
Approximately-Strategyproof and Tractable Multi-Unit
Auctions

Anshul Kothari∗ David C. Parkes† Subhash Suri∗

ABSTRACT
We present an approximately-efficient and approximately-
strategyproof auction mechanism for a single-good multi-unit
allocation problem. The bidding language in our auctions al-
lows marginal-decreasing piecewise constant curves. First, we
develop a fully polynomial-time approximation scheme for the
multi-unit allocation problem, which computes a (1 + ε)-
approximation in worst-case time T = O(n3/ε), given n bids
each with a constant number of pieces. Second, we embed this
approximation scheme within a Vickrey-Clarke-Groves (VCG)
mechanism and compute payments to n agents for an asymp-
totic cost of O(T log n). The maximal possible gain from ma-
nipulation to a bidder in the combined scheme is bounded by
ε/(1+ε)V , where V is the total surplus in the efficient outcome.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity; J.4 [Computer Applications]: Social and Be-
havioral Sciences—Economics.

General Terms
Algorithms, Economics.

Keywords
Approximation Algorithm, Multi-unit Auctions, Strategyproof.

∗Department of Computer Science, University of California at
Santa Barbara, CA 93106. Email: {kothari, suri}@cs.ucsb.edu.
Supported in part by NSF grant IIS-0121562.
†Division of Engineering and Applied Sciences, 33 Oxford
Street, Harvard University, Cambridge, MA 02138. Email:
parkes@eecs.harvard.edu. Supported in part by NSF grant IIS-
0238147.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’03,June 9–12, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-679-X/03/0006 ...$5.00.

1. INTRODUCTION
In this paper we present a fully polynomial-time approxima-

tion scheme for the single-good multi-unit auction problem. Our
scheme is both approximately efficient and approximately strate-
gyproof. The auction settings considered in our paper are mo-
tivated by recent trends in electronic commerce; for instance,
corporations are increasingly using auctions for their strategic
sourcing. We consider both a reverse auction variation and a
forward auction variation, and propose a compact and expres-
sive bidding language that allows marginal-decreasing piecewise
constant curves.

In the reverse auction, we consider a single buyer with a
demand for M units of a good and n suppliers, each with a
marginal-decreasing piecewise-constant cost function. In addi-
tion, each supplier can also express an upper bound, or capacity
constraint on the number of units she can supply. The reverse
variation models, for example, a procurement auctionto obtain
raw materials or other services (e.g. circuit boards, power sup-
pliers, toner cartridges), with flexible-sized lots.

In the forward auction, we consider a single seller with M
units of a good and n buyers, each with a marginal-decreasing
piecewise-constant valuation function. A buyer can also express
a lower bound, or minimum lot size, on the number of units she
demands. The forward variation models, for example, an auction
to sell excess inventory in flexible-sized lots.

We consider the computational complexity of implementing
the Vickrey-Clarke-Groves [22, 5, 11] mechanism for the multi-
unit auction problem. The Vickrey-Clarke-Groves (VCG) mech-
anism has a number of interesting economic properties in this
setting, including strategyproofness, such that truthful bidding is
a dominant strategy for buyers in the forward auction and sellers
in the reverse auction, and allocative efficiency, such that the out-
come maximizes the total surplus in the system. However, as we
discuss in Section 2, the application of the VCG-based approach
is limited in the reverse direction to instances in which the total
payments to the sellers are less than the value of the outcome
to the buyer. Otherwise, either the auction must run at a loss in
these instances, or the buyer cannot be expected to voluntarily
choose to participate. This is an example of the budget-deficit
problem that often occurs in efficient mechanism design [17].

The computational problem is interesting, because even with
marginal-decreasing bid curves, the underlying allocation prob-
lem turns out to (weakly) intractable. For instance, the classic
0/1 knapsack is a special case of this problem.1 We model the

1However, the problem can be solved easily by a greedy scheme
if we remove all capacity constraints from the seller and all

allocation problem as a novel and interesting generalization of
the classic knapsack problem, and develop a fully polynomial-
time approximation scheme, computing a (1+ ε)-approximation
in worst-case time T = O(n3/ε), where each bid has a fixed
number of piecewise constant pieces.

Given this scheme, a straightforward computation of the VCG
payments to all n agents requires time O(nT). We compute ap-
proximate VCG payments in worst-case time O(αT log(αn/ε)),
where α is a constant that quantifies a reasonable “no-monopoly”
assumption. Specifically, in the reverse auction, suppose that
C(I) is the minimal cost for procuring M units with all sellers I,
and C(I \ i) is the minimal cost without seller i. Then, the con-
stant α is defined as an upper bound for the ratio C(I \ i)/C(I),
over all sellers i. This upper-bound tends to 1 as the number of
sellers increases.

The approximate VCG mechanism is (ε
1+ε

)-strategyproof for
an approximation to within (1 + ε) of the optimal allocation.
This means that a bidder can gain at most (ε

1+ε
)V from a non-

truthful bid, where V is the total surplus from the efficient alloca-
tion. As such, this is an example of a computationally-tractable
ε-dominance result.2 In practice, we can have good confidence
that bidders without good information about the bidding strate-
gies of other participants will have little to gain from attempts at
manipulation.

Section 2 formally defines the forward and reverse auctions,
and defines the VCG mechanisms. We also prove our claims
about ε-strategyproofness. Section 3 provides the generalized
knapsack formulation for the multi-unit allocation problems and
introduces the fully polynomial time approximation scheme. Sec-
tion 4 defines the approximation scheme for the payments in the
VCG mechanism. Section 5 concludes.

1.1 Related Work
There has been considerable interest in recent years in char-

acterizing polynomial-time or approximable special cases of the
general combinatorial allocation problem, in which there are mul-
tiple different items. The combinatorial allocation problem (CAP)
is both NP-complete and inapproximable (e.g. [6]). Although
some polynomial-time cases have been identified for the CAP
[6, 20], introducing an expressive exclusive-orbidding language
quickly breaks these special cases. We identify a non-trivial but
approximable allocation problem with an expressive exclusive-
or bidding language—the bid taker in our setting is allowed to
accept at most one point on the bid curve.

The idea of using approximations within mechanisms, while
retaining either full-strategyproofness or ε-dominance has received
some previous attention. For instance, Lehmann et al. [15] pro-
pose a greedy and strategyproof approximation to a single-minded
combinatorial auction problem. Nisan & Ronen [18] discussed
approximate VCG-based mechanisms, but either appealed to par-
ticular maximal-in-rangeapproximations to retain full strategyproof-
ness, or to resource-bounded agents with information or compu-
tational limitations on the ability to compute strategies. Feigen-

minimum-lot size constraints from the buyers.
2However, this may not be an example of what Feigenbaum &
Shenker refer to as a tolerably-manipulablemechanism [8] be-
cause we have not tried to bound the effect of such a manipula-
tion on the efficiency of the outcome. VCG mechanism do have a
natural “self-correcting” property, though, because a useful ma-
nipulation to an agent is a reported value that improvesthe total
value of the allocation based on the reports of other agents and
the agent’s own value.

baum & Shenker [8] have defined the concept of strategically
faithful approximations, and proposed the study of approxima-
tions as an important direction for algorithmic mechanism de-
sign. Schummer [21] and Parkes et al [19] have previously con-
sidered ε-dominance, in the context of economic impossibility
results, for example in combinatorial exchanges.

Eso et al. [7] have studied a similar procurement problem, but
for a different volume discount model. This earlier work formu-
lates the problem as a general mixed integer linear program, and
gives some empirical results on simulated data.
Kalagnanam et al. [12] address double auctions, where multiple
buyers and sellers trade a divisible good. The focus of this pa-
per is also different: it investigates the equilibrium prices using
the demand and supply curves, whereas our focus is on efficient
mechanism design. Ausubel [1] has proposed an ascending-price
multi-unit auction for buyers with marginal-decreasing values
[1], with an interpretation as a primal-dual algorithm [2].

2. APPROXIMATELY-STRATEGYPROOF
VCG AUCTIONS

In this section, we first describe the marginal-decreasing piece-
wise bidding language that is used in our forward and reverse
auctions. Continuing, we introduce the VCG mechanism for the
problem and the ε-dominance results for approximations to VCG
outcomes. We also discuss the economic properties of VCG
mechanisms in these forward and reverse auction multi-unit set-
tings.

2.1 Marginal-Decreasing Piecewise Bids
We provide a piecewise-constant and marginal-decreasing bid-

ding language. This bidding language is expressive for a natu-
ral class of valuation and cost functions: fixed unit prices over
intervals of quantities. See Figure 1 for an example. In addi-
tion, we slightly relax the marginal-decreasing requirement to
allow: a bidder in the forward auction to state a minimal pur-
chase amount, such that she has zerovalue for quantities smaller
than that amount; a seller in the reverse auction to state a capacity
constraint, such that she has an effectively infinite cost to supply
quantities in excess of a particular amount.

Reverse Auction Bid

7

5 10 20 25

10

8

Quantity

Pr
ic

e

7

5 10 20 25

10

8

Quantity

Pr
ic

e

Forward Auction Bid

Figure 1: Marginal-decreasing, piecewise constant bids. In the
forward auction bid, the bidder offers $10 per unit for quantity in
the range [5, 10), $8 per unit in the range [10, 20), and $7 in the
range [20, 25]. Her valuation is zero for quantities outside the range
[10, 25]. In the reverse auction bid, the cost of the seller is ∞ outside
the range [10, 25].

In detail, in a forward auction, a bid from buyer i can be
written as a list of (quantity-range, unit-price) tuples, ((u1

i , p
1
i),

(u2
i , p

2
i), . . . , (u

mi−1
i , pmi−1

i)), with an upper bound umi
i on the

quantity. The interpretation is that the bidder’s valuation in the

(semi-open) quantity range [uj
i , u

j+1
i) is pj

i for each unit. Ad-
ditionally, it is assumed that the valuation is 0 for quantities less
than u1

i as well as for quantities more than um
i . This is imple-

mented by adding two dummy bid tuples, with zero prices in the
range [0, u1

i) and (umi
i ,∞). We interpret the bid list as defin-

ing a price function, pbid,i(q) = qpj
i , if uj

i ≤ q < uj+1
i , where

j = 1, 2, . . . , mi−1. In order to resolve the boundary condition,
we assume that the bid price for the upper bound quantity umi

i is
pbid,i(u

mi
i) = umi

i pmi−1
i .

A seller’s bid is similarly defined in the reverse auction. The
interpretation is that the bidder’s cost in the (semi-open) quan-
tity range [uj

i , u
j+1
i) is pj

i for each unit. Additionally, it is as-
sumed that the cost is ∞ for quantities less than u1

i as well as
for quantities more than um

i . Equivalently, the unit prices in the
ranges [0, u1

i) and (um
i ,∞) are infinity. We interpret the bid list

as defining a price function, pask,i(q) = qpj
i , if uj

i ≤ q < uj+1
i .

2.2 VCG-Based Multi-Unit Auctions
We construct the tractable and approximately-strategyproof multi-

unit auctions around a VCG mechanism. We assume that all
agents have quasilinear utility functions; that is, ui(q, p) = vi(q)−
p, for a buyer i with valuation vi(q) for q units at price p, and
ui(q, p) = p− ci(q) for a seller i with cost ci(q) at price p. This
is a standard assumption in the auction literature, equivalent to
assuming risk-neutral agents [13]. We will use the term payoff
interchangeably for utility.

In the forward auction, there is a seller with M units to sell.
We assume that this seller has no intrinsic value for the items.
Given a set of bids from I agents, let V (I) denote the maximal
revenue to the seller, given that at most one point on the bid curve
can be selected from each agent and no more than M units of the
item can be sold. Let x∗ = (x∗

1, . . . , x
∗
N) denote the solution

to this winner- determination problem, where x∗
i is the number

of units sold to agent i. Similarly, let V (I \ i) denote the max-
imal revenue to the seller without bids from agent i. The VCG
mechanism is defined as follows:

1. Receive piecewise-constant bid curves and capacity con-
straints from all the buyers.

2. Implement the outcome x∗ that solves the winner-determination
problem with all buyers.

3. Collect payment pvcg,i = pbid,i(x
∗
i)− [V (I)−V (I \ i)]

from each buyer, and pass the payments to the seller.

In this forward auction, the VCG mechanism is strategyproof
for buyers, which means that truthful bidding is a dominant strat-
egy, i.e. utility maximizing whatever the bids of other buyers.
In addition, the VCG mechanism is allocatively-efficient, and the
payments from each buyer are always positive.3 Moreover, each
buyer pays less than its value, and receives payoff V (I)−V (I \
i) in equilibrium; this is precisely the marginal-value that buyer
i contributes to the economic efficiency of the system.

In the reverse auction, there is a buyer with M units to buy,
and n suppliers. We assume that the buyer has value V > 0
to purchase all M units, but zero value otherwise. To simplify
the mechanism design problem we assume that the buyer will
truthfully announce this value to the mechanism.4 The winner-
3In fact, the VCG mechanism maximizes the expected payoff
to the seller across all efficient mechanisms, even allowing for
Bayesian-Nash implementations [14].
4Without this assumption, the Myerson-Satterthwaite [17] im-
possibility result would already imply that we should not expect
an efficient trading mechanism in this setting.

determination problem in the reverse auction is to determine the
allocation, x∗, that minimizesthe cost to the buyer, or forfeits
trade if the minimal cost is greater than value, V .

Let C(I) denote the minimal cost given bids from all sellers,
and let C(I \ i) denote the minimal cost without bids from seller
i. We can assume, without loss of generality, that there is an
efficient trade and V ≥ C(I). Otherwise, then the efficient out-
come is no trade, and the outcome of the VCG mechanism is no
trade and no payments.

The VCG mechanism implements the outcome x∗ that mini-
mizes cost based on bids from all sellers, and then provides pay-
ment pvcg,i = pask,i(x

∗
i)+[V −C(I)−max(0, V −C(I\i))] to

each seller. The total payment is collected from the buyer. Again,
in equilibrium each seller’s payoff is exactly the marginal-value
that the seller contributes to the economic efficiency of the sys-
tem; in the simple case that V ≥ C(I \ i) for all sellers i, this is
precisely C(I \ i) − C(I).

Although the VCG mechanism remains strategyproof for sell-
ers in the reverse direction, its applicability is limited to cases in
which the total payments to the sellers are less than the buyer’s
value. Otherwise, there will be instances in which the buyer will
not choose to voluntarily participate in the mechanism, based on
its own value and its beliefs about the costs of sellers. This leads
to a loss in efficiency when the buyer chooses not to participate,
because efficient trades are missed. This problem with the size of
the payments, does not occur in simple single-item reverse auc-
tions, or even in multi-unit reverse auctions with a buyer that has
a constantmarginal-valuation for each additional item that she
procures.5

Intuitively, the problem occurs in the reverse multi-unit set-
ting because the buyer demands a fixed number of items, and
has zero value without them. This leads to the possibility of the
trade being contingent on the presence of particular, so-called
“pivotal” sellers. Define a seller i as pivotal, if C(I) ≤ V but
C(I\i) > V . In words, there would be no efficient trade without
the seller. Any time there is a pivotal seller, the VCG payments
to that seller allow her to extract all of the surplus, and the pay-
ments are too large to sustain with the buyer’s value unless this
is the only winning seller.

Concretely, we have this participation problem in the reverse
auction when the total payoff to the sellers, in equilibrium, ex-
ceeds the total payoff from the efficient allocation:

V − C(I) ≥
�

i

[V − C(I) − max(0, V − C(I \ i))]

As stated above, first notice that we require V > C(I \ i)
for all sellers i. In other words, there must be no pivotal sellers.
Given this, it is then necessary and sufficient that:

V − C(I) ≥
�

i

(C(I \ i) − C(I)) (1)

5To make the reverse auction symmetric with the forward direc-
tion, we would need a buyer with a constantmarginal-value to
buy the first M units, and zero value for additional units. The
payments to the sellers would never exceed the buyer’s value in
this case. Conversely, to make the forward auction symmetric
with the reverse auction, we would need a seller with a constant
(and high) marginal-cost to sell anything less than the first M
units, and then a low (or zero) marginal cost. The total payments
received by the seller can be less than the seller’s cost for the
outcome in this case.

In words, the surplus of the efficient allocation must be greater
than the total marginal-surplus provided by each seller.6

Consider an example with 3 agents {1, 2, 3}, and V = 150
and C(123) = 50. Condition (1) holds when C(12) = C(23) =
70 and C(13) = 100, but not when C(12) = C(23) = 80
and C(13) = 100. In the first case, the agent payoffs π =
(π0, π1, π2, π3), where 0 is the seller, is (10, 20, 50, 20). In the
second case, the payoffs are π = (−10, 30, 50, 30).

One thing we do know, because the VCG mechanism will
maximize the payoff to the buyer across all efficient mechanisms
[14], is that whenever Eq. 1 is not satisfied there can be no effi-
cient auction mechanism.7

2.3 ε-Strategyproofness
We now consider the same VCG mechanism, but with an ap-

proximation scheme for the underlying allocation problem. We
derive an ε-strategyproofness result, that bounds the maximal
gain in payoff that an agent can expect to achieve through a uni-
lateral deviation from following a simple truth-revealing strategy.
We describe the result for the forward auction direction, but it is
quite a general observation.

As before, let V (I) denote the value of the optimal solution
to the allocation problem with truthful bids from all agents, and
V (I \ i) denote the value of the optimal solution computed with-
out bids from agent i. Let V̂ (I) and V̂ (I \ i) denote the value
of the allocation computed with an approximation scheme, and
assume that the approximation satisfies:

(1 + ε)V̂ (I) ≥ V (I)

for some ε > 0. We provide such an approximation scheme
for our setting later in the paper. Let x̂ denote the allocation
implemented by the approximation scheme.

The payoff to agent i, for announcing valuation v̂i, is:

vi(x̂i) +
�
j �=i

v̂j(x̂j) − V̂ (I \ i)

The final term is independent of the agent’s announced value,
and can be ignored in an incentive-analysis. However, agent i
can try to improve its payoff through the effect of its announced
value on the allocation x̂ implemented by the mechanism. In par-
ticular, agent i wants the mechanism to select x̂ to maximize the
sum of its true value, vi(x̂i), and the reported value of the other
agents,

�
j �=i v̂j(x̂j). If the mechanism’s allocation algorithm is

optimal, then all the agent needs to do is truthfully state its value
and the mechanism will do the rest. However, faced with an ap-
proximate allocation algorithm, the agent can try to improve its
payoff by announcing a value that correctsfor the approxima-
tion, and causes the approximation algorithm to implement the
allocation that exactly maximizes the total reported value of the
other agents together with its own actual value [18].

6This condition is implied by the agents are substitutesrequire-
ment [3], that has received some attention in the combinatorial
auction literature because it characterizes the case in which VCG
payments can be supported in a competitive equilibrium. Useful
characterizations of conditions that satisfy agents are substitutes,
in terms of the underlying valuations of agents have proved quite
elusive.
7Moreover, although there is a small literature on maximally-
efficient mechanisms subject to requirements of voluntary-
participation and budget-balance (i.e. with the mechanism nei-
ther introducing or removing money), analytic results are only
known for simple problems (e.g. [16, 4]).

We can now analyze the best possible gain from manipula-
tion to an agent in our setting. We first assume that the other
agents are truthful, and then relax this. In both cases, the max-
imal benefit to agent i occurs when the initial approximation is
worst-case. With truthful reports from other agents, this occurs
when the value of choice x̂ is V (I)/(1 + ε). Then, an agent
could hope to receive an improved payoff of:

V (I) − V (I)

1 + ε
=

ε

1 + ε
V (I)

This is possible if the agent is able to select a reported type to
correct the approximation algorithm, and make the algorithm im-
plement the allocation with value V (I). Thus, if other agents are
truthful, and with a (1 + ε)-approximation scheme to the alloca-
tion problem, then no agent can improve its payoff by more than
a factor ε/(1 + ε) of the value of the optimal solution.

The analysis is very similar when the other agents are not
truthful. In this case, an individual agent can improve its pay-
off by no more than a factor ε/(1+ ε) of the value of the optimal
solution given the values reported by the other agents.

Let V in the following theorem define the total value of the
efficient allocation, given the reportedvalues of agents j �= i,
and the true value of agent i.

THEOREM 1. A VCG-based mechanism with a(1 + ε)-
allocation algorithm is(ε

1+ε
−V) strategyproof for agenti, and

agenti can gain at most this payoff through some non-truthful
strategy.

Notice that we did not need to bound the error on the allocation
problems without each agent, because the ε-strategyproofness
result follows from the accuracy of the first-term in the VCG
payment and is independent of the accuracy of the second-term.
However, the accuracy of the solution to the problem without
each agent is important to implement a good approximation to
the revenueproperties of the VCG mechanism.

3. THE GENERALIZED KNAPSACK PROB-
LEM

In this section, we design a fully polynomial approximation
scheme for the generalized knapsack, which models the winner-
determination problem for the VCG-based multi-unit auctions.
We describe our results for the reverse auction variation, but the
formulation is completely symmetric for the forward-auction.

In describing our approximation scheme, we begin with a sim-
ple property (the Anchor property) of an optimal knapsack solu-
tion. We use this property to develop an O(n2) time 2-approximation
for the generalized knapsack. In turn, we use this basic ap-
proximation to develop our fully polynomial-time approximation
scheme (FPTAS).

One of the major appeals of our piecewise bidding language
is its compact representationof the bidder’s valuation functions.
We strive to preserve this, and present an approximation scheme
that will depend only on the number of bidders, and not the max-
imum quantity, M , which can be very large in realistic procure-
ment settings.

The FPTAS implements an (1 + ε) approximation to the op-
timal solution x∗, in worst-case time T = O(n3/ε), where n is
the number of bidders, and where we assume that the piecewise
bid for each bidder has O(1) pieces. The dependence on the
number of pieces is also polynomial: if each bid has a maximum

of c pieces, then the running time can be derived by substituting
nc for each occurrence of n.

3.1 Preliminaries
Before we begin, let us recall the classic 0/1 knapsack prob-

lem: we are given a set of n items, where the item i has value
vi and sizesi, and a knapsack of capacity M ; all sizes are in-
tegers. The goal is to determine a subset of items of maximum
value with total size at most M . Since we want to focus on a re-
verse auction, the equivalent knapsack problem will be to choose
a set of items with minimum value(i.e. cost) whose size exceeds
M . The generalized knapsack problemof interest to us can be
defined as follows:

Generalized Knapsack:
Instance: A target M , and a set of n lists, where the ith list has

the form

Bi = 〈(u1
i , p

1
i), . . . , (u

mi−1
i , pmi−1

i), (umi
i (i),∞)〉,

where uj
i are increasing with j and pj

i are decreasing with
j, and uj

i , p
j
i , M are positive integers.

Problem: Determine a set of integers xj
i such that

1. (One per list) At most one xj
i is non-zero for any i,

2. (Membership) xj
i �= 0 implies xj

i ∈ [uj
i , uj+1

i),

3. (Target)
�

i

�
j xj

i ≥ M , and

4. (Objective)
�

i

�
j pj

ix
j
i is minimized.

This generalized knapsack formulation is a clear generaliza-
tion of the classic 0/1 knapsack. In the latter, each list consists of
a single point (si, vi).8

The connection between the generalized knapsack and our auc-
tion problem is transparent. Each list encodes a bid, represent-
ing multiple mutually exclusivequantity intervals, and one can
choose any quantity in an interval, but at most one interval can
be selected. Choosing interval [uj

i , u
j+1
i) has cost pj

i per unit.
The goal is to procure at least M units of the good at minimum
possible cost. The problem has some flavor of the continuous
knapsack problem. However, there are two major differences that
make our problem significantly more difficult: (1) intervals have
boundaries, and so to choose interval [uj

i , u
j+1
i) requires that at

least uj
i and at most uj+1

i units must be taken; (2) unlike the
classic knapsack, we cannot sort the items (bids) by value/size,
since different intervals in one list have different unit costs.

3.2 A 2-Approximation Scheme
We begin with a definition. Given an instance of the gener-

alized knapsack, we call each tuple tji = (uj
i , p

j
i) an anchor.

Recall that these tuples represent the breakpoints in the piecewise
constant curve bids. We say that the sizeof an anchor tji is uj

i ,
8In fact, because of the “one per list” constraint, the generalized
problem is closer in spirit to the multiple choice knapsackprob-
lem [9], where the underling set of items is partitioned into dis-
joint subsets U1, U2, . . . , Uk, and one can choose at most one
item from each subset. PTAS do exist for this problem [10],
and indeed, one can convert our problem into a huge instance
of the multiple choice knapsack problem, by creating one group
for each list; put a (quantity, price) point tuple (x, p) for each
possible quantityfor a bidder into his group (subset). However,
this conversion explodes the problem size, making it infeasible
for all but the most trivial instances.

the minimum number of units available at this anchor’s price pj
i .

The costof the anchor tji is defined to be the minimum total price
associated with this tuple, namely, cost(tji) = pj

iu
j
i if j < mi,

and cost(tmi
i) = pmi−1

i umi
i .

In a feasible solution {x1, x2, . . . , xn} of the generalized knap-
sack, we say that an element xi �= 0 is an anchor if xi = uj

i , for
some anchor uj

i . Otherwise, we say that xi is midrange. We
observe that an optimal knapsack solution can always be con-
structed so that at most one solution element is midrange. If there
are two midrange elements x and x′, for bids from two different
agents, with x ≤ x′, then we can increment x′ and decrement
x, until one of them becomes an anchor. See Figure 2 for an
example.

LEMMA 1. [Anchor Property] There exists an optimal solu-
tion of the generalized knapsack problem with at most one midrange
element. All other elements are anchors.

 1 midrange bid

5

20

15

10

25

5 25 30201510 35

3

2

1

P
ri

ce
Quantity

5

20

15

10

25

5 25 30201510 35

3

2

1

P
ri

ce

Quantity

(i) Optimal solution with
 2 midrange bids

(ii) Optimal soltution with

Figure 2: (i) An optimal solution with more than one bid not an-
chored (2,3); (ii) an optimal solution with only one bid (3) not an-
chored.

We use the anchor property to first obtain a polynomial-time
2-approximation scheme. We do this by solving several instances
of a restricted generalized-knapsack problem, which we call iK-
napsack , where one element is forced to be midrange for a par-
ticular interval.

Specifically, suppose element x� for agent l is forced to lie in
its jth range, [uj

� , u
j+1
�), while all other elements, x1, . . . , xl−1,

xl+1, xn, are required to be anchors, or zero. This corresponds
to the restricted problem iKnapsack(�, j), in which the goal is to
obtain at least M − uj

� units with minimum cost. Element x�

is assumed to have already contributed uj
� units. The value of

a solution to iKnapsack(�, j) represents the minimal additional
cost to purchase the rest of the units.

We create n − 1 groups of potential anchors, where ith group
contains all the anchors of the list i in the generalized knapsack.
The group for agent l contains a single element that represents
the interval [0, uj+1

� −uj
�), and the associated unit-price pj

� . This
interval represents the excess number of units that can be taken
from agent l in iKnapsack(�, j), in addition to uj

� , which has
already been committed. In any other group, we can choose at
most one anchor.

The following pseudo-code describes our algorithm for this
restriction of the generalized knapsack problem. U is the union
of all the tuples in n groups, including a tuple t� for agent l. The
sizeof this special tuple is defined as uj+1

� − uj
� , and the costis

defined as pj
l (u

j+1
� −uj

�). R is the number of units that remain to
be acquired. S is the set of tuples accepted in the current tentative

solution. Best is the best solution found so far. Variable Skip is
only used in the proof of correctness.

Algorithm Greedy(�, j)

1. Sort all tuples of U in the ascending order of unit price; in
case of ties, sort in ascending order of unit quantities.

2. Set mark(i) = 0, for all lists i = 1, 2, . . . , n.
Initialize R = M − uj

� , S = Best = Skip = ∅.

3. Scan the tuples in U in the sorted order. Suppose the next
tuple is tk

i , i.e. the kth anchor from agent i.
If mark(i) = 1, ignore this tuple;
otherwise do the following steps:

• if size(tk
i) > R and i = �

return min {cost(S) + Rpj
�, cost(Best)};

• if size(tk
i) > R and cost(tk

i) ≤ cost(S)
return min {cost(S) + cost(tk

i), cost(Best)};

• if size(tk
i) > R and cost(tk

i) > cost(S)
Add tk

i to Skip; Set Best to S ∪ {tk
i } if cost

improves;

• if size(tk
i) ≤ R then

add tk
i to S; mark(i) = 1; subtract size(tk

i)
from R.

The approximation algorithm is very similar to the approxima-
tion algorithm for knapsack. Since we wish to minimize the total
cost, we consider the tuples in order of increasing per unit cost. If
the size of tuple tki is smaller than R, then we add it to S, update
R, and delete from U all the tuples that belong to the same group
as tk

i . If size(tk
i) is greater than R, then S along with tki forms a

feasible solution. However, this solution can be far from optimal
if the size of tk

i is much larger than R. If total cost of S and tki
is smaller than the current best solution, we update Best . One
exception to this rule is the tuple t�. Since this tuple can be taken
fractionally, we update Best if the sum of S’s cost and fractional
cost of t� is an improvement.

The algorithm terminates in either of the first two cases, or
when all tuples are scanned. In particular, it terminates whenever
we find a tk

i such that size(tk
i) is greater than R but cost(tki) is

less than cost(S), or when we reach the tuple representing agent
l and it gives a feasible solution.

LEMMA 2. SupposeA∗ is an optimal solution of the general-
ized knapsack, and suppose that element(l, j) is midrange in the
optimal solution. Then, the costV (l, j), returned by Greedy(�, j),
satisfies:

V (�, j) + cost(tj
�) ≤ 2cost(A∗)

PROOF. Let V (�, j) be the value returned by Greedy(�, j) and
let V ∗(�, j) be an optimal solution for iKnapsack(�, j). Consider
the set Skip at the termination of Greedy(�, j). There are two
cases to consider: either some tuple t ∈ Skip is also in V ∗(�, j),
or no tuple in Skip is in V ∗(�, j). In the first case, let St be the
tentative solution S at the time t was added to Skip. Because
t ∈ Skip then size(t) > R, and St together with t forms a
feasible solution, and we have:

V (�, j) ≤ cost(Best) ≤ cost(St) + cost(t).

Again, because t ∈ Skip then cost(t) > cost(St), and we have
V (�, j) < 2cost(t). On the other hand, since t is included in

V ∗(�, j), we have V ∗(�, j) ≥ cost(t). These two inequalities
imply the desired bound:

V ∗(�, j) ≤ V (�, j) < 2V ∗(�, j).

In the second case, imagine a modified instance of iKnap-
sack (�, j), which excludesall the tuples of the set Skip. Since
none of these tuples were included in V ∗(�, j), the optimal solu-
tion for the modified problem should be the same as the one for
the original. Suppose our approximation algorithm returns the
value V ′(�, j) for this modified instance. Let t′ be the last tuple
considered by the approximation algorithm before termination
on the modified instance, and let St′ be the corresponding tenta-
tive solution set in that step. Since we consider tuples in order
of increasing per unit price, and none of the tuples are going to
be placed in the set Skip, we must have cost(St′) < V ∗(�, j)
because St′ is the optimal way to obtain size(St′).

We also have cost(t′) ≤ cost(St′), and the following in-
equalities:

V (�, j) ≤ V ′(�, j) ≤ cost(St′) + cost(t′)

< 2V ∗(�, j)

The inequality V (�, j) ≤ V ′(�, j) follows from the fact that a
tuple in the Skip list can only affect the Best but not the tentative
solutions. Therefore, dropping the tuples in the set Skip can only
make the solution worse.

The above argument has shown that the value returned by Greedy(�, j)
is within a factor 2 of the optimal solution for iKnapsack(�, j).
We now show that the value V (�, j) plus cost(tj�) is a 2-approximation
of the original generalized knapsack problem.

Let A∗ be an optimal solution of the generalized knapsack,
and suppose that element xj

� is midrange. Let x−� to be set of
the remaining elements, either zero or anchors, in this solution.
Furthermore, define x′

� = xj
� − uj

� . Thus,

cost(A∗) = cost(x′
l) + cost(tj

l) + cost(x−l)

It is easy to see that (x−�, x
′
�) is an optimal solution for iKnapsack(�, j).

Since V (�, j) is a 2-approximation for this optimal solution, we
have the following inequalities:

V (�, j) + cost(tj
�) ≤ cost(tj

�) + 2(cost(x′
�) + cost(x−�))

≤ 2(cost(x′
�) + cost(tj

�) + cost(x−�))

≤ 2cost(A∗)

This completes the proof of Lemma 2.

It is easy to see that, after an initial sorting of the tuples in U ,
the algorithm Greedy(�, j) takes O(n) time. We have our first
polynomial approximation algorithm.

THEOREM 2. A 2-approximation of the generalized knapsack
problem can be found in timeO(n2), wheren is number of item
lists (each of constant length).

PROOF. We run the algorithm Greedy(�, j) once for each tu-
ple (l, j) as a candidate for midrange. There are O(n) tuples,
and it suffices to sort them once, the total cost of the algorithm is
O(n2). By Lemma 1, there is an optimal solution with at most
one midrange element, so our algorithm will find a 2-approximation,
as claimed.

The dependence on the number of pieces is also polynomial:
if each bid has a maximum of c pieces, then the running time is
O((nc)2).

3.3 An Approximation Scheme
We now use the 2-approximation algorithm presented in the

preceding section to develop a fully polynomial approximation
(FPTAS) for the generalized knapsack problem. The high level
idea is fairly standard, but the details require technical care. We
use a dynamic programming algorithm to solve iKnapsack (�, j)
for each possible midrange element, with the 2-approximation
algorithm providing an upper bound on the value of the solution
and enabling the use of scaling on the cost dimension of the dy-
namic programming (DP) table.

Consider, for example, the case that the midrange element is
x�, which falls in the range [uj

� , u
j+1
�). In our FPTAS, rather

than using a greedy approximation algorithm to solve iKnap-
sack (�, j), we construct a dynamic programming table to com-
pute the minimum cost at which at least M − uj+1

� units can
be obtained using the remaining n − 1 lists in the generalized
knapsack.

Suppose G[i, r] denotes the maximum number of units that
can be obtained at cost at most r using only the first i lists in the
generalized knapsack. Then, the following recurrence relation
describes how to construct the dynamic programming table:

G[0, r] = 0

G[i, r] = max

�
G[i − 1, r]

max
j∈β(i,r)

{G[i − 1, r − cost(tj
i)] + uj

i}
�

where β(i, r) = {j : 1 ≤ j ≤ mi, cost(tj
i) ≤ r}, is the set

of anchors for agent i. As convention, agent i will index the row,
and cost r will index the column.

This dynamic programming algorithm is only pseudo-polynomial,
since the number of column in the dynamic programming table
depends upon the total cost. However, we can convert it into a
FPTAS by scalingthe cost dimension.

Let A denote the 2-approximation to the generalized knapsack
problem, with total cost, cost(A). Let ε denote the desired ap-
proximation factor. We compute the scaled costof a tuple tji ,
denoted scost(tji), as

scost(tj
i) =
n cost(tj

i)

εcost(A)
� (2)

This scaling improves the running time of the algorithm be-
cause the number of columns in the modified table is at most

n

ε
�, and independent of the total cost. However, the computed

solution might not be an optimal solution for the original prob-
lem. We show that the error introduced is within a factor of ε of
the optimal solution.

As a prelude to our approximation guarantee, we first show
that if two different solutions to the iKnapsack problem have
equal scaled cost, then their original (unscaled) costs cannot dif-
fer by more than εcost(A).

LEMMA 3. Let x and y be two distinct feasible solutions of
iKnapsack(�, j), excluding their midrange elements. Ifx and y
have equal scaled costs, then their unscaled costs cannot differ
by more thanεcost(A).

PROOF. Let Ix and Iy, respectively, denote the indicator func-
tions associated with the anchor vectors x and y—there is 1 in
position Ix[i, k] if the xk

i > 0. Since x and y has equal scaled
cost,�

i�=�

�
k

scost(tk
i)Ix[i, k] =

�
i�=�

�
k

scost(tk
i)Iy[i, k] (3)

However, by (2), the scaled costs satisfy the following inequali-
ties:

(scost(tk
i) − 1)εcost(A)

n
≤ cost(tk

i) ≤ scost(tk
i)εcost(A)

n
(4)

Substituting the upper-bound on scaled cost from (4) for cost(x),
the lower-bound on scaled cost from (4) for cost(y), and using
equality (3) to simplify, we have:

cost(x)− cost(y) ≤ εcost(A)

n

�
i�=�

�
k

Iy[i, k] ≤ εcost(A),

The last inequality uses the fact that at most n components
of an indicator vector are non-zero; that is, any feasible solution
contains at most n tuples.

Finally, given the dynamic programming table for iKnapsack(�, j),
we consider all the entries in the last row of this table, G[n−1, r].
These entries correspond to optimal solutions with all agents ex-
cept l, for different levels of cost. In particular, we consider the
entries that provide at least M − uj+1

� units. Together with a
contribution from agent l, we choose the entry in this set that
minimizesthe total cost, defined as follows:

cost(G[n − 1, r]) + max {uj
� , M − G[n − 1, r]}pj

� ,

where cost() is the original, unscaled cost associated with en-
try G[n−1, r]. It is worth noting, that unlike the 2-approximation
scheme for iKnapsack(�, j), the value computed with this FPTAS
includes the cost to acquire uj

l units from l.
The following lemma shows that we achieve a (1+ε)-approximation.

LEMMA 4. SupposeA∗ is an optimal solution of the gen-
eralized knapsack problem, and suppose that element(l, j) is
midrange in the optimal solution. Then, the solutionA(l, j) from
running the scaled dynamic-programming algorithm oniKnapsack(�, j)
satisfies

cost(A(l, j)) ≤ (1 + 2ε)cost(A∗)

PROOF. Let x−� denote the vector of the elements in solu-
tion A∗ without element l. Then, by definition, cost(A∗) =
cost(x−�) + pj

�x
j
� . Let r = scost(x−�) be the scaled cost as-

sociated with the vector x−�. Now consider the dynamic pro-
gramming table constructed for iKnapsack(�, j), and consider its
entry G[n − 1, r]. Let A denote the 2-approximation to the gen-
eralized knapsack problem, and A(l, j) denote the solution from
the dynamic-programming algorithm.

Suppose y−� is the solution associated with this entry in our
dynamic program; the components of the vector y−� are the quan-
tities from different lists. Since both x−� and y−� have equal
scaled costs, by Lemma 3, their unscaled costs are within εcost(A)
of each other; that is,

cost(y−�) − cost(x−�) ≤ εcost(A).

Now, define yj
� = max{uj

� , M −�i�=�

�
j yj

i }; this is the

contribution needed from � to make (y−�, y
j
�) a feasible solution.

Among all the equal cost solutions, our dynamic programming
tables chooses the one with maximum units. Therefore,�

i�=�

�
j

yj
i ≥

�
i�=�

�
j

xj
i

Therefore, it must be the case that yj
� ≤ xj

� . Because (yj
� , y−�)

is also a feasible solution, if our algorithm returns a solution with
cost cost(A(l, j)), then we must have

cost(A(l, j)) ≤ cost(y−�) + pj
� yj

�

≤ cost(x−�) + εcost(A) + pj
� xj

�

≤ (1 + 2ε)cost(A∗),

where we use the fact that cost(A) ≤ 2cost(A∗).

Putting this together, our approximation scheme for the gener-
alized knapsack problem will iterate the scheme described above
for each choice of the midrange element (l, j), and choose the
best solution from among these O(n) solutions.

For a given midrange, the most expensive step in the algorithm
is the construction of dynamic programming table, which can be
done in O(n2/ε) time assuming constant intervals per list. Thus,
we have the following result.

THEOREM 3. We can compute an(1 + ε) approximation to
the solution of a generalized knapsack problem in worst-case
timeO(n3/ε).

The dependence on the number of pieces is also polynomial: if
each bid has a maximum of c pieces, then the running time can
be derived by substituting cn for each occurrence of n.

4. COMPUTING VCG PAYMENTS
We now consider the related problem of computing the VCG

payments for all the agents. A naive approach requires solving
the allocation problem n times, removing each agent in turn. In
this section, we show that our approximation scheme for the gen-
eralized knapsack can be extended to determine all n payments
in total time O(αT log(αn/ε)), where 1 ≤ C(I\i)/C(I) ≤ α,
for a constant upper bound, α, and T is the complexity of solv-
ing the allocation problem once. This α-bound can be justified
as a “no monopoly” condition, because it bounds the marginal
value that a single buyer brings to the auction. Similarly, in the
reverse variation we can compute the VCG payments to each
seller in time O(αT log(αn/ε)), where α bounds the ratio C(I\
i)/C(I) for all i.

Our overall strategy will be to build two dynamic program-
ming tables, forward and backward, for each midrange element
(l, j) once. The forward table is built by considering the agents
in the order of their indices, where as the backward table is built
by considering them in the reverse order. The optimal solution
corresponding to C(I \ i) can be broken into two parts: one cor-
responding to first (i − 1) agents and the other corresponding to
last (n− i) agents. As the (i− 1)th row of the forward table cor-
responds to the sellers with first (i−1) indices, an approximation
to the first part will be contained in (i − 1)th row of the forward
table. Similarly, (n− i)th row of the backward table will contain
an approximation for the second part. We first present a sim-
ple but an inefficient way of computing the approximate value of
C(I \ i), which illustrates the main idea of our algorithm. Then
we present an improved scheme, which uses the fact that the el-
ements in the rows are sorted, to compute the approximate value
more efficiently.

In the following, we concentrate on computing an allocation
with xj

� being midrange, and some agent i �= l removed. This
will be a component in computing an approximation to C(I \ i),
the value of the solution to the generalized knapsack without bids
from agent i. We begin with the simple scheme.

4.1 A Simple Approximation Scheme
We implement the scaled dynamic programming algorithm for

iKnapsack (�, j) with two alternate orderings over the other sell-
ers, k �= l, one with sellers ordered 1, 2, . . . , n, and one with
sellers ordered n, n − 1, . . . , 1. We call the first table the for-
ward table, and denote it F�, and the second table the backward
table, and denote it Bl. The subscript � reminds us that the agent
� is midrange.9

In building these tables, we use the same scaling factor as be-
fore; namely, the cost of a tuple tji is scaled as follows:

scost(tj
i) =
ncost(tj

i)

εcost(A)
�

where cost(A) is the upper bound on C(I), given by our 2-
approximation scheme. In this case, because C(I \ i) can be α
times C(I), the scaled value of C(I \ i) can be at most nα/ε.
Therefore, the cost dimension of our dynamic program’s table
will be nα/ε.

FlTable

F (i−1)l

2 3
1

2

i−1

1 m−1 m

n−1

g

2 31 m−1 m

B (n−i)

n−1
n−2

n−i

1

lh

Table Bl

Figure 3: Computing VCG payments. m = nα
ε

Now, suppose we want to compute a (1 + ε)-approximation
to the generalized knapsack problem restricted to element (l, j)
midrange, and further restricted to removebids from some seller
i �= l. Call this problem iKnapsack−i(�, j).

Recall that the ith row of our DP table stores the best solution
possible using only the first i agents excluding agent l, all of
them either cleared at zero, or on anchors. These first i agents
are a different subset of agents in the forward and the backward
tables. By carefully combining one row of Fl with one row of
Bl we can compute an approximation to iKnapsack−i(�, j). We
consider the row of Fl that corresponds to solutions constructed
from agents {1, 2, . . . , i − 1}, skipping agent l. We consider the
row of Bl that corresponds to solutions constructed from agents
{i+1, i+2, . . . , n}, again skipping agent l. The rows are labeled
Fl(i − 1) and Bl(n − i) respectively.10 The scaled costs for
acquiring these units are the column indices for these entries. To
solve iKnapsack−i(�, j) we choose one entry from row F�(i−1)
and one from row B�(n−i) such that their total quantity exceeds
M − uj+1

� and their combined cost is minimum over all such
combinations. Formally, let g ∈ Fl(i − 1), and h ∈ Bl(n − 1)
denote entries in each row, with size(g), size(h), denoting the
number of units and cost(g) and cost(h) denoting the unscaled
cost associated with the entry. We compute the following, subject

9We could label the tables with both � and j, to indicate the jth
tuple is forced to be midrange, but omit j to avoid clutter.

10To be precise, the index of the rows are (i − 2) and (n − i) for
Fl and Bl when l < i, and (i− 1) and (n− i− 1), respectively,
when l > i.

to the conditionthat g and h satisfy size(g) + size(h) > M −
uj+1

� :

min
g∈F�(i−1),h∈B�(n−i)

�
cost(g) + cost(h) +

pj
� · max{uj

� , M − size(g) − size(h)}
�

(5)

LEMMA 5. SupposeA−i is an optimal solution of the gener-
alized knapsack problem without bids from agenti, and suppose
that element(l, j) is the midrange element in the optimal solu-
tion. Then, the expression in Eq. 5, for the restricted problem
iKnapsack−i(�, j), computes a(1 + ε)-approximation toA−i.

PROOF. From earlier, we define cost(A−i) = C(I \ i). We
can split the optimal solution, A−i, into three disjoint parts: xl

corresponds to the midrange seller, xi corresponds to first i − 1
sellers (skipping agent l if l < i), and x−i corresponds to last
n − i sellers (skipping agent l if l > i). We have:

cost(A−i) = cost(xi) + cost(x−i) + pj
�x

j
�

Let ri = scost(xi) and r−i = scost(x−i). Let yi and y−i

be the solution vectors corresponding to scaled cost ri and r−i

in F�(i − 1) and B�(n − i), respectively. From Lemma 3 we
conclude that,

cost(yi) + cost(y−i) − cost(xi) − cost(x−i) ≤ εcost(A)

where cost(A) is the upper-bound on C(I) computed with the
2-approximation.

Among all equal scaled cost solutions, our dynamic program
chooses the one with maximum units. Therefore we also have,

(size(yi) ≥ size(xi)) and (size(y−i) ≥ size(x−i))

where we use shorthand size(x) to denote total number of units
in all tuples in x.

Now, define yj
l = max(uj

l , M−size(yi)−size(y−i)). From
the preceding inequalities, we have yj

l ≤ xj
l . Since (yj

l , yi, y−i)
is also a feasible solution to the generalized knapsack problem
without agent i, the value returned by Eq. 5 is at most

cost(yi) + cost(y−i) + pj
l y

j
l ≤ C(I \ i) + εcost(A)

≤ C(I \ i) + 2cost(A∗)ε

≤ C(I \ i) + 2C(I \ i)ε

This completes the proof.

A naive implementation of this scheme will be inefficient be-
cause it might check (nα/ε)2 pairs of elements, for any partic-
ular choice of (l, j) and choice of dropped agent i. In the next
section, we present an efficient way to compute Eq. 5, and even-
tually to compute the VCG payments.

4.2 Improved Approximation Scheme
Our improved approximation scheme for the winner-determination

problem without agent i uses the fact that elements in F�(i − 1)
and B�(n − i) are sorted; specifically, both, unscaled cost and
quantity (i.e. size), increases from left to right. As before, let
g and h denote generic entries in F�(i − 1) and B�(n − i) re-
spectively. To compute Eq. 5, we consider all the tuple pairs, and
first divide the tuples that satisfy condition size(g) + size(h) >
M − uj+1

l into two disjoint sets. For each set we compute the
best solution, and then take the best between the two sets.
[case I: size(g) + size(h) ≥ M − uj

l]

The problem reduces to

min
g∈F�(i−1), h∈B�(n−i)

�
cost(g) + cost(h) + pj

l u
j
�

�
(6)

We define a pair (g, h) to be feasibleif size(g) + size(h) ≥
M − uj

l . Now to compute Eq. 6, we do a forward and backward
walk on F�(i − 1) and B�(n − i) respectively. We start from
the smallest index of F�(i − 1) and move right, and from the
highest index of B�(n − i) and move left. Let (g, h) be the
current pair. If (g, h) is feasible, we decrement B’s pointer (that
is, move backward) otherwise we increment F ’s pointer. The
feasible pairs found during the walk are used to compute Eq. 6.
The complexity of this step is linear in size of F�(i − 1), which
is O(nα/ε).
[case II: M − uj+1

l ≤ size(g) + size(h) ≤ M − uj
l]

The problem reduces to

min
g∈F�(i−1), h∈B�(n−i)

�
cost(g) + cost(h) +

pj
l (M − size(g) − size(h))

�
To compute the above equation, we transform the above prob-

lem to another problem using modified cost, which is defined as:

mcost(g) = cost(g) − pj
l · size(g)

mcost(h) = cost(h) − pj
l · size(h)

The new problem is to compute

min
g∈F�(i−1), h∈B�(n−i)

�
mcost(g) + mcost(h) + pj

l M
�

(7)

The modified cost simplifies the problem, but unfortunately
the elements in F�(i − 1) and B�(n − i) are no longer sorted
with respect to mcost. However, the elements are still sorted in
quantity and we use this property to compute Eq. 7. Call a pair
(g, h) feasibleif M − uj+1

l ≤ size(g) + size(h) ≤ M − uj
l .

Define the feasible setof g as the elements h ∈ B�(n − i) that
are feasible given g. As the elements are sorted by quantity, the
feasible set of g is a contiguous subset of B�(n − i) and shifts
left as g increases.

2 3 4 5

10 20 30 40 50 60

Begin End

B (n−i)15 20 25 30 35 40

65421 3

1 6

F (i−1)l

l

Figure 4: The feasible set of g = 3, defined on B�(n − i), is
{2, 3, 4} when M − uj+1

l = 50 and M − uj
l = 60. Begin and

End represent the start and end pointers to the feasible set.

Therefore, we can compute Eq. 7 by doing a forward and back-
ward walk on F�(i− 1) and B�(n− i) respectively. We walk on
B�(n − i), starting from the highest index, using two pointers,
Begin and End , to indicate the start and end of the current fea-
sible set. We maintain the feasible set as a min heap, where the
key is modified cost. To update the feasible set, when we incre-
ment F ’s pointer(move forward), we walk left on B, first using
End to remove elements from feasible set which are no longer

feasible and then using Begin to add new feasible elements. For
a given g, the only element which we need to consider in g’s
feasible set is the one with minimum modified cost which can
be computed in constant time with the min heap. So, the main
complexity of the computation lies in heap updates. Since, any
element is added or deleted at most once, there are O(nα

ε
) heap

updates and the time complexity of this step is O(nα
ε

log nα
ε

).

4.3 Collecting the Pieces
The algorithm works as follows. First, using the 2 approxima-

tion algorithm, we compute an upper bound on C(I). We use
this bound to scale down the tuple costs. Using the scaled costs,
we build the forward and backward tables corresponding to each
tuple (l, j). The forward tables are used to compute C(I). To
compute C(I \ i), we iterate over all the possible midrange tu-
ples and use the corresponding forward and backward tables to
compute the locally optimal solution using the above scheme.
Among all the locally optimal solutions we choose one with the
minimum total cost.

The most expensive step in the algorithm is computation of
C(I \ i). The time complexity of this step is O(n2α

ε
log nα

ε
)

as we have to iterate over all O(n) choices of tjl , for all l �=
i, and each time use the above scheme to compute Eq. 5. In
the worst case, we might need to compute C(I \ i) for all n
sellers, in which case the final complexity of the algorithm will
be O(n3α

ε
log nα

ε
).

THEOREM 4. We can compute anε/(1+ε)-strategyproof ap-
proximation to the VCG mechanism in the forward and reverse
multi-unit auctions in worst-case timeO(n3α

ε
log nα

ε
).

It is interesting to recall that T = O(n3

ε
) is the time complex-

ity of the FPTAS to the generalized knapsack problem with all
agents. Our combined scheme computes an approximation to the
complete VCG mechanism, including payments to O(n) agents,
in time complexity O(T log(n/ε)), taking the no-monopoly pa-
rameter, α, as a constant. Thus, our algorithm performs much
better than the naive scheme, which computes the VCG pay-
ment for each agent by solving a new instance of generalized
knapsack problem. The speed up comes from the way we solve
iKnapsack−i(�, j). Time complexity of computng iKnapsack−i(�, j)

by creating a new dynamic programming table will be O(n2

ε
)

but by using the forward and backward tables, the complexity is
reduced to O(n

ε
log n

ε
). We can further improve the time com-

plexity of our algorithm by computing Eq. 5 more efficiently.
Currently, the algorithm uses heap, which has lograthmic update
time. In worst case, we can have two heap update operations
for each element, which makes the time complexity super linear.
If we can compute Eq. 5 in linear time then the complexity of
computing the VCG payment will be same as the complexity of
solving a single generalized knapsack problem.

5. CONCLUSIONS
We presented a fully polynomial-time approximation scheme

for the single-good multi-unit auction problem, using marginal
decreasing piecewise constant bidding language. Our scheme
is both approximately efficient and approximately strategyproof
within any specified factor ε > 0. As such it is an example of
computationally tractable ε-dominance result, as well as an ex-
ample of a non-trivial but approximable allocation problem. It

is particularly interesting that we are able to compute the pay-
ments to n agents in a VCG-based mechanism in worst-case time
O(T log n), where T is the time complexity to compute the so-
lution to a single allocation problem.

6. REFERENCES
[1] L M Ausubel and P R Milgrom. Ascending auctions with package

bidding. Frontiers of Theoretical Economics, 1:1–42, 2002.
[2] S Bikchandani, S de Vries, J Schummer, and R V Vohra. Linear

programming and Vickrey auctions. Technical report, Anderson
Graduate School of Management, U.C.L.A., 2001.

[3] S Bikchandani and J M Ostroy. The package assignment model.
Journal of Economic Theory, 2002. Forthcoming.

[4] K Chatterjee and W Samuelson. Bargaining under incomplete
information. Operations Research, 31:835–851, 1983.

[5] E H Clarke. Multipart pricing of public goods. Public Choice,
11:17–33, 1971.

[6] S de Vries and R V Vohra. Combinatorial auctions: A survey.
Informs Journal on Computing, 2002. Forthcoming.

[7] M Eso, S Ghosh, J R Kalagnanam, and L Ladanyi. Bid evaluation
in procurement auctions with piece-wise linear supply curves.
Technical report, IBM TJ Watson Research Center, 2001. in
preparation.

[8] J Feigenbaum and S Shenker. Distributed Algorithmic Mechanism
Design: Recent Results and Future Directions. In Proceedings of
the 6th International Workshop on Discrete Algorithms and
Methods for Mobile Computing and Communications, pages 1–13,
2002.

[9] M R Garey and D S Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W.H.Freeman and
Company, New York, 1979.

[10] G V Gens and E V Levner. Computational complexity of
approximation algorithms for combinatorial problems. In
Mathematical Foundation of Computer Science, 292-300, 1979.

[11] T Groves. Incentives in teams. Econometrica, 41:617–631, 1973.
[12] J R Kalagnanam, A J Davenport, and H S Lee. Computational

aspects of clearing continuous call double auctions with
assignment constraints and indivisible demand. Electronic
Commerce Journal, 1(3):221–238, 2001.

[13] V Krishna. Auction Theory. Academic Press, 2002.
[14] V Krishna and M Perry. Efficient mechanism design. Technical

report, Pennsylvania State University, 1998. Available at:
http://econ.la.psu.edu/̃ vkrishna/vcg18.ps.

[15] D Lehmann, L I O’Callaghan, and Y Shoham. Truth revelation in
approximately efficient combinatorial auctions. JACM,
49(5):577–602, September 2002.

[16] R B Myerson. Optimal auction design. Mathematics of Operation
Research, 6:58–73, 1981.

[17] R B Myerson and M A Satterthwaite. Efficient mechanisms for
bilateral trading. Journal of Economic Theory, 28:265–281, 1983.

[18] N Nisan and A Ronen. Computationally feasible VCG
mechanisms. In ACM-EC, pages 242–252, 2000.

[19] D C Parkes, J R Kalagnanam, and M Eso. Achieving
budget-balance with Vickrey-based payment schemes in
exchanges. In IJCAI, 2001.

[20] M H Rothkopf, A Pekeč, and R M Harstad. Computationally
manageable combinatorial auctions. Management Science,
44(8):1131–1147, 1998.

[21] J Schummer. Almost dominant strategy implementation. Technical
report, MEDS Department, Kellogg Graduate School of
Management, 2001.

[22] W Vickrey. Counterspeculation, auctions, and competitive sealed
tenders. Journal of Finance, 16:8–37, 1961.

