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ABSTRACT termines) that a solution should be selected to maximize the total

We model social choice problems in which self interested agents uﬂllt_y a‘XOSS a_II agents. Tk?us, .th's _|sda probt:IenEMClint social .
with private utility functions have to agree on values for a set of C10IC€ As motivation, we have in mind problems such as meeting

variables subject to side constraints. The goal is to implement the sch(;dulmg., where tﬂeéjelplsmns are aboyt when anq wherg o hold
efficient solution, maximizing the total utility across all agents. Ex- ea’(‘i meeting, O][ schedu 'n? contraﬁtorstl)T constrl_Jctlon proleclts.
isting techniques for this problem fall into two groups. Distributed gents can of course solve such problems using a central au-

constraint optimization algorithms can find the solution without thori;y that comEuteshtht\e/oEtimacl:lsollfti?. In co\r/rg)gation r‘}"'ith a
any central authority but are vulnerable to manipulation. Incen- mechanism such as the Vickrey-Clarke-Groves ( ) mechanism,

tive compatible mechanisms can ensure that agents report truthfulV€ ¢an Ialso.prev.ent?aglputl)atlor:j bﬁ/ ageg:s. HOV\;]ever, '?] many
information about their utilities and prevent manipulation of the practical 5?“'_”95 It IS har to oun the problem so_t at such a cen-
outcome but require centralized computation. tral authority is feasible. Consider meeting scheduling: while each

Following the agenda dfistributed implementatiofL6], we in- agent only participates in a few meetings, it is in general not pos-

tegrate these methods and introdddBPOP, the first distributed sible to find a set of meetings that has no further constraints with

optimization protocol thataithfully implements the VCG mech- &Ny other meetings and thus can be optimized separately. Simi-
anism for this problem of efficient social choice. No agent can larly, contractors in a construction project simultaneously work on

benefit by unilaterally deviating from any aspect of the protocol, oﬁher projecés, ag?“”. crga}ting an ur]lpo%nfde(:]_web of dependencies
neither information-revelation, computation, nor communication. that can_not e opt_lml_ze In acentra_l 1zeéd tashion.

The only central authority required is a bank that can extract pay- Algorithms for distributed constraint reasoning such as ABT_ and
ments from agents. In addition, we exploit structure in the problem AWC ([21]), AAS [20], DPOP [17] and ADOPT [14] can deal with

and develop a faithful method to redistribute some of the VCG pay- problems of unbounded size as long as the influence of each agent
ments back to agents. Agents need only communicate with other©N the solution is limited to a bounded number of variables. How-

agents that have an interest in the same variable, and provided thafVe" the Cl;]rfre”nt(;ec?nlqur?s_ do nfot address tge problemhof maklngl
the distributed optimization itself scales the entire method scales to agents truthfully declare their preterences and execute the protoco

roblems of unbounded size. correct_ly. o .
P In this paper, we advance the agendaisfributed implementa-

tion [16], which integrates methods from mechanism design with
1. INTRODUCTION methods from distributed constraint optimization. In distributing
Distributed optimization problems can model environments wherethe centralized computation of mechanism design across a system
a set of agents must agree on a set of decisions subject to sideof self-interested agents the key challenge is to ensure that agents
constraints. We consider settings in which each agent has its owncannot gain from deviating from the distributed protocol. In ad-
preferences on subsets of these decisions, expressed as relatiorfition to information revelation, agents will now be asked to par-
that define its utility. The agents are self interested, and each oneticipate in computation and message passing, both of which can
would like to obtain the decision that maximizes its own utility. provide new opportunities for manipulation. We describe the first
However, the system as whole agrees (or some social designer defaithful distributed constraint optimization algorithm, implement-
ing the VCG outcome without any trusted third party besides a
*The first author is a PhD student at EPFL/Lausanne, supported bybank, used to enforce payments. The protocol formsxapost
the Swiss National Science Foundation grant 200020-103421/1.  Nash equilibrium [12], so that no agent can benefit by unilaterally
TParkes is supported by National Science Foundation grants 11S-deviating, whatever the utility functions of other agents and what-
0238147, 11S-0534620 and an Alfred P. Sloan Foundation award. ever the constraints. While noting that our protogeVerruns at a
deficit, we also demonstrate how to exploit problem structure in fa-
cilitating payment distributiotbackto agents from the bank. To do
this we identify components of the problem that define payments

Permission to make digital or hard copies of all or part of thakvfor that cannot be influenced by some subset of agents, that are then
personal or classroom use is granted without fee providatidbpies are eligible to receive a share of the payments.

Eg;mﬁ%en%iigg glf?éj ttflg ltﬁlrl Eirgtlitozrgf?rt?\rg?irrgltag:ggagtqauge a;tj\fitgg"ig After preliminaries, in Section 3 we describe the DPOP [17] al-
republish, to post on servers or to redistribute to listguiees prior spec’ific gorithm for d|Str|bu.ted constraint optimization, which is the focus
permission and/or a fee. of our study. Section 4 extends DPOP to compute the VCG out-
AAMAS’06May 8—12 2006, Hakodate, Hokkaido, Japan. come and proves that the extended protocol, called MDPOP, is
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faithful. We also provide an accelerated version of MDPOP that
simultaneously computes the solution to the marginal and main
economies, and again establish faithfulness. Section 5 discusses
the issue of budget balance and defines our payment redistribution 4
method.

2. PRELIMINARIES

We assume that the social choice problem consists of a finite but
possibly unbounded number of decisions that all have to be made at
the same time. Each decision is modeled as a variable that can take

The set of variableg’, i.e. the number of decisions, is fixed and
independent of the participating agents. Moreover, each agent
knows the variables that it is interested in.

DomainsD are known to all interested agents.

Each constraint; € C is known to all agents interested in any
variable involved irc;.

The agents with possible and actual interest in a variablare
known to all agents in the community &f;.

An agent can communicate with all agents in all communities

values in a well-defined domain. There can be side constraints be-
tween the variables, and each agent can also have prélat®ns
that define its utility for decisions.

Modeled as a distributed constraint optimization problem,
DCORA) on agents4 we have:

DEFINITION 1. An efficient social choice problem is modeled
as a distributed constraint optimization problem (DCOP) as a tuple
<A, X,D,C,R > such that:

A= {A4,..., A, } is a set obelf-interestedagents interested in
the optimization problem;

X = {X,..,Xn} is the set ofpublic decision variables;
P(A;) C X is the sub-domain of variables on which ageht
could have relations;X (A4;) C P(A;) are the variables in which
agentA; is interested and does have relations;

D = {dy, ...,dn} is the set of finitpublic domains of the vari-
ablesX’; each domain is known to all interested agents;

C ={c1,...,cq} isaset opublic constraints, where a constraint
¢i is afunctione; : d;; x .. X d;;, — {—00,0} that returns 0 for
all allowed combinations of values of the involved variables, and
—oo for disallowed ones; these constraints are known and agreed
upon by all agents involved in the respective communities;

R = {R1,..., R,} is a set ofprivate relations, whereR; is the
set of relations specified by ageAt and relationr] € R; is a
functiond;; x .. x d;,, — R specified by ageml;, which denotes
the utility A; receives for all possible values on the involved vari-
ables{j1,...,jx} (negative values can be thought of as costs).

The optimal solution is a complete instantiatiox™ of all
variables in X, sit. X~ argmazxep (Yo, cr Ri(X) +

Yo e ci(X))h where Ri(X) = 3, 71 (X) is Ay's utility
for this solution.

Refer to the agentsl; for which X; € X (A;) for some vari-
able X; as forming thecommunityfor variable X;. We will use
DCOR—A;) to denote the constraint optimization problem with-
out agentA;, and refer to this as the “marginal problem without
agentA;.”

An agent can also haveprivate variables and rela-

in which it is a member.

Agents are modeled astional but helpfu] meaning that al-
though self-interested, they will follow a protocol whenever
there is no deviation that will make thestrictly better off.

No collusion between agents.
e The problem has a feasible solution.

Catastrophic failure if all agents in a community do not eventu-
ally agree on the same value for the variable.

Every agent has a trusted communication channel with the
bank.

To motivate the assumption that all members of a community are
known to each other, consider meeting scheduling in which the de-
cision variables are the times and locations of each meeting. Here,
we would require that for each meeting there will be a list of par-
ticipants that have to agree on the time and place. Realize that the
only communication that we assume (other than with the bank) is
among agents in the same community.

The assumption of catastrophic failure given disagreement is
only used to ensure that once the multi-agent system has come to
a decision it will be finallyexecutedlt is to prevent “hold-out” by
an unhappy agent at this final stage. Given that the other agents
set their local values to be the agreed upon solution, no agent can
benefit by adopting an alternative view of the decision. To motivate
this, realize that a scheduled meeting where some participants as-
sumed a different time than others would not be valid, benefitting
no one.?

A simple “centralized” model of the DCQRL), which we write
CORA), can be represented asnaultigraph (for example Fig-
ure 1(a)), with the decision variables as nodes, and (possibly) mul-
tiple relations belonging to different agents that involve the same
variables. Our complexity results are stated in terms of the induced
width of this graph ([3]).

In order to allow multiple agents to express preferences on the
same set of variables arid a distributed fashiopwe adopt a dis-
tributed model where each agent has a local replica of the variables
that it is interested in (e.g. Figure 1(b).) For each public variable,
X; € X(A;), agentd; has a local copy oX;, denotedX ;. Agent

tions/constraints imposed on subsets of private variables and publicA: then models its interests as a local probl@@P(X (A;), R:),

variables. Decisions about private variables, as well as explicit in-
formation about these relations and constraints will remain private
to an agent.

In addition to defining values for variables, our faithful protocols
will also define payments, to be collected (or made) to agents. The
only central authority that we require isbankthat can enforce
these payments. Agents are modeled with quasilinear utility func-
tions, so that agents total utility for decisionX and paymenp
made to a bank i®;(X) — p.

The main assumptions made for this paper are as follows:

"Notice that the second sum is eitherc if X is an infeasible
assignment, or O if it is feasible. Thus, optimal soluti&ri will
always satisfy all hard constraints when that is possible.

by specifying its relationﬁf € R; on the locally replicated vari-
ablesX (A;). All copies of the same variable are synchronized be-
tween agents through equality constraints. In solving the problem,
agents interact with others only through the equality constraints be-
tween local replicas of the public variablés.

20n the other hand, this is not an appropriate assumption in market
domains where the decision is a trade of goods: it may infaitie
catastrophic for a seller to finally renege on an agreed trade. Here,
we would need additional techniques such as monitoring to extend
out methods. See Shneidman and Parkes [19] for an extended dis-
cussion of the problem of final execution of an agreement.

SLocal, private variables do not show up in inter-agent communi-
cation. Agents typically need not solve the internal problem for all



(a) Centralized model (b) Distributed model with replicated variables (c) DFS traversal
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Figure 1: A meeting scheduling problem, its modeling as a DCOP with replicated variadtesa DFS arrangement

Example: Meeting Schedulinghis model can be in- Realize that in all problem instances we heler(A4;) > 0,
stantiated for distributed meeting scheduling, yielding the PEAV for all A;, with }°., R;(X";) > >, R;(X") because agent
model [13]. Figure 1 shows an example where 3 agents want to find A;’s presence can only have the efféct of changing the values of
the optimal schedule for 3 meetings. Each agent has as variablesvariables away from the best possible settings just for aggnts

the starting times of the meetings it participates in (elg.M, rep- A;. Thus, we always haveeakbudget-balance, with the center
resents the local copy of the variable representing me@atingor running a surplus in all instances of our social choice problem.
agentA-). Localall-differentconstraints between an agent’s vari- The payment by agentd; can be disaggregated, with

ables ensure that it does not participate in several meetings at theTaz;(A;) = R;(X*;) — R;(X™) denoting the payment made by
same time. Inter-agent equality constraints between local copiesagentA; based on its marginal effect on agetit. Indeed, it can be
corresponding to the same meeting model the requirement of globalfurther disaggregated to the individual relations of agént This
agreement. Unary relations on the starting times of the meetings simple observation will be very powerful in our settifiglt will

(e.g.m2(A2_M;7)) model the preferences of the agents. permit a distributed computation of tax payments, where agent
. . computes the payment that should be made by other agents to the
2.1 The Centralized VCG Mechanism bank for their marginal effect on itself; i.e. ageAt computes

The Vickrey-Clarke-Groves (VCG) mechanism (see Jack- Taz;(A;) for all i # j, which will be possible becausé; will
son [11]) provides a centralized and incentive-compatible (IC) so- know the values on variables of interesthii and X .
lution to efficient social-choice problems. Indeed, the Groves fam-
ily of mechanisms (of which VCG is an instance) are the only effi- 2.2  Distributed Implementation

cient, IC social choice mechanisms [9]. There is a long tradition of  parkes and Shneidman [16, 19] introduce the notiordief
leveraging the VCG mechanism within DAI, going back to Ephrati  tributed implementatiofior social choice problems. A distributed
and Rosenschein [4] who considered the use of VCG meChanismSimpIementation (DN)da =< g, %, s™ >, defines an outcome rule
to achieve consensus. g : ¥" — D x R", whereg; € D defines values on variables
To use the centralized VCG, each agent would report to a cen- andg, € R" defines the payment by each agent, a feasible strategy
ter its relations (and also the domains of variables, and constraintsspaceg, and asuggestedmulti-agent) protocok™. A protocol
if they were not already known by the center). The center would ,, is ex postfaithful if suggested protocal™ is anex postNash
assign values to variables and determine payments to be made byquilibrium (NE), meaning that no agent can benefit by deviating
each agent. The VCG mechanism enjoys a strong form of IC: itis from the protocol in equilibrium (i.e. given that other agents follow
truthful, meaning that each agent can always maximize its own util- the protocol) and whatever the particular instance of DCOP.
ity by reporting true information about its relationshateverthe In a DI, the suggested protoca!”*, combines the information
reports of other agents. Truthful reporting islaminant-strategy  revelation actions of mechanism design with the computational and
equilibrium (DSE), which is useful because it frees an agent from communication actions of distributed algorithms. Thus, in follow-
modeling the behavior of other agents in computing its equilibrium jhg s™ an agent is both revealing information about its private rela-
strategy. Each agent makes a payment equal to the marginal im-tjons and assisting in solving the DCOP and computing payments.
pact of its presence on the rest of the system. In determining this, The outcome rulg defines the assignment of values and payments
the center in the VCG mechanism would also solve the marginal for all possible termination states, including those that could arise
problems DCOP-A4;) without each agemd;. Let X*; denotethe  from unilateral deviations. The feasible strategy spageestricts

solution to DCOR—A;) and X ™ denote the solution to DCQR). the space of actions available to an agent in all possible states of
The payment by ageritto the center is: the protocol, i.e. the messages that an agent can send that are in-
. . terpretable by the other agents given that they are following the
Taz(Ai) = Z (Bi(XZ) — R; (X)), @) suggested protocol.
I Parkes and Shneidman [16] introduced gaetition principle

A; makes a payment equal to the total marginal negative effect of this principle states that a distributed mechanism isearpost
its presence on the utility of other agents.

“See Feigenbaum et al. [6] for a corresponding disaggregated VCG
combinations of values of the public variables [21]. payment in the domain of shortest-path Internet routing.




faithful distributed implementation of efficient social choice if: Algorithm 1: Phase One of DPOP.

(1) optimal solutions are always obtained forCOP(A) and DPOP(A, X, D,C, R):

DCOP(—A;) givens™; (2) agentA; cannot influence either the 1 Each agentd; models its interests aSOP; (X (A;), R;): a
solution to DCOP(—A;) or its tax; (3) the optimal solution of set of relations?; imposed on a seX (4;) of variablesX}
DCOP(A) is correctly executed and the corresponding taxes col-  that each replicate each public variable € X (A;)

lected. 2 Each agent4; subscribes to the communities & € X (4;)

Loosely, the partition principle holds because no agent can af-
fect its payment for any outcome. Thus, it is in the best interest
of every agent to follow the suggested protocol so that the efficient
outcome (i.e. the outcome selected in the VCG mechanism) is se-
lected. The only effect of a deviation by an agent is to change either
the outcome or some other agent’s payment. Truthfulness of VCG
then gives faithfulness. The suggested strategy formexapost
NE but not a DSE because it relies on other agents following the
strategy; if another agent deviates, e.g. from its role in the compu-
tation to solveDCOP(.A), then the correct outcome of the VCG  they are interested in, and learn which other agents belong to these

DFS Generation:
3 The agentsA choose one of the variableX), as the root.
4 Agents inX's community elect a “leader’4,.
5 A, initiates the token passing to construct the DFS
6 Atcompletion, eac; knowsP(X}), PP(X}), C(X}),
PC(X}), for all local copiesX .

mechanism will not be selected. communities.® In doing this theproblem graphis constructed.
In related work, Feigenbaum and colleagues [6, 7] introduced Next, one of the variablesY, is chosen as the DFS root. The
the notion ofdistributed algorithmic mechanism desjgout em- agents involved in the community foX, then randomly choose

phasized complexity questions rather than the faithfulness that is one of them A, as theleader. The local copyX? of variable X,
central to DI; see [19] for a faithful extension. Monderer and Ten- forms the root of the DFS. In the case that the problem is initially
nenholtz [15] consider a distributed single item auction problem, disconnected then a modification is required to choose multiple root
but focus on communication of messages by self-interested agentscommunities, one for each connected component.
rather than distributed computation. Finally, Izmalkov et al. [10] Second, the agents participate in a distributed depth-first traver-
leverage cryptographic methods to convert centralized mechanismssal of the problem graph to construct the DFS for problem
into DIs on fully connected graphs. DCORA), which we denoteDFS(.A). (Multiple DFS trees are
generated for disconnected problems.) For convenience, we de-
scribe the DFS process as a token-passing algorithm in which all
3. DISTRIBUTED OPTIMIZATION VIA members within a community can observe the release or pick up of
DPOP the token by the other agents. But, this can also be implemented

In this section, we instantiate the DPOP algorithm [17] for ef- via (private) message passing. _
ficient social choice. DPOP is an instance of Dechter's general ~Let us refer to the example from Figure 1, and assume/that
bucket elimination scheme [3], adapted for the distributed case. Was chosen as the start community, ahdwas chosen within the
This instantiation runs in three phases, which are very similar to COmmunity as the start noded. creates an empty token, adds
the ones from the standard DPOP protocol. Phase one (section 3.1)12-Ms's ID to the token, and then releases it back to the com-
constructsDFS (.A), which defines the control ordering of the in-  Munity. Another agent fromd/3’'s community (e.g.As) picks up
ference algorithm. Phase two is a bottom-up utility propagation, the token, adds its copy a¥/; to the token {i;_Ms's ID) and
and phase three is a top-down value assignment propagation (se&eleases it againA; picks it up and automatically adds equality
section 3.2). There are some slight differences in phases one andonstraints between its variable, _A/; and all its corresponding
two because we seek to exploit the structure of this DCOP model replica variables that precede it in the context of the tokén i/
with replicated variables, for computational efficiency reasons. ~ and A4;_1Ms) (i.e. one tree edge and one back edge.) Notice that
Notice that DPOP can be applied to disconnected problems asthe result is tha’g all repllcqs of a variable are a}rranged in a chain,
well: the DFS arrangement is then a DFS forest, and agents in each@nd have equality constraints (back-edges) with all the predeces-
connected component simply execute DPOP on a tree of that forest SOrS that are replicas of the same variable.
The solution to the (disconnected) problem is then simply the union  Agent A; also adds its copy of; to the token {4, _M3) and
of optimal solutions for each independent, connected subproblem. @s the last agent in communify/; to receive the token looks to

Section 4 will modify DPOP to make it faithful. see if it is a member of another community that has yet to receive
the token (choosing one at random if such a community exists).
3.1 Phase One: DFS Tree Generation Here, agent4; is linked to community}/; and adds its copy of

See Algorithm 1. This phase has as a goal to generate a depth-M1 to the token (i.eA;M), and then releases the tokenlifi's

. " e community, whereA, picks it up. When a dead end is reached,
first traversal (DFS) of the problem graph in a distributed manner. . )
A DFS arrang(emezlt of a gF:'aph G i% aprooted tree with the same the last agent backtracks by sending the token back to its parent.

nodes and edges as G and the property that adjacent nodes from thlen our example, this happens whetg receives the token from,

original graph fall in the same branch of the tree (thus, there are no in the M|2| cokr‘nmul?lty. ThenAs seﬂds back thehtolﬁenhmz, ete. h
edges between different branches of the tree). Common definitionsEVentua y the token returr_ls on t eésame path all the way to the
of parent, child, pseudoparent, pseudoparent apply. For example,rOOt‘ and then the process is complete.

in Figure 1(c),A2_M; and A>_M> are parent/child to each other,
andA;_Ms; and A, _M,; are pseudoparent/pseudochildee-edges
connect parents/children (e.d-_M; — A>_M>), andback-edges

5A community can be e.g. a bulletin board, a mailing list, etc

5This can be done e.g. randomly, using any distributed algorithm
for random number generation, or by simply picking the variable

connect pseudoparents/pseudochildren (&g s — Ax_Mo). with the highest ID, etc.
First, each agent, formulates internally its interests on the vari- - 7 ary constraints (involving k variables) are treated like a cliques
ablesX (A;) as COP(X(A:), R;), with a replicated variable(; during the DFS construction. Concretely, in Figure 1, there is a

for eachX; € X(A;). All agents subscribe to the communities  ternaryall-diff constraint# Az (M, M2, Ms). A then considers



In constructingDFS(.A), the DFS traversal is made according tion problems. Its complexity lies in the size of th&IL messages
to the structure defined by the relations of the agents. Most hard (the VALUE messages have linear size). This is also true for its
constraints appear thus as backedges in such a DFS tree. By coninstantiation to social choice problems.
vention, any hard constraint € C is assigned to the highest agent Let us denote byw the width of the problem graph for the cen-
in the community of the variable involved i that is lowest in the tralized model of DCORA) (e.g. Figure 1(a)). The induced width
DFS ordering. For example, in Figure 1(c), assume that there is aof a graph is a topological parameter that captures the density and
constraint between/, and M3 that specifies that/> should occur clustering of the graph [3]. It is roughly defined as theximal
after M. With our convention, this constraint becomes a backedge number of overlapping tree paths between any pair of different ver-
between the 2 communities, and is assigneditofor handling, tices In the example from Figure 1y = 2. Let D = max, |dm|
becaused,_Ms; is the highest variable id>’s community, which denote the maximal domain of any variable.
is lower thanM3’s community in the DFSA, then handles this
constraint in parallel with its own relatioA; _Ms-As_Ms.

Realize that the choice of DFS does not change the solution, so
the choice of root node, leaders, etc does not affect the incentive

THEOREM 1. The number of messages passetbisn, (n—1)
and(n—1) for phases one, two and three respectively, whesed
m are the number of nodes and edges in the distributed model.
The maximal amount of computation on any node in DPOP is

properties. O(D¥*1), and the largest UTIL message h@$ D) entries,
3.2 Phases Two and Three: Inference wherew is the width of the centralized problem graph.

Phase 2is a bottom-to-top pass that propagates aggregated in- Sketch of ProofFollows from the analysis of DPOP in Petcu and
formation about the relations towards the root. THEL propaga- Faltings [17], and the fact that equivalent variables use up only one

tion starts bottom-up from the leaves and propagates upwards onlydimension in theJTIL messages (see Section 3.2), and that a di-
through tree edges, from children to parentdJAL message sent  mension is not projected out immediately as it reaches the first tar-

by X; to its parentX;; informs_X; how much utilityu’, (v5) each get variable, but only when it reaches its top most capy.
one of its values/¥ gives to the whole subtree rooted ¥ in the The complexity of DPOP for social choice problems is exponen-
optimal solution. tial in the tree width of the centralized graphical model, but not the

To compute th&JTIL message for its parenk’; has to join the decentralized graphical model which includes the replicated vari-
messages it received from all its children, and the relations it has ables. This is due to the special handling of replica variables de-
with its parent and pseudoparentd. Afterwards, it projects it- scribed in Section 3.2.
self out of the join and sends the result to its parent. The result of
the projection is in fact the set of optimal utilities that can be ob- 4, MDPOP: A FAITHFUL PROTOCOL FOR
tained by the subtree rooted at this node, plus the relations it has DISTRIBUTED OPTIMIZATION

with its parent/pseudoparents, for each combination of values of ) ) ) )
In this section we extend the DPOP algorithm to define-

the parent/pseudoparents (see [17] for details and examples). This ; ) ; . .
projection provides for an efficient algorithm. POP, and prove that MDPOP is a faithful implementation of dis-

A useful optimization for social choice problems can be intro- tributed constraint optimization, terminating with the outcome of
duced to handle replica variables. In the example of Figure 1, the VCG mechanism. We first provide a simple extension, that we
As_Ms, As_Ms and A>_M,; all have back-edges:As M — call simpleMDPOP, before describing our preferred extension, that

As_Ms, As_Ms—As_Ms andAs_M,—Ao_M; respectively. These e call MDPOP.
represent the inequality constraints for agents. Normal DPOP Algorithm 2 Simple-MDPOP.
would conditionUTIL messages on both,_M5; and Az _M3 sep- : - .
arately. For social choice these will adopt the same values due 1 Run DPOP forDCOP (A) on DFS(A); find X
to the equality constraints, and thus the conditioning can be col- 2 forall A; € Ado _
lapsed into a single dimension, the valueMdt. This is possi- 3 | RunDPOP forDCOP(—A;) on DFS(—A;); find X,
ble because all 3 agents involved, i.d;, A> and As know that 4 VA; # Ai, computeTaz;(Ai) = R;(X%;) — R;(X7)
A1 _Ms, As_Ms and As_Ms represent the same variable. 5 | VA; # A, reportTax;(A;) to the bank

Phase 3is a top-to-bottom pass that makes decisions about the & | Bankdeducts, ,; Tax;(A;) from A;'s account
value of variables, with decisions made recursively from the root 7 | A: implementsX™ as solution to its local’O P(A;)
down to the leaves. ThisVALUE propagation” phase is initi-
ated by the agemt,. representing the root variably, once it has
receivedUTIL messages from all of its children. Based on these
UTIL messages, the root assigns itself the valuéhat maximizes
the sum of its own utility and that communicated by all its subtrees.
It then sends ¥ALUE(X? — v*) message to every child. The pro-
cess continues recursively to the leaves, with ag&ntassigning
values to local copies of variables.

Algorithm 2 describes simple-MDPOP. The algorithm is pre-
sented for a setting in which the main problem and the subproblems
are connected but extends immediately to disconnected problems,
as discussed in the previous section and without new incentive
considerations. Notice that the protocol sets up, and then solves,
n + 1 DPOP protocols, one for the main problem and one for the
n marginal problems, with each ageAt removed in turn. Once

3.3 Com plexity Analysis of DPOP thesen + 1 stages are complete every agénthas sufficient local

It has been proved in Petcu and Faltings [17] tb&OP pro- t(nowledge (t)ft:]h? SOlu“OTﬁX ’Xefm}’ f ) ’.X*”.} t?] colrélputi thte
duces a linear number of messages for general distributed optimiza- ax payment that every other age, for « 7 J, should make 1o
the bank because of its marginal effect on agerEach agent will

the variables in the scope of this constraint to be a fully connected finally respect decisioX *, to avoid catastrophic failure.
component, which produces the result from Figure 1(c). ) ) ) ) )

8 k-ary relation is introduced in this join only once, by the lowest ~ THEOREM 2. The simple-MDPOP algorithm is a faithful dis-
node in the DFS tree, which is part of its scope. E.g. in Figure 1(c), tributed implementation of the optimal solution to a DCOP, and
the constraint¢ A (M, M2, M3) is introduced byAd,_Mo. terminates with the outcome of the VCG mechanism.




PrROOF. Follows from the partition principle [16]. First, DPOP  Algorithm 3: MDPOP.

computes optimal solutions to DCQR) and DCOP(—A;) for 1 Run DPOP forDCOP(A) on DFS(A); find X *

all A; € A when every agent follows the protocol. Second, agent » forall A; € A do

A; cannot influence the solution 9COP(—A;) because it is not 3 Create DFS(—A;) by adjusting DFS(A):

involved in that computation. The DFS is constructed and then exclude all variables(! and relations that belong té;;
inference performed by the other agents, who completely ignore the highest descendant of each excludgdhat has a

A;'s variables and constraints, and any messages that agent back edge with an ancestor &F turns it into a tree-edge;
might send. Moreover, agem; is not required to perform any ’

message passing in solving fCOP(— A;). Note thatany hard 4 | Run DPOP for DCOP(—A;) on DFS(—A;):

constraints thatl; may have handled iDCOP(.A) are reassigned children/parents of each excluded recompute their
automatically to some other agentirCOP(—A;). UTIL messages and restart propagations;
Notice that DCOP(—A;) could become disconnected without reuseUTIL msgs fromD POP(A) not influenced byA;;

the presence of agent;. However, as noted in the beginning of 5 | Compute and levy taxes as in simple-MDPOP;
Section 3, DPOP would still soMBCOP(— A;) correctly. Finally, 6 | A;implementsX™ as solution to its local’'O P(A;);
agentA,; cannot prevent the correct calculation and reporting of the
tax it should pay because this is done by ageljtsé A;. The bank

collects payments and all agents finally set local copies of variables when edges that link to nodes owned #yare disabled in solving
as inX* to prevent catastrophic failure. (Notice that agdntwill DCOP(—A4;). Forinstance, in Figure 24, _M;—A; _M3 is atree
not deviate as long as other agents do not deviate. Moreover, if edge inDFS(A), and its removal disconnecBBCOP(—A,)).
agentA; is the only agent that is interested in a variable then its ~ Phase One of MDPOP for a marginal problem. Consider
value is already optimal for agerit; anyway.)O DPOR—A;). In building DFS(—A;) from DFS(A), existing

In particular, notice that we get from the partition principle that Jinks that were back-edges iRFS(.A) can be turned into tree-
no agent has an interest in obstructing the choice of root commu- edges inDF.S(—A;) as necessary to keep it connected. This pre-
nity or leader agent in Phase one of DPOP, or in the information- serves as much as possible of the tree structure. Figure 2 shows an
revelation, computation and message passing in Phases two an(éxample of a commomFS(A), adjusted for each marginal prob-
three of DPOP. Also, no agemt; can usefully influence its pay- lem using this idea. For exampld, _Ms— A»_M is a back-edge

ment by misreporting the local utility of another ageyt asUTIL in DFS(A), but becomes a tree-edge ¥S(—A;) to compen-
messages are exchanged. While this could change the sel€¢tof  sate for the loss of edgé;_M; — A;_Ms. The algorithm works
or X*, for somek # {i,j}, it would notchange the utility in- by considering each of the nod&s belonging toA; in turn. For

formation used in finally determining agedt’s payments because  eachX; that will be excluded from DPOR- 4;), all nodes below
only the utility information local ta4; and known toA; is used in X; check the path from the root to themselves, and the list of nodes
computing the component of;’s payment due to its effect oA, . reachable from their children (both these pieces of information are

Note on antisocial behavior While it is true that an agent; available afterDFS(A) is constructed). The highest node below
has no immediate self-interest in reporting the payment another x; that has a back edge pointing to a node ah&veonverts this
agent should make, it does have a long-term self-interest if it wants edge into a tree edge and converts its pseudo parent into a parent.
other agents to be truthful (e.g. imagine a system where over time  Thus, no additional links are created, as we use only existing
agents realize that the correct payments are not being collectedones, previously designated as back-edges. Realize that this con-
from others). Reporting exaggerated taxes hurts other agents, butsersion, in converting back edges to tree edges, cannot increase the
does not increase one’s own utility, so this is excluded by our as- induced width of DF'S(—A;) above the one oDFS(A), there-
sumption that the agents are self-interested but helpful. fore UTIL messages can only decrease in size.

Phase Two of MDPOP for a marginal problem.Each marginal

4.1 Ful-MDPOP problem is then solved o F'S(—A;). Notice that the parent and

In simple-MDPOR the computation to solve the main problem  children of excluded nodes will have to recompute their messages
is completely isolated from the computation to solve each of the from DPOP(A) to account for the new structure and initiate the
marginal problems. The fuMDPOPalgorithm leverages the com-  corresponding propagation f&POP(—A;).
putation already performed in solving the main problem in solving  Subsequently, any message can be reused iff it comes from a sub-
the marginal problems whenever this is possible and without break- tree that does not contain any df’s variables, becausé; could
ing incentive properties. not have influenced it. E.g. iDPOP(— A1), A2—M; is a child of

This enables the algorithm to scale well to problems where each A, — M; € A;. It has to recompute ITIL message and send it to
agent’s influence is limited to a small part of the entire problém. A, — M5. To do this, it can reuse the message sentiby- M> in

The first stage of MDPOP solves the main problem just as in DPOP(A), because the sending subtree does not contairBy
Simple-MDPOP, running DPQRL). Once this is complete, each  doing so, it reuses the effort spent MPOP(A) to compute the
marginal problem is solved in parallel. To so8COP(—A;), messagesls — My — As— My and Ay — My — As— M.
a DFS-tree is constructed as a modification to RES retaining ) ) ) o
as much of the structure as possible. This maximizes the reuse THEOREM 3. The MDPOP algorithm is a faithful distributed
of UTIL messages. The new treB)F'S(—A;) must be con- |mplementat|on of the optimal solutloq to a DCOP, and terminates
structed in a way that is non-manipulable, i.e. without allowing With the outcome of the VCG mechanism.
agent; to interfere with its construction, and also to ensure correct-

ness. This requires that communities of variables that remain con- . :
: . ; cannot prevent the construction of a valid DFS o€ OP(—A;)
nected INDCOP(—A;) remain connected in thBF5(—A;) tree because in the construction BfF.S(— A;) from the main DFS, all

°For example, in a meeting scheduling problem with thousands of transformations are initiated by neighbors-bf, and all links with
agents, any one agent only participates in a few meetings, in a ratherA; are simply dropped. Second, agérgannot influence the ex-
restricted circle of acquaintances. ecution of DPOP orDCOP(—A;) because all messages that

Sketch of Proof.From the partition principle [16]. First, agent
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Figure 2: Each agent4; is excluded in turn from the optimizatiddCOP(—A;). DFS(—A;) is adapted fromDFS(A).

influenced in the main probledCOP(.A) are recomputed in the  mization problem, some agent would not be considered at all in the
new structure. This follows from the fact that every link where entire problem. It would be more advantageous if various agents
agentA; was responsible for computing a message is eliminated could receivesome portiorof the tax in return fosomereduction
by its neighbors and that all these propagations are restarted. of their influence on the solution.

Consider the VCG payment portion:

5. INCENTIVE COMPATIBLE VCG PAY- tax;(Ai) = rj(XZ;) —ri(X7)

MENT REDISTRIBUTION that is paid in Algorithm 2 by agent; with respect to relation; .

No social choice mechanism can be efficient, incentive- Letr; € Ry, i.e.r; was posted by agenty.
compatible, and individually rational while at the same time guar- ~ We designate an aged, I ¢ {k,i} to receive this payment as
anteeing exact budget-balance [8. In our setting, where there  arefund. A straightforward way to choosk would be to take an
are no positive externalities, the VCG mechanism runs at a sur- agent that did notinfluence the values of any of the variablegiim
plus with the bank receiving a net payment from agents. While the solution. However, this would destroy incentive-compatibility,
these taxes cannot be simply redistributed among the agents, a tasince an agent may now have an incentive to hide its interest in
paymentcan be refunded to an agent; as long as that agent has  order to be eligible to receive the refund. Similarly, an agent could
no influence on the computation of the payments it receives. This have an interest to make other agents look pivotal to increase its
general idea was suggested by Ephrati and Rosenschein ([4]), andwn chance of receiving a refund.
recently explored by Faltings [5] and Cavallo [2]. To avoid such influence}; needs to be chosen independently of
The most straightforward way to implement this idea is to con- the agents’ declarations. Our algorithm does this as follows:
sider any agent that does not influence any of the optimizations
that are used in computing a certain part of the VCG tax as eligi-
ble to receive this tax. However, this approach would not maintain
incentive-compatibility, as an agent with only a small influence on
some aspect of the problem could gain an advantage by misstating 2. For each payment portidnz; (A;), choose an agent; that

1. For each agem;, we use the seP(A;) of the variables on
which the agent could possibility express interest and ignore
its declarations when they involve other variables.

its preferences to become non-pivotal and thus receive a possibly will be eligible to receive it, using any criterion that is not
much larger tax payment. related to the agents’ own declarations. This can be done by

Faltings [5] suggests to deal with this problem by forcing an random selection among agents that cannot possibly be part
agentA; to be non-pivotal independently of its declarations by sim- of the community of the variables.

ply ignoring it in the optimization. In this way, it is guaranteed that ) )
the agent does not have an influence on the tax computation and 3. Using the declarations of the agents, for each payment por-

thus can receive it without creating unwanted incentives. While tion verify that the agentl, chosen to receive it indeed can-
the mechanism may be forced to choose a suboptimal solution, [5] not have any influence on the values of the variables in-
shows through experiments on randomly generated problems that volved. If there is no possible influence, the agent receives
the expected utility loss from suboptimality is much smaller than the payment as a refund, if not, it has to be wasted.

what would result from wasting the taxes.

However, a drawback of this approach is that in a large opti- We now give a brief description of the third step of the algorithm.

This step is important because even an agent not in the community
L°For budget balance in general problems, one can settéxfante of a variable may still be able to influence relations via the propa-

individual-rationality [1] and Bayes-Nash incentive-compatibility, 9ation of its effect over the problem graph.
but this requires the mechanism and agents to have common knowl- We use theomnidirectionalutility propagation from the DPOP
edge about a distribution on agent types. extension presented in [18]. In this version, messages circulate in




all directions along the DFS tree (parent to children, too). A mes- to further improve the net utility of outcomes. Future work should
sage from a parent to its child summarizes the utility information provide a comprehensive empirical analysis, in order to understand
from the entire problem except the subtree of that child. Joining the scheme’s scalability and budget balance properties on realistic
messages from the parent and the children gives each node the samgroblem instances.
global view of the system as the root in the simple DPOP has.
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