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ABSTRACT
A long line of work in social psychology has studied variations in

people’s susceptibility to persuasion – the extent to which they

are willing to modify their opinions on a topic. This body of litera-

ture suggests an interesting perspective on theoretical models of

opinion formation on social networks: in addition to considering

interventions that directly modify people’s intrinsic opinions, it is

also natural to consider those that modify people’s susceptibility to

persuasion. Here, we adopt a popular model for social opinion dy-

namics, and formalize the opinion maximization and minimization

problems where interventions happen at the level of susceptibility.

We show that modeling interventions at the level of suscepti-

bility leads to an interesting family of new questions in network

opinion dynamics. We find that the questions are quite different

depending on whether there is an overall budget constraining the

number of agents we can target or not. We give a polynomial-time

algorithm for finding the optimal target-set to optimize the sum of

opinions when there are no budget constraints on the size of the

target-set. We show that this problem is NP-hard when there is a

budget, and that the objective function is neither submodular nor

supermodular. Finally, we propose a heuristic for the budgeted opin-

ion optimization problem and show its efficacy at finding target-sets

that optimize the sum of opinions on real world networks, including

a Twitter network with real opinion estimates.
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1 INTRODUCTION
A rich line of empirical work in social psychology has studied

people’s susceptibility to persuasion. This property measures the

extent to which individuals are willing to modify their opinions

in reaction to the opinions expressed by those around them, and

it is distinct from the opinions they express. Research in the area

has ranged from adolescent susceptibility to peer pressure related

to risky and antisocial behavior [3, 15, 17, 40, 43, 44] to the role

of susceptibility to persuasion in politics [19, 34, 36]. Individuals’

susceptibility to persuasion can be affected by specific strategies and

framings aimed at increasing susceptibility [7–9, 28, 32, 41, 42]. For

instance, if it is known that an individual is receptive to persuasion
by authority, one can adopt a strategy that utilizes arguments from

official sources and authority figures to increase that individuals’

susceptibility to persuasion with respect to a particular topic.

Modifying network opinions has far-reaching implications in-

cluding product marketing, public health campaigns, the success of

political candidates, and public opinions on issues of global interest.

In recent years, there has also been work in Human Computer Inter-

action focusing on persuasive technologies, which are designed with

the goal of changing a person’s attitude or behavior [18, 26, 28]. This

work has shown that not only do people differ in their susceptibility

to persuasion, but that persuasive technologies can also be adapted

to each individual to change their susceptibility to persuasion.

Despite the long line of empirical work emphasizing the impor-

tance of individuals’ susceptibility to persuasion, theoretical studies

of opinion formation models have not focused on interventions at

the level of susceptibility. Social influence studies have considered

interventions that directly act on the opinions themselves, both in

discrete models, as in the work of Domingos and Richardson [16],

Kempe et al. [29], and related applications, and more recently in a

model with continuous opinions by Gionis et al. [23].

In this work, we adopt an opinion formation model inspired by

thework of DeGroot [14] and Friedkin and Johnsen [20], and initiate

a study of the impact of interventions at the level of susceptibility. In

this model, each agent i is endowedwith an innate opinion si ∈ [0, 1]

and a parameter representing susceptibility to persuasion, which

we will call the resistance parameter, αi ∈ (0, 1]. The innate opinion

si reflects the intrinsic position of agent i on a certain topic, while

αi reflects the agent’s willingness, or lack thereof, to conform with

the opinions of neighbors in the social network. Higher values of

the resistance parameter αi indicate a lower tendency to conform

with neighboring opinions. According to the opinion dynamics

model, the final opinion of each agent i is a function of the social

network, the set of innate opinions, and the resistance parameters,
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determined by computing the equilibrium state of a dynamic process

of opinion updating. For more details on the model, see Section 2.

We study the following natural question:

Problem 1. Given an opinion dynamics model, and a

set of agents, each of whom has an innate opinion that

reflects the agent’s intrinsic position on a topic, and a

resistance parameter measuring the agent’s propensity for

changing his or her opinion, how should we change the

agents’ susceptibility in order to maximize (or minimize)

the total sum of opinions at equilibrium?

We call the set of agents whose susceptibility parameters we

change the target-set. In most opinion dynamics settings, the case

where there are no constraints on the size of the target-set is gen-

erally not interesting since it often involves simple solutions that

modify a parameter to a specific value across essentially all agents.

This is not the case in our setting – the unbudgeted version remains

technically interesting, and the optimal solution does not generally

involve targeting all agents. We will therefore consider both the

unbudgeted and the budgeted versions of this problem.

In this paper, we formalize the problem of optimizing the total

sum of opinions at equilibrium by modifying the agents’ suscep-

tibility to persuasion. We formalize both the maximization and

minimization versions of the problems, as well as an unbudgeted,

and a budgeted variation of these problems.

For the unbudgeted maximization and minimization problems

we provide efficient polynomial time algorithms. In contrast to the

unbudgeted problem, the budgeted problem is NP-hard. We show

that our objective is neither sub- nor super-modular. We prove

that there always exists an optimal solution where the resistance

parameters αi are set to extreme values (see Theorem 2.1). We

use this theorem as our guide to provide a heuristic that greedily

optimizes the agents’ susceptibility to persuasion.

We evaluate our unbudgeted and budgeted methods on real

world network topologies, and on both synthetic and real opinions.

Our findings indicate that intervening at the susceptibility level

can significantly affect the total sum of opinions in the network.

2 MODEL
Let G = (V ,E) be a simple, undirected graph, where V = [n] is the

set of agents and E is the set of edges. Each agent i ∈ V is associated

with an innate opinion si ∈ [0, 1], where higher values correspond

to more favorable opinions towards a given topic and a parameter

measuring an agent’s susceptibility to persuasion αi ∈ (0, 1], where

higher values signify agents who are less susceptible to changing

their opinion. We call αi the resistance parameter. The opinion

dynamics evolve in discrete time according to the following model,

inspired by the work of [14, 20]:

xi (t + 1) = αisi + (1 − αi )

∑
j ∈N (i )

x j (t )

deg(i )
. (1)

Here, N (i ) = {j : (i, j ) ∈ E} is the set of neighbors of i , and
deg(i ) = |N (i ) |. It is known that this dynamics converges to a

unique equilibrium if αi > 0 for all i ∈ V [12]. The equilibrium

opinion vector z is the solution to a linear system of equations:

z = (I − (I −A)P )−1As, (2)

where A = Diag (α )) is a diagonal matrix where entry Ai,i corre-

sponds to αi and P is the random walk matrix, i.e., Pi, j =
1

deд (i ) for

each edge (i, j ) ∈ E (G ), and zero otherwise. We call zi the expressed
opinion of agent i .

Definition 2. Given the opinion dynamics model (1), a social net-

work G = (V ,E), and the set of parameters {si }i ∈V , {αi }i ∈V , we
define the total sum of opinions at the equilibrium as:

f (s,α )
def

= 1⃗
T z = 1⃗

T (I − (I −A)P )−1As .

Our goal is to optimize the objective f (s,α ), by choosing certain
αi parameters in a range [ℓ,u], where 0 < ℓ ≤ u. We consider the

following problems:

(1) Opinion Minimization: find S ⊆ V such that we can set the

αi ∈ [ℓ,u] for i ∈ S in order to minimize f (s,α ).
(2) Opinion Maximization: find S ⊆ V such that we can set the

αi ∈ [ℓ,u] for i ∈ S in order to maximize f (s,α ).

Previous work has focused on modifying the agents’ innate or

expressed opinions. We observe that targeting agents at the level

of susceptibility versus at the level of innate opinions can lead to

very different results, as the next example shows.

Example 3. Consider the star graph on n nodes, where the center

node has (si ,αi ) given by (1, ϵ/c ) and the other nodes have values

(0, ϵ ). We want to maximize the sum of expressed opinions.

Suppose ϵ is a value arbitrarily close to 0. As we increase c , the
total sum of opinions in the network tends to 0. If we can target

a single agent, then an optimal intervention at the level of innate

opinions changes the innate opinions of one of the leaves to 1. At

equilibrium, the total sum of opinions (for small ϵ and large c) is
close to

n
n−1
≈ 1. However, if we can target at the level of suscepti-

bility, then we change the central node’s αi from
ϵ
c to 1. Then, at

equilibrium, the total sum of opinions becomes f (s,α ) = n(1−ϕ (ϵ ))
for a function ϕ () going to 0 as ϵ goes to 0. The improvement is

Ω(n), and hence very large compared to the intervention at the

level of innate opinions.

We can construct an instance on the same graph structure to

show the contrast in the opposite direction as well, where targeting

at the level of innate opinions causes a large improvement compared

to targeting at the level of susceptibility. Starting with the example

above, change the innate opinion of the center node to be 0 and the

resistance parameter to be 1. In equilibrium, the sum of expressed

opinions is 0. If we can target agents at the level of innate opinions,

then changing the innate opinion of the center node to be 1 will

lead to a sum of expressed opinions of n, whereas we cannot obtain
a sum of expressed opinions greater than 0 by targeting agents at

the level of susceptibility.

This above example also shows that interventions at the level

of susceptibility can have substantial impact on network opinions.

It gives a way of modifying the resistance parameters to create an

unbounded increase in the sum of expressed opinions.

We now prove that there always exists an optimal solution that

involves extreme values, ℓ and u, for the resistance parameters αi .
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Theorem 2.1. There always exists an optimal solution for the
opinion optimization problems where αi = ℓ or αi = u.

Proof. Our proof relies on a random-walk interpretation of

opinion dynamics [21, 24]. Before we give our proof, we describe

this connection between absorbing random walks and opinion

dynamics for completeness. Gionis et al. [24] consider a random

walk with absorbing states on an augmented graph H = (X ,R) that
is constructed as follows:

(i) The set of vertices X of H is defined as X = V ∪V , where V
is a set of n new nodes such that for each node i ∈ V there

is a copy σ (i ) ∈ V ;

(ii) The set of edges R of H includes all the edges E of G, plus
a new set of edges between each node i ∈ V and its copy

σ (i ) ∈ V . That is, R = E ∪ E, and E = {(i,σ (i )) | i ∈ V };
(iii) Finally, the weights of all edges in R are set to 1, assuming

that G is unweighted.

A key observation in [24] is that the opinion vector at the equi-

librium can be computed by performing the following absorbing

random walk on the graph H . To determine the expressed opinion

of node i ∈ V , we start a random walk from i; with probability

1 − αi we follow an incident edge chosen uniformly at random

from E, and with probability αi we follow the edge from i to σ (i ),
ending the walk. If the walk continues to a node j, we perform

the same type of step — choosing an edge of E incident to j with
probability 1 − α j , and moving to σ (j ) with probability α j — and

iterate. The expressed opinion z∗i of node i in the equilibrium of

the process is equal to the expected value of the innate opinion sj
over all endpoints σ (j ) of the walk starting from i .

Therefore, the agents’ equilibrium opinion is given by:

z∗i = αisi + (1 − αi )piiz
∗
i + (1 − αi ) (1 − pii )yi , (3)

where pii is the probability that the random walk that starts at i
returns again to i before absorption, and yi is the expected opinion

if the random walk gets absorbed to a node σ (j ) , σ (i ).
Without loss of generality, we assume that the opinion optimiza-

tion problem at hand is the maximization problem, although the

proof can easily be adopted to the opinion minimization case. Sup-

pose we have a solution for the opinion maximization problem such

that αi lies strictly between ℓi and ui . We wish to show that setting

αi to be either ℓi or ui will yield a sum of expressed opinions that

is at least as large. Proceeding in this way one node at a time, we

will get a solution in which all αi are either ℓi or ui .
By solving Equation (3) for z∗i we obtain,

z∗i =
αi

1 − (1 − αi )pii
si +

(1 − αi ) (1 − pii )

1 − (1 − αi )pii
yi . (4)

Therefore z∗i is the convex combination of two probabilities si ,yi .
Since we wish to maximize z∗i , if si ≤ yi we need to minimize

αi
1 − (1 − αi )pii

; otherwisewewill minimize

(1 − αi ) (1 − pii )

1 − (1 − αi )pii
. Note

that the function д(x ) =
x

1 − (1 − x )pii
for x ∈ [ℓi ,ui ] is monotone

increasing, and therefore maximized at x = ui and minimized at

x = ℓi . Therefore, optimality is obtained by setting αi to be either

ℓi or ui . This yields a sum of expressed opinions that is at least as

large as the original solution. □

3 UNBUDGETED OPINION OPTIMIZATION
In this section, we show that when there are no constraints on the

size of the target-set, both the opinion maximization and minimiza-

tion problems can be solved in polynomial time.

3.1 Unbudgeted Opinion Minimization
Recall from Section 2, A = Diag (α ) is a diagonal matrix where

entry Ai,i corresponds to αi and P is the random walk matrix.

We formalize the unbudgeted opinion minimization problem as:

minimize 1⃗
T z

subject to z = (I − (I −A)P )−1As
A ⪰ ℓI
A ⪯ uI

(5)

Theorem 3.1. The Opinion Minimization formulation (5) is solv-
able in polynomial time.

Before we proceed with the proof of Theorem 3.1, we rewrite the

objective of formulation (5) in a way that is convenient for algebraic

manipulation. Define X = A−1
. Then,

(I − (I −A)P )−1A = (I − (I −A)P )−1 (A−1)−1 = (I − (I −A)P )−1X−1

= (X − (X − XA)P )−1 = (X − (X − I )P )−1.

Therefore, we rewrite our original formulation to optimize over

the set of diagonal matrices X whose entries lie in [
1

u ,
1

ℓ ].

minimize 1⃗
T (X − (X − I )P )−1s

subject to X ⪰ 1

u I

X ⪯ 1

ℓ I
X diagonal

(6)

Lemma 3.2. The following set is convex:

K = {X ∈ Rn×n : X diagonal,
1

u
≤ xii ≤

1

ℓ
for all i ∈ [n]}.

Proof. Let X1,X2 ∈ K , λ ∈ (0, 1). Matrix Y = λX1 + (1 − λ)X2

is clearly diagonal, and any diagonal entry yii = λx1

ii + (1 − λ)x2

ii
satisfies,

1

u
≤ yii ≤

1

ℓ
.

Therefore, Y ∈ K , which implies the claim. □

Lemma 3.3. All eigenvalues of matrix Z = (X − (X − I )P ),X ∈ K
are strictly positive reals (in general Z is not symmetric). Furthermore,
Z is positive definite, i.e., for any y ∈ Rn the quadratic form yTZy is
non-negative.

Notice that the above two statements are not simultaneously true

for non-symmetric matrices: a non-symmetric matrix with all eigen-

values positive is not necessarily positive definite. On the other

hand, if a non-symmetric matrix is positive definite, all its eigen-

values have to be positive.

Proof. First, we prove that all eigenvalues are real. We provide a

sequence of similarity transformations that proveZ = (X−(X−I )P )
is similar to a symmetric matrix. To simplify notation, when U =
R−1AR, where R is a diagonal matrix, we write U ≡ A.
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X − (X − I )P ≡ X − D+
1

2

(
(X − I )D−1A

)
D−

1

2

= X − (X − I )D−
1

2AD−
1

2

≡ X − (X − I )−
1

2 (X − I )D−
1

2AD−
1

2 (X − I )+
1

2

= X − (X − I )+
1

2 D−
1

2AD−
1

2 (X − I )+
1

2

Since the adjacency matrix A is symmetric, the latter matrix is also

symmetric, and therefore has real eigenvalues.

To show all eigenvalues are positive, we invoke the Gershgorin

circle theorem. Notice that Zii = xii (under our assumption that

the graph is simple) and the sum of non-diagonal entries in row i
is −(xii − 1). Therefore, every eigenvalue of Z lies in at least one

of the Gershgorin discs:

|λ − xii | ≤ (xii − 1) ⇔ 1 ≤ λ ≤ 2xi − 1.

We now show that the quadratic form associated with Z is non-

negative. Recall first that xii ≥ 1 and deg(i ) ≥ 1, therefore

1

deg(i )
+

1

deg(j )
≥ 2.

For any y ∈ Rn ,

yTZy = yT (X − (X − I )P )y = yTXy − yT (X − I )Py

=

n∑
i=1

xiiy
2

i −

n∑
i=1

(xii − 1)
yi

deg(i )

∑
j∼i

yj

=

n∑
i=1

y2

i +

n∑
i=1

(xii − 1) *.
,
y2

i −
yi

deg(i )

∑
j∼i

yj
+/
-

=

n∑
i=1

y2

i +
∑

(i, j )∈E (G )

(xii − 1)

(
y2

i + y
2

j − (
yiyj

deg(i )
+

yiyj

deg(j )
)

)

≥

n∑
i=1

y2

i +
∑

(i, j )∈E (G ),yiyj ≥0

(xii − 1) (y2

i + y
2

j − 2yiyj )+

∑
(i, j )∈E (G ),yiyj<0

(xii − 1)

(
y2

i + y
2

j + (
|yiyj |

deg(i )
+
|yiyj |

deg(j )
)

)

=

n∑
i=1

y2

i +
∑

(i, j )∈E (G ),yiyj ≥0

(xii − 1) (yi − yj )
2+

∑
(i, j )∈E (G ),yiyj<0

(xii − 1)

(
y2

i + y
2

j + (
|yiyj |

deg(i )
+
|yiyj |

deg(j )
)

)
≥ 0

□

We proceed to prove that the objective is convex.

Theorem 3.4. The matrix (X − (X − I )P )−1 is a convex function
of X ∈ K .

Proof. LetX1,X2 ∈ K , and letZi := (Xi − (Xi −I )P ) for i = 1, 2.

Also, fix λ ∈ (0, 1), and let Z (λ) = λZ1 + (1 − λ)Z2. We prove the

following statement, that implies that (X − (X − I )P )−1
:

λZ−1

1
+ (1 − λ)Z−1

2
⪰ (λZ1 + (1 − λ)Z2)

−1.

Since Z1,Z2 are positive definite, we obtain that for any y ∈ Rn

yTZ (λ)y = λyTZ1y + (1 − λ)yTZ2y ≥ 0,

so Z (λ) is positive definite, and so is Z (λ)−1
,

ZZ−1 = I ⇒
dZ

dλ
Z−1 + Z

dZ−1

dλ
= 0⇒

dZ−1

dλ
= −Z−1

dZ

dλ
Z−1.

By differentiating twice Z (λ) with respect to λ, we also obtain

d2Z
dλ2
= 0. So, the second derivative of the inverse is given by,

d2Z−1

dλ2
= −

dZ−1

dλ

dZ

dλ
Z−1 − Z−1

dZ

dλ

dZ−1

dλ
= 2Z−1

dZ

dλ
Z−1

dZ

dλ
Z−1.

Pick any non-zero vector u and consider following pair of vector/-

matrix valued functions:

v (λ) =
dZ

dλ

dZ−1

dλ
u and φ (λ) = uTZ−1 (λ)u .

The second derivative of φ (λ) satisfies the following inequality:

φ (λ) = uT
d2Z−1

dλ2
u = 2vT (λ)Z−1 (λ)v (λ) ≥ 0,

since Z−1
is positive definite. Therefore φ (λ) is a convex function

of λ for λ ∈ (0, 1). Thus, for any such λ

(1 − λ)φ (0) + λφ (1) − φ (λ) ≥ 0 (7)

⇐⇒ uT
[
(1 − λ)X−1 + λY−1 − ((1 − λ)X + λY )−1

]
u ≥ 0. (8)

This implies that λZ−1

1
+ (1−λ)Z−1

2
− (λZ1+ (1−λ)Z2)

−1
is positive

semidefinite, and thus our claim that (X − (X − I )P )−1
is a convex

function holds. □

We can prove that

(
(X − (X − I )P )−1

)T
is also a convex function

in a similar way. We therefore obtain the following corollary:

Corollary 3.5. For any fixed y ∈ Rn , we can optimize the qua-
dratic forms,

yT (X−(X−I )P )−1y, yT
(
(X−(X−I )P )−1+

(
yT

(
(X−(X−I )P )−1

)T ))
y

over all diagonal matrices X ∈ K in polynomial time.

We can use off-the-shelf interior point methods for convex optimiza-

tion. To conclude the proof of Theorem 3.1, we need to prove that

our objective can be brought in the quadratic form of Corollary 3.5.

Proof of Theorem 3.1. For simplicity, let Z = (X − (X − I )P ).
We consider the quadratic,

(s + 1⃗)TZ−1 (s + 1⃗) = sTZ−1s + 1⃗
TZ−1

1⃗ + 1⃗
TZ−1s + sTZ−1

1⃗

= sTZ−1s + n + 1⃗
TZ−1s + sT 1⃗⇔

1⃗
TZ−1s = (s + 1⃗)TZ−1 (s + 1⃗) − sTZ−1s −C

= ⟨(s + 1⃗) (s + 1⃗)T − ssT︸                     ︷︷                     ︸
Q

,Z−1⟩ −C,
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where C = n +
n∑
i=1

si is a constant that does not depend on the

variable diagonal matrix X . Furthermore, Q is symmetric, i.e., Q =
QT

. Let Q =
∑n
i=1

νiqiq
T
i be the eigendecompositon of Q . We

observe that:

trace(Z−1Q ) = trace
*
,
Z−1 *

,

n∑
i=1

νiqiq
T
i

+
-

+
-
= trace

*
,

n∑
i=1

νiZ
−1qiq

T
i

+
-

=

n∑
i=1

νi trace
(
Z−1qiq

T
i

)
=

n∑
i=1

νi trace
(
qTi Z

−1qi
)

=

n∑
i=1

νi
(
qTi Z

−1qi
)
=

n∑
i=1

νi

(
qTi

1

2

(
Z−1 + (Z−1)T

)
qi

)
(*)

=
1

2

trace

((
Z−1 + (Z−1)T

)
Q

)
In (*), we used the fact that for any square matrix A

xTAx =
1

2

xT (A +AT )x .

Therefore, we conclude that our objective is equivalent to minimiz-

ing

1

2

⟨(s + 1⃗) (s + 1⃗)T − ssT ,Z−1 + (Z−1)T ⟩,

subject to X ∈ K . By Corollary 3.5, the opinion minimization

problem is convex, and thus solvable in polynomial time. □

3.2 Unbudgeted Opinion Maximization
We also prove that the opinion maximization problem can also be

solved in polynomial time using machinery that we have already

developed. We state the problem as:

maximize 1⃗
T (X − (X − I )P )−1s

subject to X ⪰ 1

u I

X ⪯ 1

ℓ I
X diagonal

Theorem 3.6. We can solve the opinion maximization problem by
invoking our opinion minimization algorithm using as our vector of
initial opinions 1 − s .

Proof. By Lemma 3.3 and since P 1⃗ = 1⃗, for any X ∈ K ,

(X − (X − I )P )1⃗ = X 1⃗ − (X − I )1⃗ = I 1⃗ = 1⃗

⇔ (X − (X − I )P )−1
1⃗ = 1⃗.

Therefore, the opinion minimization objective that uses as an initial

opinions the vector 1⃗ − s becomes

1⃗
T (X − (X − I )P )−1 (⃗1 − s ) = 1⃗

T (X − (X − I )P )−1
1⃗−

1⃗
T (X − (X − I )P )−1s = n − 1⃗

T (X − (X − I )P )−1s .

Therefore, minimizing this objective is equivalent to maximizing

1⃗
T ∗ (X − (X − I )P )−1s subject to X ∈ K . □

4 BUDGETED OPINION OPTIMIZATION
We now consider the setting where there is a constraint on the

size of the target-set. That is, we want to identify a set T ⊆ V
of size k such that changing the resistance parameters of agents

in T optimally maximizes (resp. minimizes) the sum of expressed

opinions in equilibrium. Recall from Section 2 that we denote by

f (s,α ) the sum of expressed opinions under the given vector of

innate values and resistance parameters. We denote by f (T ) the
sum of expressed opinions where we can set the αi of the i ∈ T
optimally.

The objective function for finding the optimal target-set for opin-

ion maximization is therefore max |T |=k f (T ), and, respectively,
min |T |=k f (T ) for opinion minimization. Note, the objective func-

tion is monotone in the target-set since we can always set the

choice of αi to be the original αi for any node i ∈ T . But, can
we use submodular optimization tools for our budgeted opinion

optimization problems? We show that, unlike in the case in other

standard opinion optimization or influence maximization settings,

neither submodularity nor supermodularity holds. We prove this

result for the case of opinion maximization, but similar claims can

be made for the minimization problem too by setting s = 1 − s .

Example 4. Consider the complete graph on three nodes where

s = (1, 0, 0) and α = (0.1, 0.1, 0.1). Suppose we are allowed to set

resistance values in [0.001, 1].

To note non-submodularity, set T = {1, 2}, T ′ = {1}, and x = {3}.
For each of these sets, the optimal solution would set α1 = 1,

α2 = 0.001 and α3 = 0.001. Submodularity would require:

f (1, 2, 3) − f (1, 2) ≤ f (1, 3) − f (1),

which would imply that 0.191 ≤ 0.168.

To show that supermodularity does not hold, setT = {1},T ′ = ∅,
and x = {3}. Then, supermodularity would require that

f (3) − f (∅) ≤ f (1, 3) − f (1),

which would imply that 1.493 ≤ 0.168.

Highlighting a difference with the unbudgeted version, we show

that the opinion maximization and minimization problems are NP-
hard by a reduction from the vertex cover problem on d-regular
graphs. We adapt a construction for a different opinion maximiza-

tion problem given by [24] in the context of their model. We only

present the proof for the opinion maximization problem; the proof

can easily be adapted for opinion minimization as well.

Theorem 4.1. The budgeted opinion maximization (and similarly
opinion minimization) problem is NP-hard.

Proof. Given a d-regular graph G = (V ,E) and an integer K ,
the vertex cover problem asks whether there exists a set of nodes

S of size at most K such that S is a vertex cover. An instance of

the decision version of opinion maximization consists of a graph

G ′, where each agent i has an internal opinion si and resistance

parameter αi , an integer k and a threshold θ . The solution to this

decision version is “yes" if and only if there exists a set T of size

at most k whose resistance values we can optimally set such that

ℓ ≤ α ≤ u and f (T ) ≥ θ . We first prove this hardness result by

letting the αi of the target-set be anywhere in [0, 1]. We then prove

that the reduction continues to hold for the case where αi ∈ (0, 1].
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Suppose we are given an instance of the vertex cover problem

for regular graphs. We construct an instance of the decision version

of the opinion maximization problem as follows: set G ′ = (V ∪

V ′,E ∪ E ′) where V ′ consists of 2

√
d nodes for each node i ∈ V

(called duplicate nodes). The set E ′ is the edges of the form (i, i ′)
joining nodes in V to their corresponding duplicate nodes. We set

si = 1 and αi = 0 for all i ∈ V . We also set si′ = 0 for all i ′ ∈ V ′. For
the set of duplicate nodes, we set the resistance value of half (that

is,

√
d nodes) to be 1 and the other half to be 0. We call the former

the stubborn duplicate nodes, and the latter the flexible duplicate

nodes. We set k = K and θ = (
√
d + 1)k +

√
d (n − k ) d

d+
√
d
. This

gives us a decision version of the opinion maximization problem.

We now want to show that a set T of at most k nodes in V is a

vertex cover of G if and only if we can set the resistance values of

the nodes in T (as a subset of G ′) to satisfy the decision version of

the opinion maximization problem.

Suppose that T is a vertex cover of G. Then, it satisfies the de-
cision problem above by setting the αi of the agents in T to be 1.

Indeed, the agents i ∈ T will have expressed opinions of 1, as will

all the flexible duplicate nodes neighboring the agents in T . All
other nodes j ∈ V will have all d of their neighbors in V having

opinion 1 sinceT is a vertex cover. Therefore, they will have a final

expressed opinion
d

d+
√
d
. Their

√
d flexible duplicate nodes will

take on this value as well, while their stubborn duplicate nodes will

maintain their innate opinion of 0. Therefore, we get a final sum of

(
√
d+1)k+

√
d (n−k ) d

d+
√
d
. Therefore,T corresponds to a target-set

whose resistance we can set optimally such that f (T ) ≥ θ .
To see the reverse direction, we want to show that if T is not

a vertex cover of G, then we cannot set the resistance values of

agents inT such that f (T ) ≥ θ . IfT is not a vertex cover, then there

exists an edge (i, j ) ∈ E such that i, j < T . Therefore, the expressed

opinion of both i and j will be at most
d−1

d+
√
d
. All the agents inT will

maintain their high opinion of 1, and all other nodes ℓ , i, j will

have an expressed opinion of at most
d

d+
√
d
, by the same argument

as above. Taking into account the duplicate nodes, we have,

f (T ) ≤ (
√
d + 1)k +

√
d (n − k − 2)

d

d +
√
d
+ 2

√
d

d − 1

d +
√
d
< θ .

Let θ ′ denote the middle term in this chain of inequalities; we have

thus shown that if G does not have a k-node vertex cover, then for

any set T of at most k nodes, we have f (T ) ≤ θ ′ < θ .
What remains to show is there exists an optimal target-set that

consists of only nodes in V and not in V ′, where we assume that

this target-set is at most of size k ≤ n for n = |V |. Denote the

optimal target-set in by T ∗. Suppose there is a node i ′ ∈ T which

is a node in V ′. Let i ′ be adjacent to a node i ∈ V . If i ′ is a flexible
duplicate node, then it is clear that the expressed opinions of both

i ′ and i will be 1, if we include i in the target-set instead. (Or

simply remove i ′ from the target-set if i is already in T .) Suppose
i ′ is a stubborn duplicate node. First, assume that i ∈ T . Consider
T = T \{i ′} ∪ {j}, where j < T . The expressed opinion of j, and
therefore of all its corresponding flexible duplicate nodes, with

T as the target-set is at most
d

d+
√
d
. With j in the target-set, the

expressed opinion goes to 1. We therefore need to show that the

loss in opinion from removing i ′ from the target-set, is at most the

gain by adding j to the target-set. Indeed, it is straightforward to

verify that 1 ≤

(
1 − d

d+
√
d

) (√
d + 1

)
.

Now, consider i ′ is a stubborn duplicate node and i < T . We

compareT toT ′ = T \{i ′} ∪ {i}. Suppose there are h nodes adjacent

to i inV ′with resistance parameter 0. (In particular,h ≥
√
d+1.) The

expressed opinion of i with T as the target-set is at most
d

d+2

√
d−h

,

and is shared by all h of the duplicate nodes. Under T ′, i will have
an expressed opinion of 1, as will all h of the nodes with α = 0,

except for node i ′ which will now have resistance value of 1. Thus,

we need to show that

1 −
d

d + 2

√
d − h

≤ h

(
1 −

d

d +
√
d − h

)
.

This holds since h ≥ 1.

We now show how to modify the proof for the case in which

the resistance values belong to the interval [ε, 1] rather than [0, 1],

for some ε > 0. If we view f (T ) as a function of the resistance

parameters in the network G ′ constructed in the reduction, it is a

continuous function. Thus, if we let γ = θ − θ ′ > 0, we can choose

ε > 0 small enough that the following holds. If we take all nodes i
in the previous reduction with αi = 0, and we push their resistance

values up to αi = ε , then (i) if T is a k-node vertex cover in G, we
have f (T ) ≥ θ − γ/3, and (ii) if G does not have a k-node vertex
cover, for any set T of at most k nodes, we have f (T ) ≤ θ ′ + γ/3.
Since θ − γ/2 lies between these two bounds, it follows that with

resistance values in the interval [ε, 1], there is a k-node vertex

cover T in the original instance if and only if there is a set T in the

reduction to opinion maximization with f (T ) ≥ θ −γ/2. Therefore,
the proof holds for resistance values in [ε, 1]. □

In light of this hardness result, and inspired by Theorem 2.1, we

propose a greedy heuristic for the budgeted opinion optimization

problems. The version shown below is for opinion maximization,

but can be converted to the opinion minimization problem by set-

ting s = 1 − s .

Greedy Heuristic

Require: k ≥ 1

1: S ← ∅
2: Compute f (∅) = (I − (I −A)P )−1As
3: for i ← 1 to k do
4: max ← −∞
5: for v ∈ V \T do
6: Compute f (T ∪ {v})
7: if f (T ∪ {v}) − f (T ) ≥ max then
8: winner← v
9: max ← f (T ∪ {v}) − f (T )
10: end if
11: end for
12: T ← T ∪winner

13: end for
14: Return T .

In each round, the heuristic chooses the node that gives the

largest marginal gain f (T ∪ {v}) − f (T ). The algorithm requires
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Figure 1: Total sum of opinions at equilibrium vs. budget k for the budgeted opinion maximization problem using no inter-
vention, Baseline I, Baseline II, and our greedy heuristic for (a) Twitter, (b) Email, and (c) NetScience networks respectively.

O (n3) time to compute f (∅) using standard Gauss-Jordan elimina-

tion for matrix inversion, and then it performs O (nk ) loops, that
each requiresO (n2) time. To see whyO (n2) time suffices instead of

the straightforwardO (n3) time of matrix inversion, suppose that we

know (I − (I −A)P )−1
and we wish to change the resistance of node

i from αi to be 1. The new resistance matrix isA′ = A+xix
T
i , where

xi ∈ R
n
has xi (j ) = 0 for all j , i , and xi (i ) =

√
1 − αi . Instead of

computing the inverse (I − (I −A′)P )−1
, we can use the Sherman-

Morrison formula for the rank-1 update (I − (I −A)P +xi (x
T
i P ))

−1
,

which leads to a run-time of O (kn3) instead of O (kn4).
In the next section, we implement this heuristic and compare its

performance against some natural baselines on real and synthetic

values on real-world networks

5 EXPERIMENTAL RESULTS

Experimental setup. We use several datasets as sources of real

network topologies: a social network of monks [39], social net-

work of members in a karate club [46], co-appearance network of

characters in Les Miserables [30], co-authorship network of net-

work scientists [37], email communication network at a research

institution [31, 45], and social links on Twitter [13].

The Twitter dataset is associated with real-world opinions ob-

tained as described by De et al. [13]. For our purposes, we take

the first expressed opinion by each agent to be the innate opin-

ion, and we normalize these values, which fall in [−1, 1] in the

original dataset, to fall in [0, 1]. The sum of the innate opinions

is 347.042 with a mean of 0.633. For a detailed description of the

dataset collection, see [13].

For the remaining networks, we set the innate opinions uni-

formly at random in [0, 1] for the budgeted experiments and uni-

formly at random as well as power law for the unbudgeted experi-

ments. We set the slope for the power law distribution to be 2. The

resistance parameters are chosen uniformly at random in [0.001, 1].

For the budgeted version of our problem, we present the perfor-

mance of the heuristics for the three largest networks (i.e., Twitter,

Email Network, and NetScience). The results are qualitatively simi-

lar for the rest of the networks. We compare the performance of

our greedy heuristic with two baselines that output a set of k nodes

whose resistance parameter is set to 1. Baseline I chooses k agents

with the highest innate opinions (ties broken arbitrarily). Baseline

II assigns to each node i a score score(i ) =
deg(i )

2m ×
si∑

j∈N (i ) sj
and

chooses the k agents with the highest score. The intuition is that we

would like to pick a node that has a high centrality and relatively

high opinion compared to their neighbors and fix this agent to

have an α of 1. We consider budget values k in {1, 2, · · · , 100}. We

compare the sum of expressed opinions without intervention as

well as the outputs of the greedy heuristic and the two baselines.

All simulations run on a laptop with 1.7 GHz Intel Core i7 processor

and 8GB of main memory.
1

Experimental findings. Figures 1(a), (b), (c) show the results ob-

tained by our greedy heuristic, and the two baseline methods for the

Twitter, Email, and NetScience networks respectively. All methods

achieve a significant improvement compared to having no inter-

ventions even for small values of k . Recall that for the Twitter net-
work, we use estimates of real opinions for the agents. Homophily

by opinions is observed and impacts the relatively higher perfor-

mance of these baselines compared to the Email and NetScience

networks where the opinion values are randomly generated. Base-

line I and Baseline II show similar performance for the Twitter and

NetScience networks. One underlying explanation for the relative

under-performance of Baseline II compared to Baseline I in the

Email network is that this network has skewed degree distribution

which might inflate the scores of higher degree nodes. We note that

the run times for the Twitter, Email, and NetScience networks are

12.0, 3.4, and 111.5 seconds per k, respectively.

Baseline I
Require: k ≥ 1

1: Let s1 ≥ s2 ≥ . . . ≥ sn .
2: Return T ← {1, . . . ,k }

Baseline II
Require: k ≥ 1

1: Let score(i ) ←
deg(i )

2m ×
si∑

j∈N (i ) sj
for all i ∈ V .

2: Sort the nodes such that score(1) ≥ score(2) ≥ . . . ≥ score(n)
3: Return T ← {1, . . . ,k }

1
The code for the budgeted and unbudgeted experiments can be found in https:

//github.com/redabebe/opinion-optimization and https://github.com/tsourolampis/

opdyn-social-influence, respectively.
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G n m s ∼ U [0, 1] s ∼Power Law(α )

1⃗
T s 1⃗

T z 1⃗
T zmin 1⃗

T zmax 1⃗
T s 1⃗

T z 1⃗
T zmin 1⃗

T zmax

Monks 18 41 9.34 8.12 1.22 16.38 11.88 11.29 5.62 16.68

Karate 33 78 16.70 17.83 1.97 32.47 22.29 21.07 5.27 33.56

LesMis 77 254 38.81 40.5 4.21 74.00 48.68 52.11 8.44 75.84

NetScience 379 914 188.39 191.79 17.19 319.59 257.58 249.88 64.43 340. 54

Email 986 16064 414.62 440.96 388.39 495.44 283.62 565.86 91.18 610.72

Twitter 548 3638 289.29 260.96 241.86 270.21 193.09 359.85 62.00 379.00

Table 1: Results for unbudgeted algorithm for uniform and power law distributions (with slope α = 2) of innate opinions s with
output: sum of innate opinions, sum expressed opinions without intervention, sum of expressed opinions after interventions
with minimization algorithm, and sum of expressed opinions with intervention by maximization algorithm.

Table 1 shows our experimental findings for the unbudgeted

opinion minimization, and maximization problems. We report the

total sum 1⃗
T s of innate opinions, the total sum 1⃗

T z of opinions

at equilibrium (no intervention), the total sum 1⃗
T zmin of opinions

produced by our minimization algorithm, and the total sum 1⃗
T zmax

of opinions produced by our maximization algorithm. The resis-

tance parameters for each of the networks are chosen uniformly

at random from [0, 1]. We then let ℓ = 0.001 and u = 1, which

serve as an upper and lower bound for the resistance parameters.

Note that the reported values are the average of 5 trials. In addi-

tion to the synthetically generated opinion values reported above,

we also run the opinion optimization algorithms on the Twitter

dataset using the opinions from [13] and get a sum of opinions

117.31 for the opinion minimization problem and 363.87 for the

opinion maximization problem. The main observation here is that

the effect of our intervention can be significant for both the opinion

maximization and opinion minimization problems. Indeed, the sum

of opinions in the case of the former is over an order of magnitude

larger than the case of the latter for many of these networks.

An open direction for both the unbudgeted and budgeted settings

is to find heuristics and algorithms that scale better with the size of

the network, and how this trades off with the optimization problem

for the sum of opinions. Furthermore, it may also be interesting

to explore how well the proposed solutions in this paper perform

in practice. That is, we assume that the model we consider repre-

sents the opinion formation process on social networks. Existing

work in the literature explores how well the model considered here,

as well as other models, approximate real evolution of opinions

[11, 33]. It would be interesting to explore how well our solutions

perform when the model we consider is only an approximation.

There are also outstanding questions associated with estimation of

parameters, including the susceptibility parameter in our paper.

6 RELATEDWORK
To our knowledge, we are the first to consider an optimization

framework based on opinion dynamics with varying susceptibility

to persuasion. Below, we review some work that lies close to ours.

Asch’s conformity experiments are perhaps the most famous

study on the impact of agents’ susceptibility to change their opin-

ions [4]. This study shows how agents have different propensities

for conforming with others. These propensities are modeled in our

context by the set of parameters α . Since the work of Asch, there

have been various theories on peoples’ susceptibility to persuasion

and how these can be affected. A notable example is Cialdini’s Six

Principles of Persuasion, which highlight reciprocity, commitment

and consistency, social proof, authority, liking, and scarcity, as key

principles which can be utilized to alter peoples’ susceptibility to

persuasion [7, 8]. This framework, and others, have been discussed

in the context of altering susceptibility to persuasion in a variety

of contexts. Crowley and Hoyer [9], and McGuire [32] discuss the

‘optimal arousal theory’, i.e., how novel stimuli can be utilized for

persuasion when discussing arguments.

Opinion dynamics model social learning processes. DeGroot in-

troduced a continuous opinion dynamics model in his seminal work

on consensus formation [14]. A set of n individuals in society start

with initial opinions on a subject. Individual opinions are updated

using the average of the neighborhood of a fixed social network.

Friedkin and Johnsen [20] extended the DeGroot model to include

both disagreement and consensus by mixing each individual’s in-
nate belief with some weight into the averaging process. This has

inspired a lot of follow up work, including [2, 6, 11, 22, 23].

Bindel et al. use the Friedkin-Johnsen model as a framework for

understanding the price of anarchy in society when individuals

selfishly update their opinions in order to minimize the stress they

experience [6]. They also consider network design questions: given

a budget of k edges, and a node u, how should we add those k edges

to u to optimize an objective related to the stress? Gionis et al. [23]

use the same model to identify a set of target nodes whose innate

opinions can be modified to optimize the sum of expressed opinions.

Finally, in work concurrent with ours, Musco et al. adopt the same

model to understand which graph topologies minimize the sum of

disagreement and polarization [35] .

While the expressed opinion of an agent is readily observable in

a social network, both the agent’s innate opinion and conformity

parameter are hidden. Das et al. [10, 12] have studied inferring these

values. Specifically, they give a near-optimal sampling algorithm

for estimating the true average innate opinion of the social network

and justify the algorithm both analytically and experimentally [12].

Das et al. view the problem of susceptibility parameter estimation

as a problem in constrained optimization and give efficient algo-

rithms, which they validate on real-world data [10]. There are also

several studies that perform experiments to study what phenomena

influence opinion formation and how well these are captured by

existing models [11, 33].
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The problem we focus on is related to influence maximization,

a question that draws on work of Domingos and Richardson [16,

38] and Kempe et al. [29]. Recent work by Abebe et al. considers

the problem of influence maximization where agents who reject a

behavior contribute to a negative reputational effect against it [1].

There is also a rich line of empirical work at the intersection of

opinion dynamics and influence maximization including [5, 25, 27]

that argues that agents adopt products to boost their status.

7 CONCLUSION
Inspired by a long line of empirical work on modifying agents’

propensity for changing their opinions, we initiate the study of the

effect on social influence of interventions on the susceptibility to

persuasion. For this purpose, we adopt a popular opinion dynamics

model, and seek to optimize the total sum of opinions at equilib-

rium in a social network. We consider both opinion maximization

and minimization, and focus on two variations: a budgeted and an

unbudgeted version. We prove that the unbudgeted problem is solv-

able in polynomial time (in both its maximization and minimization

version). For the budgeted version, on the other hand, in contrast to

a number of other opinion or influence maximization formalisms,

the objective function is neither submodular nor supermodular.

Computationally, we find that it is NP-hard. In light of this, we in-

troduce a greedy heuristic for the budgeted setting, which we show

has desirable performance on various real and synthetic datasets.

There are various open directions suggested by this framework.

The first is whether we can provide any approximation algorithms

for the budgeted setting. Through simulations, we also note that

while not giving optimal results, local search algorithms yield sat-

isfactory results in finding target-sets in the unbudgeted setting.

Exploring this connection might yield insights into the opinion

formation process. For the budgeted problem, rather than a budget

on the number of agents, we can also consider having a total budget

B for the total change in susceptibility for all agents. That is, given

resistance values αi , we want to set ᾱi , such that

∑
i |αi − ᾱi | ≤ B.

Finally, from an experimental point of view, it is worth designing

scalable, well performing heuristics
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