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Abstract

This paper presentsmarket-based macroprogramming (MBM), a new
paradigm for achieving globally efficient behavior in sensor networks.
Rather than programming the individual, low-level behaviors of sensor
nodes, MBM defines a virtual market where nodes sell “actions” (such
as taking a sensor reading or aggregating data) in response to global
price information. Nodes take actions to maximize their own utility,
subject to energy budget constraints. The behavior of the network is
determined by adjusting the price vectors for each action, rather than by
directly specifying local node actions, resulting in a globally efficient
allocation of network resources. We present the market-based macro-
programming paradigm, as well as several experiments demonstrating
its value for a sensor network vehicle tracking application.

1 Introduction
Sensor networks are an exciting new research area with novel
applications in habitat monitoring [1, 13], medical care [20],
and target tracking and pursuit [21]. The limited computation,
communication, and energy available on individual sensor nodes
presents a difficult programming challenge: that of decomposing
complex, systemwide behaviors into the local actions to be taken
at each node. While recent work has addressed aspects of this
problem through high-level query interfaces [11] and commu-
nication layers [6, 19], the general problem of achieving glob-
ally efficient behavior from a distributed sensor network under
changing environmental conditions is still wide open.

In this paper, we present a novel approach to global pro-
gramming of entire sensor networks, based on the paradigm of
market-based macroprogramming (MBM). In this approach, in-
dividual sensor nodes act as self-interested agents that operate
in a virtual market, and receive profit for performing simple, lo-
cal actions in response to globally-advertised price information.
Sensor nodes run a very simple cost-evaluation function, and
global behavior is induced throughout the network by advertis-
ing price information that drives nodes to react. The prices can
be dynamically tuned by the centralized market maker to meet
systemwide goals of lifetime, accuracy, or latency based on the
needs of the sensor network programmer. The “macroprogram”
is therefore encoded in the process used to update price informa-
tion in response to changing network conditions.

Consider distributed vehicle tracking, in which nodes must
take periodic sensor readings, combine readings with other

nearby nodes (for example, to compute the centroid of readings
above some threshold), and report aggregated values to a base
station. The periodicity with which each node performs sens-
ing, computation, and communication has a deep impact on the
overall lifetime of the network and the accuracy of the tracking
system. The system must also tune these rates in response to
changes in the target vehicle’s location and velocity. Currently,
programmers must implement these distributed algorithms by
hand, and few tools exist to determine whether a given appli-
cation will meet its energy and accuracy targets. In addition,
retasking sensor networks is very difficult, as reprogramming
sensor nodes over the air is generally prohibitive for energy and
bandwidth reasons [8].

Market-based programming addresses many of these con-
cerns, by providing a high-level programming environment in
which the system can achieve globally efficient behavior under
dynamic conditions. Nodes operate with naı̈vet́e of the global
task and perform extremely simple local actions. Network re-
tasking is accomplished through adjusting price vectors, rather
than pushing new code to sensor nodes. This paper explores
the use of market-based macroprogramming and presents initial
experiments demonstrating its feasibility for distributed vehicle
tracking. Of course, there are many theoretical and practical
challenges to address with this approach, several of which are
discussed herein. We expect that MBM can eventually be in-
tegrated with more conventional sensor network programming
models, such as query languages [11] and virtual machines [8].

2 Background
The complexities of programming distributed sensor networks
have led to some initial work on high-level programming in-
terfaces and languages. These include communication abstrac-
tions such as directed diffusion [6, 3], abstract regions [19],
Hoods [21], and GHT [17]. These systems make a good foun-
dation formacroprogramming, which we define as the ability to
program the sensor network as a whole. However, these pre-
vious approaches still require the system designer to explicitly
program individual nodes’ actions.

TinyDB [11], Cougar [22], and IrisNet [16] take a query-
language-based view of macroprogramming by providing a
high-level SQL or XML-based query interface to sensor net-
work data. Queries are deployed into the network, streaming
results to one or more base stations, and aggregation is used to



reduce communication overhead. However, capturing the sen-
sor network at this level makes it difficult to implement specific
behavior at a lower level than the query interface.

To date, little of this work has focused on allowing an ap-
plication designer to meet systemwide goals such as latency or
energy targets. Abstract regions [19] allow the programmer to
tune the communication layer to trade off energy for accuracy,
while TinyDB provides alifetimekeyword that scales the query
sampling and transmission period to meet a user-supplied net-
work lifetime [12]. In contrast, the goal of market-based macro-
programming is to achieve an efficient allocation of network
resources to optimize specific objectives, such as data fidelity,
subject to lifetime constraints. In MBM, this is accomplished
by setting prices for virtual “goods” that consume energy and
produce data, yielding a far more general structure than the peri-
odic sampling and local communication in query interfaces such
as TinyDB.

The MBM approach is inspired by Wellman’s work
on market-oriented programming for decentralized optimiza-
tion [18, 15]. Under this paradigm, distributed computation and
resource allocation are modeled as a market, and the interac-
tion between agents is achieved through the buying and selling
of goods and services. Market-based control has also been pro-
posed in other application contexts [2]. However, we believe
this paper is the first serious attempt to use market-oriented pro-
gramming ideas to program a real distributed system.

Applying economic theory to the design of distributed sys-
tems yields new approaches to the complex process of allocating
network-wide resources and defining global behavior. An allo-
cation of resources isPareto optimalif there is no reallocation of
goods and services that can make a given agent better off with-
out making another agent worse off. Pareto optimality yields a
globally efficientallocation of sensor network resources. Such
an allocation can be achieved by setting prices such that supply
equals demand for each good and service. Such as system is
said to be incompetitive equilibrium. By the First Welfare The-
orem [14], the competitive equilibrium allocation is guaranteed
to be Pareto optimal under the classical assumption of monotone
agent preferences.

MBM is attractive for programming sensor networks at the
global level, as agents individually decide upon their actions
given local knowledge. MBM also allows us to use the tools
from general equilibrium theory to analyze the behavior and cor-
rectness of the system. For example, the benefit of adding (or
removing) an agent can be determined by checking whether the
agent will profit at current equilibrium prices. Prices provide
aggregate feedback about the marginal systemwide value of a
particular resource. Economic theory also allows the predic-
tion of market failure, and provides a methodology to prevent
failure through the enrichment of prices. Finally, market-based
approaches extend to settings in which sensor networks are de-
ployed across multiple domains and accessed by multiple users,
perhaps with conflicting requirements.

3 Market-based Macroprogramming
Market-based macroprogramming (MBM) takes a resource al-
location view of a sensor network, with nodes programmed to

act as very simple economic agents. Prices coordinate the ac-
tions of agents, and are adjusted to induce useful global behav-
ior. The market provides control over the behavior of sensor
nodes through the propagation of price information.

Market-based macroprogramming requires a specification of
the actions that each sensor node may take, as well as the
local utility function that guides the decision-making of each
node [18]. Examples of actions include sampling a sensor, ag-
gregating data, and forwarding a message. The utility function
represents the tradeoff between the profit for taking an action
and the energy, bandwidth, or other resource cost associated with
that action. Eachuserof the sensor network is also represented
by an agent with an associated utility function, which captures
the user’s desire for the network to take certain actions. In this
way, MBM allows multiple users to share the sensor network by
offering differing payments for node actions. Each action has an
associatedprice that may be adjusted at runtime to coordinate
the actions of agents. Each node follows a very simple local al-
gorithm to determine its behavior. Nodes continuously monitor
prices and select actions to maximize their local utility, given
the availability of local resources such as energy, sensor data,
and pending messages to forward.

Energy is the critical resource in sensor networks, and allocat-
ing energy involves tradeoffs in terms of responsiveness, infor-
mation quality, and lifetime. A well-functioning market should
makeefficientresource-allocation decisions, with a sequence of
actions taken to maximize the total utility of all agents across
time, subject to energy constraints.

3.1 MBM Primitives

MBM provides a set of primitives that collectively define the
behavior of the system:

Goods and actions: The essential operation of the market in
MBM is that agents performactionsto producegoodsin return
for payments. The actions that sensor nodes may take depend
on the application, but typically include sampling a sensor, ag-
gregating multiple sensor readings, or broadcasting a radio mes-
sage. An action may be disallowed if the node does not currently
have enough energy to perform the action. In addition, produc-
tion of one good may have dependencies on the availability of
others. For example, a node cannot aggregate sensor readings
until it has acquired multiple readings.

Taking an action may or may not produce a good of value to
the sensor network application. For example, listening for in-
coming radio messages is only valuable if a node hears a trans-
mission from another node. Likewise, transmitting a sensor
reading is only valuable if the reading has useful informational
content. Therefore, not all actions will receive a payment. We
assume that nodes can determine locally whether a given action
deserves a payment. This works well for the simple actions con-
sidered here, although more complex actions (e.g., computing a
function over a series of values) may require external notifica-
tion for payments.

Currency: Markets need an internal currency to facilitate
trade. The existence of currency facilitates multilateral trade
through a sequence of bilateral trades and provides a common



Action Energy consumed
sample(single sensor) 1.637× 10−6J
send(single message) 1.653× 10−3J
listen(for 1 sec) 23.88× 10−3J
sleep(for 1 sec) 90× 10−6J
aggregate(compute max of array) 1.637× 10−6J

Figure 1:Energy consumed for each sensor action, based on mea-
surements of the Mica2 sensor node.

scale for utility.

Agents: Agents are the basic abstraction in market-based sys-
tems, and are associated both with sensor nodes and users on
the edge of the network. Agents have a utility function, and are
provided with the autonomy to determine their own actions. By
default, every sensor node follows simple price-taking behav-
ior with respect to its local action space: continually selecting
an action to maximize its profit, as long as that action is within
its energy budget.User agentsdetermine prices based on their
preferences for nodes taking certain actions, and prices can be
adjusted dynamically in response to changing network condi-
tions. For example, a user agent may increase its preference for
sensor readings when it believes a vehicle has entered the target
tracking area.

Prices: The price on a good defines the payment that an agent
can expect to receive for selling a unit of the good. Roughly,
a price represents the current marginal (total) utility across all
users of the sensor network for one unit of that good. The differ-
ence in prices on goods then provides feedback to induce useful
local behavior across nodes.

Given a set of actions, goods produced by those actions,
prices for each good, and energy cost for each action, each agent
in an MBM system follows a very simple local algorithm to de-
termine its behavior. A node simply monitors its local state and
the global price vector, and selects the action that maximizes
its utility function. Upon taking that action, the node’s energy
budget is reduced by the following amount, and the node may
or may not receive a payment depending on whether its action
produced a valuable good.

3.2 Application Example: Object Tracking

As a concrete example of an MBM-based application, we con-
sider tracking a moving vehicle through a field of randomly-
distributed sensors. Each sensor is equipped with a magnetome-
ter capable of detecting local changes in magnetic field. The
system-wide goal is to track the location of the moving vehicle
as accurately as possible given a limit on the energy consump-
tion of each node.

Each sensor agent has an initial endowment of energy and can
take the following set of actions:samplea local sensor reading,
senddata towards the base station,listenfor incoming messages,
sleepfor some interval, andaggregatemultiple sensor readings
(both local readings and those received over the radio). Aggre-
gation is used to limit communication bandwidth and combines
several readings into a single value. While a node is sleeping, it
cannot receive radio messages, but consumes far less power than
while listening. Figure 1 summarizes energy requirements for

each action, based on measurements of the Mica2 sensor node.
To reduce the amount of trace data generated by the simulation
while still performing simulations of lengthy runs, we limited
the rate at which nodes could take actions to 4 Hz.

3.2.1 Utility functions and parameters

We define the utility function for an actiona to be:

u(a) =
{

βapa if the action isavailable
0 otherwise

wherea is the action under consideration,pa is the current price
for that action, andβa is theapproximate probability of payment
for that action, which is learned by individual nodes as described
below. An action may beunavailableif either the current energy
budget is too low to take the action, or other dependencies have
not been met (such as lack of sensor readings to aggregate), in
which case the utility function evaluates to 0.

The utility function represents a node’sexpectedprofit over
all possible actions.βa is learned over time using an exponen-
tially weighted moving average (EWMA) based on whether or
not a node received payment for actiona. Nodes are condition-
ally paid for thelistenandsampleactions based on whether or
not a message was heard and whether or not a sample above a
threshold was acquired, respectively; theβa value for other ac-
tions is always1. The expected profit may vary over time, so
nodes must periodically explore by taking a putatively unprof-
itable action in case environmental changes have caused that ac-
tion to become profitable. For example, if the vehicle comes
into sensor range thensampleactions will become profitable.
We use anε-greedy action selection policy. Most of the time
a node chooses the action with the highest expected profit, but
with probabilityε the node will randomly choose an action from
all available actions.

Learningβa in this way allows nodes to automatically differ-
entiate themselves over space and time to perform actions that
are useful to the network as a whole. For example, a node close
to the vehicle will take frequent sensor readings, whereas a node
far from the vehicle but on the routing path between the sensors
near the vehicle and the base station will listen for incoming ra-
dio messages to forward. Nodes adapt their behavior to chang-
ing conditions and do not need to be programmed explicitly to
specialize in this way.

To capture the desire for nodes to consume energy at a regular
rate, but still allow for occasional bursts of energy usage, we opt
to use a token bucket model for a node’s energy budget. Each
node has a bucket of energye that may hold no greater than
some capC of energy at any time. When a node takes an action,
the appropriate amount of energy is deducted from the bucket.
The bucket refills at a rater that represents the average desired
rate of energy usage. If a node cannot take any action because
its bucket is too low, it mustsleep, which places the node in the
lowest-possible energy state.

3.3 Price selection and adjustment
In MBM, the global behavior of the network is controlled by the
client establishing prices for each good. Prices are propagated to
sensor nodes through an efficient global data dissemination al-
gorithm, such as SPIN [4] or Trickle [10]. A user can also adjust



prices as the market runs in response to changes in the quality,
rate, or latency of the data being produced by the network.

There is a complex relationship between prices and agent be-
havior. Raising the price for a good will not necessarily induce
more nodes to produce that good; the dynamics of maximizing
expected profits may temper a node’s desire to take a given ac-
tion. Given the complexities of agent operations and unknown
environmental conditions, analytically solving for prices to ob-
tain a desired result is not generally tenable. A better approach
is to determine prices empirically based on an observation of
the network’s behavior at different price points. Prices can be
readily tuned after deployment, since broadcasting a new price
vector to an active network is not expensive.

4 Experiments
To demonstrate the efficacy of our market-based vehicle track-
ing system, we conducted several simulated experiments run-
ning under TOSSIM [9], a scalable sensor network simulator
that runs actual TinyOS [5] applications. TOSSIM incorporates
a realistic radio model based on traces of packet loss statistics in
an actual sensor network. We simulated a network of 100 nodes
distributed semi-irregularly in a 100x100 meter area. The base
station that is collecting sensor readings in located in the upper-
left corner of this area. Nodes communicate to the base station
through GPSR [7], a geographic routing protocol that we have
implemented in the TinyOS environment [19].

4.1 Individual node behavior
To illustrate the behavior of a particular node in detail, Fig-
ure 2 depicts the actions taken, energy budget, andβ values for
node 23, which is along the path of the vehicle in the sensor net-
work. As the vehicle approaches along its circular path at time
t = 350, the node determines that it will be paid to sample, ag-
gregate, and send sensor readings. As the vehicle departs around
time t = 500, the node returns to its original behavior. At other
times (e.g.,t = 520), the node receives messages from other
nodes and routes them towards the base station, explaining the
sudden spikes inβ for the listen action.

Also note that the node performs a large number of listen and
sample actions even when its utility for doing so is low (even
zero). This is because the node has enough energy to perform
these actions, and theε-greedy action selection policy dictates
that it will explore among these alternatives despite negligible
utility.

4.2 Energy budget and price adjustment
MBM offers a number of tunable design parameters to an ap-
plication builder. For sake of brevity, we focus on two: the
prices of the various goods and the per-diem energy budget allo-
cated to each node. Recall that nodes maximize their utility by
taking actions subject to an energy budget, and that the prices
represent the application’s preferences for taking certain actions
over others. We consider two energy budgets: a “low” budget of
400 J/day (permitting a lifetime of 77 days1), and a “high” bud-
get of 3000 J/day (lifetime 10 days). These values were chosen

1We assume the device runs at 3V and that 2 AA batteries provide 2850 mA-
hours of capacity.
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to correspond to reasonable values for a battery-powered sensor
network. Note that in the case of the “high” energy budget, a
node’s choice of action is unconstrained by energy considera-
tions.

Figure 3 shows the accuracy of the vehicle tracker, with the
high energy budget, as the price for thelisten action is ad-
justed. For comparison, we show data for a simpler version of
the tracker where every node uses a static schedule for selecting
actions. In the statically-scheduled version, every node in the
network periodically samples, aggregates, transmits, and listens
for incoming messages according to a rate that allows the node
to operate within its daily energy budget. This is the traditional
way of scheduling node operations, typified by thequery epoch
in TinyDB [11].

As the figure shows, increasing the price for thelisten ac-
tion degrades the tracker’s accuracy, since fewer nodes are tak-
ing samples. While the statically-scheduled tracker performs as
well as the MBM tracker for a listen price of 10, every node
in the statically-scheduled network is regularly sampling, aggre-
gating, and transmitting samples regardless of its position in the
network and the location of the target vehicle. In the MBM ver-
sion, only nodes near the vehicle are induced to take samples
and transmit data at all. It is important to keep in mind that this
complex behavior was not programmed manually; it is driven
entirely by the nodes’ utility functions and the process of learn-
ing β for each action.

Figure 4 shows the number of position estimates generated by
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the energy load in the system, choosing to perform a far greater number
of listen and send actions than the low-energy nodes.

the network as the price for thelistenaction is increased, for both
energy budgets. There is an ideal setting between “listening too
little” and “listening too much,” where the number of readings
delivered by the network is maximized. With MBM, nodes near
the vehicle learn that sampling is profitable and acquire a larger
number of samples during the times that the vehicle is nearby.
Likewise, nodes along the routing path from sensors near the
vehicle to the base station learn that listening is profitable and
spend a greater amount of time receiving data to be forwarded.

MBM also allows nodes to be differentiated with respect to
their energy budgets. For example, certain nodes may have ac-
cess to a large power supply and can perform a different set of
operations than nodes operating off of small batteries. Likewise,

advertising different price vectors to different nodes allows them
to be customized to take certain actions.

Figure 5 shows the behavior of the tracking network where
80% of the nodes operate with the low energy budget and 20% of
the nodes operate with the large energy budget. The large energy
budget nodes automatically elect to perform a greater number of
listen and send actions, while the other nodes mostly perform
sample actions, which consume far less energy overall. Identical
prices are used throughout the network, showing that differences
in energy budget have profound effect on the self-scheduling of
nodes.

5 Future Work and Conclusions
Market-based macroprogramming brings a number of new ideas
to the design of sensor network applications. Exploiting tech-
niques from economic theory and market design should yield
new insights into the construction of robust, efficient distributed
systems with severe resource constraints. Our initial work on
MBM raises a number of interesting questions that we wish to
explore in future work. These are described in summary below.

Richer pricing: More complex pricing schemes can be used
to induce sophisticated behaviors in the network. For example,
rather than pricing only those goods that result from atomic ac-
tions, we can pricesequencesof actions. Consider aggregat-
ing multiple sensor readings into a single value for transmission.
Rather than price the final aggregate value and requiring an agent
to reason about a sequence of actions to achieve that result, we
can establish prices for each step in the sequence and introduce
control or data dependencies between actions. Another ques-
tion is that oflocation-based prices, in which goods are priced



differently in different areas of the network. This can be used
to cause certain nodes to act primarily as local message routers,
while other nodes devote themselves to local sensing.

Equilibrium prices: We have experimented with dynami-
cally adjusting prices to meet demands set by the base station.
Unfortunately, for our tracking application the supply of goods
that the network can provide varies greatly over time, even when
prices are held constant. This is because supply is dependent on
factors other than prices, making it difficult to use prices alone to
meet equilibrium conditions. For example, there is a large sup-
ply of readings available when the vehicle is close to the base
station, but a far smaller supply when the vehicle is on the edge
of the network far from the base station. We plan to investigate
alternative pricing models that can capture these complexities in
a market-oriented context.

Multiple users: Market-based techniques are well-suited for
addressing issues that arise when multiple competing users wish
to share a sensor network. Each user advertises its demand
for taking certain actions on its behalf, and equilibrium prices
are calculated to maximize the utility of all agents (both sen-
sor nodes and users) in the system. The competitive equilibrium
condition ensures that the resulting allocation is Pareto optimal.
We believe this is an important advantage of market-based tech-
niques and we intend to explore this angle in future work.

Reinforcement learning: One of the more interesting aspects
of our system is the ability of nodes to adapt their operation over
time by estimating theexpected profitof actions. Our scheme
for learningβ values is a simple form of reinforcement learn-
ing. Reinforcement learning provides a large body of techniques
that can be applied to multistage decision problems for which
there is no (known) good model of the system. An interesting
path for future work is the integration of more sophisticated re-
inforcement learning techniques for sensor network macropro-
gramming.

We believe that market-based programming can be applied to
the design of complex distributed systems in general, not just
sensor networks. In situations where multiple users are com-
peting for a shared infrastructure, or multiple competing ser-
vices are running within a network, MBM allows one to rely on
the economic principles of rationality and self-interest to reason
about the behavior of the system. We are planning further ex-
periments with MBM to understand its potential for distributed
programming.
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