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ABSTRACT
This paper concerns the design of mechanisms for online schedul-
ing in which agents bid for access to a re-usable resource such as
processor time or wireless network access. Each agent is assumed
to arrive and depart dynamically, and in the basic model require the
resource for one unit of time. We seek mechanisms that are truthful
in the sense that truthful revelation of arrival, departure and value
information is a dominant strategy, and that are online in the sense
that they make allocation decisions without knowledge of the fu-
ture. First, we provide two characterizations for the class of truth-
ful online allocation rules. The characterizations extend beyond
the typical single-parameter settings, and formalize the role of re-
stricted misreporting in reversing existing price-based characteriza-
tions. Second, we present an online auction for unit-length jobs that
achieves total value that is 2-competitive with the maximum offline
value. We prove that no truthful deterministic online mechanism
can achieve a better competitive ratio. Third, we consider revenue
competitiveness and prove that no deterministic truthful online auc-
tion has revenue that is constant-competitive with that of the offline
Vickrey-Clarke-Groves (VCG) mechanism We provide a random-
ized online auction that achieves a competitive ratio ofO(log h),
whereh is the ratio of maximum value to minimum value among
the agents; this mechanism does not require prior knowledge ofh.
Finally, we generalize our model to settings with multiple re-usable
goods and to agents with different job lengths.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity; J.4 [Computer Applications]: Social and Behav-
ioral Sciences—Economics

1. INTRODUCTION
∗CSAIL, MIT, 32 Vassar Street, Cambridge, MA 02139, USA,
Emails:{hajiagha,rdk }@csail.mit.edu .
†Part of this work was done while the author was an intern in the
Microsoft Research Theory Group.
‡Supported by a Fannie and John Hertz Foundation Fellowship.
§Microsoft Research, One Microsoft Way, Redmond WA 98052,
U.S.A., Email:mahdian@microsoft.com .
¶Department of Electrical Engineering and Comp Science, Harvard
University, Cambridge, MA 02139, USA. Supported in part by NSF
grant IIS-0238147. Email:parkes@eecs.harvard.edu .

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’05,June 5–8, 2005, Vancouver, British Columbia, Canada.
Copyright 2005 ACM 1-59593-049-3/05/0006 ...$5.00.

1.1 Motivation
Online mechanism design concerns the design of mechanisms for

markets in which agents arrive and depart over time, and the mecha-
nism must compute allocation and payment decisions online without
knowledge of the agents who will subsequently arrive. Such prob-
lems arise in many practical applications of mechanism design (e.g.,
pricing access to a WiFi port at Starbucks [7], or scheduling com-
puter jobs on a shared server.) These problems are generally quite
difficult because they combine the challenges of mechanism design
(i.e., ensuring truthfulness1) with the challenges of designing on-
line algorithms (i.e., dealing with uncertainty about future inputs).
As an example, one of the most important techniques for designing
truthful mechanisms (the Vickrey-Clarke-Groves (VCG) scheme) is
inapplicable in most online problems because it requires computing
an optimal allocation, which is generally impossible in the online
setting [7]. In this paper we will analyze truthful online mechanisms
in terms of their competitive ratio with the efficiency and revenue of
an (off-line) VCG scheme.

The setting we will consider is a simple scheduling problem, in
which agents bid for access to a re-usable resource over a sequence
of time slots. We will assume that the resource has a finite capacity,
most often 1. An agent has an arrival and departure time, and in
the basic model a value for receiving one unit of the resource dur-
ing this interval. Our objective is to design a mechanism for this
problem which is strategyproof with respect to not only the values,
but also the arrival and departure times. The requirement of strat-
egyproofness with respect to arrival and departure times makes the
online auction problem difficult since it places constraints on the
timing of allocations. This is demonstrated by Lavi and Nisan [15],
who prove that without any restriction on the types of possible mis-
reports, it is impossible to achieve a bounded competitive ratio on
efficiency. In this paper, we study the problem with the assump-
tions of no early arrivalsandno late departures, i.e., we assume
that agents cannot report an arrival time earlier than their true ar-
rival time or a departure time later than their true departure time.
This model was also adopted by Porter [20] for his work on online
auctions with re-usable goods.

The assumptions of no early arrival and no late departure are rea-
sonable in situations where it is possible to verify that agents are
physically present throughout their reported arrival-departure inter-
val (i.e., agents can hide their presence but not create a phantom
presence). Also, no early arrivals makes sense if one considers that
the arrival time is the first time an agent learns about the auction.
No late departures makes sense, for example, in markets for a re-
source such as processor time where it is possible to delay granting
an agent the benefit from using the resource (even though it is ready)
until departure, for instance by waiting until that time to report the
outcome of the processor’s computation.2

Finally, it is worth mentioning that we consider theno early ar-

1We use truthfulness and strategyproofness interchangeably in this
paper.
2Porter [20] adopted this motivation in his work on online auctions
for processor scheduling.



rivals assumption in this paper because it is quite natural and be-
cause the characterization of truthful mechanisms for this model is
simpler to state. However, almost all of our mechanisms remain
strategyproof without assuming no early arrivals.

1.2 Our contributions
In this paper, we give a characterization for the online alloca-

tion rules that are truthfully implementable. The characterization
is interesting because the online auction problem studied here is
neithersingle-parameter[1, 16], nororder-based[13], and a com-
plete characterization was previously not available for this model.
Furthermore, our result explicates the importance of limited mis-
reports in the design of truthful online auctions. We see this, for
instance, in theno early arrivalsandno late departuresassump-
tions. The characterization is stated in terms of monotonicity and
timing properties on allocation rules, but does not imply the W-
MON condition [13], which is known to be necessary for truthful
implementation in settings with unrestricted misreports. We are also
able to extend our characterization to address randomized mecha-
nisms. A parallel characterization is provided in terms of price-
based auctions, that demonstrates that while fully agent-independent
prices are not necessary, prices must be value-independent and sat-
isfy monotonicity requirements with respect to report arrival and
departure times. Fully agent-independent prices are sufficient for
truthfulness, but only necessary when there are unrestricted misre-
ports.

For unit-length jobs, we use the monotonicity characterization to
develop a truthful online auction that is 2-competitive with the op-
timal offline efficiency. The allocation problem is a special case of
the maximum-weight matching problem. Without the constraint of
truthfulness, the best known upper bounds on competitive ratio are
2 in the deterministic case ande/(e− 1) in the randomized case [3,
10], while the best known lower bounds are 1.618 in the determin-
istic case and 1.25 in the randomized case [6, 8]. With the truth-
fulness constraint, we demonstrate that no deterministic mechanism
can obtain a better competitive ratio than 2, closing the gap. We
also extend the result to an asynchronous model in which time is a
continuous parameter, agents need not arrive and depart at integer
times, and jobs are interruptible, obtaining a 5-competitive mecha-
nism in this case. The auctions also extend to the case ofk re-usable
goods available in each period, or equivalently a re-usable resource
with capacityk.

This simple 2-competitive online auction can have arbitrarily bad
revenue with respect to the offline VCG revenue. We prove that no
deterministic mechanism is constant-competitive with VCG for rev-

enue by giving a lower-bound ofΩ
(
(log h/ log log h)1/4

)
, where

h is the ratio of the maximum value to minimum value of agents.
Allowing for randomization in the mechanism, we can nearly match
this bound, obtaining a competitive ratio ofO(log h) even without
knowledge ofh.

Finally, we generalize our model to a setting with jobs with vary-
ing job length, introducing a fourth parameter to the private type
of an agent. Porter [20] had provided a deterministic auction that
satisfies an efficiency competitive ratio bound of(1 +

√
k)2 + 1,

wherek is the ratio of maximum to minimumvalue density(that
is, value divided by job length). We provide a randomized truthful
auction with a competitive ratioO(log(l)) wherel is the ratio of
the maximum job length to the minimum job length of agents, as-
suming that upper and lower bounds on the job lengths are known
in advance to the mechanism designer. The auction is based on the
asynchronous unit-length auction. On the other hand, when the ratio
l is not known in advance we can achieve the same competitive ratio
with efficiency, using an online auction that is truthful with respect
to all parameters except job length.

1.3 Prior work
Online mechanism design has been the focus of several recent

papers. Many of these papers (e.g. [5, 11]) assume that the agents

arrive in a predetermined order which is not under their control,
and that an agent’s only private information is her value. Designing
truthful mechanisms is much easier in these single-parameter mod-
els. Some of the online mechanisms which have appeared (e.g. [2,
14]) are strategyproof against agents misstating their arrival or de-
parture time because they are based on prices which are monoton-
ically non-decreasing over time. However, such approaches do not
lead to competitive online mechanisms in our setting because the
non-decreasing price requirement is too restrictive.

Hajiaghayi, Kleinberg and Parkes [9] present constant-competitive
online mechanisms for auctioning identical goods. Unlike the present
paper, they assume that the agents arrive in random order and study
a setting without re-usable goods in which goods can be allocated at
any particular time.

Friedman and Parkes [7] initiated the study of VCG-based online
mechanisms. Such mechanisms are (dominant-strategy) truthful in
the rare instances where the underlying allocation problem admits
an online algorithm with competitive ratio 1. Recently, Parkes and
Singh [18, 19] have studied VCG-based online mechanisms with
Bayesian-Nash equilibrium, adopting the framework of Markov De-
cision Processes. The setting for this work is quite general, but the
solution concept is weaker than dominant strategy truthfulness.

Porter [20] presents a truthful mechanism for the variation on our
model with different length jobs. In order for an agent to derive
positive utility, it must be granted the resource for a total dura-
tion equal to its job length. Porter achieves a competitive ratio of
(1 +

√
k)2 + 1 with respect to the optimal efficiency, wherek is

the ratio of maximum to minimumvalue density(value divided by
processing time) of a job, and proves that this ratio is optimal for
deterministic mechanisms. Here, we provide a randomized mech-
anism whose efficiency competitive ratio isO(log(l)) where l is
the ratio of maximum to minimum processing time. This signifi-
cantly improves Porter’s result, except for those instances in which
the amount of variation in job lengths is exponentially greater than
the variation in value densities.

Lavi and Nisan [15] study a closely-related online auction prob-
lem, in which items have expiration times and may be allocated any
time at or before their expiration. (Our model can be regarded as
a special case of theirs when the number of items is equal to the
number of time slots and items may only be allocated at their ex-
act expiration time.) Assuming unrestricted misreports, they prove
strong negative results for deterministic truthful auctions (no such
mechanism can achieve a competitive ratio better than the number
of items) and this leads them to consider a weaker solution con-
cept calledSet-Nash equilibriumwhich admits constant-competitive
mechanisms. Here, rather than modifying the solution concept, we
achieve constant-competitiveness by restricting the set of allowable
misreports. As we have argued earlier, this restriction (theno late
departuresassumption) is natural in the context of online mecha-
nism design.

Earlier, Ng et al. [17] presented a generalization of the model in
which jobs have bothlengthandsize, and in which there are multi-
ple units of a reusable good available in each period. Their VIRTU-
ALWORLDS mechanism generalizes the online auction presented in
this paper for the unit-length model, but was presented without com-
petitive analysis and for a model in which agents cannot misreport
their arrival time or patience.

1.4 Outline
The outline of the paper is as follows. Section 2 introduces the

model we are discussing. Section 3 provides the main characteri-
zation results for truthful online allocation rules. Further general-
izations of this characterization, together with a price-based char-
acterization that applies for a model of restricted misreporting and
points beyond the results in this paper, are postponed until Section 8.
Section 4 presents several competitive truthful online mechanisms
in synchronous and asynchronous models for unit length jobs. In
Section 5, we prove that no deterministic strategyproof mechanism



can achieve a competitive ratio better than 2 for efficiency in the
synchronous setting. In Section 6 we consider truthful online mech-
anisms that are competitive with respect to revenue and prove that
there is no deterministic strategyproof online mechanism whose rev-
enue is constant-competitive with that of the Vickrey-Clarke-Groves
(VCG) mechanism, but there is a randomized online mechanism
which achieves a competitive ratio ofO(log h), whereh is the ratio
of maximum value to minimum value of agents. In Section 7, we
generalize our results to the case in which the agents have different
job lengths and can lie about their processing times. Finally, we
conclude with some open problems in Section 9.

2. THE MODEL
We will consider mechanism design problems for scheduling a

single re-usable resource over a finite time interval[0, T ]. In this
section we define a simple model for studying such problems. Gen-
eralizations of this basic model will also be considered.

In our basic model, there aren agents, and thetypeof an agent
i is characterized by an ordered triplevi = (ai, di, wi) with 0 ≤
ai ≤ di ≤ T and0 ≤ wi < ∞. We refer toai, di as the agent’s
arrival anddeparture time, respectively, and we refer towi as the
agent’s value. The set of all possible agent types is denoted byV .
An allocationis a functionx = (x1, . . . , xn) which assigns to each
agent a subset of[0, T ] which is a finite union of subintervals, such
that distinct agents are assigned disjoint subsets.3 The set of all such
allocations is denoted byA. For an agenti and an allocationx, let
qi(x) = 1 if the setxi ∩ [ai, di] contains an interval of length at
least1, otherwiseqi(x) = 0. The value of agenti for allocationx is
equal toqi(x)wi, i.e. the agent gets valuewi if it is allocated at least
one time unit between its arrival and departure times, and otherwise
its value is zero.

We will be studying direct revelation mechanisms, in which each
agent participates by simply announcing its type. Adeterministic
mechanismconsists of asocial choice rule(also called analloca-
tion rule) f : V n 7→ A and apayment rulep : V n 7→ Rn

≥0. Here,
f(v1, . . . , vn) represents the allocation which is chosen when the
vector of reported types is(v1, . . . , vn), andpi(v1, . . . , vn) repre-
sents the amount agenti must pay. We will sometimes summarize
the allocation rulef by specifying the functionq : V n 7→ {0, 1}n

whosei-th component isqi(f(v1, . . . , vn)). Note that the value
of each agent for the allocationf(v1, . . . , vn) is completely deter-
mined by the value ofq(v1, . . . , vn); for this reason, by abuse of
notation we will sometimes also refer toq as the allocation rule. We
will assume that agents have quasi-linear utilities, so the utility of
agenti for outcomex and paymentpi is qi(x)wi−pi. Theefficiency
of a mechanism is the combined value of all agents for the alloca-
tion, i.e. the quantity

∑
i qi(v)wi. The revenueof a mechanism

is the sum of the payments collected from agents, i.e. the quan-
tity

∑
i pi(v). We will be comparing the efficiency and revenue of

our mechanisms against the standard VCG mechanism, which com-
putes the allocation and payments off-line. See Krishna [12] for a
definition of VCG mechanisms.

For now, we adopt a model in which we allow only late reports
of arrivals and early reports of departures. We consider relaxations
of this definition in Section 8. As discussed in the introduction,
this assumption is justifiable in many practical applications, and also
necessary to obtain constant-competitive mechanisms [15].

We are interested in mechanisms that satisfy the following two
properties:voluntary participation, i.e., for everyv ∈ V n, and ev-
ery agenti with vi = (ai, di, wi), pi(v) ≤ qi(v)wi, andstrate-
gyproofness(also known astruthfulness), that is, for everyv ∈ V n

with vi = (ai, di, wi) (think of v as the true types of agents), and
every bidv̂i = (âi, d̂i, ŵi) for agenti satisfyingâi ≥ ai andd̂i ≤
3We use this general model to capture both the synchronous and
asynchronous settings, as well as job lengths greater than one. An
agent may receive multiple subintervals, but only has value for the
allocation if one of the subintervals is long enough to satisfy its
demand.

di, we haveqi(v)wi − pi(v) ≥ qi((v̂i, v−i))wi − pi((v̂i, v−i)),
wherev−i = (v1, . . . , vi−1, vi+1, . . . , vn) (i.e., the utility of i is
maximized if she bids truthfully).

3. CHARACTERIZING TRUTHFULNESS
In this section, we provide two simple characterization theorems

for truthful mechanisms. The first establishes a monotonicity crite-
rion that is necessary and sufficient for the existence of a payment
rule that truthfully implements a given allocation rule; this can be
considered a generalization of well-known results concerning truth-
ful mechanisms for one-parameter agents (see, for example, [1]).
The second is a necessary and sufficient price-based characteriza-
tion for truthful mechanisms. Both theorems can be substantially
generalized; such generalizations will be treated in Section 8.

DEFINITION 1 (MONOTONICITY). We say that a typevi =
(ai, di, wi) dominates the typev′i = (a′i, d

′
i, w

′
i), denotedvi � v′i,

if ai ≤ a′i, di ≥ d′i, andwi > w′
i. An allocation ruleq : V n 7→

{0, 1}n is calledmonotoneif for every agenti and everyv, v′ ∈ V n

with vi � v′i andvj = v′j for j 6= i, we haveqi(v) ≥ qi(v
′).

THEOREM 2. Let q : V n 7→ {0, 1}n be an allocation rule.
There is a payment rulep such that the mechanism(q, p) is strate-
gyproof if and only ifq is monotone.

The proof of this theorem is omitted, since it will be subsumed by
the more general Theorem 6, which applies to randomized mecha-
nisms as well. Notice that Theorem 2 is existential. Whether the
payment rule can be computed efficiently depends on the specifics
of the model and the allocation rule.

We can now provide a price-based characterization for truthful
online auctions in terms of avalue-independentprice schedule. Con-
sider price schedule,psi(a, d, v−i), that will define the price to
agenti for an allocation, given that the agent announced interval
[a, d]. Notice this price can depend on its reported arrival and de-
parture, but not on its reported value. We can define aprice-based
online auction:

DEFINITION 3 (PRICE-BASED ONLINE AUCTION). An online
auction is price-based if and only if there exists a value-independent
price schedulepsi(a, d, v−i), such that for anyv ∈ V and any
agenti, qi(v) = 1 if and only if psi(ai, di, v−i) 6 vi, and pay-
mentspi(v) = psi(ai, di, v−i) in this case, or zero otherwise.

DEFINITION 4 (PRICE MONOTONICITY). Prices are
monotonic ifpsi(a, d, v−i) 6 psi(a

′, d′, v−i), for all a′ > a and
d′ 6 d.

THEOREM 5. An online allocation rulef is truthfully imple-
mentable if and only if there is a truthful price-based auction with
value-independent and monotonic pricespsi(a, d, v−i) that imple-
mentsf .

PROOF. (⇒) We refer to the proof of Theorem 6, which appears
in the next section. Iff is truthfully implementable, then the cor-
responding functionq is monotone, and the proof of Theorem 6 es-
tablishes that the pricespi(v) defined in (7) truthfully implementf .
Note that the right side of (7) depends only onai, di, andv−i, and
that it is monotonically non-decreasing inai and non-increasing in
di, so that we may use it to define the value-independent and mono-
tonic price schedulepsi(a, d, v−i).

(⇐) Given an allocation rulef which is implemented by prices
psi(a, d, v−i), we must prove thatf is truthfully implementable, i.e.
that the corresponding functionq is monotone. This follows from
the monotonicity of prices: ifvi = (ai, di, wi) dominatesv′i =
(a′i, d

′
i, w

′
i), thenpsi(ai, di, v−i) 6 psi(a

′
i, d

′
i, v−i). Now, sup-

posewi > w′
i, then if qi(v

′
i, v−i) = 1 we havepsi(a

′
i, d

′
i, v−i) 6

w′
i, which impliespsi(ai, di, v−i) < wi. This in turn implies

qi(v) = 1, as desired.



3.1 Truthful randomized mechanisms
A randomized mechanism is a probability distribution over de-

terministic mechanisms. We assume agents are risk-neutral, so that
their utility for a probability distribution over outcomes is equal to
the expected utility of a random sample from this distribution. Note
that this means it is immaterial, from the standpoint of determining
the utility of agenti, whether the price charged toi is equal to the
random variablepi(v) or to its expectation. Accordingly, for the rest
of this section we will assume that the paymentpi(v) is determinis-
tic, and that only the allocationf(v) is random. As before, we will
summarize the allocation rulef using a functionq = (q1, . . . , qn),
whereqi(v) is now defined to be the probability that the time in-
terval allocated toi has length at least1, givenf(v). Note thatqi

now takes values in the interval[0, 1] rather than the two-element set
{0, 1}. As before, the utility of agenti depends only on the value of
qi(v) and not on any other feature of the distribution off(v). For
this reason, by abuse of notation we will sometimes refer toq (rather
thanf ) as the allocation rule. The word “monotone”, when applied
to such a functionq, is still interpreted according to Definition 1.

THEOREM 6. Letq : V n 7→ [0, 1]n be an allocation rule. There
is a payment rulep such that the mechanism(q, p) is strategyproof
and satisfies voluntary participation if and only ifq is monotone.

PROOF. First, we prove the “if” part. Letq be a monotone al-
location rule andv ∈ V n with vi = (ai, di, wi). We define the
payment rule as

pi(v) = qi(v)wi −
∫ wi

0

qi((ai, di, x), v−i) dx. (1)

We show that the allocation ruleq in combination with the payment
rulep constitute a strategyproof mechanism. It is also clear from the
above definition that this mechanism satisfies the voluntary partic-
ipation property. If the mechanism is not strategyproof, there is an
agenti, a vectorv ∈ V n of true types withvi = (ai, di, wi), and
a non-truthful bid̂vi = (âi, d̂i, ŵi) with âi ≥ ai andd̂i ≤ di such
that the utilityqi(v̂i, v−i)wi−pi(v̂i, v−i) of agenti if she bidŝvi is
strictly greater than the utilityviqi(v)− pi(v) that she derives from
being truthful. Using Equation 1, this can be written as follows:

(wi − ŵi)qi(v̂i, v−i) +

∫ ŵi

0

qi((âi, d̂i, x), v−i) dx

>

∫ wi

0

qi((ai, di, x), v−i) dx. (2)

By monotonicity ofq and the inequalitieŝai ≥ ai andd̂i ≤ di, we
have∫ wi

0

qi((ai, di, x), v−i) dx >
∫ wi

0

qi((âi, d̂i, x), v−i) dx. (3)

Equations 2 and 3 imply

(wi − ŵi)qi(v̂i, v−i) >

∫ wi

ŵi

qi((âi, d̂i, x), v−i) dx. (4)

We now consider two cases: ifwi > ŵi, then by dividing both
sides of the above inequality bywi − ŵi we obtain thatqi(v̂i, v−i)

is strictly greater than the average ofqi((âi, d̂i, x), v−i) overx ∈
[ŵi, wi], which contradicts the monotonicity ofq. Similarly, if
wi < ŵi, then by dividing both sides of inequality (4) bywi −
ŵi we obtain thatqi(v̂i, v−i) is strictly less than the average of
qi((âi, d̂i, x), v−i) overx ∈ [wi, ŵi], which again contradicts the
monotonicity ofq. This contradiction establishes the strategyproof-
ness of the mechanism with allocation ruleq and payment rulep.

Conversely, assumeq is an allocation rule for which there is a
payment rulep such that(q, p) is strategyproof. Consider an agenti
and typesv, v′ ∈ V n with vi � v′i andv−i = v′−i such thatqi(v) <
qi(v

′). Let vi = (ai, di, wi) andv′i = (a′i, d
′
i, w

′
i). Sincevi � v′i,

we havewi > w′
i. Now consider a scenario where the true types of

the agents are given byv. In this scenario, ifi bids truthfully, she
will have a utility of qi(v)wi − pi(v), but if she bidsv′i, then her
utility will be qi(v

′)wi − pi(v
′). Therefore, strategyproofness of

(q, p) implies

qi(v)wi − pi(v) > qi(v
′)wi − pi(v

′). (5)

Now, consider a scenario where the true types of the agents arev′

and agenti might lie by announcingvi. A similar argument for this
scenario implies

qi(v
′)w′

i − pi(v
′) > qi(v)w′

i − pi(v). (6)

By adding inequalities 5 and 6 and using the inequalitywi > w′
i,

we obtainqi(v) > qi(v
′). Therefore,q is monotone.

It is worth remarking that the payment rulepi(v) defined in (1)
is equivalent to the following simpler definition in the case of deter-
ministic mechanisms:

pi(v) = min{w′
i : qi((ai, di, w

′
i), v−i) = 1}, if qi(v) = 1,

(7)
andpi(v) = 0 otherwise. In words, an agent that is allocated pays
the smallest value it could have reported and still received an allo-
cation.

4. MECHANISMS FOR JOBS OF UNIT
LENGTH

4.1 The synchronous model
In this section we consider the basic setting defined in Section 1:

Agents arrive and depart at the beginning and end of time slots num-
bered0, . . . , T (i.e., V = {(a, d, w) : a, d ∈ {0, . . . , T}, a ≤
d, w ∈ R≥0}), and there is only one re-usable good that can be
allocated to at most one agent in each time slot. An agent wins if
she receives this good in one of the time slots between her arrival
and departure. The mechanism must decide which agent (if any)
receives the good at time slott, based on the information available
at timet, i.e., the arrival times and the values of all agents that have
arrived at a time≤ t, and the departure time of all agents that have
left at a time≤ t. The payment of an agent must be computed based
on the information available at her departure (i.e. it can be delayed
past the period in which an allocation decision is made).

The following theorem shows that there is a 2-competitive strat-
egyproof mechanism for this problem. The proof of this theorem
is based on a simple greedy allocation rule that in each interval se-
lects the bidder with the highest value that has not received the good
yet. It is worth noting that this mechanism is strategyproof even if
bidders are allowed to announce an arrival time that is before their
actual arrival time.

THEOREM 7. There exists a strategyproof online 2-competitive
mechanism in the synchronous model with a single re-usable good.

PROOF. We use the following greedy allocation rule: At any time
step, allocate the good to the bidder with the highest value that is
present at that time and has not received the good yet. For the pay-
ment rule, we definepi(v) by equation (7). It is clear that both our
allocation rule and our payment rule are computable in polynomial
time and in an online fashion. It is also easy to see that this alloca-
tion rule is monotone. The reason for this is that an agenti who loses
does not affect the state of the algorithm; therefore, ifi loses when
bidding(ai, di, wi), she would still lose if she arrives at a time later
thanai, leaves beforedi, or announces a value less thanwi. Thus,
by Theorem 6 (and its proof), this mechanism is strategyproof and
satisfies voluntary participation.

Now, we show that this allocation rule is 2-competitive. We do
this by a charging argument. Consider an off-line optimal solution
OPT . For any agenti who wins inOPT , we charge her value to an
agent who wins in the greedy solution. Ifi herself is a winner in the
greedy solution, we charge her value to herself. Otherwise, lett be



the time at whichi wins the auction. Sincei never wins in the greedy
solution, she is present at timet, and therefore the algorithm must
pick a winnerj at timet whose value is not less than the value ofi.
We charge the value ofi to j. It is not hard to see that this charging
scheme charges each agentj in the greedy solution at most twice,
each time for a value less than the value ofj. Therefore, the value
of OPT is at most twice the value of the greedy solution.

4.2 The asynchronous model
In the synchronous model the arrival and departure times of agents

were restricted to be integers. In the asynchronous model, we let
agents have types inV = {(a, d, w) : a, d, w ∈ R≥0, 0 ≤ a ≤
d − 1 ≤ T}, and allow the allocation of the good to an agent to
begin at any time. Furthermore, we allow the mechanism to revoke
an allocation before it is completed. This is necessary for constant-
competitiveness, since if an agenti with di = ai + 1 and a high
valuewi arrives at a time that the mechanism has started but not
finished an allocation to another agent then the mechanism must in-
terrupt this first allocation. An agent derives a valuewi if she is
allocated the good for one unit of time continuously, i.e., it is not
possible to preempt and then resume jobs.

For this model, the following theorem gives a 5-competitive mech-
anism. This mechanism is similar in idea to the greedy mechanism
in Theorem 7, except here once an allocation starts, we increase the
value of the corresponding agent by a multiplicative factor that in-
creases continuously over time at an exponential rate, thereby giving
her an advantage over newly arriving agents. This allows us to use
a charging argument to prove that the mechanism is 5-competitive.
We also use this algorithm in Section 7 to handle the case in which
we have different job lengths.

THEOREM 8. There exists a strategyproof online 5-competitive
mechanism in the asynchronous model with a single re-usable good.

PROOF. We modify the greedy algorithm in the proof of Theo-
rem 7 as follows. We call a pointt in time critical if a new agent
arrives at timet, or an allocation completes at timet. At any crit-
ical point t, we compare the values of all agents that are present at
time t, and have not been allocated the good for one unit of time
continuously. If there is an agent in this set who has already had the
good forδ < 1 units of time before timet (i.e., she has received
an allocation at timet − δ and has not been interrupted after that),
then we multiply the value of this agent by2δ before comparing it to
the values of other agents. After the comparison, the agent with the
highest value receives the allocation. If this agent is different from
the agent who has had the allocation sincet − δ, the latter agent is
interrupted.

For the payment rule, we again use the general rule given by equa-
tion (7). This rule can be implemented efficiently as follows: For
each agenti who wins, we run the algorithm without this agent, and
let T denote the set of all critical pointst ∈ [ai, di] in this run. For
every t ∈ T , we define the value at timet as the maximum over
the values of all agents that are present in the system att and have
not received the allocation for one continuous unit of time beforet.
We now calculate the price of allocation fori at timet by taking the
maximum, over allt′ ∈ (t, t+1), of the value att′ divided by2t′−t.
Also, if there is an allocation to an agentj that is started at timet−δ
for some0 ≤ δ < 1 and continues beyondt, we take the maximum
of the above value and2δ times the value ofj, and let the price for
i at timet be the maximum of these values. The payment ofi is the
minimum, over allt ∈ [ai, di − 1] of the price of allocation toi at
time t. It is clear that the allocation and payment rules are both ef-
ficiently computable in an online fashion. Furthermore, it is easy to
see that the payment computed by the above algorithm is the same
as the one given in the proof of Theorem 6, and therefore in order to
establish the strategyproofness of our mechanism, we only need to
prove its monotonicity.

Monotonicity of our allocation rule is easy to see for the depar-
ture time and the value: If an agenti does not win when the types of

agents arev, then she will not win if she lowers her value or leaves
earlier than her true departure time. Consider a situation wherei
announces an arrival timea′i after her true arrival timeai. If agent
i does not receive an allocation in the interval[ai, a

′
i] in the truthful

scenario, then the behavior of the algorithm is the same in both sce-
narios and thereforei does not win in the non-truthful scenario. If
she starts an allocation in this interval, then the behavior of the al-
gorithm in these scenarios might be different, since during the time
intervals that were allocated toi in the truthful scenario, other agent
might receive the allocation in the non-truthful scenario. The value
of these agents cannot be higher than the value ofi. But we know
that any allocation toi in the truthful scenario is interrupted before
it completes. Hence, allocations made during the same time inter-
vals in the non-truthful scenario must also be interrupted. Therefore,
the state of the algorithm at timea′i is the same in both scenarios.
Thus,i does not win in the non-truthful scenario. This establishes
the monotonicity of our allocation rule.

We now prove that this algorithm is 5-competitive. This is done
by charging the value of any winning agent in an optimal solution
OPT to a winning agent in our algorithm. We assume, without loss
of generality, thatOPT does not interrupt any allocation. For any
winning agenti in OPT , if she is also a winner in our algorithm,
then her value is charged to herself. Otherwise, consider the time
t at whichi is allocated the good inOPT . At this time, our algo-
rithm has allocated the good to an agentj0. This agent might be
interrupted in our algorithm. If she is interrupted, letj1 be the agent
that interrupts her. We continue this chain until we reach an agent
jk who is not interrupted, and charge the value ofi to this agent. We
now calculate the maximum total value charged to an agentj with
valuewj who wins at timet in our algorithm. Ifj wins in OPT ,
there is a charge ofwj . Consider an agenti in OPT whose value
is charged toj. Let t′ = t − δ be the time at whichi receives an
allocation inOPT . It is clear from the algorithm thatδ > −1 and
the value ofi is at most2−δwj . Also, the value ofδ for any two
suchi’s must be apart by at least one. Therefore, the total charge
to j is at mostwj +

∑∞
l=−1 2−lwj = 5wj . This shows that our

algorithm is 5-competitive.

There is an example which shows that the above analysis is tight,
i.e., the competitive ratio of the above algorithm is not better than 5.

4.3 Multiple re-usable goods
Finally, we show that both mechanisms proposed above can be

generalized to the case where there arek identical re-usable goods
instead of one, achieving the same competitive ratios. (Formally,
the setting ofk identical re-usable goods is defined using the same
model as in Section 2, except that the set of allocationsA is enlarged
to encompass all functions mapping agents to subintervals of[0, T ],
such that eacht ∈ [0, T ] belongs to at mostk such subintervals.)

THEOREM 9. There is a strategyproof online mechanism which
is 2-competitive (5-competitive) for efficiency, in the synchronous
(asynchronous) model withk re-usable goods.

PROOF. The proof is essentially the same as the proof of Theo-
rem 7, except that the greedy allocation rule gives the goods at time
t to the unassigned bidders with thek largest values at timet.

5. COMPETITIVE RATIO LOWER BOUND
In this section we prove that no deterministic strategyproof mech-

anism can achieve a competitive ratio strictly better than 2 in the
synchronous setting. This shows that the result of Theorem 7 is
tight. Note that if we do not care about truthfulness, the best known
lower bound for the problem is the Golden ratio (≈ 1.618) [8].

THEOREM 10. No truthful online deterministic mechanism can
obtain a (2 − ε)-approximation for efficiency in the synchronous
model with a single re-usable good for any constantε > 0.



PROOF. Suppose, there is a truthful online deterministic mecha-
nismA which can obtain a2 − ε approximation for efficiency. We
design a set of scenarios for which we obtain a contradiction on the
behavior of the algorithm.

First scenario is as follows. Assume that we have two agents. The
first one calledx has typevx = (1, 2, 1 + δ), where0 < δ < ε

1−ε
.

Assume there is another agenty whose type isvy = (1, 3, 1). In
this case, if agents are truthful, mechanismA should assignx to
the first time slot and assigny to the second time slot. In addition,
mechanismA should always chargex less than1 + δ, otherwisex
has motivation to lie about its value. It means for positiveδ, x has a
positive utility in this scenario.

In the next scenario, we have an agenty′ which behaves the same
as agenty does in the previous scenario, i.e.,vy′ = vy. We have
an agentx′ of typevx′ = (1, 3, 1 + δ). Finally, we have an agent
z′ of typevz′ = (2, 3,∞). In this case, we claim that mechanism
A should always assignx′ to the first time slot, since otherwise
x′ can lie about its type to announce it the same as that ofx in
the previous scenario and still get a positive value. Note that in
this case,x′ cannot be assigned to the second time slot because of
agentz, whose value is very large, and at time 1, mechanismA
does not know whether such an agent exists or not. In addition, in
this scenario, agenty′ cannot be assigned to any time slot.

Finally, we consider the third scenario in which we have two
agentsx′′ and z′′ for which vx′′ = vx andvz′′ = vz′ , and an-
other agenty′′ for which vy′′ = (1, 2, 1). In this case, mechanism
A should not assigny′′ to the first time slot. The reason is that in
this case,y′′ has a positive value (since mechanismA should charge
y′′ less than one) and thus in the second scenario, agenty′ could lie
about its type to announce it the same as that ofy′′ in this scenario
and thus get a positive value (agenty′ had zero value in the second
scenario.) It means in this scenario, if agentz′′ does not appear at
all, since mechanismA does not know about it at time 1, still agent
y′′ should not be assigned to any time slot. Thus the mechanism
obtain efficiency at most1 + δ, though the optimum efficiency is
2 + δ in this case. Since2+δ

1+δ
> 2 − ε by the choice ofδ, we have

the desired contradiction to the existence of mechanismA.

6. REVENUE OF THE AUCTION
Theorems 7 and 8 established the existence of mechanisms whose

efficiency is constant-competitive with that of the VCG mechanism.
In contrast to these positive results, there is no strategyproof mech-
anism whoserevenueis constant-competitive with that of the VCG
mechanism, if we insist on mechanisms which satisfy the following
axiom.

DEFINITION 11. An impatient bidderis an agent with arrival
and departure times(ai, di) satisfyingdi = ai + 1, i.e. an agent
who can only accept an allocation at timeai. We say that a mech-
anismM considers impatient bidders anonymouslyif it has the fol-
lowing property: wheneverM assigns a time slott to an impatient
bidderx with valuew, there is no impatient biddery with arrival
timet whose value is strictly greater thanw.

THEOREM 12. If M is a truthful, deterministic online mecha-
nism satisfying voluntary participation, andM considers impatient
bidders anonymously, then the competitive ratio ofM with respect
to the VCG revenue is not bounded above by any constantC.

PROOF. SupposeM is a truthful deterministic online mecha-
nism whose revenue isC-competitive with the off-line VCG mech-
anism, for some constantC, and supposeM considers impatient
bidders anonymously. We will derive a contradiction using a series
of scenarios, as in the proof of Theorem 10. All of our scenar-
ios will involve a timeline with time slots numbered0, 1, . . . , T ,
a set of patient bidders{A1, A2, . . . , Aq} each with value 3, ar-
rival time 0, and departure timeT , and pairs of impatient bidders
B0, C0, B1, C1, . . . , BT , CT , such thatBi andCi both arrive at
time i and depart at timei + 1, and whose values satisfyw(Bi) <

w(Ci). In any such scenario, the agent winning time sloti in the
off-line VCG mechanism has a VCG payment which is bounded
below by w(Bi), hence the VCG revenue is bounded below by∑T

i=0 w(Bi).
This lower bound proof is a bit more complicated than the proof

of Theorem 10, so we will first give an outline of the main ideas. By
considering a series of scenarios{Υk}, we will prove the following
fact: if agents{A1, A2, . . . , Aq} (defined as above) arrive at time 0
along with impatient biddersB0, C0 with values1 and2, thenM
can not allocate the time slot toB0 or C0. Since the VCG revenue
in this case is bounded below by1, we know thatM must collect at
least1/C in revenue. Next we will consider a carefully constructed
series of scenarios{Ψq}, in which the set of agents at time 0 is as
above, and all agents arriving after time 0 are impatient and have
values much smaller than1/C. UsingΨq, we will show that it is
impossible forM to guarantee at least1/C in revenue. Roughly
speaking, this is because truthfulness preventsM from extracting
much revenue from the patient bidder who wins time slot 0, and (for
q large enough) there will not be enough time after this to make up
the difference.

ScenarioΥk (1 ≤ k ≤ T ) is specified as follows. Choose a
sufficiently large numberx (any number greater than2C + 3Cq
will suffice), and putw(Bi) = xi, w(Ci) = 2xi for 0 ≤ i ≤
k, w(Bi) = w(Ci) = 0 for i > k. The VCG revenue in this
case is at least1 + x + . . . + xk. If M does not allocate time
slot k to Bk or Ck, then its revenue is bounded above by3q +
(1+ x + . . . + xk−1) (due to the voluntary participation constraint)
and this is less than1/C times the VCG revenue, by our choice of
x. Thus we may conclude that in scenarioΥk, M allocates time
slot of k to an impatient bidder. SinceM is an online mechanism,
and Υk is indistinguishable fromΥT until time k + 1, we may
conclude that in scenarioΥT , each time slotk > 1 is allocated to
an impatient bidder. IfM also allocates time slot0 to an impatient
bidder, then each of the patient biddersA1, . . . , Aq derives zero
utility in scenarioΥT . This contradicts truthfulness, sinceAi may
derive positive utility by announcing value2+ ε, arrival time 0, and
departure time 1. (In this case,Ai will win time slot 0 and pay at
most2 + ε, sinceM considers impatient bidders anonymously and
satisfies voluntary participation.)

Now let y be a very small number (any number smaller than
1/48C3 will suffice) and consider a scenario with agentsA1, . . . , Aq

andB0, C0 defined as before, and with impatient biddersBi, Ci

at time i whose values arey, 2y respectively. The VCG revenue
is unbounded as a function ofT , hence ifM is C-competitive it
must eventually allocate a time sloti > 0 to one of the impatient
biddersBi, Ci. Let τq be the first such time slot. Define a series
of scenarios{Ψq : 0 ≤ q ≤ 6C2} as follows: in scenarioΨq,
there are agentsA1, . . . , Aq with arrival time0, departure timeT ,
and value 3, there are impatient biddersB0, C0 at time0 with val-
ues1, 2, respectively, there are impatient biddersBi, Ci at time
i (1 ≤ i < τq−1) with valuesy, 2y, respectively, and there is an
impatient bidderBi with valuey at timei = τq−1. (Whenq = 0,
we intepretτq−1 to meanτ0 + 1.) By consideringΨ0 we can get
an explicit upper bound onτ0. The VCG revenue in scenarioΨ0 is
1 + τ0y, whereas the revenue ofM is bounded above by2 + 2y,
henceC(2 + 2y) ≥ 1 + τ0y, i.e. τ0 ≤ 2C(1 + 1/y).

Now we will considerΨq for q > 0, obtaining alower bound on
τq−1 − τq. The argument proceeds as follows. By the definition
of τq, we know thatM doesn’t allocate any time slots to impa-
tient bidders until timeτq, so the revenue from impatient bidders
is at most2y max(0, τq−1 − τq + 1), by voluntary participation.
For each patient bidderAi, it is possible to receive time slotτq−1

at a price of at most2y by declaring an arrival time ofτq−1, de-
parture timeτq−1 + 1, and value2y. In such a case, time slot
τq−1 will be allocated toAi becauseM considers impatient bid-
ders anonymously, and the price will be at most2y by voluntary
participation. AsM is truthful, it must be the case thatAi de-
rives at least as much utility from truthfully announcing her type.



Thus M can not chargeAi a price greater than2y, so the com-
bined revenue from patient bidders is at most2qy. Using the trivial
lower bound of1 on the VCG revenue, and theC-competitiveness
of M , we now have1 6 2Cqy + 2Cy max(0, τq−1 − τq + 1).
We haveq 6 6C2 andy < 1/48C3, hence2Cqy < 1/4. Thus
3/4 < 2Cy max(0, τq−1 − τq + 1), i.e., τq−1 − τq > 3

8Cy
− 1.

Summing overq = 1, 2, . . . , 6C2 we obtainτ0 > 9C
4y
−6C2. Com-

bining this with the upper boundτ0 ≤ 2C(1 + 1/y) from earlier,
we see that2C

y
+ 2C > 9C

4y
− 6C2, i.e. 6C + 2 > 1

4y
> 12C3, a

contradiction sinceC ≥ 1.

By closely examining the proof of Theorem 12, we can strengthen
it to the following result.

COROLLARY 13. Suppose that the bidswi are constrained to
belong to an interval[a, b] whose endpoints are known to the mech-
anism designer, and leth = b/a. If M is a truthful, deterministic
online mechanism which considers impatient bidders anonymously
and satisfies voluntary participation, then the competitive ratio of

M with respect to the VCG revenue is at leastΩ

((
log h

log log h

)1/4
)

.

PROOF. Let us explicitly determine an interval[a, b] containing
all the bid values considered in the scenarios{Υk} and{Ψq} which
arose in the proof of Theorem 12. The smallest bid considered was
y, in scenarioΨq for all values ofq. Note thaty may be taken to be
equal to1/49C3. The largest bid considered was2xT in scenario
ΥT . Herex may be taken to be3C(1+q) < 20C3, sinceq ≤ 6C2.
The largest value ofT considered wasT = τ0 ≤ 2C(1 + 1/y) ≤
100C4, in scenarioΨ0. ThusxT = O(C300C4

). Therefore the

bid interval[a, b] = [y, 2xT ] satisfiesb/a = O
(
CO(C4)

)
, and the

right side is at mosth, for someC = O

((
log h

log log h

)1/4
)

.

Next we show that a randomized mechanism can nearly match
the lower bound established in Corollary 13, even if the bid inter-
val [a, b] is not known in advance. Specifically, the revenue of our
mechanism isO(log h)-competitive with the VCG revenue, where
h is the ratio of maximum value to minimum value of agents. This
result can be considered parallel to a result of Lavi and Nisan [14],
who derived the same revenue competitive ratio in a different online
auction setting. However, it is worth noting that their result requires
foreknowledge of the bid interval[a, b].

THEOREM 14. There is a randomized online mechanism which
achieves a competitive ratio ofO(log h) when all bids belong to an
interval [a, b] satisfyingb/a = h. The mechanism need not know
the values ofa andb.

PROOF. For simplicity, we will work in the synchronous model.
The same competitive ratio can be achieved in the asynchronous
model by incorporating the mechanism from Theorem 8 into this
proof.

Suppose first that the bid interval is known to be[1, h]. Then the
mechanism is extremely simple: at time0, guess a random power of
2 between1 andh and define this to be the reserve pricep. In each
period, if there is at least one bidder present whose bid is abovep
and has not yet been satisfied, choose one such bidder at random and
allocate the time slot to that bidder, charging a price ofp. For each
periodt, if the VCG mechanism allocatest to a bidderx and charges
q to that bidder, then with probability1/dlog2(h)e the random price
p satisfiesq/2 6 p < q. If so, then either the mechanism chargesp
to x, or it chargesp to an agent who is allocated time slott. Using a
charging scheme as in the proof of Theorem 7, this implies that the
mechanism’s competitive ratio is bounded above by4dlog2(h)e.

If the bid interval is not known initially, then it is a bit harder to
design aO(log h)-competitive mechanism. We will define such a
mechanism, which combines the random-reserve-price notion intro-
duced above, the greedy mechanism analyzed earlier, and a random

partitioning technique which is often useful in designing competi-
tive auctions. At time0, the mechanism samples a random number
ξk independently from the uniform distribution on[0, 1], for each
integerk. (Of course, in an actual implementation the numbersξk

will be determined by lazy evaluation, i.e. we sampleξk the first
time we need to examine its value and not earlier.) A random par-
tition of the set of agents into two setsA, B is computed online, by
assigning each agent (at its arrival time) randomly, independently,
and equiprobably toA or B. For each agenti, we now determine a
threshold price scheduleαt(i) as follows. Ifi ∈ B, thenαt(i) = ∞
for all t. Let At (resp. Bt) denote the set of agents arriving at or
before timet, and assigned to setA (resp.B). If i ∈ A andBt is
the empty set,αt(i) = 0. Otherwise, letwmin(Bt), wmax(Bt) be
the minimum and maximum bids reported by agents inBt. Among
all integersk such thatwmin(Bt)/2 ≤ 2k < wmax(Bt), choose the
one for whichξk is minimum, and setαt(i) = 2k in i ∈ A.

At time t, the mechanism computes its allocation as follows. It
first defines a set of eligible agents, by taking the setAt and remov-
ing all agents who have been allocated a time slot in a previous pe-
riod. If the set of eligible agents is non-empty, then an eligible agent
i with maximum bid value is chosen (randomly and uniformly, if
there is more than one eligible agent with maximum bid value) and
is declared thewinnerat timet. Lettingwi denote the bid value of
this winning agenti, the mechanism allocates time slott to agenti
if αt(i) < wi; otherwiset is unallocated.

The pricing rule is defined as follows. For each agenti, a price
schedulept(i) is computed by simulating the same allocation rule
with agenti absent. (All other random choices, including the par-
tition of the remaining agents into setsA, B, are unchanged in the
simulation.) Lettingβt(i) denote the bid of the agent who is the
winner at timet in this simulation (orβt(i) = 0 if there is no win-
ner), we set

pt(i) = max{αt(i), βt(i)}.

The payment for agenti is determined by the value-independent,
monotone price schedulepsi(a, d, v−i) = mina≤t≤d pt(i). It is
easy to check that this price schedule implements the allocation rule
described above, hence the mechanism is strategyproof by Theo-
rem 5.

To prove that the mechanism isO(log h)-competitive with the
VCG revenue, we begin by identifying a set of agents whose con-
tribution to the VCG revenue may be easily bounded. An agent
i with type (ai, di, wi) is pitiful if the VCG mechanism charges
a positive price to agenti, yet there exists an integerki such that
2ki−1 < wi ≤ 2ki and every other bid received at or before time
ai is greater than2ki . (We callki the indexof pitiful agenti.) Note
that for distinct pitiful agentsi, j with arrival timesai ≤ aj , the
indiceski, kj are also distinct and satisfyki > kj . Thus the sum of
the bids of all pitiful agents is bounded above by2k∗+1, wherek∗

is the index of the earliest-arriving pitiful agent, if there is any such
agent.

Let t0 be the earliest time at which more than one agent arrives.
(If there is no such time, then the VCG revenue is zero and there is
nothing to prove.) Letw1 ≥ w2 be the two largest bids arriving at
time t0 (corresponding to agentsi1, i2, respectively) and note that
w2 > 2k∗−1, sincet0 is no later than the arrival time of the earliest
pitiful agent. With probability1/4, i1 ∈ A, i2 ∈ B. If so, the
probability that our mechanism allocates time slott0 to an agent at
a price of at least2k∗−1 is at least1/dlog2(h)e. It follows that the
total amount charged to pitiful agents by the VCG mechanism is at
most16dlog2(h)e times the expected revenue of our mechanism.

It remains to bound the total amount charged to non-pitiful agents
by the VCG mechanism. Assume that VCG allocates time slott to
non-pitiful agenti at a pricep > 0. Let 2m be the largest power of
2 less thanwi. We claim there exist agentsj 6= i, k 6= i, arriving at
or before timeai, such thatwj ≥ p andwk/2 ≤ 2m. The existence
of agentk follows from the fact thati is not pitiful. The existence
of agentj follows from the truthfulness of the VCG mechanism;



otherwise,i could improve its utility by claiming that its departure
time is ai + 1 and its value isp − ε, for some sufficiently small
positiveε.

With probability 1/2, i ∈ A. If so, the allocation rule satisfies
one of the following properties:

1. There exists a time at which agenti is a winner.
2. The winner at timet is not agenti, but this agent bids at least

as much as agenti.

In the first case, leti′ = i and lett′ be the time at whichi wins.
In the second case, leti′ be the winner at timet and lett′ = t.
(Note thatt′ > ai in both cases, sincei is ineligible in time slots
earlier thanai. Note also thati′ ∈ A, since agents inB are never
eligible.) Defining agentsj, k as above, and conditioning on the
eventi ∈ A, the probability thatj, k ∈ B is at least1/4. (It is
equal to1/4 unlessj = k.) By the properties of agentsj andk,
the interval[min{wj , wk}/2, max{wj , wk}) contains a power of
2 betweenp/2 andwi′ , say2`. Conditional on the event thati ∈
A, j, k ∈ B, the probability is at least1/dlog2(h)e thatαt′(i

′) =
αT (i′) = 2`. Thus, while the VCG mechanism chargesp to agenti,
our mechanism charges at least(16dlog2(h)e)−1p in expectation to
agenti′. This argument credits a given agenti′ at most twice: once
wheni = i′, and once whent is the time slot which our mechanism
allocates toi′. Thus the expected amount charged to non-pitiful
agents by the VCG mechanism is at most32dlog2(h)e times the
revenue of our mechanism.

It may seem that the revenue of the VCG mechanism is a rather
weak benchmark against which to compare our mechanism’s rev-
enue. However, as illustrated by Theorem 12, deterministic truth-
ful mechanisms can not be constant-competitive even against this
benchmark. Moreover, the VCG revenue is at least as large as the
maximum total value of a feasible allocation to the set of agents that
are disjoint from those satisfied by the optimal allocation. This fol-
lows from the fact that the sets of agents who can win the auction
simultaneously form a matroid [4, 21].

It is also worth mentioning that the greedy mechanism used in the
proof of Theorem 7, which is 2-competitive for efficiency, can have
an arbitrarily bad competitive ratio with respect to the VCG revenue.
Considern+2 agents,1 ton+2, as follows. Agenti, 2 6 i 6 n+1,
has typevi = (i− 1, i + 1, 2). Agent1 has typev1 = (1, 2, 1) and
agentn+2 has typevn+2 = (n+1, n+2, 1). It is easy to observe
that off-line VCG charges each of agents2, . . . , n + 1 a price of1
and thus collectsn for revenue. However, the greedy algorithm only
charges agent 2 a price of1 and all others0. It means the competitive
ratio of the greedy mechanism for revenue can be arbitrarily large.

7. DIFFERENT JOB LENGTHS
In this section we consider the case where jobs are allowed to

have different lengths. In other words, each agent’s type is now
characterized byfour values:ai, di, wi, andLi, whereai, di are
interpreted as before, andLi is a positive real number specifying
the lengthof job i. The value of a given outcomex for agenti is
equal towi if the subset of[0, T ] allocated toi contains an interval
whose length is at leastLi, otherwisex has zero value fori.

First, we start by assuming that all job lengths are in an interval
[Lmin, Lmax] which is known to the mechanism beforehand. Using
a technique similar to that adopted in Section 6, we show that there
exists a strategyproof mechanism that achieves a competitive ratio
of O(log(Lmax/Lmin)) for efficiency.

THEOREM 15. There is a randomized strategyproof mechanism
that achieves a competitive ratio ofO(log(Lmax/Lmin)) for effi-
ciency when all job lengths are in an interval[Lmin, Lmax] known
to the mechanism, even if agents are allowed to lie about their
length.

PROOF. The mechanism is as follows: letL be a random power
of two in the interval[Lmin, 2Lmax]. Every job of length more than

L is rejected. Jobs of length less than or equal toL are treated like
jobs of lengthL. Finally, the mechanism in Theorem 8 is used to
schedule these jobs. We observe that this allocation rule has a truth-
ful implementation. First, notice that since the mechanism rounds
all job lengths that are less thanL to L and removes jobs of length
greater thanL, no agent can benefit by lying about their length.
Therefore, we only need to prove truthfulness with respect to other
parameters. By Theorem 6, it is enough to show that the allocation
rule is monotone. Monotonicity with respect to values and departure
times is obvious. Monotonicity with respect to arrival times follows
from the monotonicity of the mechanism in Theorem 8.4

We now show that the above allocation rule achieves a competi-
tive ratio ofO(log(Lmax/Lmin)) for efficiency. Consider an opti-
mal solutionOPT . LetL1, L2, . . . , Lk denote all powers of two in
the interval[Lmin, 2Lmax]. We partition the set of jobs served in
the solutionOPT into k subsetsOPT1, . . . , OPTk, whereOPTi

is the set of jobs inOPT that have length more thanLi−1 and less
thanLi (we letL0 := Lmin). For eachi, we number the jobs in
OPTi with consecutive natural numbers in the order that they are
served in the solution, and letOPT ′

i be the set of odd numbered jobs
or the set of even numbered jobs inOPTi, whichever has higher
total value. Clearly, the sum of the values of jobs inOPT ′

i is at
least half the sum of values of jobs inOPTi. Furthermore, if we
round the length of all jobs inOPT ′

i up toLi, we obtain a feasible
solution of the instance constructed in the mechanism if the value
L picked by the mechanism isLi. Therefore, by Theorem 8, the
value of the solution found by the allocation rule conditioned on
L = Li is at least1/5 times the value of jobs inOPT ′

i . Since
for eachi, the probability thatL = Li is 1/dlog(Lmax/Lmin)e,
the expected value of the solution found by our mechanism is at
leastO(1/ log(Lmax/Lmin)) times the sum of values ofOPTi for
i = 1, . . . , k, or O(1/ log(Lmax/Lmin)) times the value of the
optimal solution.

When the interval[Lmin, Lmax] is not known in advance, the fol-
lowing theorem shows that we can still achieve a competitive ratio
of O(log(Lmax/Lmin)) using a mechanism that is strategyproof
with respect to all parameters except job lengths. The proof is very
similar to the proofs of Theorems 14 and 15, and is deferred to the
full version of this paper.

THEOREM 16. There is a randomized strategyproof mechanism
that achieves a competitive ratio ofO(log(Lmax/Lmin)) for effi-
ciency when all job lengths are in an interval[Lmin, Lmax]. The
mechanism need not know the values ofLmin and Lmax, but as-
sumes that the agents do not lie about their length.

8. A GENERAL FRAMEWORK FOR
TRUTHFUL ONLINE AUCTIONS

In this section, we generalize the characterization in Section 3 to
other models of misreporting in online auctions and extend the ex-
isting theory on price-based characterizations of truthful auctions to
models with restricted misreporting. The standard theory of truth-
ful mechanisms states that a truthful mechanism must be imple-
mented in terms of an agent-independent price function [13], where
the price to an agent is independent of its reported type. This need
not be the case in truthful online auctions, where a patient agent
can make a smaller payment than if it was less patient, even when
it would receive the good in the same period. This can occur, for
instance, in the simple unit-length synchronous auction. In online
auctions the price can depend on an agent’s reported arrival and de-
parture, although not on its reported value. Prices must satisfy a
monotonicity property with respect to reported arrivals and depar-
tures and allocations must be carefully timed for some misreporting
4Notice that here we are using the fact that job lengths that are less
thanL are all rounded up toL. Without this, the allocation rule
would not be monotone with respect to arrival times and can not be
truthfully implemented.



models. Auctions that are based on agent-independent price sched-
ules, psi(t, v−i) in period t, are truthful with appropriate timing
requirements. However, the existence of a simple price schedule of
this kind is not necessary for truthfulness.

8.1 Restricted Misreports
In the main model in this paper, we considered agents that can

only report late arrivals and early departures. This is an example of
a domain in which there is restricted misreporting of agent type.

Let L(vi) ⊆ Vi denote the available misreports (orlies) available
to agenti with valuevi. We assumetransitivity, so thatv′i ∈ L(vi)
andv′′i ∈ L(v′i) implies v′′i ∈ L(vi). The standard mechanism
design model hasL(vi) = Vi and the standard multiagent model
with cooperative agents hasL(vi) = vi. A general definition of
truthfulness in this model is as follows:

DEFINITION 17 (TRUTHFULNESS). A mechanism(f, p) for
social choice rule,f : V n → A, and payment rule,p : V n → Rn

>0,
is truthful if for any agenti and anyv−i ∈ V−i, and anyvi ∈ Vi

and v̂i ∈ L(vi), we havevi(f(v)) − pi(v) > vi(f(v̂i, v−i)) −
pi(v̂i, v−i).

The following lemma provides a price-based characterization of
truthful mechanisms in domains with restricted misreporting. The
price can depend on an agent’s reported type, but in a limited way.

LEMMA 18. For available liesL, a functionf is truthful if and
only if there exists a price function,̃pi : A × Vi × V−i → R ∪∞,
such that,

(B1) For any agenti, anyv ∈ V , anyx ∈ A, if there existsv′i ∈
L(vi) such thatf(v′i, v−i) = x then pricep̃i(x, vi, v−i) =
min{p̃i(x, v′i, v−i) : v′i ∈ L(vi), f(v′i, v−i) = x}, other-
wisep̃i(x, vi, v−i) = ∞.

(B2) For any agenti, anyv ∈ V , f(v) ∈ arg maxx∈A{vi(x) −
p̃i(x, vi, v−i)}.

PROOF. (⇐) By contradiction, suppose (B1) and (B2) hold but
thatf is not truthful. We can define paymentspi(v) = p̃i(x, vi, v−i)
for x = f(v). Consider somev andv′i ∈ L(vi), for whichvi(x)−
pi(v) < vi(y) − pi(v

′
i, v−i) andx = f(v), y = f(v′i, v−i). By

(B1) we havepi(v
′
i, v−i) = p̃i(y, v′i, v−i) > p̃i(y, vi, v−i), and

vi(x) − p̃i(x, vi, v−i) < vi(y) − p̃i(y, vi, v−i), a contradiction
with (B2).

(⇒) Given a truthfulf , we know there is a payment function
pi(v). To show (B1) and (B2), we construct the price function
p̃i : A × Vi × V−i → R ∪ ∞, as follows. For anyi, v ∈ V ,
andx ∈ A, if there existsv′i ∈ L(vi) such thatf(v′i, vi) = x we
set p̃i(x, vi, v−i) = min{pi(v

′
i, v−i) : v′i ∈ L(vi), f(v′i, v−i) =

x}, otherwisep̃i(x, vi, v−i) = ∞. To show (B1), fix somex,
somevi and somev−i for which there is av′i ∈ L(vi) for which
f(v′i, v−i) = x. First, there can be nôvi ∈ L(vi) with f(v̂i, v−i) =
x for which p̃i(x, vi, v−i) > p̃i(x, v̂i, v−i), because this would
give,

min{pi(v
′
i, v−i) : v′i ∈ L(vi), f(v′i, v−i) = x}

> min{pi(v
′′
i , v−i) : v′′i ∈ L(v̂i), f(v′i, v−i) = x},

which contradicts the transitivity of misreporting. So, we have

p̃i(x, vi, v−i) 6

min{p̃i(x, v′i, v−i) : v′i ∈ L(vi), f(v′i, v−i) = x},

which together with

p̃i(x, vi, v−i) >

min{p̃i(x, v′i, v−i) : v′i ∈ L(vi), f(v′i, v−i) = x},

gives (B1) (sincev′i = vi ∈ L(vi)).
Now, we show the same price function also satisfies (B2). By

contradiction, consider somev such thatf(v) = x andvi(x) −
p̃i(x, vi, v−i) < vi(y)− p̃i(y, vi, v−i). Let v′i ∈ L(vi) be the type

that determined̃pi(y, vi, v−i), i.e. for whichf(v′i, vi) = y and for
whichpi(v

′
i, v−i) = p̃i(y, vi, v−i). When other agents declarev−i

and agenti has true typevi it is better to declarev′i ∈ L(vi), a
contradiction with truthfulness.

Given price functions̃pi(x, vi, v−i) satisfying conditions (B1)
and (B2) we can define a payment rulepi(v) = p̃i(f(v), vi, v−i)
that implementsf truthfully. Thus, the agent’s payment is the price
for the optimal alternative, as chosen by the allocation rule.

Note that payments can depend on the reported type of an agent
but only in a restricted way (B1). In words, the price on alternativex
given reportvi must be the lowest price that is available to the agent
given misreports that are possible for a type ofvi. When misreports
are unrestricted we recover the standard agent-independent price-
based characterization:

COROLLARY 19. For unrestricted reports, then for any truthful
functionf , there exists an agent-independent price function,p̃i :
A × V−i → R ∪ ∞, such that for anyv ∈ V and any agenti,
f(v) ∈ arg maxx∈A{vi(x)− p̃i(x, v−i)}.

PROOF. Observe that ifL(vi) = Vi, then for anyv−i ∈ V−i,
and anyx ∈ A, we have

p̃i(x, vi, v−i) = min{p̃i(x, v′i, v−i) : v′i ∈ L(vi), f(v′i, v−i) = x}
= min{p̃i(x, v′i, v−i) : f(v′i, v−i) = x}
= p̃i(x, v−i)

for all vi ∈ Vi, wherep̃i(x, v−i) is an agent-independent price func-
tion that does not depend on the reported type of agenti.

8.2 Application to online auctions
In this section we state generalizations of the monotonicity and

price-based characterizations in Section 3 to additional models of
misreporting. These characterizations generalize well-known re-
sults in the case of one-parameter agents (see, for example, [1]) and
strengthen Theorem 3 in [7]. For space reasons, the proofs in this
section are omitted; they will appear in the full version of this paper.
We consider the following three models of misreporting:

(A1) L(vi) = {v′i = (a′i, d
′
i, w

′
i) : a′i > ai, d

′
i 6 di, anyw′

i}
(A2) L(vi) = {v′i = (a′i, d

′
i, w

′
i) : a′i > ai, anyd′i, anyw′

i}
(A3) L(vi) = {v′i = (a′i, d

′
i, w

′
i) : d′i 6 di, anya′i, anyw′

i}
Although we focus on Model A1 in this paper (since it seems more
realistic), all of our truthful mechanisms in Sections 4 and 6 can be
also stated for the more general Model A3.5

The notion ofcritical valuewill be important in defining the char-
acterization.

DEFINITION 20 (CRITICAL VALUE ). The critical value
vc(a, d, v−i) is the minimal valuew′

i, with v′i = (a, d, w′
i) for

whichqi(v
′
i, v−i) = 1, or∞ if qi(v

′
i, v−i) = 0 for all w′

i.

For models A2 and A3 we define the notion of a critical period,
Ic(a, d, v−i) ⊆ T , which will limit when allocations can be made.

DEFINITION 21 (CRITICAL PERIOD FORMODEL A2). In
model A2,Ic(a, d, v−i) = [t, d] where periodt is defined as the ear-
liestt ∈ [a, d] for whichvc(a, t, v−i) = minτ :a6τ6d vc(a, τ, v−i).

DEFINITION 22 (CRITICAL PERIOD FORMODEL A3). In
model A3,Ic(a, d, v−i) = [a, t] where periodt is defined as the lat-
estt ∈ [a, d] for whichvc(t, d, v−i) = minτ :a6τ6d vc(τ, d, v−i).

An online allocation rule is said to besupportedby a price sched-
ule psi(a, d, v−i) in the sense of theprice-based online auctions
(Definition 3), so that the rule allocates a good to the agent if and
only if the agent’s reported valuewi 6 psi(a, d, v−i) and at price
psi(a, d, v−i).
5Note that we cannot go beyond Model A3, because of a recent
result of Lavi and Nisan [15] mentioned in the introduction.



THEOREM 23. (Model A1) The following are equivalent state-
ments in a domain with no early arrival and no late departure:

1. An allocation rule has a truthful implementation.
2. An allocation rule is monotonic.
3. An allocation rule is supported by a monotonic and value-

independent price schedulepsi(a, d, v−i).

THEOREM 24. (Model A2) The following are equivalent state-
ments in a domain with no early arrivals:

1. An allocation rule has a truthful implementation.
2. An allocation rule is monotonic, and when making an alloca-

tion assigns the item in the critical period.
3. An allocation rule is supported by a monotonic and value-

independent price schedulepsi(a, d, v−i), and when making
an allocation assigns the item no earlier than the first period
t : ai 6 t 6 di for whichpsi(ai, t, v−i) is minimal.

THEOREM 25. (Model A3) The following are equivalent state-
ments in a domain with no late departures:

1. An allocation rule has a truthful implementation.
2. An allocation rule is monotonic, and when making an alloca-

tion assigns the item in the critical period.
3. An allocation rule is supported by a monotonic and value-

independent price schedulepsi(a, d, v−i), and when making
an allocation assigns the item no later than the last period
t : ai 6 t 6 di for whichpsi(t, di, v−i) is minimal.

In each case, the payment rule that makes the allocation rule truth-
ful is as defined in Eq. 7 in Section 3.1.

The price-based characterizations provide a useful complement to
the monotonicity-based characterization on allocation rules. Rather
than define monotonic allocation rules, one can define monotonic
and value-independent price schedules for which the supported al-
location rule is feasible.

9. OPEN PROBLEMS
In this paper, we considered online auctions with re-usable goods.

We presented several upper and lower bounds on competitiveness
for both revenue and efficiency of truthful online mechanisms. In a
general framework, we also provided necessary and sufficient char-
acterizations for allocation rules that can be implemented in a truth-
ful online auction. Here, we present several open problems.

The main open question is to determine whether the known lower
bounds for deterministic mechanisms can be extended to apply to
randomized mechanisms. We are referring here to our Theorem 10
(for efficiency) and Theorem 12 (for revenue), as well as the lower
bound by Lavi and Nisan [15] (for efficiency, in misreporting model
A2). We also conjecture that the lower bound of Theorem 12 can be
improved toΩ(log h) and extended to asymmetric mechanisms.

Another open problem is to determine whether there is a deter-
ministic mechanism whose revenue isO(log h)-competitive with
the VCG mechanism, at least in the case where the interval[1, h] is
known to the mechanism. (The paper by Lavi and Nisan [14], which
addresses a different type of online auction problem, achieves this
bound using a deterministic mechanism with known bid interval.)
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