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Abstract

We present a practical protocol based on homomorphic cryptography for conducting
provably fair sealed-bid auctions. The system preserves the secrecy of the bids, even after
the announcement of auction results, while also providing for public verifiability of the cor-
rectness and trustworthiness of the outcome. No party, including the auctioneer, receives
any information about bids before the auction closes, and no bidder is able to change or
repudiate her 1 bid. The system is illustrated through application to first-price, uniform-
price and second-price auctions, including multi-item auctions. Empirical results based on
an analysis of a prototype demonstrate the practicality of our protocol for real-world appli-
cations.
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1 For clarity of reference, we use “she”, “her”, etc. to refer to the bidders and verifiers,
and “he”, “his”, etc. to refer to the auctioneer (generally a prover), and other parties to the
auction.
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1 Introduction

In recent years, auctions and electronic marketplaces have been used to facilitate
trillions of dollars in trade in the world economy [26]. Auctions, in particular,
are often adopted to promote the ideal of competitive pricing and economic ef-
ficiency [45,9]. Previously used for rare goods, or for time-sensitive goods (e.g.,
flowers and fish), auctions can now be harnessed for all kinds of commercial trans-
actions [49]. Auctions see especially wide use for the procurement of goods and
services by firms and governments [24,32,77]. We also note that more and more
auctions of all kinds are electronic, and operate over the Internet, which reduces
the cost of participation and enables worldwide competition.

Individual procurement events in the private sector, for instance, the procurement
of truckload services by Procter and Gamble, approach US $1 billion in transaction
value [70]. To give a sense of the scale of procurement in the public sector, Asker
and Cantillon [5] estimate public procurement in the European Union at about 16%
of its GDP; by this estimate public procurement comprised $2 trillion of trade in
2006 [78]. Governments worldwide also use auctions to allocate property rights,
such as auctions for wireless spectrum [46] (with worldwide proceeds exceeding
US $100 billion by the end of 2001 [49]). In a typical week in February, 2006, the
U.S. treasury sells more than US $25 billion in three-month treasury bills through
a sealed-bid auction. 2 Sponsored search auctions drive over $1 billion in revenue
to Google each quarter [40], and the eBay marketplace reported a record US $44.3
billion volume in the 2005 calendar year, representing a 30% increase over 2004.

Why are auctions so popular? Trepte [77] emphasizes the role auctions play in
promoting competition. Competition, in turn, provides incentives for bidders to act
as ‘honest brokers’ of information, so that in the context of procurement the winner
is the most technically efficient firm. Yet, auctions are only effective in promoting
competition if they are trustworthy, with all bids treated fairly and equally and all
bids are seen to be treated in this way [77]. In discussing the role of regulation in
the context of procurement auctions, Trepte emphasizes the importance of being
able to commit to an objective process, so that

“... the buyer binds himself in such a way that all bidders know that he will not,
indeed cannot, change his procedures after observing the bids, even though it
may be in his interest to do so.”

∗ Corresponding author. Address: 33 Oxford St., Cambridge MA 02138, USA. Tel.: +1-
617-384-8130. Fax: +1-617-495-9837.

Email addresses: parkes@seas.harvard.edu (David C. Parkes),
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2 Generally sold in uniform-price auctions. See http://www.publicdebt.treas.gov
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Schelling [72] had already noted “... it is a paradox that the power to constrain an
adversary may depend on the power to bind oneself.” In the context of auctions the
point is a simple one: the firm engaged in procurement would like to commit not to
advantage one firm over another to promote fair competition.

1.1 The Problem of Corruption

Auctions are not immune to corruption and this commitment to a correct process
can be hard to achieve. By corruption, we mean the auctioneer breaking the rules
of the auction in favor of some bidder(s), typically in exchange for bribes [41].
The possibility of corruption exists in an auction whenever the auctioneer is not the
owner of the goods for sale in the auction, or the owner of the firm that is seeking
to procure goods [41]. For instance, there is a possible conflict of interest when
the auction is operated by an individual within a large firm, or by a public servant
within a government organization [39].

As evidence of the extent of concern about corruption in competitive processes, the
main goal of governments and international bodies such as the World Bank, in reg-
ulating public procurement auctions, is to “curb the discretion” of the buyer [77].
The World Bank recently estimated the volume of bribes exchanging hands for pub-
lic sector procurement alone to be roughly US$200 billion per year, with the annual
volume of procurement projects ‘tainted’ by bribes close to US$1.5 trillion [7], and
has made the fight against corruption a top priority [22].

When price is the only factor in determining the winner of an auction, then many
authors argue that using an open and verifiable, sealed-bid auction should help to
prevent corruption [77,67,42]. In a sealed bid auction, bids are committed during
the bidding process and then opened simultaneously by the auctioneer and the rules
correctly followed to determine the winner (and price). However, it seems difficult
in practice to ensure a fully trustworthy sealed-bid auction. The kinds of manipula-
tions that are possible in a first-price sealed-bid auction include the following:

• The auctioneer allows a favored bidder to improve on the bid of the winning
bidder (possibly the same favored bidder) by revealing information about other
submitted bids before the auction closes [42], or by inserting a bid for the favored
bidder after reviewing the submitted bids. This allows the favored bidder to win
at the best possible price.

• A favored winning or second-place bidder can be invited to change a bid after
the auction has closed in order to obtain a better price or win the auction, respec-
tively [48].

• Bribes can can be received before bids are made, in exchange for a promise
to modify the bidder’s bid to the bidder’s advantage should that bidder be the
winner [35].
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Each of these manipulations relies on the ability to circumvent the intended sealed-
bid auction process. The first method relies on learning information before the close
of the auction, or being able to insert or modify a bid after some bidders have
already bid. The second and third methods rely on being able to change, or cancel,
bids after the close of the auction.

More than ethically troubling, corruption is undesirable because it can lead to
both an efficiency loss (e.g., with the wrong supplier winning a contract) and
also a distributional effect (e.g., with the government paying too much for a con-
tract) [3,22,35,48,19,15,16]. Corruption is a widespread, real-world problem, as
illustrated by the following examples:

• A 1988 U.S. investigation, Operation Ill Wind, into defense procurement fraud
resulted in the conviction of 46 individuals and 6 defense corporations, with fines
and penalties totaling US$190 million [15].

• Mafia families in New York City would sometimes pay bribes for an “under-
taker’s look” at the bids of other bidders before making their own bids when
bidding for waste-disposal contracts [35].

• In 1996, Siemens was barred from bidding in public procurement auctions in
Singapore for five years because they bribed the chief executive of Singapore’s
public utility corporation in exchange for information about rival bids [41].

• As many as 40–50 “information brokers” (buying information from oil compa-
nies and selling to suppliers) may be actively working at any given point of time
in the North Sea oil industry, with corruption and bid rigging affecting upwards
of 15% of contracts (an economic value of GB£1.75 billion per year in 1995) [2].

Driving home the difficulty of implementing truly sealed-bid auction processes, In-
graham [31] provides a remarkable account of corruption in New York City School
Construction Authority (SCA) auctions, an approximately US$1 billion per year
market. Two SCA employees and eleven individuals within seven contracting firms
were implicated in the corruption. A dishonest contractor would submit a bid well
below the projected price of the contract, and during the public announcements of
the bids, the auctioneer would save the favored bid until the other bids were opened
and announced. Knowing the current low bid, the dishonest auctioneer would then
read alound a false bid just below the current low bid instead of the artificial bid
actually submitted. The bid form would subsequently be corrected with correction
fluid.

Second-price auctions are robust against all three of these manipulations [48]. In a
second-price (Vickrey) auction the good is sold to the highest bidder for the second
highest bid price [79] (respectively, bought from the lowest bidder for the second
lowest bid price in a reverse auction such as a procurement auction.) In a second-
price auction no single bidder can be given a special advantage because all bidders
have the same opportunity to match other bids via the auction rules. However other
(more complicated) manipulations are possible; e.g., the auctioneer can collude
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with the two highest bidders, with the second highest bidder invited to withdraw
her bid upon the auction closing so that the highest bidder wins the auction but has
to pay only the third highest bid [42]. 3

Moreover, without additional assurances, second-price auctions are vulnerable to a
new kind of manipulation: when selling an item, an agent acting for the seller can
insert a shill bid below the highest bid after the close of an auction and drive up
revenue. 4

An almost universal conclusion, across the many papers in the field, is that there is a
need for verifiably correct and trustworthy first-price sealed-bid auctions [42,77,9],
with emphasis placed on the need for the process to be open and transparent. It is
apparent from the above examples that standard solutions, which rely on a well-
defined and open process, with bids sealed until opened in public, and the use of
regulations and penalties, often remain inadequate. Indeed, Andvig [2] makes the
interesting point that even when an organization is successful in restricting access
to information before an auction closes, then, paradoxically, there are fewer people
that know enough to “police” the process and this can lead in turn to more oppor-
tunities for corruption.

1.2 Our Solution

Our solution ensures the correctness of a sealed-bid auction and allows verifiability
of correctness by any third party and without revelation of the bids received. The
solution extends to multi-item auctions and includes all popular variants of auction
pricing rules, including first-price and second-price. Correctness is ensured by pro-
viding complete secrecy of bids until the close of the auction (including, even, from

3 Moldovanu and Tietzel [50] provide a remarkable account of a failed attempt by the
German author Goethe (1749–1832) to use a second-price auction to sell a manuscript.
Goethe set a reservation price p and instructed his agent to collect a bid b from Vieweg
(1761–1835), the propsective publisher, and to sell at p if and only if b ≥ p. The story is
relevant here because his agent, legal counsel Böttiger, deviated from the rules and revealed
to Vieweg the exact amount p. Vieweg subsequently bid p, and Goethe accepted the offer
but without realizing his desire, which was to learn about his true “worth” by running this
truthful auction.
4 Seeing problems with implementing truly sealed-bid auctions, one can also consider the
role of open auctions in which bids are “broadcast” to all participants; traditionally, this
would occur with all bidders in the same room but today an open auction can be conducted
over the Internet. Although open auctions may provide transparency and reduce opportu-
nities for manipulation, Lengwiler and Wolfstatter [42] conclude the open auctions may
not be desirable for the fear of bidder collusion. Other authors argue that open auctions are
often unsuitable for procurement, and other complex environments, because bidders need
time to formulate technical proposals [5,41].
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the auctioneer), assured revelation of bids to the auctioneer upon auction closing,
and verification that the outcome (or the part of the outcome that the auctioneer
promises to verify) is correct through the use of cryptographic methods. None of
the aforementioned manipulations of first-price or second-price auctions is possible
in our scheme.

An important factor in the practicality of cryptographic methods for providing
trusted auctions is having a clearly understandable and convincing solution, that
is accessible to knowledgable people who are nevertheless not experts on the intri-
cacies of cryptography and general zero knowledge proofs. In this regard, we as-
sume a public key infrastructure under which all parties possess public/secret key
pairs for digital signatures and use Pascal Paillier’s homomorphic encryption [56]
scheme to provide verifiable correctness and trustworthiness without revealing in-
formation about the bids. The cryptographic proofs are based on universally ac-
cepted assumptions.

We focus on two additional aspects of practicality. First, the auction will clear in
reasonable time and with reasonable communication requirements using commod-
ity hardware, even for a large number of bidders. Second, the computational archi-
tecture must be consistent with practical business models. To achieve this we focus
on proofs of correctness rather than secure computation. Unlike previous solutions,
e.g., Naor et al. [53], we require neither the existence of multiple auctioneers nor
that the auctioneers or bidders collaborate to conduct the auction. We believe that
a model involving a single auctioneer that is solely responsible for conducting the
auction and independent verification of the auction by third parties is more realistic
from a business perspective.

We have carefully examined the role of all parties in a sealed-bid auction and for-
malized their role in cryptographically sound protocol. In addition to a seller, mul-
tiple bidders, and an auctioneer, our model employs two commercial entities: no-
taries protect bidders by acting as witnesses to the submission of bids–primarily
to prevent the auctioneer from ignoring or modifying submitted bids, and a Time-
Lapse Cryptography Service [63] provides a cryptographic commitment protocol
that prevents bidders from refusing to reveal commitments they make during the
auction protocol. The Time-Lapse Cryptography (TLC) Service is used to keep
bids secret before the close of the auction. The TLC service publishes a public
key before the auction begins, and delays the creation of the corresponding secret
decryption key until after the close of the auction.

The auctioneer creates an appropriately certified Paillier public/secret key pair to be
used for the security of the bids after the auction, and publishes both this public key
and the time-lapse public key in the auction rules. Bidders first encrypt their bids
using the auction’s public key, then re-encrypt these encrypted bids using the TLC
Service’s public key, and finally submit the doubly encrypted bids to the auction.
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This ensures that the auctioneer will be able to decrypt the bids, but only after the
TLC Service’s secret decryption key is revealed after the auction closes.

Whereas earlier methods required the auction to be distributed across the com-
puters of multiple, independent auction operators, or required complex interactive
protocols involving computation by bidders and the auctioneer, our solution has
a simple, non-interactive, and familar computational architecture. Bidders prepare
commitments to their bids and send the commitments to the auctioneer and any
witnessing notaries. The auctioneer opens the commitments (but can do so only af-
ter the auction closes), determines the outcome of the auction and publishes proofs
of its correctness. In return for this simplicity, we do not achieve all of the same
privacy guarantees as earlier solutions [38,53,30,44].

We choose not to protect against the revelation of bid information by the auctioneer
after the close of the auction. In our view, while an important area of research, the
algorithmic and software methods currently available for solving this problem are
too cumbersome and challenging to understand to find wide business applicability.
Moreover, we consider this kind of manipulation to be less insiduous because it
does not facilitate corruption during the auction. No information can be leaked by
any party before the auction closes, and after the auction closes no new bids can be
introduced and no bids can be altered. We also note that even when bid values stay
concealed from the auctioneer at great process complexity cost, a determined ad-
versary can try to spy and obtain information on a rival’s bid using corrupt insiders.
Thus, an absolute guarantee of secrecy is never attainable in real life.

Complete post auction-closing secrecy can be enforced, in cases where it is deemed
essential, by appeal to specialized hardware and monitoring software. A Trusted
Computing infrastructure, based on secure hardware and digitally signed software
(audited by third parties for correctness), installed in physically secure locations
with ongoing monitoring and auditing, can prevent the leaking of information with
high assurance [73]. In fact, with such deliberately opaque servers it is of the ut-
most import that an auction participant can independently verify the correctness of
the outcome of an auction and be assured that there is no fraud. Thus, such tech-
nological methods to eliminate secrecy leaks are very well complemented by our
methods for verifiable correctness.

While providing the secrecy of bid information is our primary focus, privacy of
bidder identities can be accomplished by other business or cryptographic protocols.
For example, bidders may use legal proxies to place bids on their behalf to hide
their identity, or the auctioneer may employ a cut-and-choose blinding technique
(as described in Section 2.4.5) so that the mapping of winners to bidders is revealed
only where necessary by revealing the random blinding factors. 5

5 This point becomes important when proving the outcome of the auction; in the protocols
we describe, we do not attempt to keep secret that, say, bidder B3 was the winner, because
we assume B3’s true identity is already private if that is necessary.
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To demonstrate the scalability of our technology, we have conducted empirical tim-
ing tests (Section 5). We show that for acceptable strength of the cryptographic
security key, single or multi-item auctions with 100 bidders can be prepared in
around two hours of computation and verified in less than half an hour, all on a
modest (2.8 GHz Pentium 4) PC. We also show that the computations scale lin-
early with the number of bidders. Because our method is easily parallelizable, it is
possible to accommodate auctions with even tens of thousands of bidders in at most
a day of computation on a 64-node network of commodity PC’s. Over a decade ago,
Franklin and Reiter [27] also found that conducting cryptographic sealed-bid auc-
tions was possible on commodity computing hardware of the day, although their
protocol differs substantially from our own.

1.3 Additional Benefits: Better Robustness to Collusion

Providing for verifiable and trustworthy auctions without revealing information
about bids brings another indirect benefit. A major concern in the use of auctions in
practice is that of bidder collusion [69]. By collusion we mean bidders coordinating
in a bidding ring, with the intention to manipulate the final price. The basic idea is
to bid jointly in order to limit competition, with the proceeds being shared among
members of the ring. 6

Collusion between bidders is an especially difficult problem to address because it
necessarily exploits information asymmetries between the auctioneer and the bid-
ders, and is therefore hard to prevent and detect [77]. Unlike the recommendations
of the World Bank and other national and international agencies, our technology
allows for auction verification without revealing information about bids, and this
provides further robustness against bidding rings.

As evidence of the problems caused by bidder collusion, consider the following
examples in first-price sealed-bid auctions:

• Multiple firms were convicted of participating in bidding rings in auctions for
school milk contracts in Florida and Texas in the 1970s and 1980s [57].

• Following allegations of bidder collusion at Forest Service timber sales in the
Pacific Northwest in the 1970s, an empirical study finds evidence for collusion
in auctions conducted between 1975 and 1981 [6].

• In 1984, one of the five biggest highway construction firms in New York state was
convicted in federal court of rigging bids in auctions for state highway contracts
on Long Island in the early 1980s. Four other firms were listed as unindicted
co-conspirators [59].

6 Porter and Zona [59] note that joint bidding is typically illegal unless the specified work
could not be performed without the combined capabilities of the participating firms or if
the bidders could not be competitive individually.
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First-price auctions are preferred over second-price auctions because they are less
susceptible to collusion. 7 In first-price auctions, bidding rings are only sustained
by the threat of punishment because members have to submit bids lower than their
true value. Bidding rings are unstable without the ability to identify a bidder that de-
viates and without repeated interaction [66,29,31]. Indeed, Ashenfelter [4] suggests
that auction houses such as Sotheby’s and Christie’s keep the identity of buyers se-
cret to combat rings so that buyers can break from a ring and buy anonymously.

Yet, a common feature in every one of the aforementioned real-world auctions was
that the auction was concluded with the public opening of bids. As discussed by
Porter and Zona [59], this has an unfortunate side effect:

“The... policy of publicly announcing the bids and the identity of bidders al-
lows cartel members to detect deviations from cartel agreements. Undercutting
or cheating would not go unnoticed.”

Indeed, the World Bank’s own official Procurement Guidelines [7] state that,

“Bids shall be opened in public; bidders or their representatives shall be allowed
to be present... The name of the bidder and total amount of each bid, and of any
alternative bids if they have been requested or permitted, shall be read aloud (and
posted online when electronic bidding is used)...”

Why, one might ask, is bid information made public when it can enable bidding
rings to sustain themselves through credible threats of punishment? Trepte [77]
makes the reason very clear. While noting the value of “restricting the detail and
content of post-award information,” he adds that ”the existence of such information
is essential if disappointed buyers are to be able to challenge unfair or unlawful
procurement procedures.” For this reason, we argue that our solution may have im-
portant ramifications in terms of reducing opportunities for bidder collusion while
addressing corruption. Our auction protocol provides a balance of transparency,
trustworthiness and secrecy that reduces the potential for corruption while improv-
ing market efficiency.

A related point can be made in the context of using our techniques to verify the cor-
rectness of second-price auctions. The main effect, of course, is that we enable a
trustworthy and verifiabily-correct auction process. This prevents, in particular, any
concern about the manipulation through shill bidding discussed earlier. But there
is also a second benefit, that comes from not needing to reveal bid values in es-
tablishing that the auction process was correctly conducted. Second-price auctions
support truthful bidding in a dominant strategy equilibrium, usefully simplifying

7 In a second-price auction the collusive strategy is for the member of the ring with the
highest value to bid high and the rest of the members to bid low, or not at all. This is
stable because no member of the ring can do better through a unilateral deviation from the
collusive agreement [66].
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the bidding process for participants. On the other hand, this bidding strategy can
have a number of unpleasant side effects when bids are revealed after the auction
closes. In the context of procurement, a supplier will be reluctant to reveal her true
cost basis to a competitor [68]. Similarly, when purchasing government assets such
as wireless spectrum, a bidder will be recluctant to reveal her true value for acquir-
ing assets to competitors. Governments may also be reluctant to reveal to the public
that the value of the highest bid was significantly more than the revenue collected. 8

1.4 Related Work in Cryptography

Much of the previous work on the use of cryptography for conducting verifiably
correct and trustworthy auctions has focused on the goal of complete privacy, where
not even the auctioneer learns information about bids after the close of the auc-
tion [38,53,30]; see Brandt [12] for a recent discussion. This is typically achieved
through assuming two or more trusted third parties, either through numerous auc-
tioneers [30] or with asymmetric models in which the commerical entity of an
auction issuer is assumed in addition to the auctioneer [53,44]. Some protocols
achieve complete privacy through bidder-resolved multi-party computation [12]. In
comparison, we settle for verifiable correctness and trustworthiness in combination
with complete secrecy to all parties except the auctioneer; see also Franklin and Re-
iter [27], which employs “verifiable signature sharing”, requires an electronic cash
infrastructure, and distributes this trust in the auctioneer among a set of servers. As
discussed above, the auctioneer in our solution cannot learn any information about
bids until the auction has closed. In return we achieve a non-interactive 9 protocol
that is especially simple from a bidder’s perspective.

In justifying the focus on computationally secure methods to provide correct and
verifiable auctions, it is interesting to note that achieving information-theoretic
guarantees on complete privacy is impossible in a single-item Vickrey auction [13],
at least when it is desired that the payment is only revealed to the winning agent.
(One cannot prove to another party that the winner’s payment was correct with-
out revealing information beyond that implied by the fact that this bidder had the
highest bid.)

8 For example, when the New Zealand government conducted a Vickrey auction for
telecommunications licenses, it was revealed after the fact that the winner had been willing
to pay much more [46].
9 Interactive cryptographic auction protocols require the active participation of bidders
throughout the auction process in order to obtain the auction results, generally via multi-
party computation or related methods. Non-interactive protocols such as ours require no
such bidder participation; submission of bids is the only required bidder activity, and bid-
ders’ verifications of auction correctness can be performed with no additional interaction
with the auctioneer.
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For trusted third parties we require only notaries, who provide a lightweight “wit-
ness” service and are independent business entities that already exist in prac-
tice [74]. The level of trust in them is quite low, as they never possess any non-
public information. The Time-Lapse Cryptography Service functions as a trusted
third party, although Rabin and Thorpe [63] describe a TLC service that distributes
trust among many parties using secret sharing, so that there is no single completely
trusted party.

In addition to providing business realism (also see Lipmaa et al. [44] for a critique
of earlier methods), we choose to adopt standard methods from homomorphic en-
cryption combined with “cut and choose” test sets and eschew more complex cryp-
tographic ideas such as secure multi-party computation, obfuscation of circuits,
and oblivious transfer. As Bradford et al. [11] argue, many such complex proto-
cols, particularly those requiring the ongoing participation of bidders, suffer from
“protocol completion incentive problems”, in which bidders who know they have
lost or change their minds can disrupt the protocol and prevent the completion of an
auction. We intentionally avoid such problems by having a single partially trusted
auctioneer compute the outcome.

We share with Lipmaa et al. [44] (see also [1,8,12,75,21]) the use of homomor-
phic encryption, but seek a simpler solution through the use of a single auction-
eer in place of the two server model adopted in their work. In their protocol, the
seller and an auction authority, who are trusted not to collude, work interactively to
generate zero-knowledge proofs of correctness. Cachin [18] proposes a technique
based on homomorphic encryption in which a semi-trusted single auctioneer pro-
vides a means for two bidders to determine whose bid is higher in zero knowledge
(in fact, not even the auctioneer learns the bids). However, his extended protocol
for cryptographic auction similarly requires two auction servers which are assumed
not to collude. Nakanishi et al. [52] describe a similar protocol based on additively
homomorphic encryption and a set of auction servers who conduct a multi-party
computation. Such methods result in stronger privacy and secrecy properties at the
cost of this additional process complexity.

Rabin, Servedio and Thorpe [62] have recently proposed a somewhat different
cryptographic architecture suitable for conducting sealed-bid auctions with similar
properties that does not employ homomorphic cryptography. Instead, the system
uses a statistically secure encryption scheme based on cryptographic commitments
and proves all computations correct to an arbitrarily low probability of error.

Earlier work on multi-item auctions either assumes distributed trust [34,21,1], or
adopts multi-party computation techniques [12], and the current state of the art
for secure combinatorial auctions is still not very scalable [80,75]. In compari-
son, our approach can be extended to secrecy-preserving multi-item auctions (pre-
sented here) and combinatorial auctions (reserved for future work). Specifically,
our trusted auctioneer can apply fast algorithms to the combinatorial optimization
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problem in determining winners. The auctioneer must simply construct a proof that
the outcome is correct and need not involve multiple parties in computing the out-
come.

Whereas previous architectures use cryptography for anonymity, we note that exist-
ing real-world business entities (e.g., notaries as proxy bidders) also meet this need.
We therefore do not complicate our protocol with maintaining bidder anonymity
and consider it outside the scope of this work. Another practical issue, addressed
in previous work but not here, is that of noncoercibility [17,74] of an auction. Non-
coercibility prevents a bidder from being able to credibly claim to a third party that
it bid in a particular way after the close of an auction. Auctions with this property
are more resistant to bidding rings, since the stability of bidding rings in first-price
auctions depends on being able to detect (and punish) deviations from agreed upon
rules.

2 Preliminaries

The standard auction model considers an auctoneer AU , bidders B = {B1, . . . ,Bk},
and a seller. This is a forward auction in that the goal is to allocate one or more
items to some set of bidders. Reverse auctions, with a buyer rather than a seller,
are suitable for procurement auctions and can be modeled in a similar way. In a
single item auction, each bidder Bi is modeled with a private value vi; she bids to
maximize her net utility (which is vi - p, her payment, in the event that she wins
the auction.) In a first-price, sealed-bid auction, each bidder Bi makes a bid Bidi.
This is a claim about its maximium willingness to pay. Bids are made without any
information about the bids (or values) of other bidders, and the item is sold to the
highest bidder, who pays the highest bid price. In a second-price sealed-bid auction,
the item is sold to the highest bidder, who pays the second highest bid price. 10 See
Krishna [37] for an introduction to auction theory.

2.1 Desired Auction Properties

Based on the analysis in the introduction, we list desiderata for any sealed-bid auc-
tion process. These go beyond the standard economic goals, for instance, efficiency
or revenue maximization:
10 As noted earlier, although more susceptible to collusive bidding behavior, second-price
auctions have the useful property that it is a dominant strategy for a bidder to report her
true value.
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• Non-repudiation by bidders: Once a bidder submits a bid, her bid is provably
unalterable. Moreover, a bidder is bound to reveal her bid to the auctioneer after
the auction closing time.

• Non-repudiation by auctioneer: The auctioneer’s exclusion of a properly submit-
ted bid can be conclusively proven and thus becomes legally actionable.

• Trustworthiness: The auctioneer cannot know the bids until after the close of
the bid submission phase. Thus the auctioneer cannot collude with bidders by
sharing others’ bids during the auction.

• Secrecy: The bids are hidden to everyone until all bids are committed. At the
close of the auction, only the auctioneer knows any secret information. He may
keep the outcome secret, notifying only winners of their allocations and pay-
ments, or make any part of the outcome public by revealing some or all of the
allocations and payments and proving them correct. Revelation of these values
does not reveal other secret information not implied by the values themselves.

• Verifiable correctness: All information revealed, whether private or public, is
proven correct. Bidders receive a proof of the correctness of their own allocation
and payments. The public, including all bidders, receives a proof of correctness
for all public information about the outcome of the auction and also the validity
of bids. The auction protocol enforces correctness; an auctioneer will not be able
to present valid proofs for invalid winners or incorrect payments.

In achieving these properties we make standard cryptographic assumptions. Be-
cause the security of our encryption is related to the computational intractability of
solving “hard” cryptographic problems, longer cryptographic keys can be adopted
over time as computational hardware gets more powerful. This will maintain the
same level of realized security at comparable computational running time.

2.2 Real-World Components

We recall that our auction system comprises an auctioneer AU , bidders B =
{B1, . . . ,Bk}, and a seller. Bidders can also be proxies to provide anonymity. In
addition, we assume a universally accessible, tamper resistant clock (such as pro-
vided by the United States NIST time servers) and the following components.

2.2.1 Certified Bulletin Board

The auctioneer maintains a certified bulletin board. This can be a publicly known
website maintained and updated by the auctioneer. The auctioneer uses the bulletin
board to post all public information about the auction, including the initial auc-
tion announcement as well as (encrypted) information about bids that have been
submitted and proofs that can be used to verify all publicly available information
about the outcome. All posts to the the bulletin board will carry appropriate digital
signatures identifying their originators.
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2.2.2 Notaries

Notaries are reputable agents, such as law firms, accountants, or firms specializ-
ing in providing a witness for bidders. When preparing to participate in an auction,
a bidder may select a set of notaries of her choosing from some set of notaries
possibly authorized by the auctioneer. Use of the notaries is optional; their only
purpose is to prevent a dishonest auctioneer from failing to post bid information
from disfavored bidders. In using a notary, whenever a bidder sends concealed bid
information to the auctioneer she also sends that concealed information to any no-
taries she has selected, most notably commitments to bids and random help values.
These notaries also submit this information to the auctioneer, and act as witnesses
in the case that a bidder complains that an auctioneer does not correctly post her
information to the bulletin board. We require that a majority of the notaries is not
corruptible. Note that our process is structured so that no information about the
actual bids is revealed to the notaries, and, again, their only role is to serve as wit-
nesses to the communications in the auction in case of a dispute between a bidder
and the auctioneer.

2.2.3 Time-Lapse Cryptographic Service

A bidder Bi, possibly in collusion with the auctioneer, might refuse to open her
commitment and reveal her encrypted bid E(Bidi). 11 One way to prevent this prac-
tice of bid repudiation is to employ a “Time-Lapse Cryptography Service” named
and described by Rabin and Thorpe in [63].

The Service will at regular intervals post a new cryptographic public encryption key
TPK (Time-lapse Public Key), and after a fixed period of time post the associated
secret decryption key TSK (Time-lapse Secret Key). For our purposes, it suffices
that the public key be available before the bids are to be submitted, and that the se-
cret key be released soon after the auction closes. We envision that the Service will
publish a constant stream of keys with appropriate lifespans for an auction, and the
Auctioneer selects and specifies a key to be used that expires soon after the clos-
ing time of the auction. 12 For example, the Service might publish a set of public
encryption keys each hour, each with a different lifespan, e.g. three hours, one day,

11 The notation E(m) designates an encryption of a message m; see Section 2.5 for details
of the cryptographic notation we employ.
12 Rivest et al. [65] propose similar methods for cryptography with forced time release
where the user sends x to a time-released cryptography service, which returns Es(x) using a
secret key s; s is released at some future date. They also suggest eliminating the trusted third
party with threshold secret sharing as well as an “off-line” approach that does not require
the involvement of the Service. Other work on identity-based encryption, token-controlled
public key encryption, partial key escrow, and timed-release encryption solves this problem
in similar ways; see [63] for a review.
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one week, 90 days, etc. When the lifespan expires for a particular public encryption
key, the Service reconstructs and publishes its associated secret decryption key.

For our purposes, the Service must not employ any single trusted third party who
knows either the bid information or any secret key that could decrypt the encrypted
bid information before the close of an auction. Additional cryptographic details
about the TLC Service are provided in Section 2.4.4.

2.3 Overall Flow and Main Steps of Auction

Schematically, the auction process will proceed in three main stages (described
in more detail in Section 3). In the first stage, the auctioneer posts the auction
announcement on the bulletin board. The announcement, to be detailed later on,
includes a deadline time T for submitting bids. In the second stage, the bidders
commit to the encrypted forms of their bids and random data but post bid informa-
tion in a form that is concealed even from the auctioneer. Notaries are engaged in
this stage and witness these commitments posted to the auctioneer’s bulletin board.
In the final stage, the bidders must follow through and reveal the encrypted forms
of their bids to the auctioneer and the public. They do not decrypt or reveal their
unencrypted bids. The auctioneer and other bidders verify that these encryptions
of their bids are consistent with the posted commitments. The auctioneer then de-
crypts the bids in secret, and computes the outcome of the auction according to the
posted rules for that auction. He then posts the parts of the outcome to be verified
on the bulletin board, along with public proofs that the selection of the winner(s)
and their payments was done according to the auction rules. After the last posting,
any party can verify the correctness of the publicly verifiable part of the outcome.
A bidder can also privately verify the correctness of her individual outcome via a
proof offered by the auctioneer if that outcome is to be kept secret.

2.4 Basic Cryptographic Tools

Our system relies on universally accepted cryptographic tools. We describe the
tools we employ in our result, referring to other publications for established results
and providing proofs for new uses of existing tools. We will sometimes refer to
a “prover” P and a “verifier” V when discussing the secrecy-preserving proofs of
mathematical facts relating to our auctions. See the Handbook of Applied Cryptog-
raphy [47] for a general introduction to the applied cryptographic techniques and
notation we employ.
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2.4.1 Public Key Infrastructure

We assume cryptographically sound methods of establishing and exchanging pub-
lic keys used for all the cryptographic tools we employ, including the auctioneer’s
public/secret key pair for Paillier encryption and the public and secret keys pub-
lished by the time-lapse cryptography service. In addition, the auctioneer, notaries,
and all bidders require public/secret key pairs for digital signatures. The public sig-
nature verification keys of all parties must be mutually known and certified. We
notate digital signatures as follows: AU can sign message x, generating SignAU(x).
A bidder Bi’s signature of x is denoted Signi(x).

2.4.2 Sources of Randomness

Cryptographic key generation and probabilistic encryption require a good source
of random data. We postulate bidders’ and notaries’ ability to create enough highly
random data to create strong key pairs and encrypt or sign a small number of values.
We further postulate that the auctioneer has a source of random data sufficient to
encrypt large numbers of integers used in the secrecy-preserving proofs described
below. Such a source might be hardware that extracts randomness from radio static
or quantum noise in diodes. Such “hardware randomness generators” are already
employed in important cryptographic applications.

2.4.3 Secure Random Data

In order to prevent any party (including the auctioneer) from cheating by infusing
deliberately slanted random data into the cryptographic protocols, we require that
all bidders commit to a random data string when they bid, and that the auctioneer
post a commitment to a random data string in the auction rules. These strings are
revealed only at the close of the auction, and then combined using exclusive OR so
that even if just one of the strings is truly random, the combination thereof is also
truly random. We denote this auction random data string by X . The resulting string
X is used to “tie the hands” of the auctioneer: when proving the correctness of the
auction, the auctioneer must reveal data exactly as specified by the bits in X .

The auctioneer publishes the algorithms to be used on data from the random data
string in the auction rules, for example, the method for choosing a random permu-
tation of integers in a specific range, which is employed in the course of proving
the auction results correct.

2.4.4 Time-Lapse Cryptography

The Time-Lapse Cryptography Service (introduced in Section 2.2.3) provides for
a binding and hiding commitment to bids (so that the bidder may not change her
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bid and the auctioneer learns nothing about the bid from its commitment); it also
enforces the nonrepudiation of bids, so that once a bidder has committed to her bid,
she may not prevent the auctioneer from eventually decrypting it. We assume the
TLC service wherever we employ cryptographic commitments in our protocol, and
notate bidder Bi’s commitment to a value x as the time-lapse encryption ETPK(x).

Each bidder Bi commits to her encrypted bid by encrypting Z = ETPK(E(Bidi))
(where the bid is first encrypted with the public key of the auctioneer), using a
time-lapse public encryption key TPK. The bidder then posts Signi(Z) on the bul-
letin board. After time T +1, the decryption key TSK associated with TPK will be
posted by the TLC service. The release of the decryption key TSK will enable the
auctioneer (and everybody else) to decrypt Z = ETPK(E(Bidi)) after time T + 1
and thus obtain E(Bidi); this functions as the “decommit” operation – importantly,
out of the hands of the bidder.

Where time-lapse encryption of long strings is required, a symmetric block cipher
key is created and encrypted using the public TLC key, then published. Data are en-
crypted using the symmetric key; when the TLC secret decryption key is revealed,
the symmetric key can be recovered and the data decrypted. Thus the magnitude of
a time-lapse encrypted value x may be polynomial in the size of the TLC key given
the assumptions underlying time-lapse cryptography and any suitably secure block
cipher. We therefore assume any value in our protocol may be encrypted using a
TLC public encryption key.

2.4.5 Cryptographic Blinding

If privacy is to be enforced by the auctioneer, or in cases where it is necessary to
keep secret the number of parties allocated any items (Section 4.2.3), the Paillier
encryption scheme we use permits the transformation of a known encryption of a
value (ciphertext) into another ciphertext so that both decrypt to the same input
value (plaintext). To blind a Paillier-encrypted value, say, E(Bidi,r), the prover
computes a random blinding factor s∈Z∗n and computes sn ·E(Bidi,r)≡ E(Bidi,r ·
s) (mod n2). This remains a valid encryption of Bidi, but only someone who knows
s or the secret decryption key φ can prove that fact.

Blinding is well-complemented by a “cut-and-choose” protocol so that a prover P

constructs 2v random blindings of a set of values, then the verifier V asks for v of the
sets to be revealed by revealing the random blinding factors used to construct them.
V then checks that each blinded set contains exactly the original set of elements.
For example, once the posted bids are on the bulletin board, the auctioneer creates a
number of blinded auctions, verifies half of them to be correct, and then proves the
outcome of the auction on the other half. This keeps the original bidders’ identities
private.
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The computational cost of blinding a ciphertext is almost equivalent to encrypt-
ing a plaintext, because the dominant computation is the modular exponentiation
required by both operations.

2.5 Homomorphic Cryptography for Secrecy-Preserving Proofs

We employ Paillier’s encryption scheme [56] to encrypt auction data. Paillier’s is a
homomorphic encryption system, in which the result of an operation applied to two
ciphertexts is a valid encryption of an operation (possibly the same one) applied to
their plaintexts. 13 In cryptography, a plaintext is the original form of a message, in
our case the integer representing a bid or quantity; a ciphertext is the encryption of
a plaintext.

Homomorphic encryption schemes enable computation with encrypted values with-
out revealing any new information about the values themselves or the results of the
computation. Paillier’s system employs a public/secret key pair, n and φ respec-
tively. The secret key n is the product of two large prime numbers p and q, and its
size is determined by the security requirements of the application. The secret key φ

is (p−1)(q−1). A 1024-bit public encryption key is widely considered sufficient
for security until 2010 [28]. Paillier encryption is also a probabilistic encryption
scheme. In particular, encryptions are performed with a random “help value” r that
is used to achieve semantic security: given two plaintexts and their encryptions, one
cannot tell which ciphertext corresponds to which plaintext without being able to
decrypt them. Semantic security is critical to preserve the secrecy of the bids both
during their initial encryption and during the verification process, where both bids
and the values in the test sets, whose plaintexts are well known, must still remain
secret.

The security of this scheme is founded on the “Decisional Composite Residuosity
Assumption” (DCRA) [56]. 14 The DCRA implies that if the public key n is diffi-
cult to factor, then it is also difficult to tell whether a particular number x is a number
of the form x = rn (mod n2) for some r. This assumption is related to the widely
accepted assumptions underlying the security of RSA [64], ElGamal [25], and Ra-
bin [61] encryption, and is believed to be of similar computational intractability.

The Paillier encryption of a message x will typically be denoted E(x,r), where the
public key n is implicit and the help value r is made explicit. In discussion below,

13 More formally, in a homomorphic encryption scheme, there exist operations ⊕ and ⊗
such that given ciphertexts C1 = E(x1) and C2 = E(x2), C1 ⊗C2 = E(x1 ⊕ x2). Paillier’s
encryption scheme is homomorphic in that E(x1)×E(x2) = E(x1 + x2). See Appendix A
for more details.
14 A number x = rn (mod n2) is known as an nth residue mod n2. Because n is a composite
number — the product of two primes — x is called a composite residue.
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the help value r will sometimes be omitted to simplify notation where it is implicit
or irrelevant, for example, C = E(x).

We present here a summary of the properties of, and extensions to, Paillier’s scheme
we use in this paper. First, given only the encryption E(x1) and either another
encryption E(x2) or a public constant k, anyone can compute the encryptions
E(x1 + x2), E(x1 + k), and E(x1 · k) without learning anything about x1, x2, or the
secret key φ . Second, a prover P who knows the secret key φ can also prove a full
set of equality and inequality relations for two encrypted values E(x1) and E(x2),
e.g., x1 = x2, x1 > x2, etc., again, without revealing anything about x1 or x2. It is
also possible to compare encrypted bids to constants in a similar way. The last two
statements with respect to Paillier’s encryption will be proved next. We employ the
notation E(x)� E(y) to mean “x ≤ y can be proven using encrypted values E(x)
and E(y)” and the similar notation � (≥), � (<), and � (>). The verification of
these comparisons is detailed in Appendix 2.5.1.

2.5.1 Secrecy-Preserving Equality and Inequality Proofs

Equality comparison. Given two ciphertexts C1 = E(x1,r1) and C2 = E(x2,r2), P

can prove x1 = x2 without revealing any additional information—most importantly,
the value of x1 or x2. Both P and V compute C′ = C1 ·C−1

2 (mod n2) = E(x1 −
x2,r1/r2) = E(0,r1/r2). P then proves C′ is an encryption of zero as above by
revealing r1/r2.

Inequality comparison. Given two ciphertexts Cx = E(x) and Cy = E(y), P can
show x > y and x ≥ y. Because our values x and y are integers mod n2, we can
prove x > y by showing x ≥ y + 1, provided y 6= n− 1. Due to the homomorphic
properties of Paillier encryption, E(x+1) = E(x) · (n+1) (mod n2), and so adding
1 to a value in its encrypted form is trivial. Thus, all ordering comparisons can be
reduced to the ability to prove x ≥ y. We first specify that x and y must be in the
range [0,2t) for 2t < n/2. This can be proven as described in Section 2.5.3. Then,
to prove x ≥ y, both P and V calculate E(x− y) = E(x) ·E(y)−1 (mod n2), and P

proves 0≤ (x−y) < 2t < n/2 from E(x−y). If in fact x < y, then (x−y) will wrap
around mod n2 so that (x− y) ≥ n/2 and no such proof is possible. This principle
is also detailed in Section 2.5.3.

We also mention that zero-knowledge proofs exist to prove, given only two Paillier-
encrypted values E(x) and E(y), that x 6= y without revealing whether x > y. We
omit the construction of such a proof because we do not require it in our protocol.

2.5.2 Secrecy-Preserving Proof of Encrypted Products

Because Paillier encryption does not enable the secrecy-preserving multiplication
of two encrypted values as it does addition, we require a method that allows a
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prover P with three plaintexts u, v, and w such that uv = w (mod n) to prove this
fact to a verifier V who has Paillier encryptions E(u), E(v), and E(w), respectively.
Dåmgard et al. [23] propose another solution to this; the solution we present is in
the spirit of our other cryptographic primitives.

Definition 1 A Multiplication Test Set (MT S) for E(u,r), E(v,s), and E(w, t) is a
set of 8 elements:

{E(u1,r1),E(u2,r2),E(v1,s1),E(v2,s2),
E(wi, j) = E(uiv j, pi, j) | i, j ∈ {1,2}}

where u = u1 +u2 (mod n) and v = v1 + v2 (mod n).

In each MT S, u1 and v1 are chosen uniformly at random from Zn; u2 and v2 are
correspondingly defined, as above, so that u = u1 +u2 (mod n) and likewise for v.

Clearly, if given encryptions as in MT S and

w1,1 +w1,2 +w2,1 +w2,2 = w (mod n) (1)

then in fact uv = w (mod n). But for P to prove and for V to verify all the re-
lationships included in the MT S, P must reveal u1, u2, v1, and v2, which would
consequently reveal u and v. Thus we adopt for an interactive proof the following
challenge and partial revelation proof. P constructs and sends MT S. V randomly
chooses a challenge pair (i, j), say, (1,2), and sends it to P. In this case, P reveals
r1, s2, and p1,2. This allows V to decrypt E(u1), E(v2), and E(w1,2), and directly
verify that u1 · v2 ≡ w1,2 (mod n). P further reveals:

R = r1 · r2 · r−1 (mod n)

S = s1 · s2 · s−1 (mod n)

p = p1,1 · p1,2 · p2,1 · p2,2 · t−1 (mod n)

V by use of R verifies E(u1) ·E(u2) ·E(u)−1 (mod n2) = E(0,R), i.e., verifies u =
u1 +u2 (mod n) and similarly v = v1 +v2 (mod n) via S. Finally, V verifies E(w1,1) ·
E(w1,2) ·E(w2,1) ·E(w2,2) ·t−1 (mod n2) = E(0, p), thereby verifying that (1) holds.

A moment’s thought reveals that if MT S was not proper then the probability of V

uncovering this by the random choice of (i, j) is at least 1
4 . Thus the probability of

P meeting the challenge when uv 6= w (mod n) is at most 3
4 . This implies that if

m MT S’s are used and P meets all m random challenges then the probability of P

cheating is smaller than (3
4)m. In practice, the auctioneer will act as P and verify

the multiplications required to prove the validity of multi-item auction allocations
by repeating these zero-knowledge proofs until the desired probability of error is
achieved.
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2.5.3 Verifiable, Secrecy Preserving Range-of-Values Tests

In order to prove for two values a and b that a ≥ b, we can show that a,b < n/2
and then that (a−b) (mod n) < n/2 as described above. 15 This works because if
a and b are less than n/2 and a is greater than b, then clearly a− b < n/2; if a is
less than b, then a− b will “wrap around” modulo n and must be a large number,
that is, a < b⇒ a−b (mod n) > n/2.

There are many approaches to prove in zero knowledge whether an encrypted value
lies in a given range. We have formally specified and implemented a method that
is easy to understand based on bit representations of encrypted values (below and
Appendix 2.5.1); Damgård et al. [23] and Lipmaa et al. [44] present other simi-
lar solutions for Paillier encryption and auctions, respectively. Even more efficient
techniques, based on clever number theoretic results (see [14,20,10,33,62]), may
offer efficiency gains in future implementations of our protocol.

Thus, with a single additional primitive to prove that x < n/2 given only an encryp-
tion of x, we can prove inequalities of bids using only their encrypted forms. Given
ciphertext C = E(x,r) we want to prove that x < 2t for some t such that 2t < n/2.
That is, we we want to be able to verify that a bid Bidi is smaller than some agreed
upon bound 2t , without revealing any information about Bidi. The value of t deter-
mines the number of bits of resolution available to bidders in selecting their bids.
For our purposes it suffices to take t = 34, so that if bids are in units of one thousand
dollars, for example, then bids are limited to at most $16 trillion.

We perform the test as follows:

Definition 2 A valid test set TS for the assertion “C = E(x,r) is an encryption of
a number x < 2t < n/2” is a set of 2t encryptions:

TS = {G1 = E(u1,s1), . . . ,G2t = E(u2t ,s2t)} (2)

where each of the powers of 2: 1,2, . . . ,2t−1 appears among the ui exactly once and
the remaining t values u j are all 0. Each test set’s elements are randomly ordered.

By use of a test set TS, the prover P can prove that x < 2t < n/2 as follows:

Range Protocol. Let x = 2t1 + . . .+2t` be the representation of x, a sum of distinct
powers of 2. AU selects from TS the encryptions G j1, . . . ,G j` of 2t1, . . . ,2t` , and
further t− ` encryptions G j`+1, . . . ,G jt of 0. Note that:(

E(x,r)−1 ·G j1 · . . . ·G jt
)

(mod n2) = E(0,s) (3)

15 Because our mathematical operations are over the integers modulo a large number, a
small negative number is the same as a large positive number, and vice versa. For example,
13≡−2 (mod 15).
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is an encryption of 0 with help value s =
(
r−1 · s j1 · . . . · s jt

)
(mod n) if and only if

indeed x = 2t1 + . . .+ 2t` and the G jh were chosen as stated. Now since P has the
decryption key φ and thus knows the help value r, then he can hand over to V the
set {G j1, . . . ,G jt} and the above help value s. V can now verify on her own that (3)
holds and deduce that x < 2t < n/2. 2

The above protocol reveals nothing to V beyond x < 2t < n/2, because TS is a set,
in actual implementation a randomly permuted array of the elements in question.
Consequently V has no information about which encryptions of powers of 2 are
included in {G j1, . . . ,G jt} Furthermore, the inclusions of t − ` encryptions of 0
hides even the number of non-zero bits in the binary representation of x. Finally,
the random factors s j1, . . . ,s jt present in the test set’s encryptions combine to a
uniformly random s, which completely masks any information about the help value
r in the encryption E(x,r). Consequently no information about x is revealed.

There is, however, a problem with the above protocol in that V does not know that
P has presented her with a true test set. This is overcome as follows. For ease of
understanding we first describe an interactive verification protocol, then modify it
for non-interactive use. The idea is to use a “cut and choose” procedure in which the
prover commits to a number of test sets and allows the verifier to choose and inspect
multiple test sets and make sure that they are each valid. Finally, the remaining test
sets are all used to complete the proof. An early, possibly the first, use of this idea
was presented by Rabin [60].

Tamper Proof Interactive Verification of x < 2t < n/2. First, the prover P creates
2v, say for v = 20, test sets TS1, . . . ,TS2v, and presents those to V claiming that they
are all valid. Verifier V randomly selects v test sets TSi1, . . . ,TSiv and requests that P

reveal all the encryptions by revealing all the corresponding help values. V verifies
all the encryptions and checks that every TSih is valid. If any verification fails, the
process is aborted. Otherwise, there now remain v unexamined test sets, call them
TS j1, . . . ,TS jv . P now completes v repetitions of the above Range Protocol, and
establishes that x < 2t < n/2 by use of each of the above remaining v test sets. If
all verifications succeed then V accepts that indeed x < 2t < n/2.

The only way that P can cheat is if all the above remaining v test sets are invalid,
which requires that initially the 2v test sets comprised v proper test sets and v im-
proper ones and, furthermore, when examining the test sets, V randomly chose all
the v proper ones. The probability of such an unfortuitous choice is

(2v
v

)−1
. In our

example of v = 20, that probability is, by Sterling’s Theorem, about
√

20π

240 < 8
1012 .

Thus, we have a zero-knowledge protocol for V to verify interactively with AU
that x < 2t < n/2, when given a ciphertext E(x,r) such that the inequality actually
holds.

Tamper Proof Non-Interactive Verification of x < 2t < n/2. We prefer to adopt
the following non-interactive method to establish the validity of test sets in our
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scheme. In what follows, we adopt the auctioneer AU as the prover. Suppose that
there are (as in Section 3.2) 2k range-of-values tests to perform. On closing the
auction but before receiving information about bids, AU posts 4kv test sets on the
bulletin board. (For expository convenience, we proceed below with our assumption
of v = 20.)

Prior to closing, each bidder, the seller (if desired), and the auctioneer are also asked
to commit to a random string, which will be revealed after the auction closes and
after the auctioneer commits to test sets. Given strings Si from each bidder, SS from
the seller, and SAU from the auctioneer, the strings are XORed together to generate
X = S1 ⊕ S2 ⊕ ·· · ⊕ Sk ⊕ SS ⊕ SAU. Note that even if only one of the participants
chooses his string randomly and independently, then X is a truly random string.

The 80k test sets posted on the Bulletin Board are then segmented into 2k groups of
40 test sets each, i.e., the first 40 test sets, the next 40 test sets, etc. The random bit-
string X is then used, in combination with a fixed rule available to all participants
and posted at the start of the auction to the bulletin board, to select 20 test sets from
each group. This random selection replaces the random selection by the verifier V

employed in the interactive proof and allows the proof to work without interaction.

2.5.4 Bulk Verification of Test Sets

Because in practice an auction will require large numbers of test sets, we may
accelerate the non-interactive verification process by verifying all the test sets to be
used for an auction en masse, which requires a smaller percentage of the test sets
be revealed and thereby made unusable.

We have already shown how AU can use a test set to prove both that for any en-
crypted bids E(Bid1) and E(Bid2), {Bid1,Bid2} ≤ 2t and Bid1 > Bid2, provided
2t < n/2. However, the verifier V needs to know that the test set AU uses to prove
this is correctly constructed in order to believe the proof.

In a traditional zero-knowledge proof (ZKP) setting, AU would present V with
several test sets in a “cut-and-choose” protocol, and V would then select at V’s own
discretion some of the testsets for AU to reveal. In our setting, it is impractical for
AU to perform real-time ZKP’s of bid correctness to all of the verifiers. Therefore,
we employ a technique where instead of the verifier choosing the test sets to reveal,
we derive randomness from the test sets themselves and use that randomness to
define both which test sets will be revealed, and the order in which other test sets
will be used to verify bids. This means that AU can publish a ZKP of the correctness
of the test sets that anyone can verify. This can even be done asynchronously, i.e. the
test sets used to prove an auction correct can be verified correct before an auction
closes.
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In single-item auctions with B bidders, AU will verify B bids and B−1 comparisons
to prove the correctness of the auction. These auctions require 2B−1 proofs.

We observe that all of the test sets will be of identical form for such an auction. Each
test set will contain t encryptions of powers of 2: 20, . . . ,2t−1, and t encryptions of
0. For visual comfort, we will use examples where t = 32, accommodating bids
in a range of over 4 billion values. Because any bid or comparison of bids can be
verified using such a test set, we will prepare a single very large collection of test
sets that will be used for all comparisons in an auction.

We demonstrate with very high probability that for collections of sufficient size, af-
ter revealing 20% of the collection, no more than 10% of the remaining unrevealed
test sets are improper. Assuming we draw from the remaining test sets uniformly
at random, the probability of a correctness proof of s succeeding, i.e., all s sets are
improper is < 10−s.

If we select and reveal 500 test sets uniformly at random in a collection of 2500, the
probability that all 500 will be correct and 200 (or more) of the remaining 2000 are
incorrect is < 7×10−19. We can then prove correctness of each bid or comparison
with probability of error < 10−10 by drawing 10 of the remaining 2000 test sets
uniformly at random and proving correctness on each of them. These numbers are
appropriate for an auction with 100 bidders and moderate security requirements.

We can achieve a reasonable “random” ordering from the test sets using the random
data string X constructed from the XOR of the values S1, . . . ,Sk from the bidders,
SAU from the auctioneer, and optionally SS from the seller. We will call R some
predefined substring of X of suitable length for this purpose.

Step 1. AU privately creates 2500 test sets T Si, i ∈ [0,2499], each of which
is comprised of encryptions of 64 small values, {ci0, . . . ,ci63} = {E(0) ×
32,E(20), . . . ,E(231)}. AU creates a secret random permutation πi(0 . . .63) ∈
{0 . . .63} for each T Si for each of the encrypted values in the test set and privately
stores the plaintexts, random help values r and exponentiations thereof rn (mod n2).

Step 2. AU creates a permutation ρ(0 . . .2499) ∈ {0 . . .2499} of an ordering of the
2500 test sets using the random data in R according to the protocol published at the
beginning of the auction.

Step 4. AU reveals the first 500 test sets defined by the ordering ρ . Verifiers will
be given a reasonable specified time (depending on the size and complexity of the
auction) to verify the correctness of these test sets, after which the test sets will
be deemed correct if no objections are raised with AU or the notaries. If a test set
is discovered to be invalid, the AU creates 2500 new test sets and the protocol is
begun anew at Step 1.
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Step 5. If all 500 test sets are correct, then ρ (excluding the revealed test sets)
defines the random ordering of the unrevealed test sets that are used to prove each
bid.

Once the bids have been published on the bulletin board by the auctioneer in a strict
ordering where AU claims, w.l.o.g., ∀i < j,Bidi ≥Bid j, then each bid Bidi,1≤ i≤
B is verified for correctness by the next 10 unused test sets in the collection in the
order defined by ρ . Following that, the comparisons Bidi ≥ Bidi+1 are proven,
again by using each successive set of 10 unused test sets from the ordering defined
by ρ .

3 Single-Item Auctions

Given the above cryptographic tools we can formulate a single-item auction suc-
cinctly. We assume that the bidders B1, . . . ,Bk are known entities with publicly
known digital signatures Signi. We further assume that the winner and her payment
depend only on the ordering of the values of the bids and that the payment is one
of the bids.

This class of auctions includes first-price and second-price auctions, and also al-
lows for auctions with reservation prices by a simple extension in which the seller
also submits a bid. 16 Thus, this class also includes revenue-maximizing auctions,
as described in Myerson [51], in symmetric environments in which all bidders are
assumed to have independent private values drawn at uniform from the same dis-
tribution.

For clarity, we focus here on an auction in which the complete outcome of the
auction—the winner and the payment by the winner—is made public and then
proved to be correct. The same techniques can be used to selectively prove part
of the outcome to some party, for instance to prove the winner but not the winner’s
payment is correct.

16 In a Vickrey auction with a reservation price, in addition to bids Bid1, . . . ,Bidk there
is a price rps from the seller which is handled just as any other bid. The item is sold to
the highest bidder if the maximal bid is at least rpi but goes unsold otherwise. (Think of
this as “selling back to the seller”.) When sold, the payment is the maximal value of the
second highest bid and the reservation price. Note that because the seller must commit to
her reservation price just like any other bidder there is no danger of shill bidding.
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3.1 Protocol

Step 1. AU posts the following information on the bulletin board: the terms of the
auction specifying the item, the mechanism for selection of the winner, the deadline
T , an identifier ID of the auction, and a Paillier encryption key n. AU knows the
corresponding decryption key φ . The auctioneer also posts information about any
notaries that are to be used for the auction. He posts the time-lapse encryption key
TPK to be used by all participants in constructing their commitments. Finally, the
auctioneer posts a commitment to his random string ComAU (SAU ) and a speci-
fication of the method that will be used to extract random permutations from the
auction’s random data string X .footnote We recall from Section 2.4.3 the random
strings Si XORed together to yield the auction random data X . AU must specify
here the method used to extract a permutation of test sets from X before AU sees X
so that everyone knows AU is revealing a truly random selection of test sets.

We emphasize that all of the above data DAU is posted on the bulletin board, ac-
companied by AU’s signature SignAU (DAU ).

Step 2. Every Bi chooses a bid Bidi. She encrypts it as Ci = E(Bidi,ri) using the
public key n and a randomly chosen help value ri. In order to create efficient test
sets to prove bid sizes, we restrict the size of the bid so that Bidi < 2t < n/2 for
small t, say, t = 34. Every Bi also generates a random bit string Si of appropriate
length which will be used in the proof of correctness. Bidder Bi then commits to
Ci and Si by encrypting with ETPK to form a single commitment string Comi =
ETPK([Ci,Si, ID]), which also includes the auction identifier ID. Finally, the bidder
signs this commitment, and sends Signi(Comi) to AU and her notaries, if used,
before time T . AU returns a signed receipt Ri = SignAU([Comi, ID,T ]).

Note that hiding of the encrypted bids and of the random strings by use of the sec-
ondary encryption prevents anyone from gaining any knowledge of the data prior
to time T . In particular, neither the notaries nor the auctioneer have any meaningful
information.

Step 3. At time T , the AU posts all the received commitments Com1, . . . ,Comk on
the bulletin board, as well as a random bit string SAU . AU also creates a number of
test sets TS1,TS2, . . . ,TSK , where K is a multiple of k, e.g., K = 80k. He signs and
posts the test sets on the bulletin board.

Step 4. Between time T and T + 1 any Bidder Bi who has a receipt Ri for a bid
which is not posted, can appeal her non-inclusion, resorting to her notaries if she
has used them.

Step 5. After time T +1, everyone, including the auctioneer AU and all bidders Bi,
can recover all encrypted bids Ci = E(Bidi,ri) as well as all random strings Si. This
is done by employing the decryption key TSK posted by the TLC service to decrypt

26



all the commitments posted in Step 2. After time T + 1, AU posts the encrypted
bids, C1, . . . ,Ck, and the random strings, S1, . . . ,Sk,SAU , on the bulletin board. Ev-
ery bidder Bi can verify, for any bidder B j, that the posted value Com j corresponds
to the ciphertext C j and the random data string S j. In case of discrepancies she
protests. This check can be performed simply by decoding the commitments as
above and verifying the digital signatures on these commitments. Every interested
party constructs the auction’s random data string X by combining the published
strings: X = S1⊕ . . .⊕Sk⊕SAU .

Step 6. Using the decryption key φ , AU recovers the bids Bid1, . . . ,Bidk for com-
puting the auction results and associated random help values r1, . . . ,rk for con-
structing the proofs of correctness. 17 The auctioneer then computes the winner of
the auction and the payment according to the auction rules. The auctioneer posts
the winner’s identity Bi and information defining the payment to be made by the
winner on the bulletin board. This information about payment can be posted in an
encrypted form if the payment is to be kept secret from nonwinning bidders. Fi-
nally, and most importantly, the auctioneer also posts information that will enable
any party to verify that the correct result was implemented. These include proofs of
the correctness of the winner and payment, and proofs of the validity of each bid.

3.2 Verification

We now show how any verifier V (including any of the bidders) can verify on her
own that the winner and payment of the auction were determined according to
the rules of the auction. This will be done in a “zero knowledge” fashion, that
is, without revealing anything about the value of any bid except that implied by
the outcome of the auction. In addition, the auctioneer can choose how much of the
outcome is revealed. For example, the proof can validate that an encrypted payment
was correctly determined but without revealing any information about the value of
the payment.

The class of single-item auctions under consideration (including first-price and
second-price auctions) has the property that the winner and payment depend only
on the ordering of the bids. Take as an example the Vickrey auction and assume,
without loss of generality, that the prices posted by bidders B1, . . . ,Bk are mono-
tonically decreasing (though there may be tied bids). AU announces that B1 is the
winning bidder, which is tantamount to the following set of claims:

{Bid1 > Bid2; Bid2 ≥ Bid3; . . . ;Bid2 ≥ Bidk} (4)

17 See Appendix A.3.1 for details of the decryption.
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Note that the encrypted values

{C1, . . . ,Ck}= {E(Bid1,r1), . . . ,E(Bidk,rk)}, (5)

were posted in Step 5 of the protocol. To prove the claims, it suffices to show that
each Ci is an encryption of a valid bid 0≤ Bidi < 2t < n/2 for all i, and that

{C1 �C2,C2 �C3, . . . ,C2 �Ck} (6)

Verifier V verifies these 2k−1 claims in a zero knowledge fashion using the tools
described above, which enables verification of the winner, item allocation, and pay-
ment as described in the following paragraphs.

Recall that the auctioneer had posted 2k groups of 40 test sets in Step 3. He creates
proofs for each of the first k claims using k of these groups of 40 test sets, one for
each claim. He reveals all encryptions for the subgroup of 20 test sets determined
by the random string X and the random method posted in Step 1 of the auction.
With each of the 20 other test sets AU performs the computation described in Sec-
tion 15 (Range Protocol) and posts it on the bulletin board. V can verify that all the
revealed test sets are valid, that their indices were chosen correctly, and that the k
posted computations are of the form (3). This verifies the first k claims. In addition,
AU posts proofs for the k−1 claims that Bid1 > Bid2 and Bid2 ≥Bidi,2 < i≤ k by
using k−1 groups of 40 additional test sets for each inequality using the methods
described in Section 2.5.1.

This ordering of bids is used to verify the winner as the bidder with identity cor-
responding to submitted bid E(Bid1), and the item is allocated to this bidder. In
a Vickrey auction, the payment to be made by the winner is Bid2 and this can be
proved by sending a verifier V the random help value r2 from B2’s encrypted bid
C2 = E(Bid2,r2). V can then verify the correctness of its payment by re-encrypting
Bid2 with r2 and checking the result is C2.

In the case of a tie, where Bid1 = Bid2, this can also be proven using a zero-
knowledge equality proof. (Indeed, the auctioneer would not be able to prove
E(Bid1)� E(Bid2).) Tiebreaking in the single item case is done according to the
auction rules, either by conducting another auction or randomly selecting a winner
using the auction random data string X according to rules defined at the beginning
of the auction.

3.3 Verifying Partial Infomation about Outcomes

As mentioned in the introduction, there exist many examples in which the public
disclosure of the bids or outcome of an auction is undesirable. Because there are
a number of factors that play a role in determining which data are to be revealed
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at the close of the auction, our system provides the flexibility for the auctioneer to
prove specific facts about the bids or outcome of the auction to only the individuals
who need to know, without revealing anything more.

Many real-world auctions reveal such partial information, perhaps most notably the
U.S. Treasury auctions for U.S. public debt, where only partial information about
the bids is revealed. In that case the reputation of the Treasury provides the trust
necessary for them not to disclose complete auction information, but where such
a reputable auctioneer or seller is not involved, our correctness proofs provide the
trust necessary to conduct such an opaque auction.

The flexibility of our system comes from the architecture of our correctness proofs;
a verifier computes mathematical operations on public values posted to the bulletin
board (the bidders’ encrypted bids, random strings, and auction rules); the auction-
eer then reveals a small amount of special data to the verifier that they compare
to their calculations to verify the proof. This allows the auctioneer to control ex-
actly who gets a correctness proof of any fact by private revelation of that special
data. We illustrate below the power of our approach by examples of various partial
information the auctioneer might reveal about bids and payments.

Bids. At one extreme, the auctioneer can reveal all bids to the public by revealing
the random help values used to encrypt the bids. At the other, the auctioneer need
not reveal any bid to any bidder to prove the payments correct. Yet there may be
legal or auction theoretic reasons to provide “partial transparency” of bids. Due to
the nature of the homomorphic cryptosystem employed, the auctioneer can reveal
interesting partial information about the bids that can be computed using linear
functions of the bid values. For example, the auctioneer might wish to reveal only
the mean bid – equivalent to the sum of all bids, assuming the number of bids is
public. He does this by revealing the random help value required to decrypt the
product of all encrypted bids (which is an encryption of the sum of all bids). The
auctioneer could also reveal other interesting statistics, such as the maximum and
minimum bid, the median bid, the mean of the bids excluding the highest and lowest
bid, or even the standard deviation of bids.

Payments. The auctioneer may also prove winners’ payments correct in a public
or private fashion. For example, instead of revealing winners’ payments to every-
one, each bidder can act as her own verifier. She computes an encryption of her
payment on her own, and then decrypts it with the auctioneer’s help. The auction-
eer can privately reveal just the payments – without the bids – to both the sellers
and the winners, and prove to all bidders who did not win that their bid was not
high enough to win. Thus the seller and every bidder are satisfied that the auction
was conducted fairly, yet no information about the outcome of the auction needs
to be publicized. Further transparency can be provided by requesting bidders “sign
off” on their proven outcomes with a digital signature, so that the auctioneer can
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show that every bidder accepted the outcome. If a bidder refuses, the auctioneer
can prove the outcome he provided was indeed correct by publicly revealing it.

4 Multi-Item Auctions

Consider now auctions for multiple identical items. In these auctions, the auctioneer
has some number l of available identical items for sale. Real-life examples include
large lots of refurbished items on eBay, or U.S. Treasury bills. We consider auctions
in which bids are flexibile and each bidder is willing to accept any number of items
up to a maximal limit and bid a price per item. However, there is nothing about the
framework that is limited in this way, and we will describe extensions to “all-or-
nothing” bids and “bid curves” [71,36] in future work.

As before, we can implement a general class of auctions that includes the first-
price, uniform-price, and second-price (generalized Vickrey) auctions [37]. These
are auctions in which the allocation depends only on the order of the bids and pay-
ments are defined as linear functions of the values of bids. For illustrative purposes
we again focus on the case in which the complete outcome of the auction, i.e. the
allocation and all payments, is made public and then proved to be correct. Easy
variants are available in which the correctness is selectively proved, either pub-
licly for some restricted information about the outcome or privately to individual
bidders.

4.1 Protocol

Step 1. AU posts the auction information on the bulletin board as in Section 3.1.
In addition, AU posts the total number of items available, l, and the maximum
allocation to any one bidder (if any), lmax.

Step 2. Each participating bidder Bi prepares two integer values (Bidi,Qtyi) for
each bid she wishes to submit to the auction, where Bidi is the amount that she will
pay per item and Qtyi is the maximum number of items desired by Bi.

As above, Bi also generates a random bit string Si and sends it to AU . Bi then
encrypts Bidi and Qtyi, using AU’s public Paillier key n, as E(Bidi) and E(Qtyi)
and commits by sending AU and her notaries, if used, the commitment

Comi = [ETPK(E(Bidi)),ETPK(E(Qtyi)),ETPK(Si), ID], (7)

and digital signature Signi(Comi). AU issues a receipt for these commitments and
publishes them on the bulletin board in accordance with our standard protocol.
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Step 3. As above, at time T , the auctioneer AU posts received commitments, his
random string SAU , and test sets on the bulletin board. The number of test sets will
depend on the type of the auction and the payment calculation; these numbers are
detailed in Section 5.

Step 4. As above, bidders have between time T and T +1 to appeal non-inclusion,
which may involve resorting to the commitments sent to any notaries.

Step 5. As above, bidders’ encrypted bids and quantities E(Bidi) and E(Qtyi),
as well as their strings Si, are revealed between time T and T + 1. AU publishes
these values on the bulletin board. All bidders can check that the revealed values
correspond with earlier commitments.

Step 6. AU privately recovers bids Bid1, . . . ,Bidk and quantities Qty1, . . . ,Qtyk us-
ing secret key φ , and uses the information to compute the correct outcome of the
auction. We again assume, without loss of generality, that the prices bid by bidders
B1, . . . ,Bk are monotonically decreasing, though consecutive bids may be tied. We
then choose the threshold bid index, α , which is new in our multi-item setting, such
that bidders α, . . . ,Bk do not receive any items. The sum of the quantities associ-
ated with winning bids Bid1, . . . ,Bidα−1 is greater than or equal to the number of
available items l, and this is not true for a smaller threshold index. Thus all bidders
Bi, such that i < α , are winners. The threshold winner α − 1 may receive some
subset of her total demand. Formally, threshold index α is defined so that:[

α−2

∑
i=1

Qtyi < l

]
∧

[
α−1

∑
i=1

Qtyi ≥ l

]
(8)

Note that we have assumed here that there are enough bidders to cover all of the
supply. This can be handled without loss of generality, by also introducing a single
dummy bid at zero price for all supply, l. In addition to determining α , and thus the
winners in the auction, AU also posts proofs of which bidders won and their allo-
cations on the bulletin board, as well as proofs of the validity of each bidder’s bid
and quantity. He also computes proofs of correctness of each winner Bi’s payment.
If public verification of payments is required, AU posts these correctness proofs on
the bulletin board, along with the random help values needed to decrypt the pay-
ments. If the payments are to remain secret, he privately sends the proof for Bi’s
payment and any associated random help values to each winner Bi.

4.2 Verification

The verification step in a multi-item auction is more complex than for the single
item auction, but relies largely on the same cryptographic primitives used in the
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simpler single-item case. Each verification can be done in a zero knowledge fash-
ion, revealing no information beyond that implied by the outcome of the auction.

As before, AU first publicly proves the minimum bid-ordering information, that all
winning bids are strictly greater than the threshold bid Bidα , i.e., Bidi > Bidα−1 for
all i < α −1 and Bidα−1 > Bid j for all j ≥ α . This reveals only minimum public
information about the value of the bids; the same information that is implied by the
outcome. AU will also prove that the bid values are valid and without wraparound.
(See Section 2.5.3 for an explanation of wraparound.)

In addition, AU must also prove that the quantities of the items were encrypted
correctly, i.e., without wraparound. We assume that l < 2t < n/2 for number of
available items l and test set size parameter t. AU first proves that no bidder has
submitted a quantity greater than a specified maximum allowed allocation lmax ≤ l.
To do this, AU first encrypts E(l,1) and E(lmax,1); a help value 1 is used so that
anyone can verify those encryptions. AU then proves E(Qtyi)� E(lmax,1) for all
1 ≤ i ≤ k. Next, AU can use encryptions of various sums of quantities to prove the
correctness of the threshold bid index α . Paillier’s homomorphic encryption system
allows for a zero-knowledge proof that a ciphertext represents the encrypted value
of the sum of two encrypted values; in particular, ∏

α−2
i=1 E(Qtyi) = E(∑α−2

i=1 Qtyi).
Given this, AU can establish Eq. 8 over the encrypted quantities:[

E(
α−2

∑
i=1

Qtyi)�E(l)

]
∧

[
E(

α−1

∑
i=1

Qtyi)�E(l)

]
(9)

4.2.1 Tiebreaking

In the event of a tie, with multiple bids equal in value to Bidα−1, the auction-
eer must also prove equality of these bid values and then establish correctness in
allocating to these tied threshold bidders. Various algorithms exist for allocating
the items among winners with equal bids at the threshold. One possibility is to
randomly order the threshold bidders and divide the items among them in “round
robin” fashion until the items are exhausted, with the condition that no bidder Bi is
entitled to more than the Qtyi items bid for.

In this case, we require additional proofs that the allocation is fair. In summary, we
use the random data X jointly constructed by all auction participants to define a
publicly verifiable ordering π of w equal bidders, 18 π(1 . . .w) ∈ {1 . . .k} such that
Bπ(1) is the first to be allocated an item, and so forth, and prove the round robin
allocation as follows. We notate li as the allocation to bidder Bi.

Step 1. Prove that the allocations to all bidders add to l, i.e. ∑
k
i=1 li = l.

18 Generating such a random ordering is described in Section 2.4.3.
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Step 2. Given ordering π of threshold bidders, compute j such that Bπ( j) is the first
bidder in the ordering to receive a partial allocation. Compute h such that Bπ(h) is
the first bidder in the ordering to receive lπ( j)−1 items, i.e. the next bidder in line
when the items ran out. If no such h exists, set h = w+1.

Step 3. Prove that all allocations were fair as follows:
3a. For 1≤ i < j, prove lπ(i) = Qtyπ(i) and lπ(i) < lπ( j).
3b. For j < i < h, prove either that lπ(i) = lπ( j), or both lπ(i) = Qtyπ(i) and lπ(i) <
lπ( j).
3c. For h ≤ i ≤ w, prove that lπ(i) = (lπ( j)− 1), or both lπ(i) = Qtyπ(i) and lπ(i) <
lπ( j).

In words, we show that bidders either received their entire allocation or at most
one fewer than the first bidder in line to receive a partial allocation, and that the
ordering of the partial allocations is proper.

4.2.2 Payment

In a first-price auction, the auctioneer can prove a payment to a third party by
revealing the random help value used to encrypt winner B1’s bid. A verifier can
use this to recover Bid1 from the now public encrypted value E(Bid1) submitted
by the bidder. Similarly, in a uniform-price auction, whereby every bidder pays the
bid price of the losing threshold bidder Bα−1, AU can provide a public proof by
revealing Bidα−1 via the help value used by Bα−1. The uniform price auction is an
approximation to a Vickrey auction in this setting. It generates the same payment
as in the Vickrey auction to winning bidders i < α − 1, as long as the threshold
bidder has enough spare demand to cover the allocated capacity of any winner. The
payment by the threshold winner Bα−1 is always larger than in the Vickrey scheme.

We turn our attention to proving the correctness of prices in a generalized Vickrey
auction (GVA) for this multi-item setting [37]. As in the single item setting, the
GVA provides the useful property of truthfulness so that each bidder’s dominant
strategy is to bid her true value per unit and true quantity demanded. In a GVA
mechanism the number of items are allocated according to the price bid but the
actual payment for each winner depends on others’ bids. The Vickrey payment for
bidder Bi is defined as:

pvcg,i = Qty∗i ·Bidi− [V (B)−V (B−i)], (10)

where V (B) is the total revenue in the auction with all bidders, V (B−i) is the total
revenue in the marginal economy with bidder Bi removed, and Qty∗i denotes the
quantity allocated to bidder i in the auction. This has a simple interpretation: a
bidder’s payment is determined as the greatest amount other (displaced) bidders
would have paid for the same items had Bi not been participating in the auction.
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We require a proof to establish the correctness of this payment. Let Qty−i
j denote

the quantity awarded to bidder B j in the marginal auction without bidder Bi. For a
non-marginal winner, i.e., i < α−1, her GVA payment is:

Qty∗i ·Bidi−

[
Qty∗i ·Bidi + ∑

j 6=i, j≤α−1
Qty∗j ·Bid j

]
+ ∑
j 6=i, j≤β−i−1

Qty−i
j ·Bid j

=

[
∑

α−1< j≤β−i−1
Qty−i

j ·Bid j

]
+[Qty−i

α−1 ·Bidα−1−Qty∗α−1 ·Bidα−1] (11)

For the marginal winner, i = α−1, her GVA payment is:

Qty∗i ·Bidi− [Qty∗i ·Bidi + ∑
j 6=i, j<α−1

Qty∗j ·Bid j] + ∑
j 6=i, j≤β−i−1

Qty−i
j ·Bid j

= ∑
α−1< j≤β−i−1

Qty−i
j ·Bid j (12)

Thus, the GVA payment by bidder Bi is a linear combination of the product of the
bid price and allocated quantity to bidders displaced by bidder Bi from the winning
allocation. In the case of a non-marginal bidder, this computation also accounts for
the effect on the allocation to bidder α−1.

Consider the following verifiable proof structure for the term ∑α−1< j≤β−i−1 Qty−i
j ·

Bid j that is common to both kinds of winners:

Step 1. In generating the proof, AU must first establish a bid ordering for the
marginal auction without Bi, i.e., prove that β−i is the correct threshold bid index
by showing Bid j > Bidβ−i−1 for j 6= i, j < β−i−1 and Bidβ−i−1 > Bid j for j≥ β−i;
this can be done as in the main auction. Second, AU must prove that bidder β−i−1
is the threshold winner in this auction, by proving the analog to Eq. 8. Third, AU
must publish encrypted values Pay j = Qty j ·Bid j for all j > αi, j < β−i− 1 (and
similarly for the new marginal bidder, Payβ−i−1 = Qty−i

β−i−1 ·Bidβ−i−1), and prove
the correctness of all of these ciphertexts. This requires proofs of correct multipli-
cation, as described in Appendix A. The proof of Payβ−i−1 in turn requires a proof
of the quantity allocated Qty−i

β−i−1 to this bidder, via a proof that a published ci-
phertext is the encrypted value of l−∑ j 6=i, j<β−i−1 Qty j. Fourth, AU must publish
the encrypted value of the sum of these payments and a proof of its correctness.

Step 2. A verifier V can independently compute the encrypted Vickrey payment as
above and check the correctness of the proof.

Step 3. AU reveals the random help value in the resulting encrypted Vickrey pay-
ment to V, who decrypts using that value and verifies it is correct by re-encryption.
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The verifier V now knows that Bi’s Vickrey payment is correct while knowing (al-
most) nothing more about any bidder’s bid value than can be derived from the
definition of Vickrey payments. In fact, the verifier V learns the number of bids
required to compute a Vickrey payment in the marginal economy E(B−i). We can
get around this through padding the input using dummy bids as described in the
next section.

The additional term, [Qty−i
α−1 ·Bidα−1 −Qty∗α−1 ·Bidα−1] can be determined in

the case that bidder i is the threshold winner and i = α − 1 in an analogous
fashion. Encrypted values of the allocation quantities received by bidder i in the
main auction and in the marginal auction, i.e., Qty∗α−1 and Qty−i

α−1, can be es-
tablished via subtraction from total items l of the total allocation to other bid-
ders. Then, a ciphertext for the difference, Qty−i

α−1−Qty∗α−1, and then the product
(Qty−i

α−1−Qty∗α−1)Bidα−1 can be published and proved.

4.2.3 Secrecy-Preserving Payment Proofs

While our above methods are correct, secure, and efficient in practice, they reveal
a slight amount of additional information than that implied solely by the GVA pay-
ments. In particular, the method described to prove a GVA payment reveals the
number of bidders whose bids in the marginal economy determine a bidder’s price.
This section outlines a more involved solution that eliminates the revelation of that
information at some increased cost in complexity and computation.

We recall that the GVA payment for bidder Bi is defined as:

pvcg,i = Qty∗i ·Bidi− [V (B)−V (B−i)], (13)

where V (B) is the total revenue in the auction with all bidders, V (B−i) as the total
revenue in the marginal economy with bidder Bi removed, and Qty∗i denotes the
quantity allocated to bidder i in the auction.

In order to prove the correctness of term [V (B)−V (B−i)] we currently determine
the threshold bidder β−i in the marginal economy (B\ i). Recall that the threshold
bidder β−i is defined so that all bids < β−i−1 receive a full allocation, bid β−i−1
may receive a partial allocation, and bids≥ β−i receive no allocation. But establish-
ing the index of threshold bidder β−i reveals information beyond that implied either
by knowledge of the outcome of the auction or by the amount of an agent’s GVA
payment, specifically information about the number of bidders that were displaced
by the presence of bid Bi.

To solve the problem we introduce a technique to prove the correctness of an encr-
pyted term V (B−i) without revealing any information about the number of winners
in that marginal economy. This term can be used in combination with a proof of the
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correctness of term V (B) and Qty∗i ·Bidi to prove correctness for the GVA payment
to bidder i.

To illustrate the idea we consider the case of proving correctness of the encrypted
value of V (B) for the main economy without revealing the index of the threshold
bidder. Note also that a dummy bidder is included with bid 0 and quantity de-
manded l (the supply of items) when the total demand is less than l. Let k denote
the total number of bids in the input, including this dummy bidder when required.

In order to hide the true index of the threshold bidder the idea is to pad the input
with an additional k−1 bids such that threshold index α given the padded input is
always defined so that α−1 = k. Let γ denote the threshold index given the original
input of k bids. The new bids are defined as follows: there are k−γ +1 bids defined
with Qty j = 0 and Bid j = V for a maximal value V (higher than any posted bid),
and γ−2 bids defined with Qty j = 0 and Bid j = 0.

For example, if k = 5 then when γ = 2 (and only the first bid receives an allocation)
then all k−1 new bids have Qty j = 0 and Bid j =V . On the other hand, when γ = 6
(and all bids receive some allocation) then all k− 1 new bids have Qty j = 0 and
Bid j = 0.

Lemma 1 The threshold index of the padded input is equal to k + 1 and no infor-
mation is learned about the threshold index in the initial index.

Moreover, the introduction of this padded input does not change V (B) because the
new padded bids demand no quantity and thus contribute nothing to the revenue of
the auctioneer.

One problem remains with this solution: how do we ensure that the auctioneer can
be trusted to introduce dummy bids with this property without revealing to the
verifier the mixture of high value and zero value bids introduced? The verifier must
not be able to tell whether a bid in the padded input is a dummy bid or an original
bid, but still be confident that the auctioneer has provided a set of bids that contains
exactly the posted bids and quantities along with correct padding.

For this we can again use the idea of “cut and choose”:

Step 1. The prover constructs 2v test sets T S1, . . . ,T S2v. Each test set contains
several bid collections. 19 T Si contains k collections of 2k−1 bids, one collection
for each of m ∈ {0, . . . ,k−1} where there are m high value bids with quantity zero,
the k original bids and quantities, and k−1−m low value bids with quantity zero.
Each element of the collection is encrypted using the semantically secure Paillier
scheme used elsewhere. Instead of re-encrypting the original bids and quantities,

19 For clarity, we use the two words “collection” and “set”, though there is no technical
meaning differentiating the two terms.
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the auctioneer uses a blinding procedure (see Section 2.4.5) to yield an encryption
of the same value that cannot be identified as such. The 2k− 1 elements of each
collection are permuted randomly; the k collections within each test set are also
permuted randomly. Now, each test set contains k collections of 2k−1 bids, where
each collection is the original auction’s bids padded with dummy bids and zero
quantities. These test sets are posted.

Step 2. The verifier randomly selects v test sets, requests that the prover identify
each of the elements in every collection as either a high value, low value, or posted
bid, and prove that fact by revealing the random help values (for dummy bids and
their quantities) or the random blinding factor s and the original bid or quantity (for
blinded posted values). If there is a problem then the procedure is aborted and the
verifier requests a new list of 2v fresh test sets.

Step 3. There remain v unexamined test sets. The prover will use each on these
to construct a proof as follows: for each test set, the prover identifies one of the
collections of bids within that test set, and then completes the proof of the value for
V (B) using the padded input with that collection of bids. Not only must the payment
be the same for each padded input but the threshold index, given the padded input,
must always be k + 1. As before the value v may be selected to provide a desired
probability of error in the outcome.

Because we do not want to reveal which bid is in position α given marginal econ-
omy (B \ i) and thus do not compute (and prove) the total revenue from bids
{α, . . . ,α−i− 1} we prove instead the total value of V (B−i) in this new approach
rather than establishing directly the loss in revenue as a result of bid Bidi directly,
as in the previous section.

This approach can also be used to prove to each bidder the correctness of her allo-
cation without revealing the number of winners, and similarly to prove to any third
party the correctness of any single bidder’s allocation. As described in Section 3.3,
this may have special importance in auctions in which it is desirable for partial
information about the outcome to be privately proven to some parties; for exam-
ple, it may be desirable for the outcome to be secret while the seller, each bidder,
and perhaps a third-party auditor still receive a proof that the auction outcome is
correct.

4.3 Extensions

We assume each bidder submits only one bid/quantity pair, but a single bidder
could simply submit multiple bids in order to represent a more complex utility
function. The auction will have the correct behavior when used with first-price or
uniform-price payment schemes. For example, a bidder might wish to purchase
10 units if the price is $50, but 30 units if the price is $40. By placing two bids,
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($50,10),($40,20), the bidder will receive, for example, 30 units if the thresh-
old for winning bids is less than $40, 10 units if the threshold is between $40
and $50. While this “additive-or” bidding logic does not permit bidders to specify
completely arbitrary utility functions, it does provide additional expressivity. Note,
though, that if this language is used in an auction with GVA payments the bid-
der’s payment could be too high. The logic of GVA requires removing both of its
($50,10) and ($40,20) bids when computing its payment, but this would not auto-
matically happen when considering these as separate bids. Extensions to correctly
handle GVA payments with more expressive languages [54], as well as methods to
adopt more expressive languages in which bidders can submit a set of bids with
explicit logical dependencies, are reserved for future work.

5 Empirical Results

We implemented Paillier encryption and test set verification in C++ using the
LiDIA number theory package [43] on a commodity Linux workstation with a Pen-
tium 4 2.8 GHz processor.

The greatest computational cost in our protocol is the construction and verification
of test sets, and in particular the exponentiation of random help values (rn) required
to encrypt or (verifiably) decrypt a value. These calculations dominate all other
computation; for example, to sort one million random 64-bit bids takes less than
one second on our system. In a single-item auction, the auctioneer can prepare for
an auction of 100 bidders in about two hours, and each verifier can independently
verify the auctioneer’s proofs of correctness in less than half an hour. Both prepa-
ration and verification scale linearly and are easily parallelized. Thus, with modest
distributed computation, even a multi-item auction with ten thousand bidders can
be prepared in a few hours and verified in reasonable time.

We present data for both 1024- and 2048-bit symmetric public encryption keys,
which are considered safe until 2010 and 2030, respectively [28]. Because the life-
time of a security key is based on the difficulty of breaking it on available com-
puting power, we claim that, for the most part, an auction with “5-year” security
at any point in time will take about the same amount of time as it does today, as
improvements in computing power for breaking keys are likely to be comparable
to those in encryption. 20

Table 1 shows the time it takes to compute various cryptographic operations on our
test machine. We observe that the time required to prepare or verify a test set is

20 Of course, if efficient algorithms to solve the composite residuosity problem or factor
large composites are discovered, our claim does not hold.
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essentially that required by the encryption and decryption. All test sets represent
234 discrete values.
Table 1
Time to perform basic operations

Operation Time (s.) Time (s.)

(1024-bit) (2048-bit)

Computation of rn 0.045 0.287

Encryption 0.045 0.287

Decryption with r 0.045 0.287

Decryption with φ 0.014 0.089

Decryption with rn 0.000 0.001

Constructing a TS 3.01 19.32

Verifying a TS 3.00 19.30

Proving 0≤ x < 2t given TS 0.001 0.001

Verifying proof of 0≤ x < 2t 0.070 0.41

For a single item auction of k bidders, the auctioneer must produce k proofs of
valid bids (i.e. Bidi < 2t for small t; we use 34), and k− 1 proofs of comparisons
to prove the ordering of the outcome. Using the bulk verification method suggested
in Appendix 2.5.4, such an auction requires 10 · (2k−1) test sets, plus 25% for the
test sets that will be revealed to prove the test sets are valid. This gives us an upper
bound of 25k test sets required to conduct a trustworthy single-item auction.

For a multi-item auction with payments based on one bid (e.g. first-price or second-
price), we need only add to the above k proofs Qtyi < 2t , k comparisons Qtyi <
lmax, and 2 comparisons to prove Equation 8. This means we need about double the
number of test sets, 4k+1, to conduct such a multi-item auction; about 50k test sets
are needed for trustworthiness. We list the time taken to prepare these test sets and
correctness proofs in Table 2.

For verified GVA payments in multi-item auctions (Section 4.2.2), we also require
proofs of multiplications for at most 2k + 1 products, namely, ≤ k proofs of the
products Qtyi ·Bidi and k +1 proofs of the products of the partial allocation to the
threshold bidder for the main economy E(B) and up to k marginal economies (that
is, excluding bidder Bi) E(B−i). Each proof of a product requires 4 exponentiations
for creating the MT S (“multiplication test set”) and 6 exponentiations to verify it.
To achieve a reasonably small probability of error, we need to repeat the multiplica-
tion proof 80 times (3

4
80 ≈ 10−10). Thus each proof requires 320 exponentiations to

create and 480 to verify. Table 3 shows time required, again on a P4 2.8 GHz pro-
cessor, to verify Vickrey payments in the worst case for various sizes of multi-item
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Table 2
Time to prepare and verify auctions

Operation Number of Bids

100 1000 10000

Single-item Auctions

Preparation (1024-bit) 2.1 hr 21 hr 8.7 days

Verification (1024-bit) 25 min 4.2 hr 42 hr

Preparation (2048-bit) 13.4 hr 5.6 days 56 days

Verification (2048-bit) 2.7 hr 27 hr 11 days

Multi-item Auctions

Preparation (1024-bit) 4.2 hr 42 hr 17.5 days

Verification (1024-bit) 52 min 8.7 hr 3.6 days

Preparation (2048-bit) 27 hr 11.2 days 112 days

Verification (2048-bit) 5.4 hr 54 hr 22 days

auctions. These computations are required in addition to the above computations
for verifying prices and quantities.
Table 3
Verification of Vickrey payments for multi-item auctions

Operation Number of Bids

100 1000 10000

Preparation (1024-bit) 48 min 8 hr 3.3 days

Verification (1024-bit) 72 min 12 hr 5 days

Preparation (2048-bit) 5.1 hr 51 hr 21 days

Verification (2048-bit) 7.7 hr 77 hr 32 days

6 Conclusions and Future Work

We have presented a new protocol for sealed-bid auctions that guarantees trust and
preserves a high level of secrecy, yet is practical enough to run efficiently on com-
modity hardware and be accepted in the business community. Because we focus on
proofs of correctness and secrecy during the auction, an auctioneer can still com-
pute optimal results efficiently and publish efficiently verifiable proofs of those
results. Our protocol rests on sound cryptographic foundations, and lends itself
to interesting extensions to further types of auctions, including support for all-
or-nothing bids, bid curves, and full combinatorial auctions; we intend to pursue
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these extensions in later work. We believe that our practical, easily implemented ap-
proach can be extended to other areas of privacy, including electronic transactions,
trading systems, privacy-preserving open outcry markets, and zero-knowledge pub-
lic verification of private data. Along these lines, authors Thorpe and Parkes have
recently extended our methods to a continuous double auction setting for informa-
tion hiding in securities exchanges [76].

To further explore the practicality of our solution, David Austin has built a pro-
totype of our protocol. His Python implementation comprises a fully functional,
cross-platform web server and standalone client for creating, bidding on, and veri-
fying sealed-bid auctions. Because it is implemented in Python, it runs at approxi-
mately half the speed of our empirical tests, which were conducted using optimized
C++, but is still fast enough for practical use.

Other future work includes improving the efficiency of our protocols. Due to the
dominance of range proofs in auctions, employing more efficient techniques to
prove an encrypted value in a particular range are likely to reduce the computa-
tion required to prove and auction correct (see Section 2.5.3, and [14,20,10,33,62]
cited there). Use of specialized cryptographic hardware for performing modular
exponentiation of very large integers instead of standard 32- and 64-bit hardware
may also yield significant time savings. Finally, it may be that for many auctions,
the auction data need only be secure during the auction, and not for years later,
and thus shorter cryptographic keys might be employed at a significant savings in
computational cost.

While we focus in this paper on auctions in which price is the only consideration,
non-price factors such as technical quality, terms of payment, and service agree-
ments, are of course also important in auctions used for procurement. However the
effect can be to make the rules of the auction “soft” and provide new opportunities
for corruption, since the auctioneer has new flexibility to manipulate the outcome
of the auction in return for a bribe [67,15]. Of course, the use of cryptographic
methods to verify the correct outcome of an auction requires objective criteria for
determining the outcome based on the bids. It is useful, then, that concerns about
corruption have led the World Bank and other bodies to move towards requiring
quantifiable decision making, with the revelant “scoring” criteria published as part
of the rules of the auction [77,5,7]. This makes quality assessment objective and
reduces the corruption concerns to those of bid rigging in price-based sealed-bid
auctions. As such, it is of significant interest in future work to develop provably
correct, and trustworthy auctions by appropriate extensions to our technology. We
also plan to study the use of similar technology in cryptographic open-bid settings,
such as ascending price and combinatorial clock [58] auctions.
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A Paillier Encryption

A.1 Public/Secret Keys

Paillier encryption uses an encryption key n = p ·q, where p and q are large primes.
The decryption key is based on the factorization of n, φ = ϕ(n) = (p−1) · (q−1).
We recall that ϕ(n) is Euler’s totient function, the number of integers relatively
prime to n. It is also required that n is relatively prime to φ .
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A.2 Encryption

To encrypt a plaintext x, first compute a random value r from the range [1,n− 1]
such that gcd(r,n) = 1, then recall that (1+n)x ≡ (1+xn) (mod n2) and encrypt as

E(x,r) = (1+ xn) · rn (mod n2) (A.1)

A.3 Decryption

To decrypt C = E(x,r), given decryption key φ = (p−1)(q−1), observe that rn·φ ≡
1 (mod n2) by Euler’s Totient Theorem, and

Cφ = (1+n)x·φ rn·φ (mod n2)

=
((x·φ

0

)
n0 +

(x·φ
1

)
n1 +

(x·φ
2

)
n2 + . . .

)
(mod n2)

= 1+ xφn+αn2 + . . . (mod n2)

= 1+ xφn (mod n2)
implying

x =
(Cφ −1)/φ mod n2

n
(A.2)

We did not use this method when obtaining our results in Section 5. Instead, we
used a more efficient algorithm involving precomputation and Chinese remainder-
ing, as described in Paillier’s Ph.D. thesis [55].

A.3.1 Decryption with random help value r

It is also possible for some P who knows the r used to encrypt C = E(x,r) to show
V that x is the unique decryption of C by revealing r. P may know r either by having
encrypted all the values used to compute C or by computing it via the decryption
key φ . To recover x, V computes

x =
(C · r−n mod n2)−1

n
(A.3)

P can also recover random help r from C = E(x,r) = (1+ xn) · rn (mod n2) by use
of the secret decryption key φ as follows. (Note that our computations are modulo
n and not modulo n2 because r was taken from Z∗n.)

r = Cn−1 (mod φ) (mod n)

= (1+ xn)n−1 (mod φ) · rn·n−1 (mod φ) (mod n) (A.4)

= 1 · r1 (mod n)
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A.3.2 Uniqueness of Encryptions

Paillier’s encryption scheme uses a bijection from (Zn×Z∗n)→ Z∗n2 [56]. 21 Thus
any integer in Z∗n2 represents a single valid encryption of an integer x ∈ Zn with
random help value r∈Z∗n. Consequently, if C = E(x,r), C 6= E(x′,r′) for any x′ ∈Zn
and r′ 6= r. (This requires, as stated above, that gcd(n,ϕ(n)) = 1.)

P can attempt to cheat by providing a different random help value r′. Using r′ in-
stead of r in (A.3) will yield a different but invalid “decryption” x′. V must therefore
verify the provided value r′ is consistent with the known encryption C. This is done
by re-encrypting the derived value x′ as C′ = E(x′,r′) and rejecting r′ unless C′ =C.

A.4 Mathematical Operations on Encrypted Values

The following definitions apply to any values encrypted as above, such as bids, de-
posit amounts, or desired quantities. These properties are due to the homomorphic
properties of Paillier’s encryption scheme [56]. In these definitions we refer to a
prover P who has the decryption key or all random help values for encrypted data,
(generally the auctioneer), and a verifier V who does not.

Addition. Addition of two encrypted values:

E(x) ·E(y) = E(x+ y) (mod n2)

Adding a constant k to an encrypted value x is easily done by encrypting k with the
random help value 1 and multiplying the two encryptions.

E(x) · (1+ kn) = E(x+ k) (mod n2)

Multiplication or division by a constant. Division is only possible when k is
invertible 22 mod n2.

(E(x))k = E(x · k) (mod n2)

(E(x))1/k = E(x/k) (mod n2)

Negation. Implied by multiplication by a constant.

(E(x))−1 = E(−x) (mod n2)

21 Zn is the set of integers [0,n); Z∗
n is the subset of Zn relatively prime to n.

22 This is no impediment, as finding a noninvertible k is tantamount to breaking the security
key.
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Comparison to a constant k. P can prove any encryption C = E(k,r) is an en-
cryption of k by revealing the help value r used to encrypt C. V then verifies that
(1+nk)rn = C (mod n2), because

E(k,r) = (1+n)k · rn (mod n2) (A.5)

This is of particular interest when k = 0. We remark that no encryption of a value
other than zero is an nth residue 23 mod n2.

23 To say that x is an nth residue (mod m) means that there exists some value g such that
x = gn (mod m). See also Footnote 14.
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