
On Indirect and Direct Implementations of Core Outcomes in

Combinatorial Auctions

David C. Parkes
Division of Engineering and Applied Sciences

Harvard University
parkes@eecs.harvard.edu

September 5, 2002

Abstract

This note presents a partial characterization of the core outcome implemented in the ascending-
proxy combinatorial auction, which is demonstrated to terminate at a core point intermediate
between buyer-optimal core and buyer-optimal recursive-core solutions. In addition, we propose
a simple variation to ascending-proxy that always implements a buyer-optimal core outcome and
implements the VCG payoffs whenever they are in the core. This retains the useful robustness to
shill bids and joint deviations, but removes the bargaining problem when agents-are-substitutes
but the stronger buyer-submodular condition fails. In lieu of a complete characterization of the
outcome implemented by the ascending-proxy auction we do introduce a semi-direct implemen-
tation that runs the auction as a sequence of stages and may prove particularly useful in proxy
settings with rich bidder-proxy preference languages. Finally, we present a number of direct
implementations of buyer-optimal core outcomes, and hope to start a debate about appropriate
selection criteria. This is important in environments in which agents fail to solve the bargaining
problem, which is implicit in the core outcome when VCG payoffs are outside the core, amongst
themselves.

1 Introduction

One agenda item that arose from the recent FCC spectrum-auction meeting was to investigate
direct-implementations of the ascending-proxy auction. This is interesting for two reasons. First,
identifying the outcome in the core that is implemented by the ascending-proxy auction, with re-
spect to reported agent valuations, will help to open up a discussion about the appropriate selection
criteria to address the implicit bargaining problem that exists between agents when one implements
core outcomes and VCG payments are outside the core. Second, it would be nice to provide a rich
bidder-proxy interface, for example to allow bidders to express valuations by constructing “business
scenarios”. However, there are concerns that it may be unreasonable computationally to imple-
ment combinatorial auction outcomes, based on these rich preference structures, within the current
XOR-language based ascending-price auction framework. A direct characterization of the outcome
implemented by the ascending-proxy auction would lead immediately to a direct implementation.

In outline, Section 2 introduces notation, and defines important concepts. Section 3 introduces
examples that help to illustrate problems and observations brought out in the discussion. Section 4
develops our understanding of the core outcomes that are selected by the ascending-proxy auction,
and suggests a simple variation to implement a buyer-optimal core outcome. We also review a

1

simple extension that provides an indirect implementation of the VCG outcome, and also helps
to characterize the outcome of ascending-proxy when agents-are-substitutes. Section 5 suggests a
number of selection criteria to select buyer-optimal core outcomes in direct-revelation mechanisms,
and also introduces a semi-direct implementation of the ascending-proxy auction. Section 6 closes
with some open problems. The Appendix includes a few technical details about some of the
algorithms touched on the discussion.

2 Preliminaries

Agents I = {0, 1, . . . , N}, indexed i ∈ I, that includes the seller, 0. Discrete items, G, and bundles,
S ⊆ G of items. Agent valuations, vi(S) ≥ 0, for S ⊆ G, and free-disposal with vi(S) ≥ vi(T)
for all S ⊇ T . The seller is assumed to have v0(S) = 0 for all bundles S. A feasible allocation,
S = (S1, . . . , SN), allocates bundle Si to agent i, and requires Si ∩ Sj = ∅ for all i 6= j. Let X
denote the space of feasible allocations.

Definition 1 (coalitional value function). Let w(K) = maxS∈X
∑

i∈K\0 vi(Si), for all coalitions
K that include the seller, and w(K) = 0 otherwise.

It is convenient to use CAP(K) to denote the efficient allocation problem restricted to agents
K ⊆ I. We also write S∗ to denote the efficient allocation with the full set of agents.

Let π = (π0, . . . , πN) denote a vector of agent payoffs. Given allocation, S = (S1, . . . , SN),
payments p = (p1, . . . , pN), and budget-balance, then payoffs π are computed as π0 =

∑
i∈I\0 pi

and πi = vi(Si)−pi for all i 6= 0. By budget-balance, we have
∑

i∈I πi =
∑

i∈I\0 pi+
∑

i∈I\0(vi(Si)−
pi) = w(S).

Definition 2 (core payoffs). The core for a coalition, K, is defined as the set of agent payoffs
that are feasible and unblocked by a coalition L ⊂ K:

Core(K, w) = {π : w(K) =
∑
i∈K

πi, w(L) ≤
∑
i∈L

πi ∀L ⊂ K} (CORE)

where the condition w(K) ≤
∑

i∈K πi is combined with feasibility to give w(K) =
∑

i∈K πi.

Unless otherwise noted, core payoffs simply refer to payoffs that are in the core for the full set, I,
of agents. Consider an allocation, S. Payoffs that correspond to that allocation, for some balanced
payment scheme, can only be in the core if S is efficient. In addition, core payoffs must satisfy,
πi ≤ vi(S∗

i), for all i ∈ I \ 0, where S∗ is the efficient allocation. To see this, suppose otherwise,
that πj > vj(S∗

j) for some j 6= 0. Now, πj = w(I) − (π0 +
∑

i∈I\{0,j} πi > vj(S∗
i), which implies

that
∑

i∈I\j πi ≤ w(I)− vj(S∗
j) ≤ w(I \ j), and that the payoffs to coalition I \ j are blocked.

Equivalently, payoffs in the core can be expressed as (w(I)−
∑

i∈I\0 πi, π1, . . . , πN), with con-
straints:

w(I)− w(I \K) ≥
∑
i∈K

πi, ∀K ⊂ I, 0 /∈ K (ALT-CORE)

We introduce a stronger solution concept, the recursive-core, which ties in with the condition
of buyer-submodular values. Let πL denote the vector of payoffs imputed on agents in set L ⊂ I,
i.e. π1,2 = (π1, π2).

2

Definition 3 (recursive core). The recursive-core is defined as the set of agent payoffs, π ∈
RecCore(I, w), that are in Core(I, w), and also impute payoffs (w(L)−

∑
i∈L\0 πi, πL) that are in

the core for every subcoalition, such that:

w(L)− w(L \K) ≥
∑
i∈K

πi, ∀K ⊂ L, 0 /∈ K (REC-CORE)

for every L ⊂ I, 0 ∈ L.

In other words, payoffs π−0, are in the core, if the payoffs are also in the core (with values for π0

selected to give feasibility) for every subcoalition, L ⊂ I.
We also introduce an intermediate solution concept, the universal core1, that allows the imple-

mentation of VCG payoffs in an indirect mechanism.

Definition 4 (universal core). The universal-core is defined as the set of agent payoffs, π ∈
UnivCore(I, w), that are in Core(I, w), and also impute payoffs, (w(L) −

∑
i∈L\0 πi, πL) that are

in the core for every subcoalition, L = I \ j, for some j 6= 0.

In other words, the universal-core is intermediate between the core and the recursive-core, requiring
that payoffs satisfy core constraints for I and for all I \ j in which one agent j 6= 0 is removed.

There is a direct equivalence between core payoffs and competitive equilibrium outcomes. To see
this, let pi(S) ≥ 0, for S ⊆ G, denote prices on bundles. We allow these prices to be both non-linear
and non-anonymous in general. In addition, assume that prices are consistent with free-disposal,
such that pi(S) ≥ pi(T) for all S ⊃ T , and pi(∅) = 0 for all i.

Definition 5 (competitive equilibrium). An allocation, S, and prices, p, are in competitive
equilibrium if and only if the following two conditions hold:

vi(Si)− pi(S) = max
S′⊆G

(vi(S′)− pi(S′)), ∀i ∈ I \ 0 (CS1)∑
i∈I\0

pi(Si) = max
S′∈X

∑
i∈I\0

pi(S′
i) (CS2)

where ∅ ⊆ G by definition.

In words, (S, p) is a competitive equilibrium if the allocation S maximizes the payoff for all
agents, including the seller, at the prices. It is an immediate consequence of linear-programming
(LP) duality in application to appropriate LP formulations of the combinatorial allocation problem
[BO02] that all CE outcomes are efficient.

Lemma 1 (core and CE equivalence). Payoffs are in the core in every competitive equilibrium
and every set of core payoffs is supported in some competitive equilibrium.

Proof. See the appendix. ut

This equivalence serves to unify the presentations and analysis of iBundle [Par99, PU00a] with
the ascending-proxy auction [AM02].2 In all that follows “ascending-proxy auction” can be replaced
with “iBundle(3) with a direct-revelation proxy-agent interface”.

1This terminology follows the description of universal competitive equilibrium prices in Parkes & Ungar [PU02].
2First, a core outcome can be supported with linear prices when preferences satisfy the substitutes property

[KC82, GS00], and this is almost a necessary condition [Mil00]; we have a partial characterization of when a core
outcome can be supported with non-linear but anonymous prices [PU00a]; and all core outcomes can be supported in
some competitive equilibrium (perhaps non-linear and non-anonymous). Second, iBundle [Par99, PU00a] implements
an outcome in the core with myopic best-response strategies. Third, a proxy-agent direct-revelation mechanism
(DRM) implementation of iBundle implements an outcome in the core for revealed valuations, and all core outcomes
can be implemented in a Nash equilibrium with semi-sincere bidding strategies.

3

Definition 6 (VCG payoffs). The payoffs, πvcg, are computed as

πvcg,i = w(I)− w(I \ i), ∀i ∈ I \ 0 (VCG)

and πvcg,0 = w(I)−
∑

i∈I\0 πvcg,i.

Buyer-optimal core payoffs provide a useful correspondence with VCG payoffs. Let πB ⊆
Core(I, w) denote the set of buyer Pareto-optimal core payoffs. Let π(i) = maxπ∈πB πi denote
agent i’s most-preferred buyer-optimal core payoff. Agent i’s payoff at core outcome, π(i), equals
its VCG payoff [PU00b, AM02]. In the language of competitive equilibrium, the buyer-optimal
core payoffs are supported in group-minimal CE prices and agent i’s VCG payoff is supported in
the individual-minimal CE prices for agent i [PU02].

VCG payoffs are simultaneously supported in the core if and only if a technical condition,
agents-are-substitutes, holds on preferences [Aus97, BO02]. This is immediate, given the alternative
definition (ALT-CORE) of the core conditions.

Definition 7 (agents-are-substitutes). A condition over the coalitional value function that re-
quires:

w(I)− w(I \K) ≥
∑
i∈K

[w(I)− w(I \ i)] , ∀K ⊂ I, 0 /∈ K (AAS)

In fact, VCG payoffs are supported in the core exactly when there is a unique buyer-optimal core
payoff vector [PU00b, AM02].

A stronger condition, buyer-submodular values, is sufficient for the ascending-proxy auction
[AM02] to terminate with VCG payoffs.

Definition 8 (buyer-submodular). [AM02] A condition over the coalitional value function that
requires:

w(L)− w(L \K) ≥
∑
i∈K

[w(L)− w(L \ i)] , ∀K ⊂ L, 0 /∈ K (BSM)

for all L ⊆ I, 0 ∈ L.

Buyer-submodular requires that the Vickrey payoff vector is in the core for all coalitions, L, not
just with all agents.3 It is immediate from the definition of the recursive core (REC-CORE) that
VCG payoffs are in the recursive-core if and only if buyer-submodularity holds.

3 Illustrative Examples

The discussion of indirect and direct implementations of core and VCG outcomes that follows is
illustrated with respect to the following examples. In describing the outcome of the ascending proxy
auction we assume myopic best-response (MBR), which corresponds to an agent that provides its
true valuation to the proxy.

3Goods are substitutes [KC82] is sufficient, and almost necessary for buyer-submodularity [AM02]. This is quite a
pessimistic result, because it shows that bargaining is a problem in the ascending-proxy and iBundle auctions when
goods are not substitutes, because there are already quite effective auctions for the substitutes case [GS00].

4

example 1. [AM02, p.28] v1(AB) = 10, v2(CD) = 20, v3(CD) = 25, v4(BD) = 10, v5(CA) = 10,
πvcg = (20, 10, 0, 5, 0, 0), and core payoffs requires {π1 ≤ 10, π3 ≤ 5, π1 +π3 ≤ 15}. AAS holds
and the VCG payoffs are in the core. However BSM fails, with AAS violated for coalition
L = {0, 1, 4, 5}.4 The ascending-proxy auction terminates with core payoffs (30, 0, 0, 5, 0, 0).

example 2. v1(AB) = 10, v2(CD) = 20, v3(CD) = 25, v4(BD) = 8, v5(CA) = 10, πvcg =
(20, 10, 0, 5, 0, 0), and core requires {π1 ≤ 10, π3 ≤ 5, π1 + π3 ≤ 15}. AAS holds and the
VCG payoffs are in the core. However BSM fails, with AAS violated for L = {0, 1, 4, 5}. The
ascending-proxy auction terminates with core payoffs (29, 1, 0, 5, 0, 0).

example 3. v1(A) = v1(B) = 8, v2(A) = v2(B) = 8, v3(AB) = 10, πvcg = (4, 6, 6, 0), and core
payoffs require {π1 ≤ 6, π2 ≤ 6, π1 + π2 ≤ 6}. AAS fails, and the VCG payoffs are not in the
core, with πvcg blocked by coalition {0,3}. The ascending-proxy auction terminates with core
payoffs, (10, 3, 3, 0).

example 4. v1(A) = v1(B) = 16, v2(A) = v2(B) = 8, v3(AB) = 10, πvcg = (2, 14, 8, 0), and core
payoffs require {π1 ≤ 14, π2 ≤ 8, π1 + π2 ≤ 14}. AAS fails, and the VCG payoffs are not in
the core. The ascending-proxy auction terminates with core payoffs, (10, 11, 3, 0).

Examples 1 and 2 show that the ascending-proxy auction does not always terminate with a
buyer-optimal core outcome.

4 Indirect Implementations

In this section, we develop our understanding of the core outcomes that are selected by the
ascending-proxy auction. We are not able to provide a simple and direct formulation of the core
point selected by the auction, but gain enough intuition to develop a “semi-direct” implementation
which is outlined in the next section. We also observe that a very simple variation on the ascending-
proxy auction will always implement a buyer-optimal core payoff outcome [PU00b, PU02]. This
extension strengthens the theoretical properties of the ascending-proxy auction, bringing truth-
revelation into equilibrium whenever the agents-are-substitutes condition holds, and without re-
quiring the stronger buyer-submodular condition. It comes at no cost to the robustness of the
ascending-proxy auction equilibrium to shill bids and joint deviations, which accrue from the bid-
der monotonicity property of the auction that follows from properties of the core.

4.1 Ascending-Proxy Auction

The problem addressed in this section is to characterize the core outcome implemented in the
ascending-proxy auction with respect to the valuations provided to the proxy agents. We know that
the ascending-proxy auction terminates in the core with respect to reported valuations [PU00a,
AM02]. The analysis of Ausubel & Milgrom [AM02] provides an additional characterization for the
following two special cases:

the core is singular The ascending-proxy auction terminates in the unique core point whenever
the core with respect to reported valuations is singular. This follows immediately from the fact
that the auction terminates in the core. This simple observation can be used to analyze the
semi-sincere strategy Nash equilibrium of the auction, in which agents implement a buyer-
optimal core point [AM02, theorem 4]. Suppose π′ is a bidder-optimal point in the core.

4The VCG payoffs are π′
vcg = (0, 0, 10, 10) for subproblem L = {0, 1, 4, 5}, which violate AAS.

5

Then semi-sincere reports, v̂i(S) = max(0, vi(S)− π′i), are a Nash equilibrium of the auction.
The auction implements payoffs (with respect to reported valuations) of π̂ = (ŵ(I), 0, . . . , 0),
where ŵ(·) is the coalitional value function based on revealed preferences.5 The actual payoffs,
with respect to the true valuations of agents, are exactly the core payoffs, π′.6

buyer-submodular values Suppose the reports, v̂i(S), satisfy buyer-submodularity. Then, the
buyer-optimal core payoff with respect to these reported values is unique and equal to VCG
payoffs, again for the reported values. Moreover, the auction implements this buyer-optimal
core payoff vector [AM02, theorem 8].

The second condition usefully characterizes the equilibrium outcome of the auction when pref-
erences satisfy buyer-submodularity. However, there remains a large gap in the understanding of
the economic properties of the particular core point selected by the agents when agents fail to
solve the bargaining problem that is implicit in the core outcome when agents-are-substitutes fails.
The equilibrium analysis in Theorem 4 assumes that agents solve the bargaining problem amongst
themselves and play the corresponding Nash equilibrium.

The following characterization follows from the analysis of Theorem 8 [AM02].

Proposition 1 (payoff dominance). The payoffs implemented in the ascending-proxy auction,
given reported valuations, v̂i(·), buyer Pareto-dominate the payoffs in all recursive-core outcomes.

Proof. Consider a buyer-optimal recursive-core payoff vector, π ∈ RecCore(I, w). Consider agent
j, and suppose that there is some round, t, at which πt

j < πj . We show that j is in the winning
coalition in that round. Let K be any coalition including the seller but not agent j. Then,

w(K)−
∑
i∈K

πt
i < w(K)−

∑
i∈K

πt
i + (πj − πt

j)

≤ w(K)−
∑

i∈K∪{j}

πt
i + w(K ∪ j)− w(K) (1)

= w(K ∪ j)−
∑

i∈K∪{j}

πt
i

where (1) follows from the recursive core constraints (REC-CORE). ut

Theorem 8 [AM02] follows as a corollary, because with buyer-submodular values the buyer-
optimal core payoffs are unique and equal to the buyer-optimal recursive-core payoffs.

We already know, from Examples 1 and 2, that the ascending-proxy auction does not implement
a buyer-optimal core outcome. Moreover, the examples show that the auction does not even
implement the buyer-optimal core outcome when agents-are-substitutes and there is no bargaining
problem, but requires the stronger condition of buyer-submodular values. We also observe, from
Examples 2, 3 and 4, that the auction does not implement a buyer-optimal recursive core outcome,

5To see that this is the only core solution to the coalitional game over reported values, let I∗ ⊆ I \ 0 denote the
winners, the agents that receive a non-empty bundle in the efficient allocation. At reported valuations, v̂i(·), the
coalitional value, ŵ(I) = ŵ(I(I∗). Any core payoffs that are not blocked require

P
i∈I\I∗ ≥ ŵ(I \ I∗), and since

π̂i = 0 for all i /∈ {I∗, 0}, then π̂0 ≥ ŵ(I \ I∗). Feasibility then requires π̂i = 0 for all i ∈ I∗, and the core payoffs are
completely pinned down.

6The efficient allocation for the revealed valuations is unchanged, which gives πi = π′
i for all i 6= 0. Finally,

π0 = ŵ(I) = w(I)−
P

i∈I\0 π′
i = π′

0.

6

although this is the case in Example 1. 7 The auction often terminates with payoffs that are outside
the recursive-core, but that buyer-dominate all recursive-core payoffs, by Proposition 1.

In summary:

(1) the auction implements payoffs in the core, but these need not be buyer-optimal payoffs

(2) the payoffs weakly dominate all buyer-optimal recursive-core payoffs

(3) the payoffs can be neither buyer-optimal core not buyer-optimal recursive-core payoffs, but
somewhere in between.

Loosely speaking, the auction implements an outcome “inbetween that of the buyer-optimal
core and the buyer-optimal recursive-core payoffs”. Recursive-core conditions are stronger than
core conditions, and capture the intuition that subcoalitions of agents are in dynamic competition
during the auction. It is the effects of this dynamic competition that can lead to payoffs that are
not buyer-optimal core payoffs. In Example 1, the payoff to agent 1 is driven below its buyer-
optimal core payoff because the agent must initially compete, in coalitions {1,2} and {1,3} with
coalition {4,5}. The high valuations of agents 2 and 3 are not known in these early rounds, and
agent 1 participates in the competitive bidding process. Only when coalition, {4,5}, drops out of
the auction can agent 1’s payoff stop falling, while agents 2 and 3 compete to form the winning
coalition with 1.8 One can imagine that agents in subproblem {0,1,4,5} compete against each other
in Example 1, driving the payoff to agent 1 down to zero.

Continuing, we might consider the following conjecture: the ascending-proxy auction implements
a buyer-optimal outcome subject to core constraints and some subset of additional recursive-core
constraints. Perhaps the characterization problem reduces to determining which recursive-core
constraints to include, or “which subcoalitions are in dynamic competition during the auction”,
in addition to a selection criteria to choose a particular buyer-optimal payoff vector and solve the
implicit bargaining problem?

Although the following analysis shows that this approach does not lead to a full characterization
of the outcome of the ascending-proxy auction, it does nevertheless yield some interesting insights.
For example, an equalize-payments selection criteria, in combination with an appropriate selection
of recursive-core constraints, is able to characterize the outcome of the auction in Examples 1, 3
and 4.

Definition 9 (equalize-payments criteria). The objective in the equalize-payments selection
criteria is to select buyer-optimal payoffs, π, to solve

min
π∈Π

max
i∈I\0

[vi(S∗
i)− πi] (EQUAL-PAY)

where Π is set of feasible payoffs, implied by the core and selected recursive-core constraints, and
S∗ = (S∗

1 , . . . , S∗
N) is the efficient allocation.

7In Example 1 the VCG payoffs, πvcg = (20, 10, 0, 5, 0, 0) violated the recursive-core for coalitions {0, 1, 4, 5},
{0, 1, 4} and {0, 1, 5}. For example, the payoffs in L = {0, 1, 4, 5} induced by πvcg are π = (10, 10, 0, 0) /∈
Core({0, 1, 4, 5}, w), because they are blocked by {0,4,5}. However, the outcome of the auction, π = (30, 0, 0, 5, 0, 0),
satisfy the recursive core, which requires π1 ≤ 0 and π3 ≤ 5. In Example 2 the auction terminates with
π = (29, 1, 0, 5, 0, 0), and the payoffs induced in L = {0, 1, 4, 5} are π′ = (17, 1, 0, 0), which are blocked by coali-
tion {0, 4, 5}. Recursive core payoffs in Example 2 require conditions {π1 ≤ 0, π3 ≤ 5}. Similarly, in Example 3, the
auction terminates with core payoffs π = (10, 3, 3, 0), but recursive-core payoffs require {π1 = π2 = 0}. In Example
4, the auction terminates with payoffs, π = (10, 11, 3, 0), but recursive core requires {π1 ≤ 6, π2 ≤ 0}.

8For example, if v1(AB) = 15, then agent 1’s final payment remains 10 and its payoff in the auction increase to 5.

7

The equalize-payments criteria selects buyer-optimal payoffs that minimize the maximal pay-
ment across all agents, and have the effect of equalizing agent payments. The method is illustrated
below on Examples 1–4, with the simple algorithms described in the Appendix to determine the
tight core- and recursive-core constraints.

example 1 Core constraints require {π1 ≤ 10, π3 ≤ 5, and recursive-core constraints require, in
addition, that π1 ≤ 0. Taking all recursive-core constraints, and with EQUAL-PAY, we have:

min
π

max{10− π1, 25− π3}

s.t. π1 ≤ 0,

π3 ≤ 5

with π0 = 35−π1−π3 and π2 = π4 = π5 = 0. The solution, π∗ = (30, 0, 0, 5, 0, 0), corresponds
with the outcome of the ascending-proxy auction.

example 3 Core constraints require {π1 ≤ 6, π2 ≤ 6, π1 + π2 ≤ 6}, and recursive-core constraints
require, in addition, that {π1 ≤ 0, π2 ≤ 0}. Ignoring the recursive-core constraints, and with
EQUAL-PAY, we have:

min
π

max{8− π1, 8− π2}

s.t. π1 ≤ 6,

π2 ≤ 6,

π1 + π2 ≤ 6

with π0 = 16 − π1 − π2 and π3 = 0. The solution, π∗ = (10, 3, 3, 0), corresponds with the
outcome of the ascending-proxy auction.

example 4 Core constraints require {π1 ≤ 14, π2 ≤ 8, π1+π2 ≤ 14}, and recursive-core constraints
require, in addition, that {π1 ≤ 6, π2 ≤ 0}. Ignoring the recursive-core constraints, and with
EQUAL-PAY, we have:

min
π

max{16− π1, 8− π2}

s.t. π1 ≤ 14,

π2 ≤ 8,

π1 + π2 ≤ 14

with π0 = 24 − π1 − π2, and π3 = 0. The solution, π∗ = (10, 11, 3, 0), corresponds with the
outcome of the ascending-proxy auction.

Examples 3 and 4 provide good support for the match between the EQUAL-PAY selection
criteria and the outcome selected by the ascending-proxy auction. Notice, though, that this analysis
does not suggest a method to determine the appropriate recursive constraints to include. All are
included in Example 1, but none are included in Examples 3 and 4.

However, Example 2 shows that there can sometimes be no subset of recursive-core constraints
that characterizes the outcome of the auction, at least when in combination with the equalize-
payments selection criteria.

8

example 2 Core constraints require {π1 ≤ 10, π3 ≤ 5} and recursive-core constraints require, in
addition, π1 ≤ 0. Consider the following two possibilities. First, take just the core constraints:

min
π

max{10− π1, 25− π3}

s.t. π1 ≤ 10,

π3 ≤ 5

and set π0 = 35− π1 − π3, π2 = π4 = π5 = 0. This formulation gives π∗ = (20, 10, 0, 5, 0, 0),
which are the VCG payoffs. Second, also include the recursive-core constraint:

min
π

max{10− π1, 25− π3}

s.t. π1 ≤ 0,

π3 ≤ 5

with π0 = 35 − π1 − π3, π2 = π4 = π5 = 0. This formulation gives π∗ = (30, 0, 0, 5, 0, 0).
Neither payoff vector corresponds with that of the ascending-proxy auction, which implements
π = (29, 1, 0, 5, 0, 0).

Based on this example it would appear that the characterization can not be as simple as some
subset of recursive-core constraints, coupled with a selection criteria to choose a buyer-optimal
outcome. How can such an approach ever generate the payoff, π1 = 1, that is generated by the
ascending-proxy dynamics? Rather, the precise dynamics in the ascending-proxy auction influence
the coalitions that must compete along the implementation path, and make this goal of finding a
direct specification of the core outcome that is implemented within the auction difficult.

Rather than pursue this goal of direct characterization any further, in Section 5 we pro-
pose a “semi-direct” method to implement the outcome, given agent valuations, that avoids the
incremental-bidding process of the indirect ascending-proxy implementation, but without providing
any additional economic insight into the exact core point implemented by the auction.

4.2 Buyer-Optimal Core Outcome

Before leaving the discussion of indirect implementations of core outcomes, it is useful to present
a simple variation on the ascending-proxy design. With this variation, which is suggested from
analysis of iBEA [PU02], the auction will in fact always implement a buyer-optimal core outcome.
This is useful because the auction retains the robustness of ascending-proxy against shills and joint-
deviations, but also brings truthful bidding into equilibrium (and removes the bargaining problem)
whenever agents-are-substitutes and without requiring the stronger condition of buyer-submodular
values.

Notice that the useful robustness properties of the ascending-proxy equilibrium to joint devia-
tions accrue from the bidder monotonicity property, and in turn follow from implementing (buyer-
optimal?) payoffs in the core. The particular core outcome that is implemented in ascending-proxy,
and intermediate between buyer-optimal core and buyer-optimal recursive-core points, is not nec-
essary for these properties.

The ascending-proxy auction is unchanged, except for a slight variation in the method to com-
pute final payoffs at termination. At termination, let π∗ denote the final payoffs, I∗ denote the set
of winning agents, and π∗0(L), for L ⊆ I \ 0, denote the maximal payoff to the seller from bids from
agents in set L, or simply the value of the solution to the winner-determination based on the final
bids of agents in L.

9

Definition 10 (core-adjust). At termination, compute the adjustments, ∆∗, that solve the fol-
lowing linear program:

max
∆

∑
i∈I\0

∆i (CORE-ADJUST)

s.t.
∑
i∈K

∆i ≤ π∗0 − π∗0(I \ {K ∪ 0}), ∀K ⊆ I∗

∆i ≥ 0, ∀i ∈ I
∆i = 0, ∀i /∈ I∗

and implement final payoffs π∗ + ∆∗ to agents.

Notice that implementing this adjustment can be expensive, because in the worst-case the auc-
tion must solve an additional number of winner-determination problems that is exponential in the
number of winning agents. In practice, experimental results suggest that these adjustments can be
computed entirely over cached solutions along the winner-determination path during the auction
[PU00b].

Proposition 2. [PU02] The adjusted payoffs at the end of ascending-proxy implement a buyer-
optimal core outcome with respect to reported agent valuations.

Proof. All that is required for the proof is that agents follow MBR strategies, and that the payoffs
at the end of ascending-proxy are somewhere in the core. The result is proved as Lemma 1 [PU02],
in the context of third-order CE prices in iBundle, which correspond exactly with the final MBR
bids in ascending-proxy. ut

Of course, when agents-are-substitutes, there is a unique buyer-optimal core point, which cor-
responds to the VCG payoffs. This slightly relaxes the conditions under which truthful reporting
is an equilibrium of the auction, and under which there is no bargaining problem.

Theorem 1. Suppose that the agents-are-substitutes condition holds on agent values. Then truthful
reporting is a Nash equilibrium profile of the ascending-proxy auction and leads to the VCG payoffs.

In fact, when agents-are-substitutes, the adjustments can be computed with the simpler ad-
justment method, (V CG−ADJUST), described in the next section. In addition, with buyer-
submodular values, the auction already terminates with VCG payoffs and the optimal adjustments
are exactly zero because constraints π∗0 = π∗0(I \ j) for all j ∈ I∗.

An interesting open question that arises from the analysis in this section is the problem of
finding a direct-characterization of the buyer-optimal point that is selected in this slightly mod-
ified ascending-proxy auction when agents-are-substitutes fails. It is even possible that a direct
characterization of the outcome implemented at this adjusted payoff vector could lead to a direct
characterization of the outcome of the current ascending-proxy auction!

4.3 VCG Outcomes

Finally, a quick comment about an indirect implementation of the VCG payoffs. Indirect mecha-
nisms are often important, for example because of the high costs of preference-elicitation in direct
mechanisms such as the VCG. Although the VCG outcome is susceptible to joint deviations and
shill bidding [AM02], it does at least completely solve the bargaining problem which might in itself
cause significant loss in efficiency and revenue, though miscoordination between agents.

10

In fact, one can view the VCG payoffs as the buyer-optimal payoffs subject to a relaxation of
the core conditions to π0 = w(I)−

∑
i∈I\0 πi and

πi ≤ w(I)− w(I \ i), ∀i ∈ I \ 0

where all constraints that apply to the marginal product of coalitions of winning agents are dropped.
With these unilateral constraints there is always a unique buyer-optimal payoff vector, at least in
a one-sided combinatorial auction with no budget-balance problems.

All that one needs to implement the VCG payoffs in an indirect ascending-proxy like mechanism
is to ensure that the auction terminates not just with payoffs that are in the core, but also with
payoffs that are in the universal-core (4). As before, let π∗ denote the final payoffs, I∗ denote
the set of winning agents, and π∗0(L) denote the value of the solution to the winner-determination
based on the final bids of agents in L ⊆ I \ 0.

Definition 11 (vcg-adjust). At termination, compute the adjustments,

∆∗
i = π∗0 − π∗0(I \ i), ∀i ∈ I∗ (VCG-ADJUST)

with ∆∗
i = 0 for all i 6= I∗. Implement final payoffs of π∗ + ∆∗ to agents.

This adjustment is computationally easier to compute than (CORE-ADJUST), just requiring a
solution to the winner-determination problem with each winning-agent removed from the auction.

Proposition 3. [PU02, theorem 6] Suppose that the ascending-proxy auction terminates with pay-
offs in the universal-core with respect to reported valuations. Then, the adjusted payoffs at the end
of ascending-proxy implement the VCG payoffs with respect to reported valuations.

Proof. The universal-core property provides π∗0 = w(I) −
∑

i∈I\0 π∗i and also π∗0(I \ j) = w(I \
j) −

∑
i∈I\{0,j} π∗i for all j ∈ I∗. Then, we have adjusted payoff, πadj,i = π∗i − (π∗0 − π∗0(I \ i)) =

w(I)− w(I \ i) = πvcg,i, for all i ∈ I∗. ut

An indirect implementation of the VCG outcome follows from an extension to iBundle [PU02],
that drives an ascending-proxy into an outcome in the universal-core. The auction is unchanged
until the round in which it would terminate as currently described. The auction then continues to
run ascending-proxy methods from the termination point, removing each winning agent in turn,
until the auction reaches a core solution for both the complete set of agents and with each winning
agent removed. This is a universal-core outcome, at which point the adjustments are computed and
the VCG payoffs implemented. Call this extended auction, with final payoff adjustments computed
as (VCG-ADJUST), the extended ascending-proxy auction.

Theorem 2. Truthful reporting is a Nash equilibrium profile of the extended ascending-proxy auc-
tion and leads to the VCG outcome.

Variations of iBundle Extend & Adjust (iBEA) are also proposed that maintain ask prices and
introduce non-anonymous prices dynamically [PU02].

In fact, it is necessary that payoffs are in the universal-core for (VCG-ADJUST) to implement
VCG payoffs [PU02, theorem 2]. In addition, the adjusted payoffs computed with (VCG-ADJUST)
at the end of ascending-proxy are always (a) weakly dominated by the VCG payoffs and in turn
always (b) weakly dominate the payoffs computed with (CORE-ADJUST). From this, we learn a
little more about the characterization of the outcome of the ascending-proxy auction. When agents-
are-substitutes the adjusted payoffs computed in (VCG-ADJUST) must equal the VCG payoffs,
and payoffs are necessarily in the universal-core.

11

Proposition 4. When reported valuations in the ascending-proxy auction satisfy agents-are-substitutes
the auction terminates with payoffs in the universal-core with respect to the reported valuations.

This complements the earlier characterization that the ascending-proxy auction terminates with
buyer-optimal recursive-core payoffs when values are buyer-submodular.

5 Direct Implementations

In this section we propose a variety of direct implementations of buyer-optimal core outcomes,
that retain the useful robustness of the ascending-proxy auction to shill bidding and joint devia-
tions. While deemphasizing the goal of characterizing the core outcome implemented in the current
ascending-proxy design, the goal is to open up a wider discussion on the appropriate selection crite-
ria that an auction should employ to address the bargaining problem. An interesting open question
that follows form the direct formulations is the reverse of that addressed in the previous section:
are there indirect mechanisms, such as ascending-price auctions, that implement the outcomes?

One can imagine that these methods attempt to solve the bargaining problem for agents in
settings in which they fail to completely solve the problem themselves. The methods act as a
coordination device, something at which mechanisms have a natural advantage over agents because
the mechanism gets to play ex post, after every agent has committed to a particular strategy.

5.1 Core Outcomes

This section presents a variety of formulations to select buyer-optimal core outcomes. These all
implement the VCG outcome when it is in the core, but provide the additional bidder monotonicity
properties that have been shown to be useful when the VCG outcome is outside the core. The
selection criteria, which chooses a particular buyer-optimal core payoff vector, distinguishes the
proposals.

Let (CORE) represent the following constraints:

π0 = w(I)−
∑

i∈I\0

πi∑
i∈K

πi ≤ w(I)− w(I \K), ∀K ⊂ I∗, 0 /∈ K

πi ≥ 0, ∀i
πi = 0, ∀i /∈ {I∗ ∪ 0}

where I∗ is the set of winning agents, that receive a non-empty bundle in the efficient allocation.
First, the equalize-payments criteria, that provided a reasonable match to the ascending-proxy

outcomes, is one possibility.

min
π

max
i∈I\0

[vi(S∗
i)− πi] (EQUAL-PAY)

s.t. (CORE)

where S∗ denotes the efficient allocation. The (EQUAL-PAY) criteria attempts to equalize the
payments made by each agent.

12

Second, the threshold criteria from Parkes et al. [PKE01b, PKE01a], which minimizes the ex
post maximal difference from VCG payoffs across agents.

min
π

max
i∈I\0

[πvcg,i − πi] (THRESHOLD)

s.t. (CORE)

This selection criteria was previously introduced in the context of selecting payoffs that minimize
the maximal difference from VCG payoffs in a combinatorial exchange setting subject to budget-
balance constraints. Budget-balance is not binding with VCG-based selection criteria in the single-
sided combinatorial auction setting, but core constraints are.

In the combinatorial exchange setting the optimal solution to this threshold formulation is
characterized with a simple rule, πi = max(0, πvcg,i − C), with a value C ≥ 0 selected to give
budget-balance. Hence the name “threshold”, because the rule assigns payoff to agents that have
VCG payoffs above the threshold value, C. An interesting open question is to investigate whether
there are similar closed-form solutions to particular formulations of the core payoff-division problem.

Parkes et al. also considered additional VCG-payoff based rules, that correspond with a simple
selection-criteria for budget-balanced constraints, but have no obvious direct correspondence with
richer core constraints. Examples of rules included:

large taking the agents in order of decreasing VCG payoff, and assigning as much payoff to the
agent as possible (up to its VCG payoff), subject to constraints. This can be viewed as a
heuristic method to solve the core payoff-division problem with selection criteria maxπ

∑
i πvcg,iπi.

small taking the agents in order of increasing VCG payoff, and assigning as much payoff to the
agent as possible (up to its VCG payoff), subject to constraints. This can be viewed as a
heuristic method to solve the core payoff-division problem with selection criteria maxπ

∑
i πi/πvcg,i.

fractional provide each agent with the same fraction of its VCG payoff, subject to constraints.
This can be viewed as a heuristic method to solve the core payoff-division problem with
selection criteria maxπ mini πi/πvcg,i.

Based on analytic and experimental results in the combinatorial exchange setting, the Threshold
rule appeared the most promising in terms of its equilibrium efficiency properties. The experi-
ments computed a restricted Bayesian-Nash equilibrium under each rule [PKE01a]. Intuitively, the
Threshold rule solves the bargaining problem by providing payoff to agents that could have gained
a lot from taking an alternative bargaining position.

It is worthwhile to briefly consider the combinatorial exchange setting, in which the core is often
empty. That the core is empty follows from the competitive equilibrium analysis of the two-sided
package assignment model [BO02]. This means that in the context of a combinatorial exchange
one cannot simply impose core constraints. Instead, one can impose relaxed core constraints, such
as the unilateral VCG-type core constraints, πi ≤ w(I) − w(I \ i). This is the approach taken
in Parkes et al. As discussed in July’s FCC spectrum-design meeting, one could also impose core
constraints for a subset of participants, such as for agent representing within an exchange and then
use a selection criteria such as Threshold to clear the exchange.

5.2 Ascending-Proxy Outcome

The outcome of the ascending-proxy auction (with respect to reported valuations) is always in the
core, and in the universal-core if agents-are-substitutes holds, and in the recursive-core if buyer-

13

submodular values holds. We also know that the payoffs always buyer weakly-dominate all buyer-
optimal recursive-core payoffs, from which it follows that the auction implements the VCG payoffs
when buyer-submodular values holds. The selection criteria used within the auction also seems
somewhat consistent with the equalize-payments criteria. However, the attempts in Section 5
failed to provide a complete and direct characterization of the outcome of the auction.

Another motivation for a direct characterization of the outcome of the ascending-proxy auction,
other than to gain economic insight into the outcome selected by the auction, was to provide an
efficient method to implement the outcome as a direct-revelation mechanism. To address these
computational questions we fall back in this section on a proposal for a semi-direct implementation
of the outcome of the ascending-proxy auction, which should at least adequately handle problems
in which the agent-proxy language has a rich preference language (e.g. Milgrom’s “scenario-based”
language) without exploding the XOR representation at the proxy-auction interface.9

5.3 Semi-Direct Implementation

We propose a two-step accelerated implementation of the ascending-proxy auction. The first step
is to compute the interesting coalitions, and the interesting bundles for each agent. The interesting
coalitions are those subcoalitions of agents that might be involved in dynamic price competition
during the auction. Let C∗ denote the set of interesting coalitions. We know that anytime coalition
x ∈ C∗ is winning in the auction, that the coalition is winning with the same allocation. Let
Ti denote the set of interesting bundles for agent i, and compute the bundle that corresponds
with coalition x ∈ C∗, with i ∈ x, as the bundle agent i receives in the solution to w(x). C∗

always includes all the singleton agents, call these the trivial coalitions. The interesting bundle
that correspond with the singleton coalition {i}, is simply maxS vi(S). Call all coalitions with
more than one agent a non-trivial coalition.

The Appendix presents a simple algorithm to determine the interesting coalitions and bundles.
It is useful that this first step of the semi-direct implementation determines “reduced valuations”
for agents, which provide sufficient information to compute the outcome of the auction. The
reduced valuation function is simply an XOR valuation defined over an agent’s values for bun-
dles in its interesting set. The interesting and nontrivial coalitions for Example 1, as derived in
the Appendix, are coalitions {13,12,45}, and the interesting bundles for this example are simply
({AB}, {CD}, {CD}, {AC}, {BD}), for agents 1, . . . , 5 respectively.

We propose two alternatives for the second step.

run ascending-proxy on the reduced valuations. one can simply run the ascending-proxy
auction on the reduced valuations. this has the advantage of providing transparency, while
preventing the explosion in the size of the XOR bid lists that can occur in the basic indirect
implementation.

run a staged variation on the ascending-proxy with the reduced valuations. alternatively,
one can run an accelerated, or staged, proxy auction based on the reduced valuations. the ac-
celeration provided in this approach will depend on the size of agent interesting sets (smaller
is better) and on the spread in the valuations in an agent’s interesting set (smaller is better).

The staged ascending-proxy auction runs in stages, t ≥ 1, that correspond to a contiguous
sequence of regular rounds. At the start of each stage, agent i has a current payoff, πt

i , which is

9I have not yet proved this algorithm terminates with the outcome of the ascending-proxy auction. A useful next
step is to compare my proposal with that in the Hoffman et al. proposal [DHM+].

14

initially π1
0 = 0 for the seller, and π1

i = maxS∈Ti vi(S) for all i ∈ I \ 0. There is a set of active
agents in each round, At ⊆ I \ 0, which denotes the agents with πt

i > 0. Let MBRi(πt
i) denote the

set of interesting bundles in agent i’s best-response set at the start of stage t. This is computed as

MBRi(πt
i) = {S | S ∈ Ti, vi(S)− πt

i ≥ 0}

In addition, let δt
i denote the MBR slack for agent i at the start of stage t. This is computed as

δt
i = min

[
πt

i , {πt
i − vi(S) | S /∈ MBRi(πt

i), S ∈ Ti}
]

and represents the maximal possible decrease in πt
i that will leave the agent’s MBR set unchanged.

This information is vital for providing an accelerated implementation of the auction. An agent is
active in round t while δt

i > 0.
Given MBR information, each stage of the accelerated auction is implemented as an LP. Let k

index into the interesting coalitions, C∗. Let Ct denote the active coalitions at the start of stage
t. These are the coalitions that include at least one active agent, and for which the associated
interesting bundles are receiving bids in agent MBR sets. A coalition is not active until every agent
is submitting the relevant bid. Moreover, all dominated coalitions are pruned from Ct, where x is
dominated by any x′ ⊃ x.

Given the active coalitions, the LP is formulated over decision variables, x = {xk : k ∈ Ct},
where xk ≥ 0 is the bidding-share for active coalition k, and interpreted as the minimal drop in
payoff to agents bidding in coalition k during the stage. At the end of the stage, agent payoffs are
decreased by the maximal bidding-share, xk, over all coalitions in which they were bidding during
the round. Formally:10

πt+1
0 = max

x
min
k∈Ct

{Vk} (STAGE)

s.t. Vk ≥ πt
0 +

∑
i∈C∗(k), bidt(k,i)

[
max

k′ : i∈C∗(k′),k′∈Ct
xk′

]
, ∀k ∈ Ct (2)

δt
i ≥ max

k′ : i∈C∗(k′),k′∈Ct
xk′ , ∀i ∈ I \ 0,with δt

i > 0 (3)

xk ≥ 0, ∀k ∈ Ct

where agent i bids, bid t(k, i), in coalition k during stage t if

bid t(k, i) =
(
∃k′ ∈ Ct · i /∈ C∗(k′)

)
and δt

i > 0

in words, there must be another active coalition that does not include i, and the agent must also
still be active.

The objective (STAGE) is to find adjustments to the payoffs of agents that maximize the
minimal revenue to the auctioneer from all active and interesting coalitions. Constraints (2) ensure
that Vk for active coalition k evaluates to the current revenue from the coalition, along with whatever
increases in that revenue accrue due to lower payoffs to agents within the coalition. Payoff changes
are accounted for all agents within the coalition that are in competition with at least one other
active coalition, such that bid t(k, i) holds. Moreover, the payoff change associated with agent i
is computed as the maximal over the bidding shares, xk, in all active coalitions that include the
agent and in which the agent is bidding. Constraints (3) ensure that the payoff change for agent i
is within its MBR slack.

10A complete LP formulation would need to formulate away the remaining max terms, etc.

15

In fact, the LP is solved a number of times in each round, as many times as is required to
implement a lexicographically minimal solution over {Vk} for k ∈ Ct. First, solve (STAGE), to
compute {V̂k}, with V t = mink∈Ct V̂k. Formulate and solve a series of LPs, indexed m = 1, . . .,
and label them (STAGEm). Associate m = 1 with the initial problem, already solved as (STAGE).
Across stages we build-up a set of coalitional values that are fixed, with Fm ⊆ Ct. Initially, set
F 1 = ∅. Let V m denote the value of (STAGEm), with the value of each individual coalition, k,
denoted V m

k . At the end of (STAGEm), construct Fm+1 = Fm ∪ {k : k ∈ Ct \ Fm, V m
k = V m}.

To solve (STAGEm), for m > 1, formulate the objective as maxx mink∈Ct\F m{Vk}, with constraints
(2) for k ∈ Fm replaced with Vk = V m−1

k . Continue until Fm = Ct.
At the end of the stage the agent payoffs are adjusted, with

πt+1
i = πt

i + max
k′ : i∈C∗(k′),k′∈Ct

xk′

and the auctioneer’s revenue is updated to πt1
0 as computed by (STAGE). The next round is

initialized by updating the MBR bid sets and the MBR slack values, and updating the active
coalitions. The auction terminates whenever all active agents are included together in an active
coalitions. The outcome associated with this winning coalition is implemented, along with payments
that correspond to the final agent payoffs.

Example 1. The non-trivial interesting coalitions are C∗ = {12, 13, 45}, and the interesting
bundles are T = ({AB}, {CD}, {CD}, {AC}, {BD}) for agents 1, . . . , 5. The initial payoffs are
(0,10,20,25,10,10), and the initial MBR sets are MBRi(π1

i) = Ti, with δ1
i equal to agent valuations.

All agents are active, and the set of active coalitions, C1 = {12, 13, 45}, with coalitions {1,2,3,4,5}
all pruned. Index the coalitions in C1 with k ∈ {1, 2, 3}, such that C∗(1) = 12, C∗(2) = 13 and
C∗(3) = 45. The stage LP is formulated as:

π2
0 = max

x1,x2,x3

min {V1, V2, V3}

s.t. V1 ≥ 0 + max(x1, x2) + x1 (12)
V2 ≥ 0 + max(x1, x2) + x2 (13)
V3 ≥ 0 + x3 + x3 (45)

max(x1, x2) ≤ 10 (a1)
x1 ≤ 20 (a2)
x2 ≤ 25 (a3)
x3 ≤ 10 (a4)
x3 ≤ 10 (a5)

x1, x2, x3 ≥ 0

with {x1, x2, x3} to denote the bidding-shares computed for each coalition. Labels (12,13) and
(45) denote coalition values, for 12, 13 and 45, and labels (a1,. . .,a5) denote agents, for agents 1
through 5. Solving, we get x∗ = (10, 10, 10) and π2

0 = 20. All values, Vk, are tight and there is no
lexicographical ordering required. The agent payoffs adjust to π2 = (20, 0, 10, 15, 0, 0).

Continuing, in the next stage the MBR slack values adjust to δ2 = (0, 10, 15, 0, 0), and only
agents 2 and 3 are still active. The only active coalitions are C2 = {12, 13}. The stage LP is

16

formulated as:

π3
0 = max

x1,x2

min {V1, V2}

s.t. V1 ≥ 20 + x1 (12)
V2 ≥ 20 + x2 (13)
x1 ≤ 10 (a2)
x2 ≤ 15 (a3)

x1, x2 ≥ 0

Agent 1 is not bidding in either coalition 12 or coalition 13, because there are no active coalitions
that do not include agent 1. Rather, agent 2 is in competition with agent 3. Notice that the
bidding-share, x1, in coalition 12 is not allocated to agent 1, but only agent 2, and similarly for
share x2 in coalition 13, which is only allocated to agent 3. An optimal solution sets x∗1 = 10,
with 10 ≤ x2 ≤ 15. Lexicographical ordering, formulating a second optimization problem with
V1 = 10 and minimizing V2 gives x∗2 = 10. The new payoffs are π3 = (30, 0, 0, 5, 0, 0), and moreover
the only active coalition is C3 = {13}, and the auction terminates. This is the outcome of the
ascending-proxy auction.

Example 2. The set-up is the same as for Example 1, except that the initial payoffs are
(0,10,20,25,8,10). The LP for stage 1 is formulated as:

π2
0 = max

x1,x2,x3

min {V1, V2, V3}

s.t. V1 ≥ 0 + max(x1, x2) + x1 (12)
V2 ≥ 0 + max(x1, x2) + x2 (13)
V3 ≥ 0 + x3 + x3 (45)

max(x1, x2) ≤ 10 (a1)
x1 ≤ 20 (a2)
x2 ≤ 25 (a3)
x3 ≤ 8 (a4)
x3 ≤ 10 (a5)

x1, x2, x3 ≥ 0

with {x1, x2, x3} to denote the bidding-shares computed for each coalition. The one change is in
the RHS of (a4), which is adjusted to the smaller value of agent 4. An optimal initial solution sets
x∗ = (7, 9, 8). However, we can then fix V3 = 16 and V1 = 16, and reoptimize to minimize the value
of V2. This gives solution x∗ = (8, 8, 8). The adjusted agent payoffs are (16, 2, 12, 17, 0, 2).

Continuing, in the next stage the MBR slack values adjust to δ2 = (2, 12, 17, 0, 2), and all agents
except 4 are still active. The active coalitions remain C2 = {12, 13, 45}, with 45 retained because

17

5 is still active. The stage LP is formulated as:

π3
0 = max

x1,x2,x3

min {V1, V2, V3}

s.t. V1 ≥ 16 + max(x1, x2) + x1 (12)
V2 ≥ 16 + max(x1, x2) + x2 (13)
V3 ≥ 16 + x3 (45)

max(x1, x2) ≤ 2 (a1)
x1 ≤ 12 (a2)
x2 ≤ 17 (a3)
x3 ≤ 2 (a5)

x1, x2, x3 ≥ 0

Notice that no bidding-share is allocated to agent 4 in coalition 45 because agent 4 is no longer
active. Similarly, no constraint is required to restrict x3 to the MBR slack of agent 4. The optimal
solution, again after lexicographical ordering, is x∗ = (1, 1, 2), from which the adjusted payoffs are
(18, 1, 11, 16, 0, 0).

At this stage, neither agents 4 or 5 are active, and C3 = {12, 13}. As in Example 1, when we
construct the LP for this stage, agent 1 does not receive any bidding-share because the agent is not
in competition with any active coalition, and is not included in the MBR slack constraints. The
LP for the final stage is:

π4
0 = max

x1,x2

min {V1, V2}

s.t. V1 ≥ 18 + x1 (12)
V2 ≥ 18 + x2 (13)
x1 ≤ 11 (a2)
x2 ≤ 16 (a3)

x1, x2 ≥ 0

After lexicographical ordering the optimal solution is x∗ = (11, 11), and the adjusted payoffs are
π3 = (29, 1, 0, 5, 0, 0). The algorithm terminates because the only active coalition is 13, and we
implement the outcome of the ascending-proxy auction.

Example 3. The non-trivial interesting coalitions are C∗ = {12}, and the interesting bundles
are T = ({A}, {B}, {AB}) for agents 1,2 and 3. Notice that in determining interesting bundles
we are free to break ties within any particular interesting coalition (e.g. 12) at random. Here we
assign A to agent 1 and B to agent 2. Initial payoffs are (0,8,8,10), and the initial MBR sets are
MBR1 = {A},MBR2 = {B} and MBR3 = {AB}. The slack values are δ1 = (8, 8, 10).

All agents are initially active, and the set of active coalitions is C1 = {12, 3}, with coalitions 1
and 2 pruned by 12. Index the coalitions in C1 with k ∈ {1, 2}, such that C∗(1) = 12, C∗(2) = 3.

18

The stage LP is formulated as:

π2
0 = max

x1,x2

min {V1, V2}

s.t. V1 ≥ 0 + x1 + x1 (12)
V2 ≥ 0 + x2 (3)
x1 ≤ 8 (a1)
x1 ≤ 8 (a2)
x2 ≤ 10 (a3)

x1, x2 ≥ 0

with {x1, x2} to denote the bidding-shares computed for each coalition. Solving, and lexicograph-
ically minimizing, we get x∗ = (5, 10), and adjusted payoffs of π2 = (10, 3, 3, 0). The only active
coalition that remains is 12, and the auction terminates with the outcome of the ascending-proxy
auction.

Example 4. The initial state is the same as in Example 3, except that initial payoffs are
(0,16,8,10), and the initial slack values are δ1 = (16, 8, 10). The set of active coalitions is C1 =
{12, 3}, with coalitions 1 and 2 pruned by 12. The stage LP is formulated as:

π2
0 = max

x1,x2

min {V1, V2}

s.t. V1 ≥ 0 + x1 + x1 (12)
V2 ≥ 0 + x2 (3)
x1 ≤ 16 (a1)
x1 ≤ 8 (a2)
x2 ≤ 10 (a3)

x1, x2 ≥ 0

with {x1, x2} to denote the bidding-shares computed for each coalition. Solving, and lexicograph-
ically minimizing, we get x∗ = (5, 10), and adjusted payoffs of π2 = (10, 11, 3, 0). The only active
coalition that remains is 12, and the auction terminates with the outcome of the ascending-proxy
auction.

6 Open Questions

• Is there a direct characterization of either the ascending-proxy auction outcome, or the vari-
ation on the ascending-proxy auction that adjusts payoffs and implements a buyer-optimal
core outcome?

• If the Threshold selection criteria proves interesting, can we provide an indirect mechanism
that implements the same outcome? What about other selection criteria, VCG-based or
otherwise. For example, is there an indirect implementation of the equalize-payments core
payoff division rule?

• Check that the proposed semi-direct algorithm to implement the outcome of the ascending-
proxy auction terminates with the VCG payoffs in the special-case of buyer-submodular val-
ues, and with a universal-core outcome in the special-case of agents-are-substitutes values.
More generally, prove the staged implementation method is correct.

19

• What is the right rule to solve the bargaining problem that the mechanism inherits from
agents when they fail to solve the problem amongst themselves?

• Is the Bayesian-Nash equilibrium of the Threshold core payoff-division method better (in
efficiency terms) than the other rules? Threshold reduces to the optimal double auction rule
for Chatterjee & Samuelson’s [CS83] seminal k-double auction model with one item and two
agents, in which k = 0.5 maximizes the expected gains from trade for i.i.d. uniform values
and agents play a linear equilibrium [MS83].

7 Conclusions

We have provided a partial characterization of the bargaining outcome implemented in the ascending-
proxy auction, and proposed a number of criteria that one could use to select buyer-optimal core
payoffs in a direct mechanism. We also proposed a staged implementation of the ascending-proxy
auction, that might be particularly useful from a computational perspective in settings with rich
bidder-proxy interfaces.

Appendix

Method to Compute Interesting Core Constraints

Consider a problem in which I = {0, 1, . . . , 5}, with winning agents, I∗ = {0, 1, 2}. In full, (ALT-
CORE) requires a constraint for every subset K ⊂ I∗ \ 0. However, many of these can be pruned
as the constraints are constructed. As an example, consider the following are two core constraints
from (ALT-CORE):

π1 ≤ w(I)− w(I \ 1) (4)
π1 + π2 ≤ w(I)− w(I \ {1, 2}) (5)

Notice that constraint (4) is dominated by (5), unless w(I \ 1) > w(I \ {1, 2}). This suggests
an improved algorithmic method to construct the important core constraints. Let C enumerate all
possible subsets of I∗ \ 0. Consider constraints for sets if C in increasing order. For any element,
K ∈ C, solve w(I \K). Let D denote the set of agents in this solution. Let D′ = I∗ \ {K ∪D}.
If D 6= ∅ then some of the agents that were winning are no longer winning, and w(I \ K) =
w(I \ {K ∪D′}. Use this to construct the core constraint for {K ∪D′}, and prune away from set
C all constraints corresponding with K ′ ⊂ {K ∪D′} and K ⊆ K ′.

Example. Consider the following trace, in which ∗ indicates a winning agent. With all agents,
1, 2 and 3 win, giving 1∗2∗3∗45. Start with 1, solve 234∗5∗. Prune {1, 12, 13} from the core set,
and include the constraint for 123. Go to 2, solve 1∗34∗5. Prune {2} from the core set, and include
the constraint for 23. Go to 3, solve 1∗24∗5, prune {3} (23 already included). Done. Interesting
core constraints included for sets {123, 23}.

Method to Compute Interesting Recursive Core Constraints

In putting together this note it was useful develop a fast method to compute interesting recursive-
core constraints. The method seeks to avoid computing the core constraints for all subcoalitions.

Algorithm: maintain a stack V of coalitions, initially V = [I]. also maintain a set of interesting
coalitions, C = {·}, initially empty. let I∗ denote the winning agents. while V 6= ∅ pop a set x

20

from the stack. if x ∩ I∗ = ∅, discard. otherwise, push x into the set of interesting coalitions,
and solve for w(x). let D denote the set of winners in this solution. if D ∩ I∗ 6= ∅ then construct
subsets E = {x \ j : ∀j ∈ D} and push them onto stack V . Discard x. terminate the while loop
when V is empty. Finally, use the algorithm to construct interesting core constraints can be used
for each element in the list of interesting coalitions, reusing the computation already performed in
this algorithm to avoid resolving the efficient allocation problems in each coalition. In running the
algorithm one needs to be a little bit careful with ties, for example only discarding sets x with no
solution that contain winning agents, and considering multiple solutions when branching.

Example. As an example, the trace of the algorithm for Example 1 looks something like the
following. Use ∗ to illustrate winning agents. Writing down the trace of popped coalitions, we
first pop 1∗23∗45, which is interesting and then push 2345 and 1245 back onto the stack. Pop
1∗2∗45, interesting, and then push 245 and 145 onto the stack. Pop 14∗5∗, interesting, but then
discard because neither {1,3} are now winning. Pop 2∗45, but discard, not interesting. Pop
23∗45, interesting, and push 245. Finally, discard 245. Done. At the end, the interesting sets are
{12345, 1245, 145, 2345}, which lead eventually to constraints π1 ≤ 0 and π3 ≤ 5.

Method to Select Interesting Coalitions for Ascending-Proxy Price Dynamics

This subsection presents the method used to determine reduced preferences in the semi-direct,
staged implementation of the ascending-proxy auction. We present a method to determine:

1. the set, C∗, of interesting coalitions, which identifies sets of agents that are involved in driving
price dynamics during the auction

2. the set, Ti, of interesting bundles, for all agent i 6= 0, which are the bundles that agent i
demands that fit in useful ways with demands from other agents.

This reduced information, which can be computed as a sequence of optimization problems based
on agent valuations, provides sufficient information to implement the outcome of the auction. The
interesting bundles are computed from the interesting coalitions. The following algorithm computes
the interesting coalitions. The set of interesting coalitions will always include all singleton coalitions,
we refer to these as trivial coalitions.

Algorithm: maintain a stack V of coalitions, initialized with V = [I], and initialize the set of
interesting coalitions, C∗ = {{i} : i ∈ I \ 0}. while stack, V 6= ∅, pop an element x. if all subsets
of x, including x, are in C∗, then drop x. Otherwise, solve w(x), and let D(x) denote the winning
agents. Add D(x) to the interesting set, unless it is already present. Whether or not x is interesting,
branch on all winning agents in x, generating additional subsets E = {x \ j : ∀j ∈ D(x)}, and
push all x′ ∈ E onto the stack as long as |x′| > 1, or unless there is already an identical set on the
stack. Continue until the stack is empty.

Example. Consider Example 1. Here is a trace of the elements popped from the stack, with
winning agents marked ∗. Initialize C∗ = {1, 2, 3, 4, 5}, and V = [12345]. Pop 1∗23∗45, and add
{13} to C∗. Push 2345 and 1245 onto the stack. Pop 23∗45, but do not add {3} to C∗ because it is
already there. Push 245 onto the stack. Pop 1∗2∗45 and add {12} to C∗. Push 145 onto the stack,
but not 245 because it is already there. Pop 24∗5∗ and add {45} to C∗. Push 24 and 25 onto the
stack. Also consider the tie, with 2∗45, but 2 is already in C∗. Pop 14∗5∗ put don’t add {45} to
C because it is already there. Push 14 and 15 onto the stack. Pop 2∗4, and but drop 24 without
adding any new sets to C∗. Similarly for 25, 45, 14, and 15 which are all popped and dropped until
the stack is empty. Done. At the end the non-trivial interesting coalitions are C∗ = {13, 12, 45}.

21

Once we have the interesting coalitions it is easy to compute the interesting bundles for each
agent. For each agent i, initialize Ti = ∅. Then, for each x ∈ C∗ with i ∈ x, add the bundle that is
allocated to i in the solution to w(x) to Ti. This generates the set of interesting bundles for that
agent.

Example. Back to Example 1. We have C∗ = {1, 2, 3, 4, 5, 13, 12, 45}. Now, take agent 1.
Agent 1 is in interesting coalitions {1, 13, 12}, all times with bundle AB. So T1 = {AB}. Agent 2
is in coalitions {2, 12}, with bundle CD, and T2 = {CD}. Similarly, T3 = {CD}, T4 = {AC} and
T5 = {BD}.

Proof of Core and CE Equivalence.

Lemma 1. Payoffs are in the core in every competitive equilibrium and every set of core payoffs
is supported in some competitive equilibrium.

Proof. (CE ⇒ Core) Consider allocation S, in competitive equilibrium with prices, p. Construct
core payoffs as:

πi = max
S′⊆G

(vi(S′)− pi(S′)), ∀i ∈ I \ 0

with π0 =
∑

i∈I\0 pi(Si). To verify that these payoffs are in the core, first note that we have∑
i∈I πi = w(I), or feasibility, by LP duality. Now, to show π0 ≥ w(L)−

∑
i∈L\0 πi for all L ⊆ I,

consider allocation, SL, that maximizes the payoff (in terms of revenue) to the seller at prices pi

across all allocations to agents L. Let π0(SL) =
∑

i∈L pi(SL,i). By (CS2) we know that π0 ≥ π0(SL),
so it remains to show that π0(SL) ≥ w(L) −

∑
i∈L\0 πi. But, prices pi restricted to i ∈ L define a

feasible dual solution to CAP(L), with dual value π0(SL) +
∑

i∈L\0 πi, which is no less than w(L)
by weak duality.

(Core ⇒ CE) Consider π ∈ Core(I, w). Construct allocation, S∗ = maxS∈X
∑

i∈I\0 vi(Si)
and prices pi(S) = max(0, vi(S) − πi) for all S ⊆ G and all i ∈ I \ 0. Condition (CS1) holds
for agents i 6= 0 by construction, since πi ≤ vi(S∗

i) in the core. Now, the seller’s revenue from
allocation S∗ is simply its core payoff, because π0 = w(I)−

∑
i∈I\0 πi =

∑
i∈I\0 vi(Si)−

∑
i∈I\0 πi =∑

i∈I\0 pi(Si). Condition (CS2) follows. Suppose otherwise, that there is some allocation S′ for
which

∑
i∈I\0 pi(S′

i) > π0, and let K ⊆ I \ 0 denote the set of agents that receive a non-empty
bundle in allocation S′

i. Then, we have
∑

i∈I\0 pi(S′
i) =

∑
i∈K vi(S′

i)−
∑

i∈K πi > π0, which implies
w(K ∪ 0) >

∑
i∈K∪0 πi and a coalition, K, that is blocked. ut

22

References

[Aus97] Lawrence M Ausubel. An efficient ascending-bid auction for multiple objects. Technical
report, Department of Economics, University of Maryland, 1997.

[AM02] Lawrence M Ausubel and Paul R Milgrom. Ascending auctions with package bidding.
Frontiers of Theoretical Economics, 1:1–42, 2002.

[BO02] Sushil Bikchandani and Joseph M Ostroy. The package assignment model. Journal of
Economic Theory, 2002. forthcoming.

[CS83] K Chatterjee and W Samuelson. Bargaining under incomplete information. Operations
Research, 31:835–851, 1983.

[DHM+] M Dunford, K Hoffman, D Menon, R Sultana, and T Wilson. Proposals for computa-
tional aspects of proxy auction design. written communication.

[GS00] Faruk Gul and Ennio Stacchetti. The English auction with differentiated commodities.
Journal of Economic Theory, pages 66–95, 2000.

[KC82] Alexander S Kelso and Vincent P Crawford. Job matching, coalition formation, and
gross substitutes. Econometrica, 50:1483–1504, 1982.

[Mil00] Paul Milgrom. Putting auction theory to work: The simultaneous ascending auction.
Journal of Political Economy, 108:245–272, 2000.

[MS83] Robert B Myerson and Mark A Satterthwaite. Efficient mechanisms for bilateral trading.
Journal of Economic Theory, 28:265–281, 1983.

[Par99] David C Parkes. iBundle: An efficient ascending price bundle auction. In Proc. 1st
ACM Conf. on Electronic Commerce (EC-99), pages 148–157, 1999.

[PKE01a] David C. Parkes, Jayant R. Kalagnanam, and Marta Eso. Achieving budget-balance
with vickrey-based payment schemes in combinatorial exchanges. Technical report, IBM
Research Report RC 22218, 2001.

[PKE01b] David C Parkes, Jayant R Kalagnanam, and Marta Eso. Vickrey-based surplus dis-
tribution in combinatorial exchanges. In Proc. 17th International Joint Conference on
Artificial Intelligence (IJCAI-01), 2001.

[PU00a] David C Parkes and Lyle H Ungar. Iterative combinatorial auctions: Theory and prac-
tice. In Proc. 17th National Conference on Artificial Intelligence (AAAI-00), pages
74–81, July 2000.

[PU00b] David C Parkes and Lyle H Ungar. Preventing strategic manipulation in iterative auc-
tions: Proxy agents and price-adjustment. In Proc. 17th National Conference on Arti-
ficial Intelligence (AAAI-00), pages 82–89, July 2000.

[PU02] David C Parkes and Lyle H Ungar. An ascending-price generalized Vickrey auction.
Technical report, Harvard University, 2002.

23

