Strategyproof Computing:
Systems Infrastructures for Self-Interested Parties

Chaki Ng, David C. Parkes, and Margo Seltzer
Division of Engineering and Applied Sciences
Harvard University
Cambridge, MA 02138

[chaki,parkes,margo]@eecs.harvard.edu

ABSTRACT

The widespread deployment of high-speed internet access is ushering in
a new era of distributed computing, in which parties both contribute to a
global pool of shared resources and access the pooled resources to support
their own computing needs. We argue that system designers must explicitly
address the self-interest of individual parties if these next-generation com-
puting systems are to flourish. We propose strategyproof computing, a vi-
sion for an open computing infrastructure in which resource allocation and
negotiation schemes are incentive-compatible, and individual parties can
treat other resources as their own. In this paper we outline key guiding prin-
ciples for the vision of strategyproof computing, define the strategyproof
computing paradigm, and lay out a systems-related research agenda.

1. INTRODUCTION

The widespread deployment of high-speed Internet access, in-
cluding the rapid build-out of WiFi capability, is leading to mas-
sively distributed computing systems, including peer-to-peer sys-
tems, pervasive systems [27], computational grids [4], and over-
lays on the Internet (such as distributed caching). More than being
physically distributed, these systems are also designed, owned, and
used by multiple autonomous and self-interested parties. As such,
these systems adopt the properties of both a computational system
and an economic system.

Two points cannot be understated. First, these systems are truly
open, with innovation and competition and little central control be-
yond agreement on fundamental communication protocols such as
those within the current Internet. This open nature is vital for the
continued design and deployment of new and rich capabilities, and
must be explicitly recognized and embraced.® Second, the par-
ticipants in these systems are truly self-interested (at least to the
same extent that people and businesses in human societies are self-
interested) and heterogeneous in both their capabilities and their
goals.

Today, most distributed systems and protocols assume that par-
ties are either obedient, and do not deviate from system protocols,
or malicious or perhaps simply faulty. As such, these systems fail
to address the challenges that are introduced when rational behav-
ior (such as a deliberate misstating of requirements or capabilities

Indeed, the original Internet design was built around an end-to-
end principle, that explicitly left the “smarts” to the edges of the
network to allow for the development and deployment of rich and
unanticipated applications [18].

to improve the utility of an outcome for an individual user) is the
norm in systems [3, 22]. Looking ahead, we believe that it is es-
sential to embrace incentives in the design of systems that sustain
useful coordinated behaviors in the long-term. We introduce the
paradigm of strategyproof computing, a vision that explicitly rec-
ognizes and embraces the self-interest and incentives of individual
parties in distributed systems.

Self-interest manifests itself in many compelling future scenarios
for next-generation computing. As an example, consider scenar-
ios in pervasive computing [20]. These scenarios typically depict
worlds where computing elements collaborate effortlessly behind-
the-scene, in smart environments. Imagine a mobile user travelling
across towns. Her devices constantly seek services, such as short
term data storage or computing resources (to host voice reconition
or audio playback capabilities), downloadable maps (complete with
local advertisements), or realtime news and traffic conditions. For
each service there will be tens or hundreds of competing providers.
Likewise, for each provider there will be significant resource con-
tention and profit decisions. This is a dynamic and multiparty ne-
gotiation problem, that presents many realistic questions that are
not addressed with models that assume cooperation or occasional
malicious or faulty behavior.

Strategyproof computing considers the problem of designing sys-
tems with useful long-term equilibrium behavior, when users (or
their computational agents) have presumably figured out how to
“play the game” to their advantage. We build on two intellectual
threads: market-based approaches to resource allocation and the
economic theory of mechanism design. In particular, we advocate
that distributed systems be populated with strategyproof mecha-
nisms but without requiring one specific mechanism.

Strategyproof computing is an infrastructure effort that seeks to
enable multiple participants— service providers, resource providers
and intermediaries —to describe and deploy new mechanisms, cen-
tered around their services and resources, in an open playing field.
A critical role of the infrastructure is to validate the incentive prop-
erties of mechanisms. Without this validation mechanisms cannot
commit to implement particular rules and the useful simplifying ef-
fect that mechanisms can have on the strategies facing participants
can quickly unravel.

In a companion paper [14], we lay out some of the Al-related
challenges. Here, we focus on systems-related challenges in mak-
ing the vision of strategyproof computing a reality. We also seek to
motivate this “incentives-first” agenda and to present a broad-brush
view of what we see as the central components of a strategyproof-
computing architecture.



2. STRATEGYPROOF COMPUTING

In this section, we begin with some guiding principles that direct
the paradigm of strategyproof computing (SPC). Continuing, we
describe the main ingredients— local strategyproof mechanisms
and an open market for mechanisms —and outline three core ar-
chitectural components.

In distinguishing SPC from the many earlier proposals for econ-
omically-motivated mechanisms for decentralized resource alloca-
tion in systems (e.g. [2, 26, 6, 16, 7, 23]) we emphasize that this
is an infrastructure effort. We contend that no single mechanism
can possibly be appropriate for all requirements in a heterogeneous
system. Instead, we seek to provide the equivalent of the dialtone
for the development and deployment of computing services that ex-
plicitly handle incentive considerations.

2.1 Guiding Principles

[Al incentives-first] The self-interest of participants in distributed
systems should be explicitly addressed by system designers, much
as we currently address issues of fault-tolerance and security.

[A2 utility-based] Resource allocation decisions should be made
in a framework that considers the utility of users for different out-
comes as the basis for arbitration. Moreover, this utility should be
measured in terms of a common currency, to allow for an explicit
tradeoff between multiple users and across different components of
a system.

[A3 simple] As designers we should seek to simplify the deci-
sions facing participants in distributed multi-agent systems, such
as the optimal statements to make about the local capabilities (e.g.
available storage space, speed of Internet connection, etc.), or the
optimal statements to make about the utility of a party for different
levels of resources (e.g. bandwidth connectivity).

[A4 open] Systems should be open to allow for innovation and
competition in the design of new services. This principle applies to
the methods of resource allocation and arbitration, just as it ap-
plies, for example, to the design of web servers and the design
of distributed file caches. A successful open system requires a
lightweight infrastructure in which we only introduce universal and
minimal components, to enable the deployment of services without
preventing the future deployment of unanticipated applications.

[A5 decentralized] The control structure in distributed comput-
ing systems must be decentralized, both to respect the autonomy
of the nodes that own the property rights to resources, but also for
reasons of computational scale and timeliness of information.

2.2 Economic Foundations

Given that self-interest exists in distribtued systems, it is natu-
ral to turn to economic theory to better understand how to design
distributed systems. But, which theory?

In what follows, we lay out the two dueling economic founda-
tions for SPC. On one hand, we advocate adopting certain com-
ponents from the theory of economic mechanism design (e.g. [9,
5]). Mechanism design (MD) explicitly models each participant as
a game-theoretic agent and seeks to design optimal incentives to
implement desired system-wide outcomes. On the other hand, we
take a somewhat relaxed view of MD and propose an open market
for mechanisms in which multiple competing parties can deploy
mechanisms that must only satisfy certain local incentive proper-
ties, essentially within the scope of their deployment.

In accepting multiple mechanisms each of limited scope we nec-
essarily move away from the perfect optimality and perfect incen-

tive properties of the pure theory of MD. In particular, there are im-
portant questions to address about how participants can best com-
pose services across multiple mechanisms. However, we believe
that this relaxation is necessary in the real world setting of dis-
tributed computing. Further, we believe that allowing an open sys-
tem will provide incentives for the development and deployment of
mechanisms of an appropriate scope.

In MD, each participant in a system is modeled as a game-
theoretic agent, able to compute its best-response within an equi-
librium of a system. In the context of distributed systems, this is
akin to expecting a user to determine just the right way to state her
resource needs to maximize the utility that she receives from par-
ticipation in the system. With this assumption, MD seeks to design
protocols, or “rules of the game”, to achieve particular desiderata
such as allocative efficiency, fairness, or maximal throughput. MD
extends to very general problems, and there are a number of cel-
ebrated mechanisms addressing various requirements (see Jackson
[5] for an accessible introduction to some of these mechanisms.)

One particularly compelling notion from MD is that of strate-
gyproof mechanisms. These are mechanisms in which a self-
interested party can maximize her own utility through straightfor-
ward truth-revelation about requirements and capabilities, whatever
the strategies and behaviors of other parties. Technically, truth-
revelation is said to be a dominant strategy. Participants are thus
freed from the complexity of modeling other participants [24, 12].
A common example of strategyproof mechanisms is the second
price auction.? Thus, strategyproofness nicely addresses the design
principles of incentives-first, utility-based and simple.

Yet, MD while beautiful in theory is brittle and unworkable in
its purest form. MD advocates that one central mechanism be de-
signed for an entire system, and as such is in direct conflict with
the design principles of open and decentralized. MD also ignores
the computational constraints on a solution, and requires that users
can all agree on a set of desiderata.® In addition, the desirable sim-
plicity that comes from strategyproofness comes at an economic
cost, and there are a number of well-known economic limitations
of strategyproof mechanisms (e.g. [5]).

Thus, we must relax the goals of MD. Informally, although there
has been plenty of interest in developing combinatorial auctions
(e.g. [17]), in which heterogeneous auctions are simultaneously
offered for sale and participants can submit explicit bids for bun-
dles, we cannot simply build a combinatorial auction for the entire
world! Instead, the SPC paradigm recognizes that realistic mech-
anisms must necessarily have limited scope, both to maintain a
reasonable computational and informational scale and because the
sphere of influence and control for a single party must necessarily
be limited [29]. SPC considers the existence of multiple mecha-
nisms, each of which is locally strategyproof within its scope.

Formally, a locally strategyproof mechanism M is one in which
truth-revelation is a dominant strategy for any participant that can
express her utility for the resources and services within the scope of
M independently of the other events in the world, and that chooses
to submit requests for those resources exclusively to the mecha-
nism. As an example, consider a user with value of $0.10 to down-

2In a second price auction, the bidder with the highest bid wins the
auction, and is asked to pay the second highest bid. Bidders should
state values truthfully, because the bid price indicates the range of
prices a bidder is willing to accept while the actual price paid is
determined by the second-highest bid [25].

Sparkes [13, chapter 3] provides an extended introduction to issues
in computational mechanism design.



load a 1 GB file, irrespective of any other resources she receives
(e.g. file space, processing time, etc.). An allocation mechanism
is locally strategyproof (LSP) if she can maximize her expected
utility by truthfully announcing this file size and value to the mech-
anism, once she has elected to deal exclusively with that mecha-
nism. Truth-revelation should be her optimal strategy whatever the
state of the mechanism and whatever the requests from other par-
ticipants.

The SPC infrastructure must provide support for multiple users
to design and deploy competing LSP mechanisms, in a market
for mechanisms. With this, we achieve the second set of design
principles of open and decentralized systems. Our belief is that
an open marketplace will naturally lead to mechanisms with the
“right scope” and the “right complexity”. This decision repre-
sents a tradeoff between providing a large enough scope to suffi-
ciently simplify the game-theoretic decision facing a participant—
for example, bringing resources that are complementary for a large
number of users into the same scope —while maintaining a small
enough scope to build computationally reasonable resource alloca-
tion mechanisms. The degree to which market forces lead to the
emergence of mechanisms with the right scope is an important re-
search question.

2.3 Basic Components

We define three core components for all strategyproof computing
systems (see Figure 1).

2.3.1 LSP mechanisms.

First, resource providers or intermediaries (which make prof-
its by facilitating between providers and buyers) will create LSP
mechanisms for admittance into the distributed system.

2.3.2 Publicinterface.

Second, each LSP mechanism provides a public interface that
will facilitate how parties can find mechanisms, and how parties can
interact with multiple mechanisms and compose services across
mechanisms. Part of this interface will make claims about incentive
properties, and about statistical properties on the utility of partici-
pants that hit a mechanism. The interface must specify:

1) a service request language, which is the language to describe
how others can query the service. A simple example of what such
language should include at a minimum: a service request message
that allows a party to express her value and the resource she re-
quests; and a service response message for the party to accept or
reject.

2) restrictions on the preferences of the parties that are submit-
ting requests, for which the incentive properties of the mechanism
hold. This is important, because strategyproofness will often de-
pend on the particular type of goal that a user is seeking to accom-
plish.

3) utility statistics, to provide information on the average utility
that parties have realized in the mechanism in the past.

2.3.3 Validation

Third, the infrastructure will assume the key role of providing
validation of the incentive and statistical properties of LSP mecha-
nisms. Suppose that a mechanism claims it is LSP and is admitted
into the system. How can we prevent it from lying? This desired
prevention is the reason that validation schemes must be provided,
by the infrastructure, for strategyproof systems to function well.

Language Language
r r LSP
Preferences Preferences Mechanisms
Statistics Statistics
Infrastructure

<Certification> ( Validation )

Figure 1: Components for Strategyproof Computing Systems

Indeed, this is the key role of a shared strategyproof computing
infrastructure. The truth-revealing equilibrium of well-designed
mechanisms can quickly unravel without the ability to commit to a
particular set of rules.*

Fortunately we believe that this validation can be adequately pro-
vided without requiring the direct checking of the rules of mecha-
nisms. Rather, we propose to simply check input and output streams
for correct behavior. This provides for only a weak form of viola-
tion, i.e. that there is no evidence to support the failure of incentive
properties. However, it seems useful in that it checks for failures
around the operating point of mechanisms because it is based on
actual inputs and outputs.

The infrastructure will assign a certificate to a newly accepted
and LSP-claimed mechanism, that can then present the certificate
to other parties so they can interact truthfully with confidence. The
infrastructure must validate an LSP mechanism as frequently as
necessary to maintain the integrity of the certificate.

We propose to check the claimed incentive properties by inspec-
tion of the requests made to a mechanism, and its responses. In one
approach, we can use active monitoring, with policing agents (that
belong to the infrastructure) used to poll LSPs and check for devi-
ations from claimed incentive properties. A police agent must be
able to masquerade as a user and observe LSP behaviors. Second,
we can use passive monitoring, in which a subset of requests and
responses are monitored (for example via requirements that data be
stored for audit purposes). We imagine similar monitoring tech-
niques to check the statistical claims of LSPs.

3. VALIDATION EXPERIMENTS

The validation schemes are crucial to the robustness of an SPC-
based system. The novelty of our proposal is that validation will
be performed by the infrastructure without any knowledge of the
auction algorithms. Indeed, the inputs for validation will be the
bids submitted to LSPs, along with the resulting allocation and pay-
ments. The research challenge is to understand how to do this effi-
ciently, in terms of computational and space complexity. For now

4Consider a Vickrey (second-price sealed-bid) auction in which
the auctioneer cannot commit to clearing the auction at the second
highest price. Such an auction would degenerate into a first-price
auction.



we settle for a limited proof of concept. In this section, we present
the results of an experiment to measure the typical number of auc-
tions required to detect a non-LSP mechanism in a simple setting.

We consider a multi-unit allocation problem, with M identical
items and single-minded agents that require a particular bundle of
items. We model the valuation of agent ¢ by choosing the number
of units k; ~ U(1,10), with value v; ~ U(1, k;). We considered
settings with V = 20 agents and choose M from {20, 30,40}. To
keep things simple we simulate truthful agents. However, the vali-
dation scheme does not require truthful agents, all that is required
is a stream of inputs and outputs into the mechanism to enable the
collection of counterfactual information to demonstrate failure of
incentive properties. In future work we will study the effect of
equilibrium behavior on the ability to quickly detect the failure of
LSP properties.

We consider a simple first-price greedy auction, which is a non-
LSP mechanism. Agent ¢ can submit a bid (z;,p;) pair, for z;
units at total price less than or equal to p;. The auction sorts the
bids in descending-order of unit-price p;/z;, and allocates items to
a bid while there are still items left to allocate. Winning bids pay
their bid price. This auction is not strategyproof, because a winning
bidder can reduce her payment and increase her utility by bidding
the minimal unit price at which her bid is still successful.

The utility of agent ¢ with value (k;,v;) given a bid (z;,p;) is
simply stated as:

, if successful and z; > k;

Vi — D
wi (ki vi; 23, i) :{ 0Z " otherwise.

Let B denote the set of bids submitted to an auction. In validation,
we take bids (z;,p;) € B, and check whether any agent could have
increased her stated utility by submitting the bid of any other agent.
If a mechanism is LSP, then it is necessary that

w(®i, pi; Ti, Pi) > (s, pi; L5, D5) (@)

for all pairs of bids 4, j € B. The LHS is the utility agent ¢ receives
from her bid with respect to her stated valuation. The RHS is the
utility agent 7 would have received from the bid of agent 7, again
with respect to her stated valuation. Thus, to check for the failure of
LSP it is sufficient to find a single pair of bids for which condition
(1) fails. Informally, it will fail when a losing bidder could have
won and still received positive utility from submitting some other
bid, or when a winning bidder could have still won her desired
number of items but for a lower price by submitting some other
bid.

Figure 2 depicts the result of 100 auction trials for each of the
different number of items in the auction (M = {20, 30,40}). We
plot the distribution over the number of auctions required to detect
a non-LSP auction. Overall, all three curves are encouraging in
that detection is made relatively early— on average well before the
tenth auction trial. Most detections happen during one of the first
four auctions.

Validation becomes more effective with higher numbers of items
because there are more winners, and thus there is more useful coun-
terfactual information with which to detect incentive violations.
Notice that losing bids can never provide useful information on the
RHS of expression (1).

4. SYSTEMS RESEARCH CHALLENGES

The vision of strategyproof computing is ambitious and presents
a large number of research challenges. We lay out some of the

100

—o— # of goods = 20
ok -& #of goods =30 ||
* # of goods = 40

80 b

701 b

60

501! R

a0t g

Number of detections out of 100 runs

20

10

CBo g —p Y
2 4 6 8 10 2 14 16

Number of auctions needed for non-LSP detection

Figure 2: Validation Simulations for a Simple First Price Auc-
tion.

challenges in this section.

A companion paper lays out some of the Al-related challenges
[14]. These Al challenges include those of computational mecha-
nism design, the design of description languages, inference meth-
ods for verification, methods for automated composition, and ma-
chine learning methods to identify a good scope for new mecha-
nisms and to automatically tune existing mechanisms.

4.1 LSP Mechanisms

A basic research goal is to establish the core validity of local
strategyproofness in the context of systems settings. This paper
is not the place for an extended discussion of the progress that
has been made in recent years on the characterization of strate-
gyproof mechanisms (see [14] for some discussion). Simple yet
strategyproof mechanisms are often price-based (e.g. [8, 11]) or
based around generalizations of the philosophy enshrined in Vick-
rey’s auction (e.g. [28, 10]). However, there is still plenty to do.
An important question to ask in the context of SPC, is how expres-
sive are strategyproof mechanisms, given that we allow them to be
limited in scope?

One part of establishing the core validity will be to provide de-
velopment tools that will help developers to program and debug
mechanisms from the ground up. It will also be useful to have pro-
totypes of how all these things fit together as soon as possible.

4.2 Validation and Verification

The active and passive monitoring techniques suggested for val-
idation will be most effective only if the responsible parties coop-
erate: the “police” in active monitoring must be fully trusted by
the whole system and must not be suspects of fraud; and passive
monitoring requires every party in the system to provide true in-
formation in a timely and accurate fashion. These imply serious
research efforts in understanding and building trust and reputation
techniques.

The computational and economic efficiency of monitoring must
be measured and quantified. Non-LSP mechanisms must be de-
tected early and frequently enough. There will be many types of
mechanisms and many of them are one-time participants. We must
have ways to stop such short-lived mechanisms from hurting other
parties. Would an evaluation period, during which a new mecha-



nism will be validated before deployment, be necessary or be limit-
ing with certain services? Furthermore, we need to determine how
much information should the audit trails provide for good valida-
tion.

For the purpose of the current discussion we have assumed a
single infrastructure operator, who will assume responsibility for
validation. For fully-decentralized systems such as the Internet
and peer-to-peer systems, how should this be adapted? Do we
need something like third party organizations such as certificate
authories to provide LSP certificates and validation? Can groups
of parties assume an ad-hoc role in performing decentralized vali-
dations?

4.3 Scalability and Decentralization

Traditional MD is completely centralized; a single node collects
information from all parties and computes an outcome. Even the
limited decentralization of LSP mechanisms will not always be
practical in our setting, so we need to target strategies and algo-
rithms for decentralized mechanism design [3]. The new challenge
is that the mechanism is implemented by the same nodes that stand
to gain from the resource-allocation decision, which means that it
must be rational for these nodes to choose to implement the compu-
tation and message-passing required to deploy the mechanism. We
will develop fundamental building blocks, including redundancy,
partitioning, and dynamic selection, to address these challenges
[22].

4.4 Composition

As we pointed out, a group of LSP mechanisms that a party in-
teracts with is not necessarily strategyproof - the party may behave
strategically to obtain the highest possible utility from one of the
mechanisms. How can we scale up with distinct LSP mechanisms?
We need to be able to discover and compose LSP mechanisms to
form larger-scope LSP mechanism sets. We can treat the individual
mechanisms as the building block for these sets, which will be the
normal scope an average party would deal with (in other words we
do not forsee parties being satisfied dealing with just one mecha-
nism for each resource).

One appealing methodology is to develop mechanisms that pro-
vide real options to users, rather than outcomes from which a user
cannot decommit. A party that wants to compare among several
LSP mechanisms may now first iteratively interact with each mech-
anism truthfully to obtain an option. She could then simply com-
pare the options and decide which option to exercise.

4.5 Measurements

The negative effects of self-interest within systems must be clearly
quantified. System designers are typically aware of self-interest be-
haviors, but there is no absolute measurement of how much they
affect the systems. Past attempts have pointed out ways in which
self-interested parties can alter a system’s topology [19], but there
does not seem to be much urgency in addressing incentive issues.
The main difficultly is what to measure. For some systems, the
crucial factors may be how many parties are or are not contributing
resources. For others, it maybe how much efficiency the overall
system achieves in utility terms [21, 1]. We note that our infras-
tructure proposal exposes utility information of different parties.

4.6 Deployment Issues

Deployment is the next large hurdle. Until real LSP mechanisms
join a particular system, the parties in the system may not observe

direct benefits of strategyproof computing and hence may leave.
Likewise, there will be less incentive for any one to develop LSP
mechanisms.

How can we begin to deploy strategyproof systems? If we aim
for the Internet, would that be too unrealistic? The Internet is where
rapid adoption occurs, when one does things ‘right.” On the other
hand, we can use start-up systems such as PlanetLab [15] as a
testbed. What if we take the hybrid approach and target up-and-
coming systems such as specific grid systems? These have a larger
user base than start-up systems, and scientists seem to be getting
their experiments done.

Strategyproof computing will affect the parties in a system in
both positive and perhaps negative ways. It is important that we
identify these effects early on to determine the incentives for par-
ticular parties to participate. Overall, we see that users have a lot
to gain in strategyproof systems, as they can interact truthfully and
minimize interactions to get their resources while still can extract
desirable utilities. Overall, although resource providers have costs
to develop LSP mechanisms, these investments will be paid off in
the long run with users that appreciate the transparency and sim-
plicity provided by the SPC paradigm. It is also important to note
that running LSP mechanisms does not imply the inability to ex-
tract revenue. However, in the short term the sophisticated users
and resource providers in current systems may be hesitant to join
strategyproof systems.

5. CONCLUSION

Strategyproof computing is an incentives-first agenda that pro-
poses research into the design of an appropriate infrastructure to
provide the ability to embrace incentives and allow the build-out
of mechanisms to handle self-interest in distributed systems. We
believe that it is important to recognize the existence of incentive
issues in next-generation distributed systems, such as peer-to-peer
systems, and to design protocols to simplify the strategic choices
facing users.

Any new vision takes years or perhaps even decades to real-
ize, if at all. For example, we are only now moving close to the
vision of pervasive computing [27], many years after it was first
articulated. Nonetheless, for strategyproof computing, we cannot
afford to wait too long. Systems are getting more sophisticated,
and tensions among parties are only going to get higher. Instead
of spending years trying to build the ideal strategyproof comput-
ing blueprint, we hope to begin to quantify strategyproof comput-
ing costs and benefits, provide real development methodology and
tools, and transform some real existing distributed systems into
(even if not perfectly) strategyproof ones.

Acknowledgements

The authors gratefully acknowledge recent conversations with John
Wroclawski and Michael Wellman. This work is supported in part
by NSF grant 11S-0238147.

6. REFERENCES

[1] R. Braynard, D. Kostic, A. Rodriguez, J. Chase, and
A. Vahdat. Opus: An overlay peer utility service. In Proc. 5th
Int. Conf. On Open Architectures and Network Programming
(OPENARCH), 2002.

[2] S. H. Clearwater, editor. Market-Based Control: A Paradigm
for Distributed Resource Allocation. World Scientific, 1996.



(3]

(4]
(5]
(6]

(7]

(8]

[9

—_

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

J. Feigenbaum and S. Shenker. Distributed Algorithmic
Mechanism Design: Recent Results and Future Directions.
In Proceedings of the 6th International Workshop on
Discrete Algorithms and Methods for Mobile Computing and
Communications, pages 1-13, 2002.

I. T. Foster and C. Kesselman. Computational grids. In
VECPAR, pages 3-37, 2000.

M. O. Jackson. Mechanism theory. In The Encyclopedia of
Life Support Systems. EOLSS Publishers, 2000.

J. Kurose and R. Simha. A microeconomic approach to
optimal resource allocation in distributed computer systems.
IEEE Trans. on Computers, 38:705-717, 1989.

J. O. Ledyard, C. Noussair, and D. Porter. The allocation of a
shared resource within an organization. Economic Design,
2:163-192, 1996.

D. Lehmann, L. I. O’Callaghan, and Y. Shoham. Truth
revelation in approximately efficient combinatorial auctions.
Journal of the ACM, 49(5):577-602, September 2002.

A. Mas-Colell, M. D. Whinston, and J. R. Green.
Microeconomic Theory. Oxford University Press, 1995.

A. Mu’alem and N. Nisan. Truthful approximation
mechanisms for restricted combinatorial auctions. In Proc.
18th National Conference on Artificial Intelligence
(AAAI-02), July 2002.

C. Ng, D. C. Parkes, and M. Seltzer. Virtual Worlds: Fast and
Strategyproof Auctions for Dynamic Resource Allocation. In
Fourth ACM Conf. on Electronic Commerce (EC’03), 2003.
Poster version. Longer version at
http://www.eecs.harvard.edu/econcs/virtual.pdf.

N. Nisan and A. Ronen. Algorithmic mechanism design.
Games and Economic Behavior, 35:166-196, 2001.

D. C. Parkes. Iterative Combinatorial Auctions: Achieving
Economic and Computational Efficiency. PhD thesis,
Department of Computer and Information Science,
University of Pennsylvania, May 2001.
http://www.cis.upenn.edu/ dparkes/diss.html.

D. C. Parkes. Five Al Challenges in Strategyproof
Computing. In Proc. of IJCAI Workshop on Al and
Autonomic Computing, August 10 2003. Available at
http://www.eecs.harvard.edu/econcs/ai-spc.pdf.

L. Peterson, D. Culler, T. Anderson, and T. Roscoe. A
blueprint for introducing disruptive technology into the
internet, 2002.

O. Regev and N. Nisan. The POPCORN market-an online
market for computational resources. In Proceedings of the
first international conference on Information and
computation economies, pages 148-157. ACM Press, 1998.
M. H. Rothkopf, A. Peket, and R. M. Harstad.
Computationally manageable combinatorial auctions.
Management Science, 44(8):1131-1147, 1998.

J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end
arguments in system design. ACM Transactions on Computer
Systems, pages 277-288, 1984.

S. Saroiu, P. K. Gummadi, and S. D. Gribble. A
measurement study of peer-to-peer file sharing systems. In
Proceedings of Multimedia Computing and Networking 2002
(MMCN ’02), San Jose, CA, USA, January 2002.

M. Satyanarayanan. Pervasive computing: Vision and
challenges. IEEE Personal Communications, pages 10-17,

Aug 2001.

[21] S. Shenker. Making greed work in networks: A
game-theoretic analysis of switch service disciplines. In
SIGCOMM Symposium on Communications Architectures
and Protocols, pages 47-57, 1994,

[22] J. Shneidman and D. C. Parkes. Rationality and self-interest
in peer to peer networks. In 2nd Int. Workshop on
Peer-to-Peer Systems (IPTPS’03), 2003.

[23] M. Stonebraker, R. Devine, M. Kornacker, W. Litwin,

A. Pfeffer, A. Sah, and C. Staelin. An economic paradigm for
query processing and data migration in Mariposa. In Proc.
3rd Int. Conf. on Parallel and Distributed Information
Systems, pages 58-67, 1994.

[24] H. R. Varian. Economic mechanism design for computerized
agents. In Proc. USENIX Workshop on Electronic
Commerce, 1995. Minor update, 2000.

[25] W. Vickrey. Counterspeculation, auctions, and competitive
sealed tenders. Journal of Finance, 16:8-37, 1961.

[26] C. A. Waldspurger, T. Hogg, B. Huberman, J. O. Kephart,
and W. S. Stornetta. Spawn: A distributed computational
economy. IEEE Trans. on Software Engineering,
18:103-117, 1992.

[27] M. Weiser. The computer for the twenty-first century.
Scientific American, pages 94-100, Sept 1991.

[28] M. P. Wellman, W. E. Walsh, P. R. Wurman, and J. K.
MacKie-Mason. Auction protocols for decentralized
scheduling. Games and Economic Behavior, 35:271-303,
2001.

[29] M. P. Wellman and P. R. Wurman. Market-aware agents for a
multiagent world. Robotics and Autonomous Systems,
24(3-4):115-125, 1998.



