination of two mechmasis

DEFINITION 13  (HYBRID TRANSITIVE TRUSTMECHANISMS).
Given mechanisma/' and M?, we letM*(M*, M?) denote the
a-hybrid of those mechanisms. Given a trust gréph-= (V, E, w)
andv;,v; € V, let M;(G,v;) denote the trust value af; from
v;’s perspective unded/', and let M7 (G, v;) denote the trust
value ofv; fromuv;’s perspective unded 2. The reputation of;
fromwv;'s perspective undets® (M*, M?) is

M (G, ;) = (1 — )M (G, v;) + aM; (G, v;).

For a hybrid mechanism/,, (M, M?) we will by convention
always combine two mechanisms in whi@i® is more strate-
gyproof thanl/2. Often times, but not alwayd/2 will be more in-
formative thanM*. Thus, asv is increased from 0 to 1, the oppor-
tunities for manipulation increase, but we also expect tieeha-

Some mechanisms use pre-trusted nodes in their algorithms.nism to become more informative, at least when no strategiots

This is reasonable for many domains, e.g., in P2P networks th
administrator of the mechanism might own some trusted s&rve

are present. We will look for non-trivial hybrids (with< o < 1)
that have better efficiency than either extreme mechanism.



3.1 Strategyproofness of Hybrid Mechanisms

LEMMA 1. If mechanisms M! and M? are value-
strategyproof, thed/* (M*, M?) is value-strategyproof.

PrROOF If M* and M? are both value-strategyproof, then for
any v;-truthful trust graphG = (V, E, w) with v; € V, for ev-
ery strategys by nodev; s.t. G | o = G, for all v; # v;, we
haveMil(G7 Uj) > M}(levj) ande(G, Uj) > M?(G/7UJ')'
Thus, it follows that(1 — o) M} (G, v;) + aMZ (G, v;) > (1 —
QMG vj) + aMZ (G, v;), foranya € [0,1]. O

Unfortunately this does not hold true for the property ofk-an
strategyproofness.

LEMMA 2. If mechanismd@/* and M? are rank-strategyproof,
thenM“(M*, M?) is not necessarily rank-strategyproof.

PROOF. By counterexample. Assume a truthful trust graph with

two agents 1 and 2 and with only one edge from agent 1 to agent

We can now prove corollaries for specific hybrid trust mecha-
nisms:

COROLLARY 1. M<“(Hitting, PageRank is  0.5a-value-
strategyproof.
PROOF The HittingTime mechanism is value-

strategyproof [13]. Moreover, Bianchini et al. [4] establi
that PageRank i8.5-value-strategyproof. By Theorem 1, we have
that M “ (Hitting, PageRankis 0.5a-value-strategyproof. [

COROLLARY 2. M“(MaxFlow, PageRank is 0.5«a-value-
strategyproof.

COROLLARY 3. M“(ShortestPageRank is 0.5a-value-
strategyproof.
ProOOF MaxFlow and ShortestPath are both value-

2. M" always assigns a trust score of 1 to agent 2 and a trust strategyproof and thus Corollaries 2 and 3 also follow from

score of 0.2 to agent 1 (and all other agenfs))! is trivially rank-

strategyproof M ? always assigns a trust score of 1 to agent 1, and

assigns trust score 0.5 to agent 2 if an edge exists from dgent
to agent 2 and trust score 0 otherwiskl? is rank-strategyproof
because agent 1 is always the highest-ranked agent, antd Zagen
cannot affect the final ranking. Now, fer = 0.5, agent 1 has
trust value0.6 while agent 2 has trust value75. If agent 1 now
removes the link to agent 2, then agent 2’s trust value isfed/&o

Theorem 1. [

3.3 Rank-Strategyproofness Results

Establishing rank-strategyproofness properties for idyban-
sitive-trust mechanisms requires a more delicate argumeor
this, we introduce the following property:

DEFINITION 16  (UPWARDSVALUE-PRESERVANCE. A

0.5, and agent 1 becomes ranked higher than agent 2, thus provingiran-sitive-trust mechanism is upwards value-presenvfrigr any

that M (M*, M?) is not rank-strategyproof. ]

For the design of hybrid mechanisms, we adopt relaxed rotion
of strategyproofness (similar to concepts adopted by [2]).

DEFINITION 14  (e-VALUE-STRATEGYPROOFNES}) A
tran-sitive-trust mechanism isvalue-strategyproof foe > 0 if
for any v;-truthful trust graphG = (V, E, w) withv; € V and
for all manipulation strategies for v; givingG’ = G | o, for all
Vj ;é Vi, J\JZ(G’7 Uj) +e> MZ‘(G,,’UJ‘).

DEFINITION 15  (e-RANK-STRATEGYPROOFNES} A tran-
sitive-trust mechanism isrank-strategyproof foe > 0 if for any
v-truthful trust graphG = (V, E, w) with v; € V" and for all ma-
nipulation strategie for v; s.t.G' = G | o, forall v; # v;, vy €
Vv, J\JZ(G’7 Uj) +e< J\Jk(G’7 Uj) = ML'(G,7U]') < Mk(Gl,’Uj).

In words, are-value-strategyproof mechanism is one in which an
agent cannot increase its trust score by more thander any ma-
nipulation strategy and for any trust graph. Anank-strategyproof

trust graphG = (V, E, w), for anyw; € V, for every strategyr
by nodev; s.t. G | o = G, for all v; # v;, for all v, # v; we
haveMk(G, Uj) > Mi(G,'Uj) = Mk(G/,'Uj) > Mk(G,'Uj).

This property requires that an agent cannot decrease the tru
score of a higher ranked agent. Note that the ShortestPath-me
anism is easily seen to be upwards value-preserving; ifas a
lower trust score than,, from v;’s perspective, then the path from
v; to vy is shorter than then path fromy to v;; thus, v; cannot
be on the path between agemisandv;, and therefore); cannot
affectvy’s trust scoré.

THEOREM 2. If transitive trust mechanisma/* and M? are
value-strategyproof and/! satisfies upwards value-preservance,
thenM>(M*, M?) is a-rank-strategyproof.

PROOFR We analyze the trust scores of agentsandv; from
any third agent’s perspective. To simplify notation, Jeft', M}
denote the trust scores of, v; underM" and letM;, M7 denote

mechanism is one in which an agent cannot overcome more than ahe trust scores unde¥/. Let M;*, M denote the trust scores
difference ofe in trust scores between itself and any other agent, underM,,. Furthermore, |eﬁi17 M}7W7Vf7 andM_,;ﬁM_j“ de-

whatever the trust graph and for any manipulation strategy.
3.2 Value-Strategyproofness Results

THEOREM 1. If transitive trust mechanisma/* and M? are
1 andez-value-strategyproof respectively, thef® (M*, M?) is
((1 = a)e1 + ae2)-value-strategyproof.

PROOF Let M}, M? denote the trust scores of (as viewed
by some other agent) under mechanishi$ and M? whenw; is
truthful. Let M2 = (1 — a)M} + aM?. Let M, M} and M?
denote the trust scores aftgrhas performed manipulations. Then:

ME - MP =
(1= a) (M} — M}) + a(MZ — M})
< (1—wer+ aegg,

and we see that/“ is ((1 — av)e1 + ae2) -value-strategyproof. (]

note the analogous trust scores aftehas performed manipula-
tions. WLOG, assume that/; > M, i.e.,(1—a) M} +aM; >
(1 — a)M; + aM;. With this assumption, it impossible that both
M} < M} andM] < M;. Thus, we only need to consider the
following two cases:

Case 1: M} > M;j: BecauseM"' and M* are both value-
strategyproof, agent; cannot increase its own trust score, i.e.,

2However, not all rank-strategyproof mechanisms are upsvard
value-preserving. Consider a simple example with 2 agents
v1, v2. Consider the trust mechaniskd which assigns trust scores
0.1,0.2 to agentsv1, v2, respectively, unless the only edge in the
graph is the edgévi,v2) in which caseM assigns trust scores
0.2,0.4 to agentsvy,v2. Note thatve always has a higher trust
score tharv, so this mechanism is rank-strategyproof. However,
itis not upwards value-preserving: if we start out with apravith

the single edgév., v2), thenwv, can decrease the trust scorevef
from 0.4 to 0.2 by cutting its outlink(vy, v2).



Mg < Mj. BecauseM' is upwards value-preserving, agent
v; also cannot decrease’s trust score unded/'. However,
agentv; can decrease agent’s trust score undeM/?. But
M7 — M? < 1sinceM? < 1andM? > 0. So, we have
that M — M < oa. Putting all these arguments together we
getMy — M > My — Mj* > M7 —a— Mj* > a—a=0.
And thus,M®(M*, M?) is a-rank-strategyproof in case 1.
Case 2:M/} < Mj andM; > M;: Fora = 0ora = 1thereis

nothing to be shown. Fér < o < 1 we show thatV/{* — M7 > o
is impossible to begin with:

M7 — M}

=aM? +(1—a)M; — anQ - (1-a)M;

<a+(1—-a)M —(1—a)M]

=a—(1—-a)(M - M) <a.
Thus, M ® is a-rank-strategyproof in case 2 as well]

COROLLARY 4. Hybrid mechanism)M * (ShortestMaxFlow)
is a-rank-strategyproof.

COROLLARY 5. Hybrid mechanism)M *(ShortestHitting) is
a-rank-strategyproof.

PrROOF ShortestPath, MaxFlow, and Hitting-Time are value-
strategyproof [3, 7, 13]. Moreover, ShortestPath is upwaaiue-
preserving. Thus, Corollaries 4 and 5 follow from Theorem ]

4. INFORMATIVENESS

In this section we analyze the informativeness of the exgsti
trust mechanisms as well as our new hybrids. A trust mechanis
shall help agents to find good partners to interact with. Bino
ideas by Bolton et al. [5], we call a mechanignformativeif it dis-
criminates well between good and bad agents,ramdinformative
ifit does not. A perfectly informative mechanism would bedhat
is perfectly discriminative in the sense that it has a syrictono-
tonic relationship between the trust scoids(G, v; ) and the agent
types6;. With limited information, no mechanism can be perfectly
informative and thus we want to measure how close our mesimani
comes to this goal. We assume a linear relationship betwgemnt a
types and trust scores. Then, the correlation betweensidgpes
and the trust scores a mechanism produces tells us howndisari
tive the mechanism is. A random mechanism results in a atioel
of 0. A perfectly discriminative mechanism results in a etation
of 1. Thus, all mechanisms that perform better than randore ha
informativeness between 0 and 1. We define the informatssene
of a mechanism\/ on graphG as the correlation between the true
agent types and the trust scores produced by mechavisidore
formally, we offer the following natural definition:

DEFINITION 17  (INFORMATIVENESS). Let©O_; denote the
(n — 1)-dimensional vector of all agents’ types except for agent
Let®” = (©_1,0_3,...,0_,) denote the vector resulting from
combining all®_; vectors to a vector of dimensign—1)". Given
a trust graphG = (V, E, w), and transitive trust mechanisi/,
let M(G) denote thgn — 1)"-dimensional vector of all agents’
trust scores from all other agents’ perspectives producgdvh
ie., M(G) = (M(G,v1), M(G,v2), M(G,v3), ..., M(G, vn)).
We define the informativeness of mechanignon graphG as:

Inf(M,G) = correlation(©” , M(G))
X Y, (M(Gei) — M)(6; - 0)
o (n(n—1) —1)smse

)

where M and 6 are the sample means of the trust scores and the
agent typess s and sy are the sample standard deviations.

4.1 Experimental Set-up

It is apparent from the definition that the informativenefs o
mechanism is defined with respect to a particular trust gi@ph
Thus, to perform an informativeness measurement, we fikst ha
to specify howG is generated in our experiments. In this section,
we focus on a mechanism’s ability to aggregate data and do not
consider its strategyproofness. Thus, we will not consaleate-
gic agents. Also, we want to measure informativeness intige
from how the trust scores are being used by the agents when mak
ing decisions in the environment. Thus, we start our anshygth
an artificial experiment where a random trust graph is canstd
according to the following process.

We simulate a multi-agent system with 50 agents. Each agent’
typed; is chosen uniformly at random froff, 1]. In real-life net-
works, each agent will only have a small number of directrinte
actions relative to the total number of agents in the syst¥ve.
model this in our simulation by limiting the maximum numbér o
outgoing edges of all agents in the trust graphkby his “memory
set” is selected uniformly at random for each agent at thanbetg
of the simulation. We let our simulation run fertime steps. At
each time step, each agenpicks a random partner agepfrom
its memory set. The outcome of the interaction betwieand; is
good with probabilityd; and bad with probability — 6;. Every
agent keeps track of the total number of interactions anahtine-
ber of successful interactions with each partner agenthéend
of each time step, for each agentve set the edge weight of edge
(,7) equal to the fraction of successful interactianisad with j
divided by the total number of interactionad withj. After ~
time steps, we stop the interactive part of the experimedtcam-
sider the resulting trust graphl as the basis for the analysis. For
each mechanisnd/ that we consider, for each agenaind each
agentj # i, we compute the trust scordg; (G, v;). We then cal-
culate the informativeness metric, i.e., the correlatietwieen the
true agent types and the trust scores computed by the meofii

4.2 Informativeness of Existing Mechanisms

The informativeness metric is sensitive to the parametetiseo
trust graph generation process, in particular to the nurabgme
steps,r, and to the size of the memory sets, In Figure 2 we
present two graphs that show some patterns that are refatgen
for our experiments without strategic agents. For both lggame
plot the log of the number of time steps on the x-axis, andthe i
formativeness scores on the y-axis. Figure 2(a) showstsefarl
x = 5 and Figure 2(b) shows results fer= 50, i.e., each agent
interacts with every other agent in the system. The legerfdgure
2(a) holds for both graphs.

We see immediately that as the number of time steps increases
the informativeness scores increase for all mechanismss i$h
expected because over time each agent gets better andibftter
mation about the type of each agent in its memory set. Note tha
the last data points in both graphs correspond to an infiniteo®r
of time steps. We simulated this by setting the edge weigintalf
agents inside the memory set equal to the true agents’ types.
interesting to note that all mechanisms, except for MaxFteach
informativeness of 1 wher = 50 andT = oco. However, for
practical purposes this is less relevant, because in redthtrust
graphs we will generally only have little information adile.

In both graphs, we clearly see that the ShortestPath mesrhani

Note that this way, the informativeness score is alreadgdas
50-49 = 2,450 trust score measurements. To remove hoise, we run
5 trials, generating 5 graphs with the same parametersadsirg

the number of trust scores t@, 250 before computing the correla-
tion.
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Figure 2: Informativeness experiment with 50 agents and uriorm type distribution. We vary the number of time steps 7.

performs worst (except when= co). This is expected and nicely
illustrates the trade-off between informativeness aratetyyproof-
ness. The order of the other basic mechanisms is much less cle
In general, PageRank and HittingTime are close togetheichwh
makes sense given that both mechanisms use similar algwriitn
compute trust scores. The MaxFlow mechanism shows thestarge
variation in informativeness and is particularly sensitte , the
size of the memory set. In Figure 2(a) where= 5, MaxFlow has
the highest informativeness, while in Figure 2(b) where= 50,

it has the second lowest informativeness. To explore tHecef
we ran additional experiments for more valuesrxofnot shown
here). It turns out that an interesting cross-over effeppbas at

k = 10: for k < 10, the MaxFlow mechanism has informativeness
as good as or better than PageRank and HittingTimex for 15,
MaxFlow has informativeness significantly worse than PagéR
and HittingTime.

4.3 Informativeness of Hybrid Mechanisms

We now analyze the informativeness of two hybrid mechanisms
M= (Shortest, Hittinggand M *(Shortest,PageRahkWe use these
hybrids because the trade-off is clear in this case: Sh&adshas
the best strategyproofness properties but the worst irdtivemess
properties. We have shown analytically in the last sectiat the
hybrids have intermediate strategyproofness propertidsae ex-
pected the same result for informativeness.

Thus, it is perhaps surprising that, for many settings, the
hybrids perform as well with respect to informativeness, or
even better, than HittingTime or PageRank. In Figure 2(a),
we see thatM *(Shortest,PageRaphkas informativeness scores

of the trust graph, and the hybrid mechanism benefits frorh bot
perspectives, i.e., both sources of information. A deepatyais
of this effect is subject of future research.

5. EFFICIENCY EXPERIMENTS

In this section we analyze the efficiency of hybrid mechasism
We would like to investigate whether hybrids with interneei
informativeness and intermediate strategyproofnessepties can
achieve higher performance than any of the “pure” mechasism
We measure the efficiency of a trust mechanism as the thédinact
of transactions by non-strategic agents that are sucdedshte
that this is no longer independent of how agents use trusésdor
acting in their environment. We consider two simulated dinsia
combatting the spread of bad files (e.g., viruses) in a fikrish
network, and ranking website quality based on link struetur

5.1 Experimental Set-up

Agents are divided into cooperative and malicious agertspe
erative agents have tygg = 0.95, while malicious agents have
types drawn uniformly at random froif®, 0.5]. A subset of the
malicious agents are also strategic, i.e, they also consideipu-
lating the trust mechanism to their benéfitVe let~ denote the
fraction of the total agent population that is strategic.oferly
simulating the behavior of strategic agents is difficult. kvedel
strategic behavior by assuming a heterogenous fixed cosader
nipulation (e.g., some agents are more adept than otheeskingy
the P2P file sharing software). Asincreases, the manipulability
of the mechanism increases linearly with leading to higher re-

that are as good or even higher than those of PageRank, andwards for manipulating agents. Since agents will only malaiie

M= (Shortest, Hitting has scores that are consistently higher than
those of HittingTime. In contrast, in Figure 2(b), we seet thath
hybrids have intermediate informativeness, i.e., thermftiveness
scores ofM *(Shortest, Hitting lie between those of ShortestPath
and HittingTime, and the scores bf“ (Shortest,PageRanke be-
tween those of ShortestPath and PageRank. Further an@gtis
not shown here) shows that another interesting cross-dfect e
happens: for large values &f both hybrids have intermediate in-
formativeness as we expected. But for small values,ahe in-
formativeness of the hybrids is as good or even better thainoth
HittingTime or PageRank respectively. At first sight, it suater-
intuitive that a hybrid mechanism could have informativ&neven
higher than any of its component mechanisms. A possibleaagpl
tion is that both component mechanisms measure differgeicts

if the benefit exceeds their cost, we assume that the pegeenfa
manipulating agents increases linearly withFor a manipulating
agent, we determine in each context the optimal “attack”ten t
trust mechanism.

Virus Distribution Experiment: Imagine a file sharing network
with good and malicious agents. Malicious agents have besd fil
that are infected by viruses. A trust mechanism helps toragpa
users with good files from users with bad files. In our expenise
we use 100 simulated agents, of which 80% are malicious. We va

“Note that the strategic agents are owijling to considermanip-
ulating the trust mechanism. Whether they in fact performima
lations depends on how costly the manipulations are and haghhm
the agents can benefit from manipulating.
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Figure 3: Virus distribution experiment without strategic agents, varying the maximum outdegreex.

v, i.e., the proportion of strategic agents, between 0 and©B2P
file sharing settings, the total number of agents in the ayst¢oo
large for an agent to track all its interactions. Thus, wetlsetsize
of the memory sets, equal to 3. The memory set is selected uni-
formly at random for each agent at the beginning of the sitraria
We initialize the system by constructing a sparse trustlgrap
Each agent randomly chooses another agémm its memory set,
and lays down an edge with weight 1 tavith probability§;. We
repeat this process until each agent has exactly one ogtgdige.
We then start the experiment itself and run it for 100 timeste
Each time step, agentobtains a set of three randomly selected
agents drawn from the entire set of agents. With probakiligy
the agent uses the trust mechanism to select ggeith the highest
trust score; with probability 0.1 the agent simply selectaradom
agent. This-greedy selection policy encourages agents to explore
and discover agents outside their memory set. Qniseselected,
with probability 6;, agent;j sends a good file (otherwise it sends
a bad file). After the interaction has taken place, aganakes a
report to the trust mechanism, updating the weight of itseetig
agentj to be the fraction of successful transactions over the total
number of transactions. Strategic agents in this settig em-
ploy misreport strategies becaudé, (Msnortess MHiting) 1S robust
against sybil manipulations. By cutting all their out linkkey do
not affect their own trust scores, but could lower the trastss of
agents ranked above them, thus improving their relativie.ran

Website Ranking Experiment: This experiment uses a trust
mechanism to rank websites according to their quality,ihglpeb
surfers differentiate between high quality and low quakgbsites.

surfer is provided with five randomly selected websites anid-
ers their trust scores. We use a threshold-based seleat@nthe
surfer visits a random website from the set of websites witlust
score higher than a certain threshold (which we set to theéaned
trust score across all agents).

5.2 Efficiency without Strategic Agents

In Figure 3 we present efficiency and informativeness result
(averaged over 10 trial runs) for the virus distribution esiment.

In Figure 3(a), we plot the informativeness of the mechasism
the y-axis, this time varying the maximum outdegreen the x-
axis. We see that the overall pattern is similar to the one ave h
described in Section 4. The ShortestPath mechanism hastlowe
informativeness and MaxFlow has highest informativeneBse
mechanisms HittingTime and PageRank are close togethearand
slightly less informative than MaxFlow. We also see thattthe
hybrids M (Shortest, Hittingg and M/ * (Shortest, PageRahkave
intermediate informativeness.

Consider now Figure 3(b), where we plot overall efficiency on
the y-axis and vary the maximum outdegreen the x-axis. We see
that the ordering of the mechanisms is the same as in Figaje 3(
except for the MaxFlow mechanism, which on average performs
slightly worse than HittingTime and PageRank, even thotiiad
better informativeness. Thus, without strategic agentsveth the
exception of MaxFlow, the informativeness of a mechanisenmse
to be avery good predictor of its efficiency. We have alreadynsn
Section 4 that the MaxFlow mechanism is very sensitive t@ouar
parameter settings. A more detailed analysis of the prigseadf

We assume that the set of surfers and the set of website ownerdVi@xFlow is subject of ongoing research.

coincides, i.e., each surfer has one pre-trusted websitesiku-
late 50 agents of which 80% are malicious (low quality wedssit
and we varyy, the proportion of strategic agents (website owners),
betweerD and0.8.

We limit each agent to interacting with a randomly chosen mem
ory set of sizes = 5. For each agent, we sample 10 times from that
agent’s memory set, simulate a transaction with each oftimpked
agents, and finally update the edge weights as before condsy
to the number of successful interactions. Strategic agergbsite
owners) employ the misreport manipulation as well as a sybi
nipulation (5 sybils) in the optimal star-shaped pattein [4

We leave the trust graph unchanged over the duration of the ex
periment (i.e., surfers do not constantly update their owhsites).
We run the experiment for 100 time steps. At each time steh ea

5.3 Efficiency with Strategic Agents

We now analyze the efficiency of our hybrid mechanisms in the
presence of strategic agents. In Figure 4(a) we displayebelts
for the virus distribution experiment, and in Figure 4(b tlesults
for the WebRank experiment. On the x-axis we plot the blentbfa
a € [0, 1] and on the y-axis we plot efficiency.

We see that with 0% strategic agents, efficiency increasessdl
monotonically as we move from ShortestPath to HittingTime o
PageRank respectively. This is expected because ShatiestP
very uninformative, and without strategic agents, it haseoe-
fits over the other mechanisms. However, the situation ferdift
when strategic agents are present, i.e.Hfor 0.2. Now we see
that for a-values close to 1, the efficiency decreases significantly.
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Figure 4: Efficiency analysis for hybrid mechanisms with stategic agents, varying blend factor.

This is also expected because HittingTime and PageRankotine b
susceptible to the manipulations performed by strategioitsgand

simplistic: as we increase blend facterfrom 0 to 1, we also in-
crease the fraction of strategic agents that choose to miatep

thus, the more weight we give those mechanisms, the more suc-This models a simple cost-benefit tradeoff. As a next stepwille

cessful the strategic agents are at manipulating the hg®rid

The most important finding, however, is that initially, thié-e
ciency goes up as we increaaeand the efficiency peak in both
cases does not occur for one of the base mechanisms. Ingtead,
efficiency peak in Figure 4(a) is around= 0.5 with a relative effi-
ciency increase up to 5%. In Figure 4 the peak is araurd 0.02
with a relative efficiency increase up to 7%. Thus, when stiat
agents are present, the optimal hybrid mechanisms achighkerh
overall efficiency than either of the component mechani¥ms.

6. CONCLUSION

In this paper, we have introduced hybrid transitive trustime
anisms, which allow for a continuum of design tradeoffs lestw
existing point solutions in the literature. We have showalyti
cally that these hybrids have intermediate strategypessprop-
erties. We have presented a simple metric to measure infvena
ness of trust mechanisms and via simulations we found thaidy
mechanisms have intermediate or sometimes even bettemiafo
tiveness than any of their component mechanisms. Finadiyave
performed efficiency experiments to study the overall ¢fééais-
ing hybrid mechanisms. Our experimental results suggestith
some domains it is possible to improve efficiency by blendiig
gether two mechanisms, making a tradeoff between infoueati
ness and strategyproofness that is optimal for a given ptipul of
agents. Note that the optimal depends on the agent population
and how costly it is for strategic agents to actually marapeithe
mechanism. Our current experimental methodology is deltieéy

SNote that in Figure 4(b), foy = 0.6 and~ = 0.8, the efficiency
increases again as we move frem= 0.9 to o = 1. This happens
because atv = 0.9, the strategic agents affect the hybrid twice,

via ShortestPath and via PageRank. As we have seen in Figure 2

ShortestPath is particularly bad when it has little infotiora For

a = 0.9, the strategic agents cannot influence their trust scores [10]

under ShortestPath, but the mechanism still stuffers fogmitly
from the missing information due to many misreport atta€i{sse

to o = 1, ShortestPath loses effect, and as we have seen in Figure[11]

2, PageRank is significantly better at coping with littledimhation
in the trust graph which explains the efficiency increaséeatend.

5We also measured the informativeness for the two expersnent [12]

with strategic agents, varying the blend factorFor the virus dis-
tribution experiment, the best hybrid has informativentss is
14% higher than that of ShortestPath or HittingTime. For\We

bRank experiment, the best hybrid has informativenesstH#i%

higher than that of ShortestPath or PageRank.

instead assume a model in which this cost-benefit analysiade
explicit. In future work we will also consider the computatal re-
quirements of the trust mechanisms. For practical apjicss in-
formativeness and strategyproofness are important, karyircase
it must be feasible to run the mechanisms on real-sized graph
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