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ABSTRACT 1.1 Motivation

This paper concerns the design of mechanisms for online schedul- Online mechanism design concerns the design of mechanisms for
ing in which agents bid for access to a re-usable resource such agnarkets in which agents arrive and depart over time, and the mecha-
processor time or wireless network access. Each agent is assume#lism must compute allocation and payment decisions online without
to arrive and depart dynamically, and in the basic model require the knowledge of the agents who will subsequently arrive. Such prob-
resource for one unit of time. We seek mechanisms that are truthful lems arise in many practical applications of mechanism design (e.g.,
in the sense that truthful revelation of arrival, departure and value Pricing access to a WiFi port at Starbucks [7], or scheduling com-
information is a dominant strategy, and that are online in the sensePuter jobs on a shared server.) These problems are generally quite
that they make allocation decisions without knowledge of the fu- difficult because they combine the challenges of mechanism design
ture. First, we provide two characterizations for the class of truth- (i-€., ensuring truthfulneSswith the challenges of designing on-

ful online allocation rules. The characterizations extend beyond line algorithms (i.e., dealing with uncertainty about future inputs).
the typical single-parameter settings, and formalize the role of re- As an example, one of the most important techniques for designing
stricted misreporting in reversing existing price-based characteriza- truthful mechanisms (the Vickrey-Clarke-Groves (VCG) scheme) is
tions. Second, we present an online auction for unit-length jobs that inapplicable in most online problems because it requires computing
achieves total value that is 2-competitive with the maximum offline an optimal allocation, which is generally impossible in the online
value. We prove that no truthful deterministic online mechanism Setting [7]. In this paper we will analyze truthful online mechanisms
can achieve a better competitive ratio. Third, we consider revenue in terms of their competitive ratio with the efficiency and revenue of
competitiveness and prove that no deterministic truthful online auc- an (off-line) VCG scheme. _ _
tion has revenue that is constant-competitive with that of the offine ~ The setting we will consider is a simple scheduling problem, in
Vickrey-Clarke-Groves (VCG) mechanism We provide a random- Which agents bid for access to a re-usable resource over a sequence
ized online auction that achieves a competitive ratidgfog h), of time slots. We will assume that the resource has a finite capacity,
whereh is the ratio of maximum value to minimum value among Most often 1. An agent has an arrival and departure time, and in
the agents; this mechanism does not require prior knowledge of ~the basic model a value for receiving one unit of the resource dur-
Finally, we generalize our model to settings with multiple re-usable ing this interval. Our objective is to design a mechanism for this

goods and to agents with different job lengths. problem which is strategyproof with respect to not only the values,

but also the arrival and departure times. The requirement of strat-

; ; ; egyproofness with respect to arrival and departure times makes the

CatEgones and SUbJeCt Descrlptors online auction problem difficult since it places constraints on the
F.2 [Theory of Computation]: Analysis of Algorithms and Prob- timing of allocations. This is demonstrated by Lavi and Nisan [15],
lem Complexity; J.4Computer Applications]: Social and Behav- ~ who prove that without any restriction on the types of possible mis-
ioral Sciences-Economics reports, it is impossible to achieve a bounded competitive ratio on

efficiency. In this paper, we study the problem with the assump-
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rivals assumption in this paper because it is quite natural and be- arrive in a predetermined order which is not under their control,
cause the characterization of truthful mechanisms for this model is and that an agent’s only private information is her value. Designing
simpler to state. However, almost all of our mechanisms remain truthful mechanisms is much easier in these single-parameter mod-
strategyproof without assuming no early arrivals. els. Some of the online mechanisms which have appeared (e.g. [2,
. . 14]) are strategyproof against agents misstating their arrival or de-
1.2 Our contributions parture time because they are based on prices which are monoton-
In this paper, we give a characterization for the online alloca- ically non-decreasing over time. However, such approaches do not
tion rules that are truthfully implementable. The characterization lead to competitive online mechanisms in our setting because the
is interesting because the online auction problem studied here isnon-decreasing price requirement is too restrictive.
neithersingle-parametefl, 16], nororder-based13], and a com- Hajiaghayi, Kleinberg and Parkes [9] present constant-competitive
plete characterization was previously not available for this model. online mechanisms for auctioning identical goods. Unlike the present
Furthermore, our result explicates the importance of limited mis- paper, they assume that the agents arrive in random order and study
reports in the design of truthful online auctions. We see this, for @ setting without re-usable goods in which goods can be allocated at
instance, in theno early arrivalsandno late departuresissump- ~ any particular time.
tions. The characterization is stated in terms of monotonicity and ~ Friedman and Parkes [7] initiated the study of VCG-based online
timing properties on allocation rules, but does not imply the W- mechanisms. Such mechanisms are (dominant-strategy) truthful in
MON condition [13], which is known to be necessary for truthful the rare instances where the underlying allocation problem admits
implementation in settings with unrestricted misreports. We are also an online algorithm with competitive ratio 1. Recently, Parkes and
able to extend our characterization to address randomized mechaSingh [18, 19] have studied VCG-based online mechanisms with
nisms. A parallel characterization is provided in terms of price- Bayesian-Nash equilibrium, adopting the framework of Markov De-
based auctions, that demonstrates that while fully agent-independentision Processes. The setting for this work is quite general, but the
prices are not necessary, prices must be value-independent and sagolution concept is weaker than dominant strategy truthfulness.
isfy monotonicity requirements with respect to report arrival and Porter [20] presents a truthful mechanism for the variation on our
departure times. Fully agent-independent prices are sufficient for model with different length jobs. In order for an agent to derive
truthfulness, but only necessary when there are unrestricted misreJositive utility, it must be granted the resource for a total dura-
ports. tion equal to its job length. Porter achieves a competitive ratio of
For unit-length jobs, we use the monotonicity characterization to (1 + v/k)? + 1 with respect to the optimal efficiency, whekeis
develop a truthful online auction that is 2-competitive with the op- the ratio of maximum to minimurmalue densityvalue divided by
timal offline efficiency. The allocation problem is a special case of processing time) of a job, and proves that this ratio is optimal for
the maximum-weight matching probleriVithout the constraint of deterministic mechanisms. Here, we provide a randomized mech-
truthfulness, the best known upper bounds on competitive ratio areanism whose efficiency competitive ratio @¥(log(l)) where! is
2 in the deterministic case amd(e — 1) in the randomized case [3, the ratio of maximum to minimum processing time. This signifi-
10], while the best known lower bounds are 1.618 in the determin- cantly improves Porter’s result, except for those instances in which
istic case and 1.25 in the randomized case [6, 8]. With the truth- the amount of variation in job lengths is exponentially greater than
fulness constraint, we demonstrate that no deterministic mechanismthe variation in value densities.
can obtain a better competitive ratio than 2, closing the gap. We Lavi and Nisan [15] study a closely-related online auction prob-
also extend the result to an asynchronous model in which time is alem, in which items have expiration times and may be allocated any
continuous parameter, agents need not arrive and depart at integetime at or before their expiration. (Our model can be regarded as
times, and jobs are interruptible, obtaining a 5-competitive mecha- a special case of theirs when the number of items is equal to the
nism in this case. The auctions also extend to the caseeflisable number of time slots and items may only be allocated at their ex-
goods available in each period, or equivalently a re-usable resourceact expiration time.) Assuming unrestricted misreports, they prove
with capacityk. strong negative results for deterministic truthful auctions (no such

This simple 2-competitive online auction can have arbitrarily bad
revenue with respect to the offline VCG revenue. We prove that no
deterministic mechanism is constant-competitive with VCG for rev-

mechanism can achieve a competitive ratio better than the number
of items) and this leads them to consider a weaker solution con-
cept calledSet-Nash equilibriunwhich admits constant-competitive

mechanisms. Here, rather than modifying the solution concept, we
achieve constant-competitiveness by restricting the set of allowable
misreports. As we have argued earlier, this restriction (ibhdate
departuresassumption) is natural in the context of online mecha-
nism design.

Earlier, Ng et al. [17] presented a generalization of the model in
which jobs have botlengthandsize and in which there are multi-
ple units of a reusable good available in each period. Thermy-
ALWORLDS mechanism generalizes the online auction presented in
this paper for the unit-length model, but was presented without com-
petitive analysis and for a model in which agents cannot misreport
their arrival time or patience.

enue by giving a lower-bound ¢t <(log h/loglog h)1/4>, where

h is the ratio of the maximum value to minimum value of agents.
Allowing for randomization in the mechanism, we can nearly match
this bound, obtaining a competitive ratio ©flog ») even without
knowledge ofh.

Finally, we generalize our model to a setting with jobs with vary-
ing job length, introducing a fourth parameter to the private type
of an agent. Porter [20] had provided a deterministic auction that
satisfies an efficiency competitive ratio bound(df+ vk)? + 1,
wherek is the ratio of maximum to minimumalue density(that
is, value divided by job length). We provide a randomized truthful
auction with a competitive rati®(log(l)) where! is the ratio of
the maximum job length to the minimum job length of agents, as- .
suming that upper and lower bounds on the job lengths are known1.4 Outline
in advance to the mechanism designer. The auction is based onthe The outline of the paper is as follows. Section 2 introduces the
asynchronous unit-length auction. On the other hand, when the ratiomodel we are discussing. Section 3 provides the main characteri-
l'is not known in advance we can achieve the same competitive ratio zation results for truthful online allocation rules. Further general-
with efficiency, using an online auction that is truthful with respect izations of this characterization, together with a price-based char-
to all parameters except job length. acterization that applies for a model of restricted misreporting and
. points beyond the results in this paper, are postponed until Section 8.
1.3 Prior work Section 4 presents several competitive truthful online mechanisms

Online mechanism design has been the focus of several recentin synchronous and asynchronous models for unit length jobs. In
papers. Many of these papers (e.g. [5, 11]) assume that the agent$ection 5, we prove that no deterministic strategyproof mechanism



can achieve a competitive ratio better than 2 for efficiency in the d;, we haveg; (v)w; — pi(v) > qi((0s,v—:))wi — pi((Ds,v—3)),
synchronous setting. In Section 6 we consider truthful online mech- wherev_; = (v1,...,vi—1,Vit1,...,vn) (i.€., the utility ofi is
anisms that are competitive with respect to revenue and prove thatmaximized if she bids truthfully).

there is no deterministic strategyproof online mechanism whose rev-

enue is constant-competitive with that of the Vickrey-Clarke-Groves 3. CHARACTERIZING TRUTHFULNESS

(VCG) mechanism, but there is a randomized online mechanism ) ) } ) .
In this section, we provide two simple characterization theorems

which achieves a competitive ratio 6f(log k), whereh is the ratio . . : Iy .
of maximum value to minimum value of agents. In Section 7, we for truthful mechanisms. The first establishes a monotonicity crite-

generalize our results to the case in which the agents have differention that is necessary and sufficient for the existence of a payment

job lengths and can lie about their processing times. Finally, we rule t.hat truthfully implements a given allocation rule; thi; can be
conclude with some open problems in Section 9. considered a generalization of well-known results concerning truth-

ful mechanisms for one-parameter agents (see, for example, [1]).
The second is a necessary and sufficient price-based characteriza-
2. THE MODEL tion for truthful mechanisms. Both theorems can be substantially
We will consider mechanism design problems for scheduling a generalized; such generalizations will be treated in Section 8.
single re-usable resource over a finite time intef0all’]. In this
section we define a simple model for studying such problems. Gen- DEFINITION1 (MONOTONICITY). We say that a type; =

eralizations of this basic model will also be considered. (ai,d;, w;) dominates the type; = (a;, d;, w;), denotedvy; > v},
In our basic model, there areagents, and thigype of an agent if a; < aj, d; > dj, andw; > wj. An allocation ruleg : V"
1 is characterized by an ordered triple = (a;, d;, w;) with 0 < {0, 1}" is calledmonotonéf for every ageni and every, v’ € V"

a; < d; < T and0 < w; < oo. We refer toa;, d; as the agent's  withv; = v andv; = v for j # 4, we havey; (v) > ¢:(v').

arrival anddeparture timerespectively, and we refer t, as the

agent’s value. The set of all possible agent types is denotéd. by THEOREM 2. Letq : V" — {0,1}" be an allocation rule.
An allocationis a functionz = (x1, ..., x,) which assigns to each ~ There is a payment rulg such that the mechanis(y, p) is strate-
agent a subset d6, T which is a finite union of subintervals, such  gyproof if and only ify is monotone.

that distinct agents are assigned disjoint subs&tse set of all such

allocations is denoted hy. For an agent and an allocatior, let The proof of this theorem is omitted, since it will be subsumed by
gi(z) = 1if the setz; N [a;, d:] contains an interval of length at  the more general Theorem 6, which applies to randomized mecha-
leastl, otherwisey; () = 0. The value of agentfor allocationz is nisms as well. Notice that Theorem 2 is existential. Whether the

equal tog; (z)w;, i.e. the agent gets value if itis allocated atleast ~ Payment rule can be computed efficiently depends on the specifics

one time unit between its arrival and departure times, and otherwise©f the model and the allocation rule. o
its value is zero. We can now provide a price-based characterization for truthful

We will be studying direct revelation mechanisms, in which each ©nline auctions in terms ofiealue-independemtrice schedule. Con-
agent participates by simply announcing its type déterministic ~ sider price scheduleps;(a,d,v—;), that will define the price to

mechanisntonsists of asocial choice rulgalso called aralloca- agent: for an allocation, given that the agent announced interval
tion rule) f : V™ — A and apayment rulep : V" — RZ,. Here, [a,d]. Notice this price can depend on its reported arrival and de-
f(v1,...,v,) represents the allocation which is chosen when the Parture, but not on its reported value. We can defipeice-based
vector of reported types i@, ..., v,), andp;(vi, ..., v,) repre- online auction

sents the amount agehmust pay. We will sometimes summarize

the allocation rulef by specifying the functiory : V" — {0,1}" DEFINITION 3  (PRICE-BASED ONLINE AUCTION). An online

auction is price-based if and only if there exists a value-independent

whosei-th component isy;(f(v1,...,vs)). Note that the value . A .
of each agent for the allocatiof(vi, . .., v,,) is completely deter- g”gﬁfChid;"?sa(%’ Zjngicz))nll Sli;Ch _t(h""lt ;Qr ahg’”f V;nndd aami
mined by the value of(v:, ..., v,); for this reason, by abuse of ~ 29€Mt ¢i(v) = y Tpsildi, di, v-i) S Ui, pay

notation we will sometimes also refergas the allocation rule. We mentsp; (v) = psi(ai, di,v—:) in this case, or zero otherwise.

will assume that agents have quasi-linear utilities, so the utility of
agent for outcomer and paymenp; is ¢; (z)w; —p;. Theefficiency

of a mechanism is the combined value of all agents for the alloca-
tion, i.e. the quantity), ¢;(v)w;. The revenueof a mechanism

is the sum of the payments collected from agents, i.e. the guan-
tity >, pi(v). We will be comparing the efficiency and revenue of
our mechanisms against the standard VCG mechanism, which com
putes the allocation and payments off-line. See Krishna [12] for a
definition of VCG mechanisms.

For now, we adopt a model in which we allow only late reports PROOF (=) We refer to the proof of Theorem 6, which appears
of arrivals and early reports of departures. We consider relaxationsin the next section. Iff is truthfully implementable, then the cor-
of this definition in Section 8. As discussed in the introduction, responding functiom is monotone, and the proof of Theorem 6 es-
this assumption is justifiable in many practical applications, and also tablishes that the prices(v) defined in (7) truthfully implement.

DEFINITION 4 (PRICE MONOTONICITY). Prices are
monotonic ifps;(a, d,v—;) < psi(a’,d’,v_;), forall a’ > a and
d <d.

THEOREM 5. An online allocation rulef is truthfully imple-
mentable if and only if there is a truthful price-based auction with
‘value-independent and monotonic priges(a, d, v—;) that imple-
mentsf.

necessary to obtain constant-competitive mechanisms [15]. Note that the right side of (7) depends only@nd;, andv_;, and

We are interested in mechanisms that satisfy the following two that it is monotonically non-decreasingdn and non-increasing in
properties:voluntary participationi.e., for everyv € V", and ev- d;, so that we may use it to define the value-independent and mono-
ery agenti with v; = (a;, d;, w;), pi(v) < ¢:(v)w;, andstrate- tonic price schedules;(a, d, v—;).
gyproofnesgalso known agruthfulnesy, that is, for every € V" («=) Given an allocation rulg’ which is implemented by prices
with v; = (a, ds, w;) (think of v as the true types of agents), and  ps;(a, d, v—;), we must prove tha is truthfully implementable, i.e.
every bidd; = (&“d}’wi) for agent; satisfyinga; > a; andd; < that the corresponding functianis monotone. This follows from

- - the monotonicity of prices: i, = (as,d;, w;) dominatesv] =
*We use this general model to capture both the synchronous and(q! d., w!), thenps;(ai, di,v_i) < psi(al,d;,v_;). Now, sup-
asynchronous settings, as well as job lengths greater than one. A’bosewi > wl, then ifg;(v],v_;) = 1 we haveps;(a}, d},v_;) <
agent may receive multiple subintervals, but only has value for the ™7 which implies ps; (a, di,v_:) < ws. This in turn implies

allocation’ if one of the subintervals is long enough to satisfy its ¥i: ;
demand. g g b qi(v) =1, as desired. [J



3.1 Truthful randomized mechanisms
A randomized mechanism is a probability distribution over de-

the agents are given hy In this scenario, if bids truthfully, she
will have a utility of ¢;(v)w; — p;(v), but if she bidsvj, then her

terministic mechanisms. We assume agents are risk-neutral, so that!tility will be g¢;(v")w; — pi(v"). Therefore, strategyproofness of

their utility for a probability distribution over outcomes is equal to
the expected utility of a random sample from this distribution. Note
that this means it is immaterial, from the standpoint of determining
the utility of agent;, whether the price charged tds equal to the
random variable; (v) or to its expectation. Accordingly, for the rest
of this section we will assume that the paymeri() is determinis-

tic, and that only the allocatiofi(v) is random. As before, we will
summarize the allocation rulgusing a functiory = (q1,...,¢n),
whereg; (v) is now defined to be the probability that the time in-
terval allocated ta has length at least, given f(v). Note thatg;
now takes values in the intenval, 1] rather than the two-element set
{0,1}. As before, the utility of agentdepends only on the value of
g:(v) and not on any other feature of the distributionfgt). For
this reason, by abuse of notation we will sometimes refer(tather
than f) as the allocation rule. The word “monotone”, when applied
to such a functiom, is still interpreted according to Definition 1.

THEOREM 6. Letg : V™ — [0,1]" be an allocation rule. There
is a payment rule such that the mechanisfy, p) is strategyproof
and satisfies voluntary participation if and onlygifs monotone.

PROOF First, we prove the “if” part. Lety be a monotone al-
location rule andv € V™ with v; = (as,d;, w;). We define the
payment rule as

pi(v) = qi(v)wi — /

JO

qi((a’hdivm)ﬂjfi)dx' (1)
We show that the allocation rutein combination with the payment
rule p constitute a strategyproof mechanism. It is also clear from the
above definition that this mechanism satisfies the voluntary partic-
ipation property. If the mechanism is not strategyproof, there is an
agenti, a vectorv € V" of true types withv; = (a;,d;, w;), and
a non-truthful bidd; = (é, di, w;) with é; > a; andd; < d; such
that the utilityq; (0;, v—;)w; — p: (9:, v—;) of agent; if she bidso; is
strictly greater than the utility;¢; (v) — p; (v) that she derives from
being truthful. Using Equation 1, this can be written as follows:

(wi — ;)gi (i, v—i) +/ qi((ai, diy @), v_s) dz
0
> / lqz'((audz‘,w),vfi)dm- 2
0

By monotonicity ofg and the inequalities; > a; andd; < d;, we
have

[ attendiovydo> [ al(andio) oo @)
0 JO
Equations 2 and 3 imply

(wi*@i)qz'(@i,vfi)>/ Cqil(a, di2),0m) dz. (@)

Wy

We now consider two cases: if; > w;, then by dividing both

sides of the above inequality by; — «; we obtain thaty; (9;, v—;)

is strictly greater than the average @f(a;, di, T),v—;) overx €

[wi, w;], which contradicts the monotonicity af. Similarly, if

w; < w;, then by dividing both sides of inequality (4) hy; —

w; we obtain thatg; (0;,v—;) is strictly less than the average of

qi((és,di,x),v_;) overa € [w;,w;], which again contradicts the

monotonicity ofg. This contradiction establishes the strategyproof-

ness of the mechanism with allocation rgland payment rule.
Conversely, assume is an allocation rule for which there is a

payment rule such tha(g, p) is strategyproof. Consider an agent

andtypes, v’ € V"™ withv; = v} andv_; = v”; such thay; (v) <

q:(v"). Letv; = (a;,di,w;) andv; = (aj, d;, w;). Sincev; > vj,

we havew; > w;. Now consider a scenario where the true types of

(¢, p) implies
ai(v)wi — pi(v) = gi(v)wi — pi(v'). ®)

Now, consider a scenario where the true types of the agents are
and agent might lie by announcing;. A similar argument for this
scenario implies

ai(w; — pi(v') = qi(v)w; — pi(v). (6)

By adding inequalities 5 and 6 and using the inequality> w;,
we obtaing; (v) > ¢:(v'). Thereforeq is monotone. [

It is worth remarking that the payment ryte(v) defined in (1)
is equivalent to the following simpler definition in the case of deter-
ministic mechanisms:

=1}, ifqk) =1,

_ _ )
andp;(v) = 0 otherwise. In words, an agent that is allocated pays
the smallest value it could have reported and still received an allo-
cation.

pl(v) = mln{w; : qi((a%dhw;)vvfi)

4. MECHANISMS FOR JOBS OF UNIT
LENGTH

4.1 The synchronous model

In this section we consider the basic setting defined in Section 1:
Agents arrive and depart at the beginning and end of time slots num-
beredo,...,T (ie.,V = {(a,d,w) : a,d € {0,...,T},a <
d,w € Rx>o}), and there is only one re-usable good that can be
allocated to at most one agent in each time slot. An agent wins if
she receives this good in one of the time slots between her arrival
and departure. The mechanism must decide which agent (if any)
receives the good at time slgtbased on the information available
attimet, i.e., the arrival times and the values of all agents that have
arrived at a time< ¢, and the departure time of all agents that have
left at a time< ¢t. The payment of an agent must be computed based
on the information available at her departure (i.e. it can be delayed
past the period in which an allocation decision is made).

The following theorem shows that there is a 2-competitive strat-
egyproof mechanism for this problem. The proof of this theorem
is based on a simple greedy allocation rule that in each interval se-
lects the bidder with the highest value that has not received the good
yet. It is worth noting that this mechanism is strategyproof even if
bidders are allowed to announce an arrival time that is before their
actual arrival time.

THEOREM 7. There exists a strategyproof online 2-competitive
mechanism in the synchronous model with a single re-usable good.

PrROOF We use the following greedy allocation rule: Atany time
step, allocate the good to the bidder with the highest value that is
present at that time and has not received the good yet. For the pay-
ment rule, we defing; (v) by equation (7). It is clear that both our
allocation rule and our payment rule are computable in polynomial
time and in an online fashion. It is also easy to see that this alloca-
tion rule is monotone. The reason for this is that an agyetio loses
does not affect the state of the algorithm; therefore lises when
bidding (as, d;, w; ), she would still lose if she arrives at a time later
thana;, leaves before;, or announces a value less than Thus,
by Theorem 6 (and its proof), this mechanism is strategyproof and
satisfies voluntary participation.

Now, we show that this allocation rule is 2-competitive. We do
this by a charging argument. Consider an off-line optimal solution
OPT. For any agentwho wins inO PT', we charge her value to an
agent who wins in the greedy solution.: lfierself is a winner in the
greedy solution, we charge her value to herself. Otherwise et



the time at which wins the auction. Sincenever winsinthe greedy  agents are, then she will not win if she lowers her value or leaves
solution, she is present at timeand therefore the algorithm must  earlier than her true departure time. Consider a situation where
pick a winnerj at timet whose value is not less than the valug.of announces an arrival tim€ after her true arrival time;. If agent

We charge the value afto j. It is not hard to see that this charging ¢ does not receive an allocation in the interjal a;] in the truthful
scheme charges each aggrnh the greedy solution at most twice,  scenario, then the behavior of the algorithm is the same in both sce-
each time for a value less than the valuegj ofTherefore, the value narios and thereforedoes not win in the non-truthful scenario. If

of OPT is at most twice the value of the greedy solutioii.] she starts an allocation in this interval, then the behavior of the al-
gorithm in these scenarios might be different, since during the time
4.2 The asynchronous model intervals that were allocated ton the truthful scenario, other agent

In the synchronous model the arrival and departure times of agentsmight receive the allocation in the non-truthful s_cenario. The value
were restricted to be integers. In the asynchronous model, we letOf these agents cannot be higher than the value &ut we know
agents have types M = {(a,d,w) : a,d,w € Rsp, 0 < a < that any allocation ta in the truthful scenario is interrupted before
d— 1 < T}, and allow the allocation of the good to an ag(;nt to it completes. Hence, allocations made during the same time inter-
begin at any time. Furthermore, we allow the mechanism to revoke vals in the non-truthful scenario must also be interrupted. Therefore,
an allocation before it is completed. This is necessary for constant- the state of the algorithm at timg is the same in both scenarios.
competitiveness, since if an agenwith d; = a; + 1 and a high Thus,: does not win in the non-truthful scenario. This establishes
valuew; arrives at a time that the mechanism has started but not th€ monotonicity of our allocation rule. g .
finished an allocation to another agent then the mechanism must in- We now prove that this algorithm is 5-competitive. This is done

terrupt this first allocation. An agent derives a vatugif she is by charging the value of any winning agent in an optimal solution
allocated the good for one unit of time continuously, i.e., it is not OFT toawinning agentin our algorithm. We assume, without loss
possible to preempt and then resume jobs. of generality, thalO PT" does not interrupt any allocation. For any

For this model, the following theorem gives a 5-competitive mech- Winning agent in O PT', if she is also a winner in our algorithm,
anism. This mechanism is similar in idea to the greedy mechanism then her value is charged to herself. Otherwise, consider the time
in Theorem 7, except here once an allocation starts, we increase thd at whichi is allocated the good i® PT'. At this time, our algo-
value of the corresponding agent by a multiplicative factor that in- fithm has allocated the good to an aggat This agent might be
creases continuously over time at an exponential rate, thereby givinginterrupted in our algorithm. If she is interrupted, jetbe the agent
her an advantage over newly arriving agents. This allows us to usethat interrupts her. We continue this chain until we reach an agent
a charging argument to prove that the mechanism is 5-competitive.Jx Who is notinterrupted, and charge the value tf this agent. We

We also use this algorithm in Section 7 to handle the case in which NOW calculate the maximum total value charged to an agevith
we have different job lengths. valuew; who wins at timet in our algorithm. Ifj wins in OPT,

there is a charge afy;. Consider an ageritin OPT whose value

THEOREM 8. There exists a strategyproof online 5-competitive IS charged tgj. Lett’ =t — ¢ be the time at whichi receives an

mechanism in the asynchronous model with a single re-usable good .allocation inO PT'. Itis clear from the algorithm thai > —1 and
the value ofi is at most2™°w;. Also, the value o for any two

PrRooFR We modify the greedy algorithm in the proof of Theo-  suchi’s must be apart by at least one. Therefore, the total charge
rem 7 as follows. We call a poiritin time critical if a new agent to j is at mostw; + >°7° Q*ij = 5w;. This shows that our
arrives at timef, or an allocation completes at tinie At any crit- algorithm is 5-competitive. (]
ical pointt, we compare the values of all agents that are present at

time ¢, and have not been allocated the good for one unit of ime  There is an example which shows that the above analysis is tight,
continuously. If there is an agent in this set who has already had the; ¢ the competitive ratio of the above algorithm is not better than 5.
good foré < 1 units of time before time (i.e., she has received

an allocation at time¢ — § and has not been interrupted after that), 4.3 Multiple re-usable goods

then we multiply the value of this agent BY before comparing it to . .
the values of other agents. After the comparison, the agent with the _Finally, we show that both mechanisms proposed above can be
generalized to the case where there fardentical re-usable goods

highest value receives the allocation. If this agent is different from : oot -C X
the agent who has had the allocation siheed, the latter agent is |nstead_of one, ach_leVIng the same competitive ratios. (Formally,
interrupted. ' the setting oft identical re-usable goods is defined using the same

For the payment rule, we again use the general rule given by equa-mOdel asin Sectliofn 2, except that. the set of aIIocaé@nsenlarged
tion (7). This rule can be implemented efficiently as follows: For t© €ncompass all functions mapping agents to subintervals of,

each agentwho wins, we run the algorithm without this agent, and  SUch that each & [0, 7] belongs to at most such subintervals.)

let T denote the set of all critical pointse [as, d;] in this run. For ) ) ) )
everyt € T, we define the value at timeas the maximum over ~ THEOREM 9. There is a strategyproof online mechanism which
the values of all agents that are present in the systenaatl have IS 2-competitive (5-competitive) for efficiency, in the synchronous
not received the allocation for one continuous unit of time before ~ (@synchronous) model withre-usable goods.

We now calculate the price of allocation foat timet by taking the PROOF The proof is essentially the same as the proof of Theo-

maximum, over alt’ € (t,t+1), of the value at’ divided by2" . rem 7, except that the greedy allocation rule gives the goods at time

Also, if there is an allocation to an agejthat is started at time—¢ t to the unassigned bidders with thdargest values at time [
for some0 < § < 1 and continues beyong we take the maximum

of the above value ar2P times the value of, and let the price for
i attimet be the maximum of these values. The paymeritistthe 5. COMPETITIVE RATIO LOWER BOUND
minimum, over allt € [a;,d; — 1] of the price of allocation te at In this section we prove that no deterministic strategyproof mech-
timet. Itis clear that the allocation and payment rules are both ef- anism can achieve a competitive ratio strictly better than 2 in the
ficiently computable in an online fashion. Furthermore, it is easy to synchronous setting. This shows that the result of Theorem 7 is
see that the payment computed by the above algorithm is the samaight. Note that if we do not care about truthfulness, the best known
as the one given in the proof of Theorem 6, and therefore in order to ower bound for the problem is the Golden ratie {.618) [8].
establish the strategyproofness of our mechanism, we only need to
prove its monotonicity. THEOREM 10. No truthful online deterministic mechanism can
Monotonicity of our allocation rule is easy to see for the depar- obtain a(2 — ¢)-approximation for efficiency in the synchronous
ture time and the value: If an agedoes not win when the types of  model with a single re-usable good for any constant 0.



PROOF Suppose, there is a truthful online deterministic mecha-
nism A which can obtain & — e approximation for efficiency. We

w(C;). In any such scenario, the agent winning time slat the
off-line VCG mechanism has a VCG payment which is bounded

design a set of scenarios for which we obtain a contradiction on the below by w(B;), hence the VCG revenue is bounded below by

behavior of the algorithm.

. .. 1=0
First scenario is as follows. Assume that we have two agents. The Thijs lower bound proof is a bit more complicated than the proof

first one calledr has typev. = (1,2,1 4 J), where0 < § < +=.
Assume there is another agentvhose type i, = (1,3,1). In
this case, if agents are truthful, mechanighshould assign: to
the first time slot and assignto the second time slot. In addition,
mechanismA should always charge less thanl + §, otherwisex
has motivation to lie about its value. It means for positiye has a
positive utility in this scenario.

In the next scenario, we have an agghivhich behaves the same
as ageny does in the previous scenario, i.e,y = v,. We have
an agent:’ of typewv,, = (1,3,1 + §). Finally, we have an agent
2" of typewv,, = (2,3,00). In this case, we claim that mechanism
A should always assigr’ to the first time slot, since otherwise
2’ can lie about its type to announce it the same as that iof
the previous scenario and still get a positive value. Note that in

of Theorem 10, so we will first give an outline of the main ideas. By
considering a series of scenarig$ }, we will prove the following
fact: if agents{ A1, Ao, ..., A, } (defined as above) arrive at time 0
along with impatient bidder®,, Co with valuesl and2, then M

can not allocate the time slot #8, or Cy. Since the VCG revenue

in this case is bounded below hywe know thatM/ must collect at
leastl/C' in revenue. Next we will consider a carefully constructed
series of scenariof¥,}, in which the set of agents at time 0 is as
above, and all agents arriving after time 0 are impatient and have
values much smaller thatyC'. Using ¥, we will show that it is
impossible forM to guarantee at leadt/C' in revenue. Roughly
speaking, this is because truthfulness prevérdtérom extracting
much revenue from the patient bidder who wins time slot 0, and (for
q large enough) there will not be enough time after this to make up

this casegz’ cannot be assigned to the second time slot because ofthe difference.

agentz, whose value is very large, and at time 1, mechaniém

ScenarioY, (1 < k < T) is specified as follows. Choose a

does not know whether such an agent exists or not. In addition, in sufficiently large number: (any number greater tha2C' + 3Cq

this scenario, agent cannot be assigned to any time slot.

Finally, we consider the third scenario in which we have two
agentsz” and z” for which v,» = v, andv,» = v,/, and an-
other ageny” for whichv,» = (1,2,1). In this case, mechanism
A should not assign” to the first time slot. The reason is that in
this casey” has a positive value (since mechanidnshould charge
y”" less than one) and thus in the second scenario, ageould lie
about its type to announce it the same as that'aih this scenario
and thus get a positive value (agenthad zero value in the second
scenario.) It means in this scenario, if agefitdoes not appear at
all, since mechanism does not know about it at time 1, still agent

y” should not be assigned to any time slot. Thus the mechanismbidder, then each of the patient biddets,

obtain efficiency at most + §, though the optimum efficiency is
2 4 & in this case. Sincé~$ > 2 — ¢ by the choice of, we have
the desired contradiction to the existence of mechamsm[]

6. REVENUE OF THE AUCTION

Theorems 7 and 8 established the existence of mechanisms whos

efficiency is constant-competitive with that of the VCG mechanism.

In contrast to these positive results, there is no strategyproof mech-

anism whoseevenues constant-competitive with that of the VCG
mechanism, if we insist on mechanisms which satisfy the following
axiom.

DEFINITION 11. Animpatient biddelis an agent with arrival
and departure timeéa;, d;) satisfyingd; = a; + 1, i.e. an agent
who can only accept an allocation at timag. We say that a mech-
anismM considers impatient bidders anonymousiy has the fol-
lowing property: whenevel/ assigns a time slatto an impatient
bidder z with valuew, there is no impatient biddey with arrival
timet whose value is strictly greater than.

THEOREM 12. If M is a truthful, deterministic online mecha-
nism satisfying voluntary participation, and considers impatient
bidders anonymously, then the competitive ratid/bfwith respect
to the VCG revenue is not bounded above by any conétant

PROOF SupposeM is a truthful deterministic online mecha-
nism whose revenue §-competitive with the off-line VCG mech-
anism, for some constait, and supposé/ considers impatient
bidders anonymously. We will derive a contradiction using a series
of scenarios, as in the proof of Theorem 10. All of our scenar-
ios will involve a timeline with time slots numbered 1,...,7T,

a set of patient bidder§A., A,, ..., A;} each with value 3, ar-
rival time 0, and departure tim€&, and pairs of impatient bidders
By, Co, B1,C1, ..., Br,Cr, such thatB; and C; both arrive at

time : and depart at timé+ 1, and whose values satisty(B;) <

will suffice), and putw(B;) = z*, w(C;) = 2z* for 0 < i <
k, w(B;) = w(C;) = 0fori > k. The VCG revenue in this
case is at least + = + ... + z*. If M does not allocate time
slot k& to By or Cj, then its revenue is bounded above iy +
(1+z+...4+z"") (due to the voluntary participation constraint)
and this is less thaih/C' times the VCG revenue, by our choice of
. Thus we may conclude that in scenaftfa, M allocates time
slot of k to an impatient bidder. Sinc®/ is an online mechanism,
and T, is indistinguishable froni(r until time £ + 1, we may
conclude that in scenariv -, each time slot > 1 is allocated to
an impatient bidder. I\ also allocates time sld@tto an impatient
..., Aq derives zero
utility in scenarioY . This contradicts truthfulness, singg may
derive positive utility by announcing val@e+ ¢, arrival time 0, and
departure time 1. (In this casd, will win time slot 0 and pay at
most2 + ¢, sinceM considers impatient bidders anonymously and
satisfies voluntary participation.)

Now let y be a very small number (any number smaller than

?/4803 will suffice) and consider a scenario with agedts . . ., A4

and By, C, defined as before, and with impatient biddéts C;

at time: whose values arg, 2y respectively. The VCG revenue
is unbounded as a function @f, hence ifM is C-competitive it
must eventually allocate a time slot> 0 to one of the impatient
biddersB;, C;. Let 1, be the first such time slot. Define a series
of scenarios{¥, : 0 < ¢ < 6C?} as follows: in scenarial,,
there are agentd, ..., A, with arrival time0, departure time’,
and value 3, there are impatient biddéts, C at time0 with val-
uesl, 2, respectively, there are impatient bidddss, C; at time

1 (1 <4 < 74-1) with valuesy, 2y, respectively, and there is an
impatient bidderB; with valuey at timei = 7,—1. (Wheng = 0,
we intepretr,_: to meanr, + 1.) By consideringl, we can get
an explicit upper bound omy. The VCG revenue in scenariby is

1 + 7oy, whereas the revenue af is bounded above by + 2y,
henceC'(2 + 2y) > 1 + 1oy, i.e. 0 < 2C(1 + 1/y).

Now we will consider¥, for ¢ > 0, obtaining dower bound on
Tq—1 — Tq. The argument proceeds as follows. By the definition
of 7,, we know thatM doesn't allocate any time slots to impa-
tient bidders until timer,, so the revenue from impatient bidders
is at most2y max (0, 7q—1 — 74 + 1), by voluntary participation.
For each patient bidded,, it is possible to receive time slat,_;
at a price of at mosRy by declaring an arrival time of,_,, de-
parture timer,—; + 1, and value2y. In such a case, time slot
T4—1 Will be allocated toA; becauseV! considers impatient bid-
ders anonymously, and the price will be at m@gtby voluntary
participation. AsM is truthful, it must be the case that; de-
rives at least as much utility from truthfully announcing her type.



Thus M can not charged; a price greater thaBy, so the com- partitioning technique which is often useful in designing competi-

bined revenue from patient bidders is at mgj. Using the trivial tive auctions. At time), the mechanism samples a random number
lower bound ofl on the VCG revenue, and th&-competitiveness &, independently from the uniform distribution g6, 1], for each

of M, we now havel < 2Cqy + 2Cymax(0,74—1 — 74 + 1). integerk. (Of course, in an actual implementation the numiggrs
We haveq < 6C? andy < 1/48C%, hence2Cqy < 1/4. Thus will be determined by lazy evaluation, i.e. we samgjethe first

3/4 < 2Cymax(0,7q—1 — 7q + 1), .8, Tqg—1 — Tq > ﬁ -1 time we need to examine its value and not earlier.) A random par-
Summing ovey = 1,2,...,6C? we obtainr, > 2 —6C?. Com- tition of the set of agents into two sets B is computed online, by

- - . assigning each agent (at its arrival time) randomly, independently,

bining this Wc'th the “ppgg b°””f§ = 2001+ 1/y)lfrom ear3I|er, and equiprobably tal or B. For each agent we now determine a

we see _th‘fi% + 20> 35y —6C7,1e.6C+2> 55 > 1207, a threshold price schedute (i) as follows. Ifi € B, thena. (i) = oo

contradiction sinc€’ > 1. [J for all t. Let A; (resp. B;) denote the set of agents arriving at or

before timet, and assigned to set (resp. B). If ¢ € A andB; is

the empty setq; (i) = 0. Otherwise, letwmin(Bt), Wmax(Bt) be

the minimum and maximum bids reported by agent®in Among
COROLLARY 13. Suppose that the bids; are constrained to all integersk such thatwmin (B) /2 < 2% < wmax(B:), choose the

belong to an intervala, b] whose endpoints are known to the mech- one for whichg,, is minimum, and set (i) = 2* ini € A.

anism designer, and lét = b/a. If M is a truthful, deterministic At time ¢, the mechanism computes its allocation as follows. It

online mechanism which considers impatient bidders anonymouslyfirst defines a set of eligible agents, by taking the4gand remov-

and satisfies voluntary participation, then the competitive ratio of ing all agents who have been allocated a time slot in a previous pe-

‘ 1/4 iod. o . : g
M with respect to the VCG revenue is at Ie@s(( log h ) ) . riod. If the set of eligible agents is non-empty, then an eligible agent

By closely examining the proof of Theorem 12, we can strengthen
it to the following result.

log log h 7 with maximum bid value is chosen (randomly and uniformly, if
there is more than one eligible agent with maximum bid value) and
is declared thevinnerat timet. Lettingw; denote the bid value of
this winning agent, the mechanism allocates time sidb agent;

PROOF Let us explicitly determine an intervt, b] containing
all the bid values considered in the scenafits, } and{¥,} which
arose in the proof of Theorem 12. The smallest bid considered was;¢ a:(i) < wi; otherwiset is unallocated.

y, in scenariol, for all values ofg. Note thaty may be taken to be The priciné rule is defined as follows. For each agers price
equal tol/49C*. The largest bid considered \’3V3$_T in scenario  schedulep (i) is computed by simulating the same allocation rule
Y. Herex may be taken to b8C(1+¢) < 20C”, sinceg < 6C~. with agenti absent. (All other random choices, including the par-
The largest value df’ considered wad’ = 7o < 2C(1 + 1/y) < tition of the remaining agents into sets B, are unchanged in the
100C*, in scenario®,. Thusz? = O(C3%°C"). Therefore the  simulation.) Letting3, (i) denote the bid of the agent who is the
bid interval[a, b = [y, 227 satisfiesh/a = O <CO(C4)> _and the \r/]v(iarrl)nevcgtstei?et in this simulation (or3; (i) = 0 if there is no win-

. . . o 1/4
right side is at mosk, for someC' = O ((méiﬁh) ) . O pe(i) = max{ov (i), Be(i)}.

The payment for agentis determined by the value-independent,
monotone price schedujes;(a,d,v—;) = ming<i<ape(?). Itis

easy to check that this price schedule implements the allocation rule
described above, hence the mechanism is strategyproof by Theo-
rem 5.

To prove that the mechanism (3(log h)-competitive with the

CG revenue, we begin by identifying a set of agents whose con-
tribution to the VCG revenue may be easily bounded. An agent
¢ with type (as, d;, w;) is pitiful if the VCG mechanism charges

a positive price to agent yet there exists an integér such that

ky— ] k; . . .
THEOREM 14. There is a randomized online mechanism which 2" < wi < 2 » and every other bid received at or before time
achieves a competitive ratio 6f(log i) when all bids belong toan @i IS greater than™ . (We callk; theindexof pitiful agenti.) Note
interval [a, b] satisfyingb/a = h. The mechanism need not know that for distinct pitiful agents, j with arrival timesa; < q;, the
the values of andb. indicesk;, k; are also distinct and satisk > k;. Thus the sum of
. . . *+1 *
PrRooOF For simplicity, we will work in the synchronous model. the bids of all pitiful agents is bounded above®y *, wherek

The same competitive ratio can be achieved in the asynchronous's the index of the earliest-arriving pitiful agent, if there is any such

: ; . . - Cagent.
mOd?I by incorporating the mechanism from Theorem 8 into this gLet to be the earliest time at which more than one agent arrives.
proof.

Suppose first that the bid interval is known tofseh]. Then the (If there is no such time, then the VCG revenue is zero and there is

mechanism is extremely simple: at tifieguess a random power of nothing to prove.) Let; > w, be the two largest bids arriving at

2 betweenl andh and define thié to be the reserve pricdn each time to (corresponding to agents, iz, respectively) and note that
period, if there is at least one bidder present whose bid is apove w?.f>| 28", Sin.cﬁto is no I_all_ter than the arri\{al time of ;he eakrlliest
and has not yet been satisfied, choose one such bidder at random angftiful agent. With probabilityl /4, i1 € A, iz € B. If so, the
allocate the time slot to that bidder, charging a pricg.oFor each ~ Probability that oukr*mleghanlsm allocates time gloto an agent at
periodt, if the VCG mechanism allocateso a bidder: and charges @ price of at least™ ™ is at leastl /[log, (h)]. It follows that the

¢ to that bidder, then with probability/ [log, (h)] the random price total amount charged to pitiful agents by the VCG mechanism is at
p satisfies;/2 < p < ¢. If so, then either the mechanism charges =~ Most16[log,(h)] times the expected revenue of our mechanism.

Next we show that a randomized mechanism can nearly match
the lower bound established in Corollary 13, even if the bid inter-
val [a, b] is not known in advance. Specifically, the revenue of our
mechanism i (log h)-competitive with the VCG revenue, where
h is the ratio of maximum value to minimum value of agents. This
result can be considered parallel to a result of Lavi and Nisan [14], Vv
who derived the same revenue competitive ratio in a different online
auction setting. However, it is worth noting that their result requires
foreknowledge of the bid intervéd, b).

to z, or it charge® to an agent who is allocated time stotUsing a It remains to bound the total amount charged to non-pitiful agents
charging scheme as in the proof of Theorem 7, this implies that the by the VCG mechanism. Assume that VCG allocates timetsiot
mechanism’s competitive ratio is bounded abovet fiyg, (h)]. non-pitiful agent: at a pricep > 0. Let2™ be the largest power of

If the bid interval is not known initially, then it is a bit harder to 2 less thanw;. We claim there exist agenfs# i, k # i, arriving at
design a0 (log h)-competitive mechanism. We will define such a or before timeu;, such thatw; > p andwy /2 < 2™. The existence
mechanism, which combines the random-reserve-price notion intro- of agentk follows from the fact that is not pitiful. The existence
duced above, the greedy mechanism analyzed earlier, and a randorff agent; follows from the truthfulness of the VCG mechanism;



otherwise, could improve its utility by claiming that its departure
time isa; + 1 and its value i — ¢, for some sufficiently small
positivee.

With probability 1/2, i € A. If so, the allocation rule satisfies
one of the following properties:

1. There exists a time at which ageris a winner.
2. The winner at time is not agent, but this agent bids at least
as much as agent

In the first case, let’ = i and lett’ be the time at whichi wins.

In the second case, lét be the winner at time and lett’ = ¢.
(Note thatt’ > a; in both cases, sinceis ineligible in time slots
earlier thane;. Note also thai’ € A, since agents i3 are never
eligible.) Defining agentg, & as above, and conditioning on the
eventi; € A, the probability thatj, k¥ € B is at leastl/4. (ltis
equal tol/4 unlessj = k.) By the properties of agengsandk,
the intervalmin{w;, wr }/2, max{w;, wy}) contains a power of
2 betweerp/2 andw,, say2é. Conditional on the event thate

A, j, k € B, the probability is at least/[log, (k)] thatoy (i)
ar(i') = 2¢. Thus, while the VCG mechanism charge® agent,

our mechanism charges at leéi [log, (h)]) ~'p in expectation to
agenti’. This argument credits a given agehat most twice: once
wheni = i/, and once whehnis the time slot which our mechanism
allocates toi’. Thus the expected amount charged to non-pitiful
agents by the VCG mechanism is at m88flog, (k)] times the
revenue of our mechanism[]

L is rejected. Jobs of length less than or equdl tare treated like
jobs of lengthL. Finally, the mechanism in Theorem 8 is used to
schedule these jobs. We observe that this allocation rule has a truth-
ful implementation. First, notice that since the mechanism rounds
all job lengths that are less thdnto L and removes jobs of length
greater than, no agent can benefit by lying about their length.
Therefore, we only need to prove truthfulness with respect to other
parameters. By Theorem 6, it is enough to show that the allocation
rule is monotone. Monotonicity with respect to values and departure
times is obvious. Monotonicity with respect to arrival times follows
from the monotonicity of the mechanism in Theorerh 8.

We now show that the above allocation rule achieves a competi-
tive ratio of O(log(Lmaxz/Lmin)) for efficiency. Consider an opti-
mal solutionOPT. Let Ly, Lo, ..., Ly denote all powers of two in
the interval[L.,in, 2Lmae]. We partition the set of jobs served in
the solutionOPT into k subset®O PTy, ..., OPT}, whereOPT;
is the set of jobs i) PT" that have length more thai,—; and less
thanL; (we letLo := L...»). For eachi, we number the jobs in
OPT; with consecutive natural numbers in the order that they are
served in the solution, and IEtPT} be the set of odd numbered jobs
or the set of even numbered jobsGhPT;, whichever has higher
total value. Clearly, the sum of the values of jobsO#T; is at
least half the sum of values of jobs @MPT;. Furthermore, if we
round the length of all jobs i® PT} up to L;, we obtain a feasible
solution of the instance constructed in the mechanism if the value
L picked by the mechanism i5;. Therefore, by Theorem 8, the
value of the solution found by the allocation rule conditioned on

It may seem that the revenue of the VCG mechanism is a rather L = L, is at leastl /5 times the value of jobs i© PT;. Since

weak benchmark against which to compare our mechanism’s rev-

enue. However, as illustrated by Theorem 12, deterministic truth-

for eachs, the probability thatl. = L; is 1/[log(Lmaz/Lmin)],
the expected value of the solution found by our mechanism is at

ful mechanisms can not be constant-competitive even against thisleastO(1/log(Lmaz/Lmin)) times the sum of values 6 PT; for
benchmark. Moreover, the VCG revenue is at least as large as the; = 1,...,k, or O(1/1og(Lmaz/Lmin)) times the value of the
maximum total value of a feasible allocation to the set of agents that optimal solution. ]

are disjoint from those satisfied by the optimal allocation. This fol-
lows from the fact that the sets of agents who can win the auction
simultaneously form a matroid [4, 21].

When the intervalL.,in, Lmae] is Not known in advance, the fol-
lowing theorem shows that we can still achieve a competitive ratio

It is also worth mentioning that the greedy mechanism used in the of O(log(Lmaz/Lmin)) Using a mechanism that is strategyproof

proof of Theorem 7, which is 2-competitive for efficiency, can have
an arbitrarily bad competitive ratio with respect to the VCG revenue.
Considem+2 agents] ton+2, as follows. Agent, 2 < i < n+1,

has typev; = (i — 1,7 + 1,2). Agentl has typev; = (1,2,1) and
agentn + 2 has typev,+2 = (n+1,n+2,1). Itis easy to observe
that off-line VCG charges each of agegts .., n + 1 a price ofl

and thus collects for revenue. However, the greedy algorithm only
charges agent 2 a price band all other$. It means the competitive
ratio of the greedy mechanism for revenue can be arbitrarily large.

7. DIFFERENT JOB LENGTHS

In this section we consider the case where jobs are allowed to

have different lengths. In other words, each agent’s type is now
characterized byour values: a;, d;, w;, and L;, wherea;, d; are
interpreted as before, an; is a positive real number specifying
thelengthof job 7. The value of a given outcome for agent; is
equal tow; if the subset of0, 7] allocated to contains an interval
whose length is at leadt;, otherwisexr has zero value for.

First, we start by assuming that all job lengths are in an interval

with respect to all parameters except job lengths. The proof is very
similar to the proofs of Theorems 14 and 15, and is deferred to the
full version of this paper.

THEOREM 16. There is a randomized strategyproof mechanism
that achieves a competitive ratio 6f(log(Lmaz/Lmin)) for effi-
ciency when all job lengths are in an intervidl.in, Limaz]. The
mechanism need not know the valued.gf;,, and L.z, but as-
sumes that the agents do not lie about their length.

8. A GENERAL FRAMEWORK FOR
TRUTHFUL ONLINE AUCTIONS

In this section, we generalize the characterization in Section 3 to
other models of misreporting in online auctions and extend the ex-
isting theory on price-based characterizations of truthful auctions to
models with restricted misreporting. The standard theory of truth-
ful mechanisms states that a truthful mechanism must be imple-
mented in terms of an agent-independent price function [13], where
the price to an agent is independent of its reported type. This need

[Limin, Limaz] Which is known to the mechanism beforehand. Using ot he the case in truthful online auctions, where a patient agent
a technique similar to that adopted in Section 6, we show that there ;3 make a smaller payment than if it was less patient, even when
exists a strategyproof mechanism that achieves a competitive ratioj; yould receive the good in the same period. This can occur, for
of O(log(Lmaz/ Lmin)) for efficiency. instance, in the simple unit-length synchronous auction. In online
auctions the price can depend on an agent’s reported arrival and de-
parture, although not on its reported value. Prices must satisfy a
monotonicity property with respect to reported arrivals and depar-
tures and allocations must be carefully timed for some misreporting

THEOREM 15. There is a randomized strategyproof mechanism
that achieves a competitive ratio 6f(log(Lmaz/Lmin)) for effi-
ciency when all job lengths are in an intendl,.in, Limaz] known
to the mechanism, even if agents are allowed to lie about their
length.

“Notice that here we are using the fact that job lengths that are less
than L are all rounded up td.. Without this, the allocation rule
would not be monotone with respect to arrival times and can not be
truthfully implemented.

PROOFE The mechanism is as follows: I&tbe a random power
of two in the interval L.in, 2Lmaz ). Every job of length more than



models. Auctions that are based on agent-independent price schedthat determined; (y, vi,v—;), i.e. for which f(v;, v;) = y and for

ules, ps;(t,v—;) in period¢, are truthful with appropriate timing

which p; (v, v_;) = p;(y,vi, v—;). When other agents declare;

requirements. However, the existence of a simple price schedule ofand agent has true type; it is better to declare, € L(v;:), a

this kind is not necessary for truthfulness.

8.1 Restricted Misreports

contradiction with truthfulness. ]

Given price functionsp;(z, v;,v—;) satisfying conditions (B1)

In the main model in this paper, we considered agents that can@nd (B2) we can define a payment rglgv) = pi(f(v), vi,v—i)
only report late arrivals and early departures. This is an example of that implements’ truthfully. Thus, the agent's payment is the price

a domain in which there is restricted misreporting of agent type.

Let L(v;) C V; denote the available misreports (i@s) available
to agent; with valuewv;. We assuméransitivity, so thatv; € L(v;)
andv] € L(vj) impliesv; € L(v;). The standard mechanism
design model had.(v;) = V; and the standard multiagent model
with cooperative agents hds(v;) = v;. A general definition of
truthfulness in this model is as follows:

DEFINITION 17 (TRUTHFULNESS. A mechanisnif, p) for
social choice rulef : V™ — A, and paymentrule; : V™" — RZ,,
is truthful if for any agent and anyv_; € V_;, and anyv; € V;
and 0; € L(Ui), we haveul(f(v)) — pi(U) > Ui(f(f}i,’l)fi)) —
pi0i, v—i).

The following lemma provides a price-based characterization of
truthful mechanisms in domains with restricted misreporting. The
price can depend on an agent’s reported type, but in a limited way.

LEMMA 18. For available liesL, a functionf is truthful if and
only if there exists a price functiop; : A x V; x V_; — R U oo,
such that,

(B1) For any agent, anyv € V, anyz € A, if there exista; €
L(v;) such thatf(v,v_;) = x then pricep;(z, vi,v_;) =
min{p;(z,vj,v_;) : v; € L(v;), f(vi,v—;) = x}, other-
wisep; (x, v;, v—;) = 00.

(B2) For any agent, anyv € V, f(v) € arg maxgyeca{vi(z) —
Pi(x,vi,v-4) }.

PROOF (<«=) By contradiction, suppose (B1) and (B2) hold but
that f is not truthful. We can define paymemtgv) = p;(z, vi, v—;)
for z = f(v). Consider some andv; € L(v;), for whichv;(z) —
pi(v) < vi(y) — pi(vi,v—) andz = f(v), y = f(vj,v—:). By
(B1) we haVepi(’ULUfi) = 131(% U£7U*i) 2 ﬁz(y7 Ui)”*i)’ and
vi(z) — Pi(x,vi,v—3) < vi(y) — Pi(y, vi,v—s), @ contradiction
with (B2).

(=) Given a truthful f, we know there is a payment function
pi(v). To show (B1) and (B2), we construct the price function
pi : AxV; xV_; - RU oo, as follows. For any, v € V,
andz € A, if there exist; € L(v;) such thatf (vi,v;) = z we
setp;(x, vi,v—;) = min{p;(vj,v_;) : vi € L(v;), f(v},v_;) =
z}, otherwisep;(z,v;,v—;) = oo. To show (B1), fix somer,
somev; and somev_; for which there is a; € L(v;) for which
f(vi,v—;) = . First, there canbe &y € L(v;) with f(0;,v—_;) =
z for which p;(z, vi,v—;) > pi(x,v;,v—;), because this would
give,

min{p; (vi,v_;) : vj € L(v;), f(vi,v—;) = x}
> min{p;(v;,v_;) : vi € L(%:), f(vi,v—;) = x},
which contradicts the transitivity of misreporting. So, we have
<

Di(x,vi,v_4) <

min{p; (z, vi,v_;) : v; € L(v;), f(v},v_;) = x},
which together with
>

Z”)‘Z’(.’L','Ul','l}fi) =

min{p; (z, vi,v—;) : v; € L(vi), f(vi,v—i) = x},
gives (B1) (sincey; = v; € L(v;)).
Now, we show the same price function also satisfies (B2). By
contradiction, consider somesuch thatf(v) = x andv;(x) —
iz, vi,v—4) < vi(y) — Pi(y, vi,v—;). Letv; € L(v;) be the type

for the optimal alternative, as chosen by the allocation rule.

Note that payments can depend on the reported type of an agent
but only in a restricted way (B1). In words, the price on alternative
given reporiv; must be the lowest price that is available to the agent
given misreports that are possible for a typeofWhen misreports
are unrestricted we recover the standard agent-independent price-
based characterization:

COROLLARY 19. For unrestricted reports, then for any truthful
function f, there exists an agent-independent price functi@n;
A x V_; — R U oo, such that for anw € V and any agent,
f(v) € argmax,ea{vi(@) — pi(x, v-i)}.

PROOF Observe that ifL(v;) = V;, then for anyv_; € V_,,
and anyx € A, we have

Pi(a,vi,v_s) = min{p; (z,vj,v_) : v € L(vi), f(vj,v_) = &}
= min{pi(z, v;,v—;) : f(vi,v-) = x}
:ﬁi(l',’l)fi)

forallv; € V;, wherep;(x,v_;) is an agent-independent price func-
tion that does not depend on the reported type of agenit]

8.2 Application to online auctions

In this section we state generalizations of the monotonicity and
price-based characterizations in Section 3 to additional models of
misreporting. These characterizations generalize well-known re-
sults in the case of one-parameter agents (see, for example, [1]) and
strengthen Theorem 3 in [7]. For space reasons, the proofs in this
section are omitted; they will appear in the full version of this paper.
We consider the following three models of misreporting:

(A1) L(vi) = {v; = (aj, dj, w;) : ag > ai, d; < di,anyw;}
(A2) L(vi) = {v; = (aj, dj, w;) : a ;

2 Qi, anydu anyw:ﬁ}
(A3) L(vi) = {v; = (a}, dj,w;) : di < ds,anya;, anyw;}

Although we focus on Model Al in this paper (since it seems more
realistic), all of our truthful mechanisms in Sections 4 and 6 can be
also stated for the more general Model A3.

The notion ofcritical valuewill be important in defining the char-
acterization.

DEFINITION 20 (CRITICAL VALUE). The critical value
v¢(a,d,v_;) is the minimal valuew;, with v} (a,d,w;) for
whichg; (v, v_;) = 1, or co if g; (v}, v—;) = 0 for all w}.

For models A2 and A3 we define the notion of a critical period,
I.(a,d,v—;) C T, which will limit when allocations can be made.

DEFINITION 21  (CRITICAL PERIOD FORMODEL A2). In
model A2/.(a,d,v_;) = [t,d] where period is defined as the ear-
liestt € [a, d] for whichv®(a, t,v—;) = min ..<-<a v°(a, 7,v—s).

DEFINITION 22 (CRITICAL PERIOD FORMODEL A3). In
model A3].(a,d,v—;) = [a,t] where period is defined as the lat-
estt € [a, d] for whichv®(¢,d, v_;) = min .o<-<a v°(7, d, v—s).

An online allocation rule is said to Ispporteddy a price sched-
ule ps;(a,d,v—;) in the sense of therice-based online auctions
(Definition 3), so that the rule allocates a good to the agent if and
only if the agent’s reported value; < psi(a,d,v_;) and at price
psi(a,d,v_;).

5Note that we cannot go beyond Model A3, because of a recent
result of Lavi and Nisan [15] mentioned in the introduction.



THEOREM 23. (Model Al) The following are equivalent state-
ments in a domain with no early arrival and no late departure:

(3]

1. An allocation rule has a truthful implementation.

2. An allocation rule is monotonic.

3. An allocation rule is supported by a monotonic and value-
independent price schedute; (a, d, v_;). (4]
THEOREM 24. (Model A2) The following are equivalent state-

ments in a domain with no early arrivals:

(5]

1. An allocation rule has a truthful implementation.

2. An allocation rule is monotonic, and when making an alloca-
tion assigns the item in the critical period.

3. An allocation rule is supported by a monotonic and value-
independent price schedute; (a, d, v—;), and when making
an allocation assigns the item no earlier than the first period
t:a; <t < d;forwhichps;(as,t,v_;) is minimal.

(6]

[7]
THEOREM 25. (Model A3) The following are equivalent state-
ments in a domain with no late departures:

(8]

1. An allocation rule has a truthful implementation.

2. An allocation rule is monotonic, and when making an alloca-
tion assigns the item in the critical period.

3. An allocation rule is supported by a monotonic and value-
independent price schedute; (a, d, v—;), and when making
an allocation assigns the item no later than the last period
t:a; <t < d;forwhichps;(t, d;,v—;) is minimal.

El

In each case, the payment rule that makes the allocation rule truth-[10]
ful is as defined in Eq. 7 in Section 3.1.

The price-based characterizations provide a useful complement to
the monotonicity-based characterization on allocation rules. Rather
than define monotonic allocation rules, one can define monotonic [11]
and value-independent price schedules for which the supported al-
location rule is feasible.

9. OPEN PROBLEMS 12]

In this paper, we considered online auctions with re-usable goods. 13]
We presented several upper and lower bounds on competitivenesé
for both revenue and efficiency of truthful online mechanisms. In a
general framework, we also provided necessary and sufficient char-
acterizations for allocation rules that can be implemented in a truth-
ful online auction. Here, we present several open problems.

The main open question is to determine whether the known lower
bounds for deterministic mechanisms can be extended to apply to
randomized mechanisms. We are referring here to our Theorem 10
(for efficiency) and Theorem 12 (for revenue), as well as the lower
bound by Lavi and Nisan [15] (for efficiency, in misreporting model
A2). We also conjecture that the lower bound of Theorem 12 can be
improved toQ2(log h) and extended to asymmetric mechanisms.

Another open problem is to determine whether there is a deter-
ministic mechanism whose revenue(Xlog h)-competitive with
the VCG mechanism, at least in the case where the intgryh] is
known to the mechanism. (The paper by Lavi and Nisan [14], which
addresses a different type of online auction problem, achieves this
bound using a deterministic mechanism with known bid interval.)

[14]

[15]

[16]

[17]

18
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