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We present a new multiagent model for the multiperiod portfolio selection
problem. A system of cooperative agents divide initial wealth and follow individual
worst-case optimal investment strategies from random portfolios, sharing their final
profits and losses. The multiagent system achieves better average-case performance
than a single agent with the same initial wealth in a simple stochastic market. A
further increase in performance is achieved through communication of hints
between agents and probabilistic strategy-switching. However, this explicit coopera-
tion is redundant in a market that approximates the Capital Asset Pricing Model, a
model of equilibrium stock price dynamics. Journal of Economic Literature Classi-
fication Numbers: C63, C73, D83, G11. � 2001 Academic Press

1. INTRODUCTION

An investment portfolio is an effective way to increase expected long-
Žterm return and decrease risk when investing in a stock market Marko-

.witz, 1959 . Instead of investing in a single stock, an investor can select a
balanced portfolio across different stocks. The portfolio selection problem

Žhas received considerable attention in both the financial Campbell et al.,
. Ž1997; Cover, 1991 and statistics literature Samuelson, 1969; Cover and

.Gluss, 1986; Algoet and Cover, 1988; Cover and Ordentlich, 1996 . In this
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paper we introduce a new multiagent model for multiperiod portfolio
selection, the problem of choosing a sequence of portfolios over time to
maximize a measure of performance that is appropriate for the risk-return
preferences of an investor.

Our model builds on a recent computationally efficient portfolio-selec-
Ž .tion rule for a single agent Helmbold et al., 1998 . We assume a system of

agents that share their initial wealth and make individual investment
decisions, before sharing profits and losses at the end of the final period.
In one variation, called independent search, each agent selects an initial
portfolio and follows the single agent portfolio-selection rule without
communication with other agents. In another variation, called cooperati�e
search, agents can communicate about the recent performance of their
portfolio-selection strategies. Agents choose to switch probabilistically to
the strategy in the population that has been performing best in the recent
past. Similar cooperative search models have enabled exponential perfor-
mance improvements in problem solving domains within artificial intelli-

Ž .gence Clearwater et al., 1991; Hogg and Williams, 1993 .
The independent multiagent search model outperforms a single agent in

a simple simulated market. The simple market is characterized with price
changes independently distributed across stocks. Furthermore, the prices
are exogenous inputs to the system because we assume that the system of
investors is small with respect to the total size of the market. Cooperative
search with explicit communication boosts performance in the same mar-
ket. However, cooperative search performs no better than independent
search in a more realistic market, an approximation to the influential

Ž . Ž .Capital Asset Pricing Market CAPM model Sharpe, 1970 , which intro-
duces correlations between stock prices and constraints on volatility to
model the equilibrium between agent investment decisions and stock price
movements.

The difference in the performance of cooperative search across the
markets can be explained by the nature of the statistics of the market, and
the effect that the statistics have on the nature of the optimal portfolio-
selection strategy. There is a meaningful long-term optimal portfolio in
both markets, at least for a risk-averse expected-utility maximizing in-
vestor, because we assume price dynamics with stationary statistics. Inde-
pendent multiagent search boosts the rate of convergence of the overall
portfolio of the system toward the optimal portfolio in both markets,
compared with the rate of convergence to the optimal portfolio by a single
agent’s portfolio-selection strategy.

Cooperative multiagent search provides a further performance improve-
ment in the simple market. Hint exchange and portfolio switching help to
eliminate bad portfolios from the population in early investment periods.
In comparison, agent communication has a negligible effect on system
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performance in the CAPM market, in which price dynamics already reflect
implicit communication between many agents and all balanced portfolio-
selection strategies perform quite well.

Although a single agent can in principle achieve the same performance
as a multiagent system by simulating the investment strategy of the entire
system, because all agents receive the same stock price information,
multiagent portfolio selection is useful for bounded-rational agents with
limited computational and information processing resources. A single
bounded-rational agent is unable to simulate the entire system and can
benefit from an exchange of information on the performance of the
strategies of other agents. Bounded-rational constraints are especially
relevant for investors in a real market, in which there is a large variety of
stocks and financial instruments and many different sources of information
in addition to price information. Indeed, investment decisions are seldom
made by a single investor in isolation, but only after extensive consultation
and research.

Here is an outline of the paper. In Section 2 we define the multiperiod
portfolio-selection problem, and introduce two common approaches to
solve the problem, model-based and model-free portfolio selection. Model-
free portfolio selection has a number of advantages, and we provide each
agent in our multiagent model with a model-free strategy. Section 3
defines the individual agent portfolio-selection strategy, and demonstrates
its performance in a simple example. In Section 4 we introduce our
multiagent portfolio-selection model. We present its performance in the
simple market in Section 5, and its performance in the CAPM market in
Section 6. We summarize our results in Section 7, before presenting our
main conclusions. The appendix contains proofs and algorithmic descrip-
tions of each multiagent model.

1.1. Related Work

Cooperative search has been applied to hard computational problems in
artificial intelligence with agents that have diverse search heuristics
Ž .Clearwater et al., 1991; Hogg and Williams, 1993 . Agents exchange useful
information to avoid redundant search and accelerate problem solving.
The communication of hints between agents can be more sophisticated
than direct imitation because hints derived from one problem-solving
heuristic can be introduced into a different problem-solving heuristic. A
general theory predicts superlinear speedup in the performance of individ-
ual agents when the search methods are diverse and the agents are able to

Žutilize information found in other parts of the search space Huberman,
.1990 . The current problem of portfolio selection is interesting because it
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Ž .is a stochastic online decision problem Irani and Karlin, 1997 ; agents
must invest as they receive incremental information about stock prices.

Many other problem-solving techniques that are related to cooperative
search have been proposed for solving hard computational problems,

Žincluding: sequential restart strategies with diverse heuristics Selman et
.al., 1992; Luby et al., 1993; Johnson et al., 1989; Boese et al., 1994 , and

Žparallel independent search with stochastic search algorithms Rao and
Kumar, 1993; Luby and Ertel, 1994; Kauffman and Levin, 1987; Kornfeld,

. Ž .1981; Huberman et al., 1997 . Knight 1993 compares the performance of
a system of many cooperative agents with simple search heuristics to a
system of a few agents with more complex search heuristics, and Aldous

Ž .and Vazirani 1994 describe a cooperative search technique called ‘‘Go
with the winners.’’

Game theorists have proposed a model of social learning, or learning by
Žimitation, to generate solutions in coordination games Ellison and Fuden-

.berg, 1993; Bikchandani et al., 1992 . This is related to our model of
cooperative search. Agents share information as they learn, about their
recent strategies and payoffs received, and take advantage of information
about the payoffs and strategy choices of other agents with similar goals.

We model bounded-rational agents that can benefit computationally
from cooperation with other agents because they are unable to compute
optimal investment strategies directly. The agents in our model use a
first-order approximation to a worst-case optimal portfolio-selection rule,
which is similar to the approach to bounded rationality in game theory,

Ž .placing a static constraint on the complexity on agents Rubinstein, 1998 .
In comparison, economic models of metadeliberation select a level of
deliberation within a decision-theoretic framework, based on the expected

Žvalue of further deliberation Good, 1971; Simon, 1976; Russell and
.Wefald, 1991 .

In contrast to the recent literature on bounded-rational learning in
Ž .games Kalai and Lehrer, 1993; Milgrom and Roberts, 1991 , we assume in

Ž .the portfolio-selection problem that an agent’s opponent the market
plays the same strategy for all agent strategies. Prices do not depend on
investment actions. Furthermore, there is no exploration versus exploita-
tion problem, as occurs for example in the classic Multiarmed bandit

Ž .problem Rothschild, 1974; Auer et al., 1995 , because we assume that all
agents receive the same price information, irrespective of their portfolio
selection.

The usual emphasis in game theory is on model-based learning, for
Ž .example, Fictitious Play Fudenberg and Kreps, 1993 and other models of

Ž .myopic best-response dynamics Young, 1993; Kandori et al., 1993 , where
agents play a best-response to a model that they learn of their opponents.
Recent models of multiagent learning within artificial intelligence provide
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Ža hierarchy of agent models and allow strategic learning Gmytrasiewicz
.and Durfee, 1995; Wellman and Hu, 1998; Vidal and Durfee, 1998 , where

agents take advantage of models of the learning of other agents. Instead,
we follow the framework of model-free learning: the agents in our model do
not maintain an explicit model of the stock market. The current portfolio
of an agent represents the cumulative learning of the agent, and the agent
makes a small adjustment to its portfolio every time it observes new stock

Ž .prices Helmbold et al., 1998 . For an example of model-free learning in
Ž .games, see Sandholm and Crites’ 1995 application of Q-learning to the

classic Prisoner’s Dilemma game.
The portfolio-selection problem has characteristics different from the

Ž .multiagent load-balancing problem studied by Schaerf et al. 1995 . In that
study communication between agents reduces performance because a
resource which is lightly loaded when used by a single agent becomes
heavily loaded when used by many agents. Communication reduces the
heterogeneity of agent decisions and leads to unbalanced loads and system
instability. In our model of portfolio selection the stock prices are exoge-
nous and independent of investment actions. Hence, all agents can achieve
a good performance even if they all follow the same strategy.

A similar comparison can be made with work in the agent-based
Ž .computational economics ACE literature. ACE studies the dynamics of

prices generated endogenously through the actions of many simple agents
ŽLeBaron et al., 1997; Epstein and Axtell, 1996; Arthur et al., 1997; Levy,

.1997 , and builds markets from the ‘‘bottom up’’ in order to understand
the connection between simple agent actions and price dynamics. We
consider investment in a large market with stock price dynamics that are
independent of the investment decisions of the investment group.

2. THE MULTIPERIOD PORTFOLIO-SELECTION
PROBLEM

In general terms, the multiperiod portfolio-selection problem is to invest
over a sequence of periods to maximize some measure of performance
over the final return-on-investment.

Consider a market of N stocks with t � 1, . . . , T discrete investment
periods. Let x t denote the price relati�e of stock i in period t, the ratio ofi
closing price to opening price over the period. This is nonnegative by

Ž . Ndefinition. The vector w � w , . . . , w , where w � 0 and Ý w � 11 N i i�1 i
defines a portfolio, where w is the fraction of total investment in stock i.i
The return-on-in�estment in a single period, for an agent with portfolio w

Ž .and price relatives x � x , . . . , x , is given by the weighted sum over all1 N
stocks, w � x � ÝN w x .i�1 i i
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In multiperiod portfolio selection over T investment periods the return
1 � T 4on investment, RR, for an agent with a sequence of portfolios, w �

1 T � T 4 1 Tw , . . . , w , and a sequence of stock price relatives, x � x , . . . , x , is the
product of single period returns, RR � ŁT w t � x t. The goal of multi-t�1
period portfolio selection is to select a sequence of portfolio strategies,
� T 4w , to maximize a measure of performance over the final return-on-in-
vestment. The appropriate performance metric depends on an agent’s
risk-return preferences.

The offline multiperiod portfolio selection problem with knowledge of
the sequence of stock prices is trivial. The optimal strategy with hindsight
switches all investment at the start of each period to the stock with the
greatest return in that period. In our main experimental results the
performance of the optimal constant portfolio with hindsight provides a
useful benchmark for the performance of our multiagent portfolio-selec-
tion models.

The online multiperiod portfolio-selection problem is hard because
future stock prices are unknown and an agent must choose a portfolio w t

for investment period t without knowledge of the price relatives x t. This is
Ž .an online decision problem Irani and Karlin, 1997 because decisions must

be made as new information arrives.
There are two common approaches to online multiperiod portfolio

selection: model-based and model-free portfolio selection. In model-based
portfolio selection, agents have access to a statistical model of stock price
dynamics. This allows the problem to be formulated and solved as a
stochastic optimization problem. In model-free portfolio selection, agents
have no statistical model of stock dynamics and stock prices can be
arbitrary sequences. The agents in our model of portfolio selection follow
a model-free portfolio-selection strategy.

2.1. Model-Based Portfolio Selection

Briefly, model-based portfolio selection assumes a statistical model of
stock price dynamics, based for example on the past performance of the
market, and agents choose a sequence of portfolios to maximize expected
utility over return-on-investment. An agent learns a model of its environ-
ment, and then plays a best-response to that model.

Nonlinear stochastic dynamic programming techniques can solve the
portfolio selection problem directly for a restricted class of utility functions

Ž .and market models Bertsekas, 1987 . The optimal portfolio strategy de-
pends on the risk preferences of the agent, as represented by a utility

1 We use return-on-in�estment and wealth interchangeably in this paper because we assume
throughout that the total initial wealth of all systems of agents is $1.
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Ž .function over return-on-investment Borch, 1968 . A good investment strat-
egy trades off expected return and variance to maximize expected utility.
For example, a concave-increasing utility function represents a risk-averse
agent which is prepared to reduce expected return in favor of lower risk.

Although model-based approaches can be computationally tractable,
their performance depends on the accuracy of the underlying stock market
model. Parameter estimation for a stochastic economic model is a difficult

Ž .problem Borch, 1968; Campbell et al., 1997 . Furthermore, solution tech-
niques assume stock price dynamics with stationary statistics, and invest-
ment strategies are not robust to shocks.

2.2. Model-Free Portfolio Selection

Having noted the limitations of model-based portfolio selection, we now
introduce model-free portfolio selection, which makes no assumptions about
the underlying stock prices and avoids the parameter estimation problem
Ž .Cover, 1991 . Agents learn an optimal portfolio-selection strategy directly,
without forming an explicit model of stock price dynamics.

An immediate problem in model-free portfolio selection is how to
measure performance. Average-case analysis, which makes claims about
the expected performance of a strategy, is not meaningful without a
statistical model. Furthermore, all strategies have bad worst-case perfor-
mance; consider an adversary that chooses stock prices such that the
stocks held in the portfolio in each investment period devalue.

A useful technique in the design and analysis of online algorithms is
competiti�e analysis, in which performance is measured by comparison with
an optimal offline algorithm which takes the same decisions but has
information about all future inputs. A competitive algorithm must perform
well relative only to the difficulty of a problem instance, as measured by
the performance of the offline algorithm. A number of portfolio-selection
strategies exist with competiti�e performance with respect to a class of
offline strategies.

In this paper we provide each agent with a strongly-competiti�e portfolio-
Ž .selection strategy Helmbold et al., 1998 . A strongly-competitive strategy

has an optimal worst-case performance guarantee. We assume in the
following definition that the decision problem is a maximization problem.

Competitive analysis requires a comparison set of algorithms from which
to choose the optimal offline algorithm, and a performance metric, Perf .comp

Ž� T 4.Let online x denote the return-on-investment from an online
Ž� T 4.portfolio-selection strategy, and offline x denote the return-on-invest-

Žment from an optimal offline portfolio-selection strategy that can invest
.with hindsight of all future stock prices , perhaps constrained to a compar-

ison set.
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The online portfolio strategy is strongly competitive with respect to
performance-measure Perf : � � �, such that the agent wants to maxi-comp

Ž .mize Perf RR given return RR, when:comp

Ž . Ž� T 4.DEFINITION 2.1 Strongly Competitive . Online algorithm online x
is strongly-competitive with respect to performance measure Perf ifcomp
its worst-case performance is equal to the optimal offline algorithm

Ž� T 4.offline x in the long term:

T� 4Perf online xŽ .Ž .comp
lim min � 1TT � 4Perf offline xT�� � 4 Ž .Ž .x comp

� T 4where the minimization is over all feasible input sequences, x of length
T.

An offline portfolio-selection strategy can invest with hindsight, that is
with information about all future stock price changes. The optimal unre-
stricted offline investment strategy, which shifts all investment at the start
of each period to the single stock that will show the greatest return in that
period, does not provide a useful benchmark.

Ž .Cover 1991 proposed a model-free portfolio-selection algorithm, UNI-
VERSAL, and demonstrated that it is strongly-competitive with the set of

Ž .constant rebalanced portfolios CRP in terms of per-period return-on-in�est-
Ž . 1� Tment; performance is defined as Perf RR � RR , for return RR �comp

ŁT w t � x t after T investment periods.t�1
A strongly-competitive portfolio-selection strategy, such as UNIVERSAL,

achieves the same long-term per-period return as the best offline CRP for
any sequence of stock prices. In Section 3 we introduce a simple model-free

Ž .portfolio-selection rule from Helmbold et al. 1998 with the same prop-
erty. The rule is followed by individual agents in our multiagent system.

The offline portfolio strategies are constrained to the set of constant
rebalanced portfolios which are multiperiod portfolio strategies that main-
tain the same portfolio across all periods. An agent with a constant
rebalanced portfolio trades in each period to rebalance its investment,
selling stocks that outperform the portfolio and buying stocks that under-
perform the portfolio.

Ž .DEFINITION 2.2 Best Offline Constant Rebalanced Portfolio . The best
offline CRP, w� , computed with complete information on the sequence ofC R P

� T 4 1 Tstock prices, x � x , . . . , x , maximizes final return-on-investment:

T
� T t� 4w x � arg max w � x 1Ž .Ž . ŁC R P

w t�1

where the maximization is over all constant rebalanced portfolios.
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The offline problem is deterministic, and the objective can be accurately
stated in terms of return alone, irrespective of an agent’s risk-preferences.

2.3. An Economic Interpretation of Competiti�e Portfolio Selection

The performance of the long-term optimal offline CRP, denoted w*,
Ž .which solves 1 as T � �, provides a good benchmark because: its return

is at least as large as the return-on-investment from the best single stock,
since buy-and-hold of a single stock is a special case of a CRP; and its
return is at least as large as the return-on-investment from the best online
strategy when price changes are independent and identically distributed

Ž .from period to period Algoet, 1992 . This is quite surprising, given that we
only allow offline strategies that are constant rebalanced portfolios.

In a market with stationary, independent, and identically distributed
price relatives x t from period-to-period, the long-term optimal offline CRP,
w*, is well defined. It maximizes the single-period expected log return-on-

Ž .investment see Appendix A .
When we also make a common assumption in the literature on financial

optimization that agents have a logarithmic utility function for return-on-
Ž . Ž .investment, u : � � �, such that u RR � log RR , then there is an eco-i i

nomic interpretation of the performance of the long-term optimal CRP over
a finite number of investment periods.

A logarithmic utility function represents the preferences of a risk-averse
investor, and is useful because it allows tractable analysis. With a utility
function the performance of a portfolio-selection strategy can be measured
in terms of expected utility.2

Ž .DEFINITION 2.3 Performance Measure . The performance, Perf, of a
� T 4multiperiod portfolio strategy w for an agent with a logarithmic utility

for return-on-investment is:

T
t t

TPerf � E log w � xŁ�x 4 ž /t�1

� T 4where the expectation is taken over sequences of price relatives, x ,
distributed according to market price dynamics, and T is the number of
investment periods.

The long-term optimal offline CRP maximizes the expected utility of an
agent for a finite number of investment periods:

THEOREM 2.1. The long-term optimal offline constant rebalanced portfo-
lio, w*, in a market with nonnegati�e, independent, and identically distributed

2 The reader should be careful not to confuse this term with Perf , the metric tocomp
measure the strong-competitiveness of a strategy.
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price relati�es, maximizes expected utility after any finite number of in�estment
periods for an agent with a logarithmic utility for return-on-in�estment.

The long-term optimal portfolio, w*, also lies on the efficient frontier
Ž .Markowitz, 1959 . Markowitz introduced a single period mean-variance
approximation to simplify portfolio selection; with ‘‘risk’’ quantified as the
standard deviation of return from period to period, and ‘‘return’’ quanti-
fied as the expected single-period return. With this approximation, portfo-
lio selection reduces to the selection of a portfolio on the efficient frontier
for a particular return:

Ž .DEFINITION 2.4 The Efficient Frontier . The efficient frontier is the set
of all portfolios that minimize risk for some level of return.

It is not optimal to merely invest in the single stock with the highest
return. The variance in return from period to period is also important
because wealth is reinvested at the start of each period, and also because
agents tend to be risk-averse.

THEOREM 2.2. The long-term optimal offline constant rebalanced portfo-
lio, w*, in a market with nonnegati�e, independent, and identically distributed
price relati�es lies on the efficient frontier.

Given this analysis, a model-free portfolio-selection strategy that is
strongly competitive with the long-term optimal CRP, w*, should have
useful economic properties, so long as it converges quickly enough.

3. A COMPETITIVE PORTFOLIO-SELECTION STRATEGY

Each agent in our multiagent model for portfolio selection follows an
approximation, � 2, to a model-free portfolio-selection rule EG which is
strongly competitive with the best offline constant rebalanced portfolio
Ž .Helmbold et al., 1998 .

The update-rule, � 2, adjusts the portfolio on the basis of its recent
performance and recent price dynamics. It has worst-case time and space
complexity that is linear in the number of stocks.3 It was developed within
a framework of multiplicative updates for online prediction in machine

Ž .learning theory Littlestone and Warmuth, 1994 .

Ž 2 .DEFINITION 3.1 The � Portfolio-Selection Rule . Choose an initial
portfolio at random. The portfolio in period t � 1, portfolio w t�1, is
computed from the current portfolio, w t, and the price relatives in the

3 In comparison, UNIVERSAL has exponential worst-case time and space complexity in the
number of stocks.
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most recent investment period, x t:

x t
it�1 tw � w � � 1 � 1i i t tž /ž /w � x

where � � 0 is the learning rate.

The rule increases the fraction of wealth invested in stocks that outper-
form the portfolio and decreases investment in stocks that underperform
the portfolio; notice that w t�1 � w t � x t � w t � x t. It is model-free be-i i i
cause the strategy is updated directly from the price changes, without
forming an explicit model of the stock market dynamics. The current
portfolio strategy, w t, implicitly represents the cumulative information that
an agent has learned about the stock price dynamics up to period t.

Portfolio update with � 2 is a compromise between long-term learning,
retaining information about previous stock-price dynamics, and responsive-
ness, moving in a direction that will give a better performance if price
relatives in the current period characterize future periods. The learning

Ž .rate, �, determines how this tradeoff is made see Section 5 .
Recall that a constant rebalanced portfolio maintains the same propor-

tion of wealth invested across all stocks in every investment period, trading
to sell stocks that outperform the portfolio and buy stocks that underper-
form the portfolio. The � 2 portfolio-selection rule converges toward the
optimal offline CRP over time in a market with stationary statistics.

Ž .However, strongly-competitive performance with metric Perf RR �comp
RR1� T is not sufficient for optimal expected end-period utility. Although the

Žoptimal offline portfolio w*, maximizes end-period expected utility Theo-
. 2rem 2.1 , the performance of � depends on the speed-of-convergence to

w*.
We show that our multiagent model, in which agents each follow local

� 2-update rules from a random initial portfolio, achieves better expected
utility because it boosts the rate of convergence of the overall portfolio in
the system toward the optimal portfolio. An agent that quickly adjusts its
portfolio to the optimal CRP achieves a greater return-on-investment than
an agent that adjusts its portfolio more slowly.

3.1. Example: Single-Agent Portfolio Selection

This example shows the effect of investment by a single agent with the
� 2 portfolio-selection rule in a simulated market. The best offline CRP

exponentially outperforms the best single stock buy-and-hold policy. Fur-
thermore, � 2 tracks the wealth from the best CRP to within a constant
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Ž .FIG. 1. Wealth log-scale versus investment period for the best offline constant rebal-
Ž . 2 Ž .anced portfolio BCRP , the portfolio selection rule � adaptive , and buy-and-hold in each

stock. Stock 1 closes at $0.69, stock 2 at $0.00, while the final wealth from � 2 is $218,000 and
from the best CRP is $9,860,000.

logarithmic difference and exponentially outperforms the best single stock
buy-and-hold policy.

Consider two stocks with Normally distributed price relatives, x �i
Ž 2 . 2N � , � , with mean � and variance � . This is the standard geometrici i i i

ŽBrownian motion model of stock price dynamics see Section 5 for more
.details . Recall that the price relative is the ratio of price in perod t � 1 to

price in period t. In this example stock 1 is generated with price relatives
Ž . Ž .x � N 1.005, 0.1 , and stock 2 with price relatives x � N 1.0005, 0.05 .1 2

Stock 1 has a high expected single-period return, and a high volatility
across periods, while stock 2 has a low expected single-period return and a
low volatility across periods. This partial correlation between return and
risk across stocks is typical of real markets.

Figure 1 plots final wealth from the � 2 rule, buy-and-hold in each stock,
and the best offline CRP, for a particular sequence of simulated stock

2 Žprices. The � rule exponentially outperforms both stocks note that
.wealth is plotted on a log-scale . Stock 1 closes at $0.69, and stock 2 at

$0.00, both from an initial price of $1.00, while the final wealth of the
agent is $218,000. Remember that the final wealth from the best offline
CRP, $9,860,000, is unattainable. The adaptive agent is able to maintain a
constant logarithmic difference between its wealth and the wealth of the
best CRP; this indicates its strongly competitive performance.
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2 Ž .FIG. 2. The � portfolio solid and the best offline constant rebalanced portfolio
Ž .dashed . The best offline CRP is computed incrementally for each investment period t, on the
basis of the stock price information up to period t.

2 Ž .Figure 2 shows that the portfolio selected by � solid tracks the best
Ž .CRP dashed , and converges to the best long-term offline CRP, which is
Ž .w* � 0.547, 0.453 for stocks with these statistics. The best offline CRP is

plotted incrementally, for prices up to period t, to provide a comparison
with the portfolio selected by the online portfolio selection rule in each
period.

In Figure 3 we plot the single-period risk-return characteristics for all
portfolios. The best long-term CRP lies on the efficient frontier, the set of
portfolios that minimize variance in period-to-period return for some
expected period-to-period return. It is interesting that a model-free portfo-
lio-selection rule, such as � 2, can select a portfolio that lies on the
efficient frontier without learning an explicit model of market price dy-
namics.

4. COOPERATIVE MULTIAGENT SEARCH

We propose a new multiagent model for portfolio selection which
combines the investment decisions of a system of agents that follow local
� 2 portfolio-selection strategies. We model an ‘‘investment group’’ in
which agents combine their initial wealth and divide it among the agents.
Individual agents make autonomous investment decisions in each invest-
ment period, before sharing profits and losses at the end of the investment.
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Ž .FIG. 3. Expected single period return-on-investment versus variance in return risk . The
efficient frontier, the set of portfolios that minimize risk for some level of return, is illustrated
with a solid line between C and A. The long-term optimal constant rebalanced portfolio,

Ž . 2w* � 0.547, 0.453 , selected by � , lies on the efficient frontier.

It is useful to define the o�erall portfolio w t of a system of agents ine
round t. This is the single portfolio with the same return-on-investment as
the joint return from each agent’s portfolio. It is computed as the weighted
average of each agent’s portfolio, with weight proportional to an agent’s
wealth:

Ž . tDEFINITION 4.1 Overall Portfolio . Given portfolio, w , for agent i ini
period t, the overall portfolio, w t ise

M twealth it tw � wÝe iM tž /Ý wealthj�1 ji�1

where wealth t is the wealth of agent i at the start of period t, and therei
are M agents.

Here are brief descriptions of the three models of multiagent portfolio
selection. See Appendix B for algorithmic descriptions of each model.

4.1. Non-adapti�e Independent Search

First, we consider a very simple multiagent system that performs non-
adapti�e independent search, in which agents choose initial portfolios at
random and invest in the same portfolio for all investment periods, trading
to rebalance the portfolio as necessary. The non-adaptive independent



PARKES AND HUBERMAN138

system provides a performance baseline. It separates the effect of agent
Ž .heterogeneity from selecting random initial portfolios and the effect of

single-agent learning. In fact, the system is a multiagent approximation to
Cover’s UNIVERSAL portfolio-selection algorithm. The approximation is

Žexact in the limit, as the number of agents gets large Blum and Kalai,
.1999 .

Given N stocks, in each model we select initial portfolios for agents at
Ž .random from the Dirichlet 1�N, . . . , 1�N distribution, which is a general-

ization of the uniform distribution to the space of feasible portfolios which
generates N-dimensional vectors with nonnegative components that sum

Ž .to one and mean 1�N, . . . , 1�N . Each agent trades to rebalance its
portfolio and maintain its initial portfolio across all investment periods. An
agent sells stocks that outperform the portfolio and buys stocks that
underperform the portfolio.

4.2. Independent Search

Then, we consider a system of independent search, in which each agent
follows the � 2 portfolio-selection rule from a random initial portfolio. The
independent search model combines agent heterogeneity with individual
agent learning.

Each agent adjusts its portfolio across investment periods with the � 2

portfolio-update rule, which is initialized with a learning-rate from a
Ž .uniform distribution, � � U � , � , where � and � are lower and upperi l h l h

bounds. Parameters � and � are selected offline to provide reasonablel h
performance across all experiments.

The overall portfolio of the independent search model remains strongly
Ž .competitive Definition 2.1 if individual agents have strongly-competitive

portfolio-selection strategies.

THEOREM 4.1. The o�erall portfolio-selection strategy of the independent
multiagent search model is strongly competiti�e if indi�idual agents ha�e
strongly-competiti�e portfolio-selection strategies.

4.3. Cooperati�e Search

Finally, we consider a model of cooperati�e search, which introduces
explicit communication between agents to the model of independent search.
Agents can exchange information about the recent performance of their
portfolios, and switch probabilistically to the portfolio with the best perfor-
mance. The cooperative search model is designed to speed up multiagent
search for a good portfolio, through discontinuous updates in the portfo-
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lios of individual agents toward portfolios which are performing well in the
population of agents.

The current portfolio and learning rate of an agent with the � 2 rule
define its future portfolio selection for any sequence of stock price move-
ments. Therefore, when an agent in the cooperative search model switches
to the portfolio of another agent, both agents follow the same future
portfolio investments to the extent that the agents have the same learning
rates, at least until either agent switches to another portfolio.

Each agent adjusts its portfolio across investment periods with the � 2

portfolio-update rule, and also announces the recent performance of its
portfolio strategy and switches probabilistically to the best system-wide
portfolio.

In particular, each agent maintains the average return of its recent
investment strategy over a finite number of recent periods, � , its perfor-
mance window size, and posts its current portfolio and recent performance
to a central blackboard at the end of every period. The blackboard
maintains the portfolio that is performing best over all the agents. If an
agent’s own portfolio is performing worse than the best system-wide
portfolio it switches to that portfolio with probability p, its switching
probability. Agents only post to the blackboard and test the blackboard for
hints if they have not switched portfolio for at least � periods. This
prevents thrashing of agent strategies and avoids early lock-in to a single
strategy.

In our simulations, we provide all agents with the same window size and
switching probability. The parameters are optimized offline for each set of
problems.

4.4. Market Models and Experimental Tests

Experimentally, the models are tested in two different markets. The first
is a simple stochastic market with independent stock price dynamics across
stocks, the second is a more realistic market that approximates the Capital

Ž .Asset Pricing Model CAPM market and models equilibrium price dynam-
Ž .ics Sharpe, 1970 . In both markets, the investment groups are assumed to

be small with respect to the total market, and we treat prices as exogenous
variables. Independent search performs better than a single agent in both
markets, and cooperative search outperforms independent search in the
Simple market.

In Sections 5 and 6 we show that the structure of the search problem
depends on the market statistics, and explain why cooperative search
outperforms independent search in the Simple market but is less useful in
CAPM. A system which selects an overall portfolio that converges quickly
toward the optimal offline portfolio has a good overall performance, and
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the location of the optimal portfolio in the overall search space depends
on the market statistics.

5. PERFORMANCE IN A SIMPLE MARKET MODEL

In this section we consider a simple nonequilibrium stock market, called
the Simple market. In this market each stock is a geometric Brownian

Žmotion stochastic process with price relatives ratio of prices in successive
.periods independent and identically distributed according to a Normal

Ž 2 .distribution, i.e., x � N � , � with mean � and standard deviation � .i i i i i

This model is often used in theoretical studies of investment strategies
Ž .Dixit and Pindyck, 1994 .

The mean and standard deviation for each stock are selected indepen-
Ž .dently in each trial from uniform distributions � � U � , � and � �i l h i

Ž .U � , � , for lower and upper bounds � , � and � , � . The dynamics ofl h l l h h

price changes are independent across stocks and there is no correlation
between return and risk across stocks.

5.1. Experimental Details

The performance of each investment model is tested in a market with
10 stocks and an investment of duration 2000 periods, with means and
standard deviations for each stock drawn from distributions � �i
Ž . Ž .U 0.9995, 1.01 and � � U 0.0, 0.2 . These statistics are appropriate fori

the monthly returns on real stocks. For example, the mean monthly return
on stock in IBM between 1962 and 1994 was 1.0081, and the standard

Ž .deviation in monthly return was 0.062 Campbell et al., 1997, p. 21 . In
Ž .each trial we first selected the market parameters � , . . . , � and1 N

Ž .� , . . . , � , and then generated a sequence of stock prices. The perfor-1 N

mance of all multiagent models is compared for the same stock prices.
The systems are tested with between 1 and 800 agents, to study the

relationship between the number of agents in an investment group and its
performance. Performance is measured as the average end-period log
return-on-investment across 2000 independent trials. We assume

Žexpected-utility maximizing agents with logarithmic utility functions Def-
.inition 2.3 .

A random initial portfolio is generated for each agent in each trial,
1 Ž .w � Dirichlet 1�N, . . . , 1�N , and a random learning rate, � �
Ž .U 0.1, 0.15 , is assigned. This distribution of learning rates gives a good

performance across all sizes of models. The switching probability and
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performance window size are the same for every agent, and optimized for
the number of agents, with switching probability p � 0.004 and perfor-
mance window � � 200 typical.

5.2. Results in the Simple Market

The performance of each multiagent portfolio-selection model is com-
pared in Fig. 4. The best offline CRP with hindsight of stock price
movements, computed in each trial with an algorithm due to Helmbold et

Ž . Ž .al. 1997 , achieved Perf BCRP � 16.0 in this market.
The experimental results show that:

Ž .a A single adaptive agent outperforms a single non-adaptive agent.

Ž . Žb A system of non-adaptive agents independent non-adaptive
.search outperforms a single non-adaptive agent.

Ž . Ž .c A system of adaptive agents independent search outperforms a
single adaptive agent and a system of non-adaptive agents.

Ž . Ž .d Hint exchange and strategy switching cooperative search pro-
vide a further increase in performance, and the value of communication

ŽFIG. 4. Simple market. The performance of the non-adaptive independent search non-
. Ž . Ž .adaptive , independent search adaptive , and cooperative search communicating models.
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Ž .FIG. 5. Simple market. Final wealth in 2000 trials of a system of independent search dots
Ž .and a system of non-adaptive independent search line for investment groups of 100 agents.

The trials are sorted by the final wealth of the non-adaptive agents.

increases as the number of agents increases. Cooperative search outper-
forms independent search when there are more than 50 agents.4

Ž .Figure 5 a shows an example of the effect of introducing adaptive
agents. It plots the performance of a system with 100 non-adaptive inde-

Ž .pendent agents line and a system with 100 adaptive independent agents
Ž .dots . Each data point corresponds to the overall performance of a system

4 The null hypothesis that the mean end-period log wealth for a system of communicating
agents and a system of non-communicating agents is equal is rejected with a significance level
of less than 0.01 for systems with more than 50 agents.
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in a single trial, and the trials are sorted by the final wealth of the
non-adaptive system of agents for clarity. The system of adaptive agents
outperforms the system of non-adaptive agents, achieving a better return-
on-investment in almost every trial.

Ž .Figure 6 a shows an example of the effect of introducing cooperative
search. It plots the ratio of final wealth of the cooperative search model to
the independent search model, for 400 agents with � � 200 and p � 0.004.

FIG. 6. Distribution over 200 trials of the ratio of the final wealth of a system of
Ž .cooperative multiagent search communicating to final wealth of a system of independent

Ž .multiagent search independent , with 400 agents. In the Simple market communication
improves final wealth in 75% of the trials, with an average wealth 1.47 times greater. In the
CAPM market communication improves final wealth in 53% of the trials, with an average
wealth 1.05 times greater.
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The cooperative search system achieves a better return in 75% of the
trials, with a final return-on-investment 1.47 times greater on average.

5.3. Analysis for the Simple Market

Ž .Result a can be explained with existing theory; we expect a single
adaptive agent to outperform a single non-adaptive agent from the analysis

2 Ž .and empirical results for � in Helmbold et al. 1998 . Similarly, we expect
a system of independent non-adaptive agents to outperform a single

Ž .non-adaptive agent, result b , because the system implements a random-
ized approximation to UNIVERSAL, a strongly-competitive portfolio selec-

Ž .tion strategy Blum and Kalai, 1999 .
Ž . Ž .Results c and d demonstrate new and interesting effects. The inde-

pendent search model, which combines individual-agent learning with
diversification from the random initial portfolios of each agent, outper-

Ž .forms both a system of non-adaptive agents and a single adaptive agent c .
The effect on performance from adaptive individual-agent portfolio selec-
tion appears to be independent and additive of the effect from agent
diversification with initial random portfolios. The difference in perfor-
mance between non-adaptive and adaptive independent search is approxi-

Ž .mately constant across all numbers of agents Fig. 4 . Furthermore, intro-
Ž .ducing communication and strategy switching improves performance d .

We can interpret the results from a search perspective. Let us consider
the rate of convergence of the overall portfolio selected by each multi-
agent model toward the optimal offline CRP. Recall that each individual
agent uses the � 2 rule, which converges to the optimal offline CRP over
time. In fact, it is the speed of convergence toward the optimal offline CRP

that determines the performance of a system of agents.
In Fig. 7 we plot the average distance of the overall portfolio of a system

of 200 agents to the best offline CRP in each investment period, for each
multiagent investment model. The L norm2

1�2N
2

DD u, v � u � �Ž . Ž .Ý i iž /
i�1

is used to compute the distance between two portfolio vectors, v and w,
Ž .which is denoted DD u, v .

The ability of each system to select a portfolio that is close to the best
offline CRP appears to be a good indicator of its performance: there is a
strong relationship between the final average distance of the overall
portfolio to the best offline CRP and the performance of each multiagent
system. Although the portfolios selected by all systems converge toward

Ž .the best CRP even for the non-adaptive agents , explicit cooperative
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FIG. 7. Simple market. The average distance in each period between the portfolio selected
in each system and the best offline constant rebalanced portfolio, in systems with 200 agents.
Communication boosts convergence of the overall portfolio of the multiagent portfolio
selection model toward the optimal portfolio in the early investment periods. The Market
portfolio converges very quickly to the best CRP.

search with communication between the agents boosts the rate of conver-
gence, especially during the early periods when agents with bad strategies
still have a large proportion of wealth.5

A comparison with the performance of the market portfolio, a simple
buy-and-hold strategy across all stocks, provides further insight.

Ž .DEFINITION 5.1 Market Portfolio . The market portfolio is a simple
buy-and-hold strategy across all stocks, with initial investment equally
distributed across all stocks.

Surprisingly, we found that the performance of the market portfolio
Ž .dominates the performance of the other strategies, with Perf Market �

14.3. Indeed, Fig. 7 shows that the market portfolio is the most effective at
selecting the optimal CRP in the Simple market. Simple statistical analysis
explains this result.

Figure 8 shows that the value of the maximum component of the best
Ž .offline CRP the greatest weight of investment in any single stock is often

very close to one. All components are nonnegative and sum to one, hence
the best CRP is typically very close to a single stock buy-and-hold strategy.

5 No agents switch strategy during the first 200 periods because the performance window is
� � 200, and agents must wait � periods to switch.
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FIG. 8. The distribution over 835 trials of the value of the maximum component of the best
offline constant rebalanced portfolio, plotted in the Simple market and the CAPM market.

It is very likely that there is a single stock with a high return and a low
volatility in the simple market because we select the mean and standard
deviation parameters for the price distributions independently.6

The market portfolio performs well because the best CRP is often
approximately a single stock, and the market portfolio is provably competi-

Ž .tive with the best single stock Blum and Kalai, 1999 . The market
portfolio shifts toward the stocks with the best performance over time, as
the investment in stocks that perform badly decreases and the investment
in stocks that perform well increases. In this sense the portfolio-selection
problem in the Simple market is easy.

This analysis also explains why communication boosts the performance
of the multiagent portfolio-selection model. The agents’ individual invest-
ment strategies have poor performance because the strongly-competitive
� 2 portfolio-selection rule is ‘‘too sophisticated’’ for the statistical realities
of the market. The agents are slow to learn that the best CRP is extremal
and at a corner of the simplex of portfolio strategies with non-zero
components that sum to one. Communication and strategy switching helps,

Žespecially in the early periods, because while the optimal portfolio ap-

6 Ž . Ž .Given 10 stocks with � � U 0.9995, 1.01 and � � U 0, 0.2 , there is a probability ofi i
0.0643 that a single stock has � � 1.0073 and � � 0.05, and 1 stock from 10 will have these
statistics with probability 0.354. A stock with these statistics has an expected single period log
return of 0.0062, and Perf � 12.3 for 2000 investment periods. Any stock with a mean greater
than 1.0073, or a standard deviation less than 0.05, will have a better performance than this.
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.proximately a single stock is a long way from the initial overall portfolio, it
can be close to the random initial portfolio of one of the agents. The
system of cooperative search takes advantage of this by adjusting the
overall portfolio toward the portfolio of the single agent that is performing
best.

In the next section we study the performance of our multiagent model
for portfolio selection in a more realistic market that models correlations
between stock prices, an approximation to the CAPM market. Although the
model of independent search continues to perform well, the model of
explicit cooperation with hint exchange and strategy switching has a
negligible effect on performance in CAPM. The optimal portfolios tend to
be more balanced in CAPM because of equilibrium price dynamics, and
communication about different parts of the search space is less important.

5.4. The Choice of Model Parameters

Briefly, let us address the choice of model parameters and the robust-
ness of our results to parameter selection.

Learning rate. The choice of learning rate, �, in the portfolio-selection
rule, � 2, is a tradeoff between accuracy and speed of convergence. With a
small learning rate the portfolio moves slowly toward the optimal strategy
with little sensitivity to period-to-period fluctuations in prices. With a large
learning rate the portfolio is more sensitive to period-to-period fluctua-
tions in stock prices and can fail to converge.

Ž . Ž .Figures 5 a and b illustrate the effect of learning rate within the
Ž .independent search model, for a system of 100 agents. In a the agents

Ž .have a small learning rate, � � U 0.1, 0.15 , and the adaptive agentsi
achieve a final wealth that is an average of 4.3 times greater than that of

Ž .the non-adaptive agents line , while performing more than 80% worse
Ž .than the non-adaptive agents in only 3.7% of the trials. In b the agents

Ž .have a large learning rate, � � U 0.9, 0.95 , and the adaptive agentsi
achieve a final wealth that is an average of 26 times greater than that of
the non-adaptive agents, but perform more than 80% worse than the
non-adaptive agents in 16.5% of the trials. The adaptive agents are either
lucky and perform well or unlucky and perform badly.

The best learning rate depends on the number and volatility of stocks in
the market as well as on the number of investment periods. The learning
rate in our main experiments is optimized offline to maximize expected
utility for agents with logarithmic utility functions over return-on-invest-

Ž .ment, and selected from � � U 0.1, 0.15 for each agent.i

Switching probability and performance-window size. The optimal choice
of the switching probability, p, and the performance-window size, � , in the



PARKES AND HUBERMAN148

cooperative search model depends on factors such as the volatility of the
market, the number of agents, and the number of investment periods T.

At one extreme, the performance of the cooperative multiagent system
reduces to that of a single adaptive agent when ��p � T , because there is
too much strategy switching and all agents converge to the portfolio-selec-
tion strategy of a single agent. At the other extreme, when ��p � T , the
cooperative multiagent system reduces to a system of independent agents
because the interval between switching is very large and the probability of
switching is very low, and there is too little strategy switching.

Figure 9 plots the performance of cooperative search with 100 agents
and different communication parameters. The optimal combination of
parameters in this case is approximately p � 0.008 and � � 500. Notice
that the performance drops off when � is too large or p is too small
because of too little strategy switching, and also when � is too small or p is
too large because of too much strategy switching.

In our main experiments we select the parameters offline for each
problem size to maximize the benefit from cooperation. The optimal
parameters are similar across all problems, with p � 0.004 and � � 200
typical, and a trend to larger switching probabilities as the number of
agents increases.

FIG. 9. Simple market. Performance of cooperative search with 100 agents as the switching
probability, p, and the performance window size, � , are varied, with learning rate � �
Ž . Ž . Ž .U 0.1, 0.15 . There is a peak at around p, � � 0.008, 500 .
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6. PERFORMANCE IN AN EQUILIBRIUM
MARKET MODEL

Finally, we tested the performance of our multiagent portfolio-selection
models in a more realistic market, an approximation to the influential

Ž .Capital Asset Pricing Model Sharpe, 1970 , an equilibrium model of stock
price dynamics.

For our purposes, CAPM augments the geometric Brownian motion
model of the Simple market with correlations between stock price dynam-
ics. The system of agents remains small with respect to the total market,
and we treat prices as exogenous inputs, although the prices are now part
of a larger equilibrium system.

Although independent search continues to perform well, explicit cooper-
ation through hint exchange and strategy-switching is redundant in CAPM.
Cooperative search performs no better than independent search. The
difference is explained by the statistical properties of price dynamics in the
Simple and CAPM markets.

6.1. The Capital Asset Pricing Model

The Capital Asset Pricing Model explains a significant fraction of the
Žprice dynamics observed in real stock markets Black et al., 1972; Merton,

. Ž1997 . Price changes across stocks in real markets are in fact highly but
. Ž .not perfectly correlated Borch, 1968 . For example, many stocks in the

same industrial sector will move in the same direction in a given day, and
few will move against the overall trend of the market. It is this partial
correlation which allows diversification through portfolio investment to

Ž .reduce but not eliminate risk Sharpe, 1970; Campbell et al., 1997 .
CAPM predicts the equilibrium statistics of price dynamics in a market

with mean-variance optimal investors with homogeneous beliefs about the
future dynamics of stock prices.7 A central result is that in equilibrium all
stocks have risk-return statistics that fall on the Security Market Line, such

Žthat the expected excess return of a stock return above the risk-free rate
.of return in the market is proportional to the covariance of return with

the market portfolio.

Ž .DEFINITION 6.1 Security Market Line . In CAPM there is a linear
relation between expected excess return and volatility with respect to the
market across all stocks.

� � � �E X � R � 	 E X � RŽ .i f i m f

7 The main additional assumptions are lending and borrowing at a risk-free rate of interest,
Ž .and a competitive and costless market no market friction .
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� � � �where E X is the expected return on stock i, E X is the expectedi m
return on the market portfolio, and R is the available rate of risk-freef

Ž .return zero in our model . The constant 	 , the ‘‘beta’’ of stock i, is ai
measure of the volatility of the stock’s rate of return in relation to changes
in the market rate of return, defined as:

� �Cov X , Xi m
	 �i � �Var Xm

A stock with 	 � 1 has a high expected return and a high risk, while ai
stock with 	 � 1 has a low expected return and a low risk.i

To generate stock prices offline with statistics that fall approximately
Ž .onto the Security Market Line we follow Huang and Litzenberger 1988

and augment the geometric Brownian motion model of stock prices with
quantified correlations between the price relatives of stocks. The price

Ž .relatives x � x , . . . , x are distributed according to a multivariate Nor-1 N
Ž . Ž .mal distribution, X � N �, � , with mean � � � , . . . , � and N � N1 N

covariance matrix, �, which specifies the correlations between price rela-
tives across stocks.

The mean � for each stock is distributed according to the samei
Ž .uniform distribution as in the Simple market, � � U 0.9995, 1.01 . We seti

this and then perform random ‘‘generate-and-search’’ for a covariance
matrix that generates a sequence of stock prices with approximate CAPM

statistics. The standard deviation of each price relative is constrained to
� �� 	 0.0, 0.2 , the same as in the Simple market.i

6.2. Results in the CAPM Market

As before, we measured the performance of our multiagent portfolio-
selection models over 2000 investment periods, for systems with between 1
and 800 agents. Each agent was initialized from the same distribution of
initial portfolios and learning rates as in the Simple market model. The
switching probability, p, and performance window size, � , were selected
offline to maximize expected utility for each number of agents, with
switching probability p � 0.004 and window size � � 200 typical.

Figure 10 shows the performance of each multiagent model, averaged
over 2000 trials. The best constant rebalanced portfolio strategy in this

Ž .market yields an expected end-period log wealth, Perf BCRP � 12.3, while
Ž .the market achieves a performance of Perf Market � 5.31.

Adaptive multiagent search continues to outperform both the non-adap-
tive multiagent search and a single adaptive agent: it remains useful to
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ŽFIG. 10. CAPM market. The performance of the non-adaptive independent search non-
. Ž . Ž .adaptive , independent search adaptive , and cooperative search communicating models.

invest in diverse initial portfolios with individual agents that follow the � 2

portfolio-update rule.
However, in this market cooperative search performs no better than

8 Ž .independent search. For example, consider Fig. 6 b , which compares the
performance of cooperative and independent search with 400 agents. The
system with communication and strategy switching often performs worse
than without communication, and agents achieve approximately the same
return on average.

The ability to select a portfolio close to the best offline CRP remains a
good indicator of the performance of the agents, and explains the differ-
ence in performance of cooperative search in the Simple and CAPM

markets. Figure 11 plots the average distance from the best offline CRP of
the overall portfolio selected in each model. First, the initial portfolios are

Žcloser to the optimal offline portfolio than in the Simple market 0.5
.compared to 0.81, see Fig. 7 . Furthermore, the market and non-adaptive

agent models are ineffective at selecting the optimal offline portfolio in
this market. Indeed, the multiagent portfolio-selection models outperform

8 There is only weak support for rejecting the null hypothesis that the non-communicating
and communicating systems of agents have the same performance, with a minimum signifi-
cance level of around 0.3 for systems with 50 or more agents.



PARKES AND HUBERMAN152

FIG. 11. CAPM market. The average distance in each period between the portfolio selected
by each agent and the best offline constant rebalanced portfolio, in systems with 200 agents.

Ž . Ž .The cooperative communicating and independent search adaptive models are most effec-
tive at selecting the optimal CRP.

the market portfolio. Finally, although cooperative search initially boosts
convergence toward the optimal portfolio, the independent search model
closes the gap by the end of the investment.

Recall that in the Simple market the best CRP is often a single stock
buy-and-hold strategy, which is a long way from the average initial overall
portfolio of the system. In comparison, Fig. 8 shows that the best CRP in
CAPM typically invests around 50% in one stock, and it is rare for a single
stock to receive more than 80% of the investment. This explains why the
market portfolio, which can only achieve a performance that is competitive
with the best single stock, does not perform well.

Paradoxically, although the CAPM market has more statistical structure
than the Simple market, the investment problem for an agent with a
portfolio-selection strategy that is strongly competitive with the best CRP is
easier. The correlation between return and volatility across stocks in CAPM

makes the optimal portfolio closer to the initial portfolio of the agents, and
there is ‘‘less to learn.’’ All balanced portfolios perform quite well, and
communication and strategy switching tends to have little effect on perfor-
mance.
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6.3. Mean-Variance Analysis

Finally, it is interesting to compare the mean-variance efficiency
Ž .Markowitz, 1959; Sharpe, 1970 of the portfolio-selection strategies in
CAPM. A well-developed theory states that all adequately diversified portfo-
lios, including the market portfolio, should have approximately the same
Sharpe ratio in a market which satisfies CAPM.

Ž .DEFINITION 6.2 Sharpe ratio . The Sharpe ratio, r , for a portfolio isp
the ratio of excess expected return over the risk-free rate of return, to
standard deviation in period-to-period return:

E � Rp f
r �p �p

where E is the expected per-period return from portfolio p, R is thep f
Ž .risk-free rate of return zero in our model , and � is the standardp

deviation in per-period return from portfolio p.

Figure 12 plots the expected per-period return versus standard deviation
Ž .in per-period return variability for each multiagent system. We plot only

FIG. 12. CAPM market. Expected per-period return versus standard deviation in per-period
Ž .return variability , averaged over 2000 trials. Each multiagent model has almost identical

statistics for group sizes greater than one, so we plot one representative point for each model.
The online portfolio-selection strategies all have statistics with approximately the same
Sharpe ratio, falling on the Capital Market line.
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one point for each model because the return and variability varies only
slightly for systems with more than one agent.

The analysis confirms that all online portfolio selection models, includ-
ing the Market portfolio, have statistics with approximately the same
Sharpe ratio. The best offline CRP, which uses complete information about
all future stock prices when selecting a portfolio strategy, is the only
exception. Of course, its performance is unattainable and not explained
with standard portfolio theory.

However, there is no contradiction between Sharpe ratio equivalence
and our results. We have shown that adaptive multiagent search outper-
forms both non-adaptive multiagent search and the market portfolio, for
agents with logarithmic utility functions over return-on-investment. Al-
though the ratio of return to variability is not a sufficient statistic to
predict the performance of a portfolio strategy, the difference in return and
variability across the models explains much of the variation in perfor-
mance.

For example, the market portfolio has a per-period return distributed
with � � 0.0077 and � � 0.0952, while a system of 400 adaptive agents
has a per-period return distributed with � � 0.0064 and � � 0.0694.
Assuming Normally distributed single-period returns with these statistics,
this implies a distribution over end-period return-on-investment with ex-
pected utility of 6.4 and 8.0 for the market and adaptive multiagent search,
respectively. This is close to the empirically measured performances of 5.3
and 8.2 in each model.

7. DISCUSSION

In Table I we summarize our empirical results in the two market
models. All results are presented for systems of 200 agents. The perfor-
mance of each investment model is measured as the expected utility for an
agent with a logarithmic utility function over return-on-investment. We
include the performance of the optimal offline portfolio, reflecting the
performance of an investor that knows all future stock price changes.

The distance measure compares the average final distance of the portfo-
lio selected with each model with the optimal offline constant rebalanced
portfolio. The correlation coefficient is computed between the return-on-
investment of each model in each trial and the return of the optimal
offline portfolio.

First, notice that performance is consistently higher in the Simple
market than the CAPM market. The statistical analysis in Section 5 showed
that there is often a single stock with high return and low risk in the
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TABLE I
Summary of Experimental Results

Non-adaptive Adaptive Optimal
Market independent independent Cooperative offline

portfolio search search search portfolio

aPerf 14.3 8.6 10.1 10.5 16.0
bSimple Dist 0.124 0.774 0.614 0.540 0
cCorr 0.953 0.208 0.347 0.428 1

Perf 5.3 7.25 8.2 8.25 12.3
CAPM Dist 0.406 0.454 0.284 0.278 0

Corr 0.389 0.587 0.941 0.965 1

Note. All multiagent models include 200 agents.
a Average logarithmic return-on-investment.
b Average final distance from the optimal offline constant rebalanced portfolio.
c Correlation coefficient between return-on-investment and optimal offline return-on-

investment.

Simple market, while all stocks in the CAPM market must lie on the
Ž .Security Market Line with the same 	 see Definition 6.1 .

There is a strong relationship between Dist, a model’s ability to select a
portfolio close to the optimal portfolio, and its performance. This is where
adaptive independent search helps in both markets, and cooperative search
helps in the Simple market.9

The correlation, Corr, with the final return-on-investment from the
optimal offline portfolio provides another indicator of performance. While
the distance measurement compares the ability of a model to select a
portfolio close to the optimal offline portfolio, correlation compares the
ability of a model to achieve a high return-on-investment in the trials in
which the offline portfolio achieves a high return-on-investment.

The independent search model achieves a remarkable correlation of
0.941 with the return from the optimal portfolio in the CAPM market,
compared to 0.347 in the Simple market. In contrast, the market portfolio
achieves a correlation of 0.389 in CAPM, compared to 0.953 in the Simple
market. This is the sense in which the portfolio selection problem is easier
for sophisticated portfolio-selection strategies in CAPM than in the Simple

9 The only exception is the performance of the market portfolio in CAPM; it performs worse
than the non-adaptive agents despite finding portfolios closer to the optimal portfolio.
However, the correlation between the return of the non-adaptive agents and the return of the
optimal offline portfolio is higher than for the market portfolio, perhaps explaining this
anomaly.
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market, but harder for simple strategies. This also explains why communi-
cation boosts performance in the Simple market, but has a negligible effect
in CAPM.

8. CONCLUSION

Multiagent portfolio selection, with agents that manage an equal share
of initial investment and divide profits and losses at the end of investment,
can improve the performance of a single agent portfolio-selection algo-
rithm in simple market environments.

We compared a model of independent multiagent search, where the
investment decisions of agents are completely autonomous, with a model
of cooperative multiagent search, where the agents take account of the
success of portfolio strategies followed by other agents. Experimental tests
were performed in two markets: a Simple market with independent stock
price dynamics across stocks; and an approximation to the Capital Asset
Pricing Model, which is an equilibrium model of stock price dynamics that
introduces correlations in price dynamics across stocks.

The independent multiagent search model performed better than a
single agent in both markets. Furthermore, explicit cooperation, with
communication and strategy switching between agents, improved perfor-
mance in the Simple market. We showed that individual agents can follow

Žstrategies with very different performance even though each agent’s
.performance is worst-case optimal in the long term . Communication and

strategy-switching helps because it eliminates poor strategies.
However, communication provided only a small boost in performance in

the CAPM market. The optimal portfolio in CAPM tends to be more
balanced and close in search space to agents’ initial strategies because
stock dynamics are correlated. We showed that the statistical profile of a
market influences that performance of cooperative search techniques.
That said, explicit cooperation, perhaps with richer types of information
exchange, remains a useful technique to make a multiagent portfolio
selection models more robust to a variety of market environments.

In future work we would like to test our multiagent models on real stock
market data, where stock price dynamics are a true reflection of an
efficient marketplace. An interesting extension is to consider a system with
agents that receive partial information about the prices in the market. This
will serve to illustrate the role of collaborative computational agents and
hint exchange when agents have limited or costly computation and are not
able to process all information individually.
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Efficient portfolio theory has also been applied to a technique for
combining multiple heuristics to solve hard computational problems
Ž .Huberman et al., 1997 . Future work may show that multiagent models
provide a useful collaborative technique for the dynamic selection of an
effective portfolio of heuristics, for example as a meta-rule for online
problem solving in an environment with a sequence of stochastic problem

Ž .instances Gratch and Chien, 1996 .

APPENDIX A: PROOFS

Ž . � T 4 1 TProof Theorem 2.1 . Let x � x , . . . , x , denote a sequence of price
relatives, independent and identically distributed across investment peri-
ods. The long-term optimal offline constant rebalanced portfolio, w*,
solves:

T
tw* � arg max lim w � xŁž /w T�� t�1

T
t� arg max lim log w � xÝž /w T�� t�1

� arg max E log w � xX
w

*Ž .
T

� arg max E log w � xÝ X
w t�1

T
t

T� arg max E log w � xŽ .Ý�X 4
w t�1

�

Ž .Proof Theorem 2.2 . We first prove Lemma A.1.

LEMMA A.1. Gi�en two portfolios with the same expected single period
return but different period-to-period �ariance, the portfolio with the smaller
�ariance has larger expected log return in a market with nonnegati�e, symmet-
ric, independent, and identically distributed price relati�es.

Proof. This follows from Jensen’s inequality, which states that a con-
cave function f : � � � is characterized by the condition that

f x d F 
 f x d FŽ .H Hž /
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� �for any probability measure over x, F : � � 0, 1 . Let us assume that the
distribution F, that represents the distribution over price relatives, is

Ž . Ž .nonnegative. Substituting f x � log x ,

� �E log X 
 log E XŽ . Ž .

� �Now, since E X � �, we have

E log X 
 log �Ž . Ž .

for all x drawn from F. When we also assume a symmetric distribution F,
� Ž .�then E log X is strictly monotonic in the standard deviation, � , of the

Ž . Ž . � Ž .� Ž .distribution proof omitted . Given that: 1 lim E log X � log � ;� � 0
Ž . � Ž .� Ž . Ž . � Ž .�2 E log X 
 log � ; 3 E log X is strictly monotonic in standard

� Ž .�deviation, then E log X must be a strictly decreasing function in � . �

Therefore any portfolio that maximizes the expected single period log
return in a market with nonnegative, independent, and identically dis-
tributed price relatives, lies on the efficient frontier. Recall that the
efficient frontier is the set of all portfolios that minimize standard devia-

Ž .tion for some expected return Definition 2.4 . Hence, because the long-
term best CRP, w*, also maximizes the expected single period log return
Ž .* , then w* is on the efficient frontier. �

Ž .Proof Theorem 4.1 . Consider a group of M agents, each with an
Ž .equal share of total initial wealth, assumed without loss of generality to

be $1. The final total wealth of the group of agents after T periods is given
by

M T1
t tw � xÝ Ł mM t�1m�1

where w t is the portfolio of agent m in period t, and x t is price relatives inm
period t. To prove that the overall portfolio of the system of agents is

Ž . Ž . 1� Tstrongly competitive Definition 2.1 , with Perf RR � RR , we needcomp
to prove that:

1�T1
M T t tÝ Ł w � xm� 1 t�1 mž /M

lim min � 11�T�T tTT�� � 4x Ł w � xŽ .t�1
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Ž .where w* is the best long-term offline portfolio, solving 1 as the number
of investment periods T � �. We require for all stock price sequences,
� T 4 1 Tx � x , . . . , x , that

1�T1
M T t tÝ Ł w � xm� 1 t�1 mž /m

lim � 1 A.1Ž .1�TT tT�� Ł w* � xŽ .t�1

Without loss of generality, assume a particular sequence of stock prices,
� T 4x , and T investment periods. Let l denote the agent that achieves the
least return-on-investment of all the agents:

T T
t t t tw � x 
 w � x 
m � lŁ Łl m

t�1 t�1

Ž .Substituting the return-on-investment of agent l for every agent in A.1
gives a strictly smaller performance ratio, and leads to the following
inequality:

1�T1
M T t tÝ Ł w � xm� 1 t�1 lž /M

lim � 11�TT tT�� Ł w* � xŽ .t�1

M Ž T t t. T t tSimplifying, since 1�M Ý Ł w � x � Ł w � x , and becausem� 1 t�1 l t�1 l
the portfolio strategy of agent l is strongly competitive, the inequality
holds by construction as T � �. �

APPENDIX B

Algorithms for Multiagent Portfolio Selection

Consider M agents, and let the variable m denote a single agent. We
present simple object-oriented pseudo-code with comments prefixed
with ��.
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Independent Non-adapti�e Multiagent Search

Ž .NON-ADAPTIVE is the algorithm implemented by a non-adaptive sys-
tem of agents. The agents are each assigned a share of initial wealth V ,0

Ž .m.wealth � V �M, and a random portfolio, m.w � rand N , where0
Ž . Ž .rand N generates a random vector from the Dirichlet 1�N, . . . , 1�N

distribution. At the start of a new period every agent rebalances its
Ž .portfolio according to the current stock prices, m.trade price , to maintain

a constant strategy. Then the price relatives for the period are generated,
Ž .price relatives t , and the stock prices are updated. At the end of an�

investment period the agents observe the new prices. The algorithm
Ž .terminates after T periods, when NON-ADAPTIVE returns the total

wealth over all agents.

Ž .NON-ADAPTIVE

Global: T ; �� number of in�estment periods
N ; �� number of stocks
M ; �� number of agents
V ; �� initial wealth0

�for each m 	 M
m.wealth � V �M; �� share initial wealth0

Ž . 4m.w � rand N ; �� assign random CRP
Ž .price � 1, . . . , 1 ; �� set initial prices

t � 1;
Ž . �while t 
 T

for each m 	 M
Ž .m.trade price ;

Ž . Ž .price, x � price relatives t ;�
for each m 	 M

m.wealth � m.wealth� m.w � x;
4t � t � 1;

Ž . 4return Ý m.wealth ;m	 M

Independent Multiagent Search

Ž .ADAPTIVE � , � is the algorithm that is implemented by an adaptive,l h
non-communicating system of agents. Agents have heterogeneous learning
rates, uniformly distributed between � and � . The algorithm proceeds asl h

Ž .with NON-ADAPTIVE except that the agents update their portfolio strate-
Ž .gies at the end of each investment period. The function m.update x

returns the new portfolio of agent m using the � 2 update rule, computed
on the basis of the current portfolio m.w, the current stock price relatives



MULTIAGENT COOPERATIVE SEARCH 161

x, and the agent’s learning rate. The algorithm terminates after T periods,
Ž .when ADAPTIVE � , � returns the total wealth over all agents.l h

Ž .ADAPTIVE � , �l h

Global: T , N , M , V ;0
�for each m 	 M

m. wealth � V �M;0
Ž .m.w � rand N ;

Ž . 4m.� � U � , � ; �� assign random learning ratesl h
Ž .price � 1, . . . , 1 ;

t � 1;
Ž . �while t 
 T

for each m 	 M
Ž .m.trade price ;

Ž . Ž .price, x � price relatives t ;�
�for each m 	 M

m.wealth � m.wealth� m.w � x;
Ž . 4m.w � m.update x ; �� update portfolio

4t � t � 1;
Ž . 4return Ý m.wealth ;m	 M

Cooperati�e Multiagent Search

Ž .COMMUNICATING � , � , p, � is the algorithm that is implemented by al h
group of adaptive and communicating agents. The additional parameters,
p and � , define the switching probability and window size, common to
every agent in the system.

Ž .The function m.average RR, � returns the average per-period return for
the past � investment periods for agent m given return RR in the current
period, where m.count is the number of periods since the agent last

Ž .switched strategy; m.post posts the current portfolio of agent m and its
Ž .recent performance to the blackboard; and m.switch p either returns the

current portfolio of agent m and increments m.count or returns the best
Ž .portfolio of the other agents from the blackboard and resets m.count to

zero.
Ž .The algorithm proceeds as for ADAPTIVE � , � , except that at thel h

end of every period each agent updates m.perf, its per-period return
over the past � investment periods. Each agent that has not switched
strategy for at least � investment periods posts its current strategy and
recent performance to the blackboard, and switches to the best strategy
with probability p. The algorithm terminates after T periods, when COM-

Ž .MUNICATING � , � , p, � returns the total wealth over all agents.l h
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Ž .COMMUNICATING � , � , p, �l h

Global: T , N , M , V ;0
�for each m 	 M

m.wealth � V �M;0
Ž .m.w � rand N ;

Ž .m.� � U � , � ;l h
4m.count � 0; �� initialize count

Ž .price � 1, . . . , 1 ;
t � 1;

Ž . �while t 
 T
for each m 	 M

Ž .m.trade price ;
Ž . Ž .price, x � price relatives t ;�

�for each m 	 M
m.wealth � m.wealth� m.w � x;

Ž .m.perf � m.average m.w � x, � ; �� update performance
m.count � m.count � 1; �� increment count
Ž .if m.count � �

Ž .m.post ; �� post performance
4

�for each m 	 M
Ž .if m.count � �
Ž . Ž .m.count, m.w � m.switch p ; �� probabilistic switching

�� reset count if switch
Ž .m.w � m.update x ;

4
4t � t � 1;

Ž . 4return Ý m.wealth ;m	 M
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