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ABSTRACT
The use of auction mechanisms like the GSP in online advertising
can lead to loss of both efficiency and revenue when advertisers
have rich preferences: even simple forms of expressivenesslike
budget constraints can lead to suboptimal outcomes. This has led
to the recognition of the value of (sequential and/or stochastic) op-
timization in ad allocation. Unfortunately, natural formulations of
such optimization problems fall prey tochannel explosion. Specif-
ically, available ad inventory must be partitioned into subsets, or
channels, of indistinguishable supply, each channel containing in-
ventory that is interchangeable from the perspective ofeachactive
advertiser. The number of such channels grows exponentially in
the number of features of interest. We propose a means for auto-
matically abstracting these channels, grouping together channels
so that irrelevant distinctions are ignored. Our approach,based
on LP/MIP column and constraint generation, dramatically reduces
the number of distinct channels over which ads are allocated, thus
rendering optimization computationally feasible at practical scales.
Our algorithms also allow revenue/efficiency to be sacrificed in a
principled fashion by ignoring potentially relevant distinctions, but
retaining the most important distinctions, ignoring only those that
have low impact on solution quality. This allows tradeoffs to be
made between tractability and solution quality. Numericalexperi-
ments demonstrate the computational practicality of our approach
as well as the quality of the abstractions generated.

1. INTRODUCTION
Online advertising has radically changed both the nature ofad-
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vertising and the technology used to support the development and
deployment of ad campaigns. While ad targeting and campaign
design is inherently complex, the variety of online advertising ser-
vices has only increased this complexity. In particular, the abil-
ity to target ads tospecific individualsbased on detailed, personal-
ized online information—information that is simply not available in
broadcast media—presents compelling opportunities and tremen-
dous technical challenges for ad delivery. For instance, the de-
velopment of sophisticated matching and bidding algorithms for
sponsored search, such as position auctions using thegeneralized
second price (GSP)mechanism, can be viewed as a response to
such opportunities [8, 17].

In contrast to sponsored search, the selling ofbanner ads(aka.
display ads) is still largely approached through manual negotiation.
There are some exceptions to this, with online exchanges forban-
ner ads established by companies like Right Media (now part of
Yahoo!) and DoubleClick (now part of Google); however, these
exchanges largely deal with lower-value, “remnant” inventory on
web sites. Premium display advertising space (e.g., slots near the
top, or “above the fold,” of high traffic, high profile websites) is
sold almost exclusively by non-automated means. The primary rea-
son for this is a perception that auction/market mechanismscannot
be made to work for the types of campaign-level expressiveness
required for display ads (e.g., as required by brand advertisers).1

Campaign-level expressiveness is addressed explicitly in[14, 6],
where a variety of expressiveness forms are outlined (theseinclude
impression targets, smoothness of delivery, temporal sequencing,
complements and substitutes, and many others). Although sophisti-
cated bidding strategies [5, 9, 15] for some limited forms ofexpres-
sive preferences (e.g., long-term budgets) can help extract greater
value from an inexpressive auction, arbitrarily large inefficiencies
can nevertheless arise [3]. Allowing richer languages in which
advertisers can express their campaign preferences directly, rather
than forcing them into standard per-event bidding models, is criti-
cal to admitting the automated matching and selling of banner ads.
But a key bottleneck remains: the use of expressive bidding re-

1This parallels the situation in sourcing, where advances inmodel-
ing and optimization have led to the adoption of expressive bidding
(and expressive bid-taking) for what had previously been widely
viewed as “too valuable” to leave to auction mechanisms [16].
The expressive auction mechanisms are now used also for strik-
ing strategic long-term contracts on the most valuable parts of the
sourcing spend.



quiresoptimizationto match ad supply with advertisers’ demand.
The richer the expressiveness forms, the more complex the opti-
mization. For example, in [6], a stochastic optimization model for
rich, campaign-level expressiveness forms. However, evenwith
very limited forms of expressiveness—as simple as per-impression
value/pricing with budget constraints and bid expiration—that op-
timization is critical to extracting full value from one’s ad inven-
tory [14, 1]. Indeed, using simple myopic mechanisms like GSP
can lead to significant loss in efficiency and revenue.

In this paper, we tackle one of the greatest impediments to the
use of optimization in ad auctions, namely, that ofchannel explo-
sion. A key advantage advertisers have in online settings is the
ability to segment the target audience using an enormous variety
of features: both static features (like user demographic) and dy-
namic features such as context (e.g., current browsing history, lo-
cation) or historical data (e.g., past purchases, activity, etc.). This
means that the number of features over which ad allocation must
occur is extremely large. And the number of specificad channels
to which ads can be assigned—i.e., the number of distinct feature
instantiations—grows exponentially in the number of features. Any
optimization model must (usually quite explicitly) assignadvertis-
ers to explicit channels over time. Both simple linear programming
(LP) models that use only budget constraints [1] and sophisticated
mixed-integer (MIP) models [6, 14] use variables of the formxi

j

to denote the allocation of some amount of the supply of channel
j to advertiseri.2 These models simply cannot scale directly to
problems involving more than a few thousand channels (e.g.,on
the order of 10-15 (Boolean) channel features).

We address the channel explosion problem through the use of
channel abstraction. Intuitively, an abstract channel is any aggre-
gation of these “concrete” channels (i.e., feature instantiations) into
a single abstract channel for the purposes of optimization.Dur-
ing allocation optimization, ads are assigned to abstract channels
rather than concrete channels;3 hence with appropriate abstraction,
we can obtain exponential reduction in the number of channels,
thus rendering optimization practical. Furthermore, a well-chosen
abstraction will often provide very little sacrifice of revenue or
efficiency (often even providing an optimal, lossless abstraction).
Such abstractions should be derived by considering their impact on
value (e.g., efficiency or revenue) as opposed to clustering based
on purely, say, statistical properties of the features in question.

We propose a suite of techniques for automatically generating
abstractions and for optimization using a set of abstract channels.
Our first algorithm uses a form ofcolumn generationto generate
an abstraction: starting with a crude abstraction, we gradually re-
fine the abstraction by introducing distinctions that have maximal
impact on objective value. Unlike standard column generation, we
must determine whichcollectionof columns to add (and remove).
We develop novel scoring techniques to do just this. We also de-
velop a newconstraint generationalgorithm for optimizing an ad
allocation MIP using a specific set of abstract channels (e.g., those
generated by our column generation algorithm). This methodin-
crementally refines the allocation of bids to abstract channels by
posting constraints to ensure advertisers are assigned only relevant

2For example, in [1], each distinct keyword/query is a channel;
and bids (or more precisely, slates of bids) are allocated toeach
query. Tractability is achieved by focusing on only the few thou-
sand highest-volume queries. The MIP model of [6] uses as-
signment variables for losslessly “abstracted” channels consisting
of (bid,attribute)-intersections, and is limited to a relatively small
number of channels.
3As we discuss below,dispatchof ads assigned to an abstract chan-
nel will generally be sensitive to the actual channel, or full feature
instantiation, in question.

ad slots. This method will converge, in principle, to an optimal
solution given enough time. However, we also discuss how the
technique can be cut short with an approximate solution, andhow
it can be used to suggest further channel refinement for purposes of
tractability.

The remainder of the paper is organized as follows. We briefly
discuss the need for campaign-level expressiveness, optimization,
and channel abstraction in Sec. 2. We present the basic ad allo-
cation model in Sec. 3 and define our notion of abstract channels
precisely in Sec. 4, along with its impact on optimization. Sec. 5
develops a novel and computationally effective column generation
technique to generate useful abstractions, and provides empirical
results demonstrating that near-optimal allocations can be deter-
mined using very few channels. We extend the approach in Sec.6
with an iterative constraint generation algorithm to allocate bids to
abstract channels that is sensitive to distinctions that are abstracted
away. Empirical results demonstrate significant improvement in
value when “IP expressiveness” (i.e., requiring binary variables) is
involved. Sec. 7 addresses possible refinements of our techniques
and key issues in implementation and deployment, such as data rep-
resentation and uncertainty in supply. We conclude with suggested
directions for future research in Sec. 9.

2. EXPRESSIVE ADVERTISING AND OP-
TIMIZATION

We consider the problem faced by an ad network selling and
serving banner ads over a variety of web sites. Ads are served
(dispatched) to specific locations on web pages as the pages are
served by members of the network. Dispatch decisions can be
based on a variety offeaturesor impression attributes: features
of the web page (e.g., page identity, page category, predicted de-
mographic profile of users, page content, etc.), features ofthe user,
if available (e.g., demographic properties such as gender,income
level, geographic location), and transient contextual features (e.g.,
day-part, browsing history, past purchases, etc.).

In typical ad auctions, advertisers bid for ad slots satisfying spe-
cific features. Advertisers that match the features of the current ad
slot are often allocated using GSP (more so for sponsored search
that banner ads). Expressiveness is typically non-sequential and re-
stricted toper-item bidding(e.g., a bid price is offered per-impression
or per-click), time eligibility conditions, and simple budget con-
straints (often linking multiple bids/items, e.g., [13]).4

Even in such a simple setting, the need for optimization can be
acute. Consider the following example, adapted from [6]:

There are two sitesA andB. Bidder b1 bids $1 per
thousand impressions onA and $0.50 onB, with a
budget of $55K. Bidderb2 bids $0.50 per thousand im-
pressions onA, with a budget of $45K. Suppose sup-
ply onA is 5 times that ofB for the first 50K units, but
is then exhausted (onlyB has supply from then on). In
a typical per-item auction,b1 will win all of A’s and
B’s supply until its budget is exhausted. Specifically,
b1 would win 50K impressions ofA andb2 would win
nothing. Total revenue is $55K. The optimal allocation
would collect revenue of $100K by selling 50K units
of A to b2 and 110K units ofB to b1.

Optimization is also critical when one considersslatesof ads
(multiple advertisers shown on a single web page) [1].

4Structured (tree-based) languages have been proposed for speci-
fying item prices over ad features [11]. These do not extend expres-
siveness beyond per-item, but allow compact, natural specification
of a set of item prices that can be exploited in optimization.



The need for richer expressiveness in ad auctions is evident, es-
pecially campaign-level expressiveness for banner ads.5 This point
was emphasized in [14], where various forms of expressiveness
are described, along with anoptimize-and-dispatcharchitecture in
which: (a) optimization is used to allocate ads over time at acoarse
level of time granularity; and (b) adispatcherassigns ads in real
time to specific page impressions using parameters determined by
the optimizer. Further forms on campaign-level expressiveness are
detailed in [6], where algorithms for the online, approximate so-
lution of the Markov decision processinduced by the allocation
model are developed. Specifically, given uncertain supply (in the
form of web page hits) and demand (in the form of bids or con-
tracts), the approach optimizes the allocation of (long-term) expres-
sive ad contractsto ad channels(that is, groups of features satisfy-
ing specific properties) based on the distribution of predicted sup-
ply. Indeed, inexpressiveness can lead to arbitrary inefficiency in
GSP for certain distributions of agent preferences (even with per-
item preferences) [3].

In what follows, we assume that advertisers makeexpressive of-
fers that articulate their preferences forsequencesor setsof im-
pressions (or clicks, conversions, etc.). These can include per-item
bids, budgets, and other standard forms, but are extended toinclude
much richer offer terms. We enumerate just a few examples of ex-
pressiveness that illustrate the power of our model:

• Minimum targets/threshold preferences: bidder pays a
fixed amount only if a minimum impression threshold is met
during a target period (e.g.,$d for 300K impressions satis-
fying some conditionϕ). Multiple targets may be mixed, as
may per-impression bids withbonusesfor achieving specific
targets. Maximums, even frequency capping at the site or
individual level, can be imposed as well.

• Temporal sequencing/smoothness: bidder desires a mini-
mum number of impressions satisfying conditionϕ in each
of a set of time periods (e.g., 200K impressions per day for
two weeks); or the bidder may make a threshold or per-
impression offer that is only “valid” if the variance in the
number of impressions per time period is no more than 10%
(here validity may mean that the impressions outside that
range are not counted, or that the entire contract is invalid).

• Complements: ads on site A and site B must appear in a
2:1 ratio (either over the life of the campaign, or during each
relevant time period, e.g., hour, day-part, day, week).

While per-item expressiveness and budgets can usually be incor-
porated directly into an LP model [1], some of these richer forms
of expressiveness require the introduction of binary variables (e.g.,
threshold preferences). Such MIP formulations are explicitly solved
in [6]. However, existing LP/MIP models are unable to scale to
practical problems involving a large number offeatures(impres-
sion attributes); yet it is precisely the ability to segmenton very
detailed attributes that explains the appeal of online advertising!
The key bottleneck is thechannel explosion: the number of spe-
cific ad channelsto which ads can be assigned in an LP/MIP—i.e.,
the number of distinct feature instantiations—grows exponentially
in the number of features, a problem to which we now turn.

5A similar need for campaign-level expressiveness is clear in other
media as well, e.g., in TV advertising [4]. Our techniques apply
directly to such problems, though the channel explosion problem is
somewhat mitigated by the inability (or at least, current unwilling-
ness) to segment individual impressions by very fine-grained fea-
tures. The technology and willingness to monitor viewing habits
and individual details to target ads as they are online wouldmake
the problem addressed here as acute in such settings.

3. ALLOCATION MODEL
We first outline a generic model for display ad allocation. A

number of factors, such as the observability of impression features,
stochasticity of supply, and data representation are set aside (but
see Sec. 7). For now, we assume the ability to tractably reason
with arbitrary logical formulae over multi-valued features and joint
distributions over such features.

We assume a finite set of attributes orfeaturesF , with each
F i ∈ F having finite domainDom(F i) = {f i

1, f
i
2, . . . , f

i
ni}.

Features describe attributes of an ad display such as web site, page
location, user demographic, day part, etc. Each feature, possibly
depending on the web property, is eitherobservable—an ad display
is known to satisfy that feature with certainty or not—orstochas-
tically verifiable—an ad can be determined to satisfy that feature
only with some specified probability.6 To reduce notational clutter,
we assume all features are observable (but see Sec. 7). Ad displays
occur over some finite set of time periods{1, . . . , T}.

Define the set ofconcrete channels (c-channels)C = Dom(F)
to be the instantiations or “possible worlds” over featuresF . In-
tuitively, a c-channelc ∈ C is a finest-grained chunk of supply to
which an ad can be assigned. We often treatc as a model of the
propositional language over variablesF (e.g., writingc |= ϕ for
propositional formulaeϕ overF). Let s(c, t) denote the supply of
c-channelc available at timet ≤ T . We take supply to be deter-
ministic (uncertain is addressed in Sec. 7.)

Potential advertisers have particular campaign objectives in mind,
which will be expressed using a set of one or more bids, with bids
potentially linked by shared variables, constraints, etc., reflecting
the forms of expressiveness discussed above. While we allowall
types of expressiveness that can be expressed as a MIP, some of
our techniques below can be motivated by considering very simple
bid structures, embodying “LP expressiveness” only. We present
this special case here. Assume a bid setB consisting of a set of
item-based, budget-constrained bids. Each bidi ∈ B has the form
〈ϕi, vi, gi, wi〉, whereϕi is an arbitrary logical formula over the
featuresF , vi > 0 is i’s value/price per impression,gi > 0 is its
budget, andwi is a time window[si, ei] with a start and end period
between which impressions must occur (1 ≤ si ≤ ei ≤ T ). Bid
i reflects advertiseri’s interest in impressions satisfying the condi-
tion ϕi. The (deterministic) allocation problem in this setting can
be formulated as a simple LP that maximizes revenue by allocat-
ing xi

j(t) impressions of c-channelcj ∈ C to bid i at timet. To
simplify notation, we formulate the optimization as if there were a
single time period (the generalization to multiple periodsis obvi-
ous). Letvi

j be i’s value for acj -impression:vi
j = vi if cj |= ϕi;

vi
j = 0 otherwise. Then we have:

max
xi

j

∑

i

∑

j

vi
jx

i
j

s.t.
∑

i

xi
j ≤ s(cj) ∀cj ∈ C

∑

j

vi
jx

i
j ≤ gi ∀i ∈ B

Other forms of campaign expressiveness can easily be incor-
porated into this LP. For example, if a campaign has (partially)
substitutable demands (e.g., it desiresϕ1 or ϕ2 with valuesv1

6E.g., impressions to registered readers of the New York Times
may be observable with respect to gender, while the gender ofnon-
registered readers might only be probabilistically predicted given
statistical data. Certain features may also beinapplicableunder
certain conditions, for example, on certain sites.



andv2), two separate bids can be posted with a joint budget con-
straint. If ϕ1 andϕ2 are complements, we can constrain the al-
located impressions to meet some approximate ratio target (e.g,
cnt(ϕ1) ≤ (1 + ε)cnt(ϕ2), cnt(ϕ2) ≤ (1 + ε)cnt(ϕ1), where
cnt(ϕ) is the number of impressions ofϕ). Smoothness constraints
can also be encoded linearly (e.g., requiring at least 10% oftotal
impressions to be allocated in each eligible time period). We refer
to these and any other expressiveness forms that can be encoded in
the LP asLP expressiveness. Notions such as threshold/bonus bids
cannot be expressed in an LP, requiring the introduction of binary
variables [14, 6]: we refer to these forms asIP expressiveness.

4. ABSTRACT CHANNELS
The number of c-channels|C| grows exponentially in the num-

ber of features of interest. This number can be pruned by elimi-
nating any features that interest no bidder. We can also provide a
tighter bound on the number of required channels by aggregating
c-channels that are indistinguishable to every bidder; this provides
a simple lossless abstractionby grouping sets of c-channels corre-
sponding to (logically consistent) formulae of the form∧i∈B ±ϕi;
i.e., conjunctions over all bid formulae or their negations.

However, such simple lossless abstraction is unlikely to render
optimization (whether LP or MIP) practical: we still expectexpo-
nential growth in the number of channels, even when abstracted
in this way. Instead, we must consider the use of “approximate”
abstract channels (a-channels). An abstract channel is any aggre-
gation of c-channels, and can be represented as a logical formula
α over F . An abstractionis a partitioning of c-channelsC into
a setA of a-channels, i.e., a set of mutually exclusive and cover-
ing formulae{α1, . . . , α|A|}. We treat an a-channel and its logical
representationα indistinguishably, writing bothc ∈ α andc |= α
as appropriate.

Given an abstractionA, our optimization problem becomes one
of assigning ads/bids toa-channelsrather than c-channels. Define
the supply of a-channelα to bes(α) =

∑
{s(c) : c ∈ C, c |= α}.

In the LP case with per-impression value, define the value of an
α-impression to bidi:

vi
α = vi Pr(ϕi|α), where Pr(ϕi|α) = s(ϕi ∧ α)/s(α).

This value reflects the (expected) value of arandom dispatch pol-
icy: if i is assigned to an abstract channelα, it will be assigned
randomly to the c-channels that constituteα.7 The optimal alloca-
tion under the random dispatch assumption is given by the LP:

max
xi

αj

∑

i

∑

αj

vi
αj
xi

αj

s.t.
∑

i

xi
αj

≤ s(αj) ∀αj ∈ C

∑

j

vi
αj
xi

αj
≤ gi ∀i ∈ B

With more general IP expressiveness, we do not associate value di-
rectly with impressions, but with properties of the entire allocation;
specific impressions satisfying logical formulaeϕi “count towards”
satisfaction of a bid’s conditions. Thus we generally discount the
impressions that counttoward bid satisfaction byPr(ϕi|α) rather

7The dispatch of ads can be handled more intelligently: no ad for i
will actually be assigned to a channel not satisfyingϕi; intelligent
dispatch [14] can be used to reassign such wasted supply to ads that
can exploit it. Thus,vi

α will underestimate true value. We discuss
this further below, and we develop methods to assign ads to abstract
channels in a more refined fashion.

than discounting objective function value. The value discount in
the per-impression LP is a special case of this.

5. CREATING ABSTRACTIONS: COLUMN
GENERATION

The solution of the abstract LP or MIP provides us with an opti-
mal assignment of bids to a set of a-channels. This leaves theques-
tion of choosing a suitable set of a-channels: a set of computationally-
manageable size, yet whose optimal solution provides an optimal
or near-optimal solution to the original unabstracted MIP.Our first
technique relies on column generation, and deals directly with LP
expressiveness. We first describe the method using problemswith
only supply constraints, but then show how it applies more broadly
to include arbitrary linear constraints (including budgetconstraints).
We then show how to account for IP expressiveness.

The basic approach is as follows: we solve an abstract LP using
some initial level of abstraction (e.g., aggregating all c-channels
into a single a-channel⊤). We refine the abstraction heuristically
by choosing an abstract channelα to split into two by conjoining a
formulaβ and its negation, thus replacingα by α ∧ β andα ∧ β.
A new LP is solved with the new a-channels, and the process re-
peats until the improvement in LP objective value falls below some
threshold or the number of channels reaches a specified limit.

Consider the following LP to allocate bidsB = {1, 2} to a single
abstract channelα (with no budget or other constraints):8

Max v1
αx

1
α +v2

αx
2
α

s.t. x1
α +x2

α ≤ s(α)

Refining a-channelα requires introducing the bid columns (and
supply rows) corresponding toα ∧ β, α ∧ β for someβ.

Column generation[12] is used to solve LPs with very large
numbers of variables by first solving a version of the LP with very
few variables (columns), then adding new variables into theLP at
each iteration and resolving. At each iteration, the new columns are
chosen by solving apricing subproblemwhich identifies columns
that potentially improve the objective. We adopt this approach here,
but with some significant enhancements that exploit the special
structure of our problem, and account the introduction of multi-
ple columns at once (xi

α∧β andxi

α∧β
for each bidi in the example)

while simultaneously removing other columns (xi
α).

5.1 Scoring Abstract Channel Splits
Assume we have the solution of the abstract LP above. We first

determine the value, orscore, of a potential split ofα into two a-
channelsα ∧ β, α ∧ β. This score allows us to compare candidate
splits defined by differentβ. We score a split by: (a) scoring the
new columns introduced by the split using a form of column gener-
ation scoring; and (b) combining the scores of these new columns
in a way that exploits the special structure of our problem.

Standard column generation methods solve a pricing subproblem
to identify columns absent from an LP with positivereduced cost,
and typically add a column with maximum reduced cost (for max-
imization problems), terminating when no reduced costs areposi-
tive. We apply a similar technique. Letπα be the value of the dual
variable corresponding to the supply constraint for a-channel α in
the dual of the abstract LP (i.e., the shadow price of the constraint).
The reduced cost of variablexi

α∧β is:

rc(xi
α∧β) = vi

α∧β − cπ

8We illustrate with a single channel to reduce notational clutter.
Unlessα ≡ ⊤, this LP will have a set of a-channelsαj and alloca-
tion variablesxi

j for each bidi and a-channelαj .



wherec is xi
ϕj∧β ’s column andπ is the vector of dual variables.

The reduced cost ofxi

α∧β
is defined similarly. Unfortunately, the

abstract LP does not include relevant supply constraints for α ∧ β
or α ∧ β, meaning shadow prices for these constraints cannot be
directly obtained from the LP. We consider adding two new rows to
the original abstract LP, reflecting split channel supply, as follows:

Max v1
αx

1
α +v2

αx
2
α

s.t. x1
α +x2

α ≤ s(α)
Pr(β|α)x1

α +Pr(β|α)x2
α ≤ s(α ∧ β)

Pr(β|α)x1
α +Pr(β|α)x2

α ≤ s(α ∧ β)

Sinces(α ∧ β) = Pr(β|α)s(α) (similarly for β), these new
constraints are multiples of the originals(α) constraint, leaving
the optimal solution unaffected. This allows us to price thetwo
new constraints: when we consider the dual of this LP, one optimal
solution sets the dual variableπα to its value in the original abstract
dual LP, and sets the two new dual variablesπα∧β = πα∧β =
0. As a result, we can compute the reduced costs of the variables
corresponding to the split channels using terms available from the
solution of the original abstract LP:

rc(xi
α∧β) = vi

α∧β − cπ = vi
α∧β − πα

rc(xi

α∧β) = vi

α∧β − cπ = vi

α∧β − πα

Reduced cost measures the increase in objective value per unit
increase in the (nonbasic) variable, making maximum reduced cost
a common, easily computableheuristic for variable introduction.
(It can also be used to prove optimality when max reduced costis
nonpositive.) However, it can be misleading since it fails to con-
sider how far the target variable can be moved until constraints are
met. Furthermore, our aim is to introduce aset of new columns
(all bid variables for the two new channels created by the split),
and removea set of columns (those corresponding to the original
channel).

In our simple case, with only supply constraints, we can measure
exactlythe change in objective value resulting from a split. With-
out budget constraints, all supply of the new split channelα ∧ β
will be allocated to the bidi that has maximum valuevi

α∧β , giving
total objective value improvement ofrc(xi

α∧β)s(α ∧ β). Here the
reduced cost component reflects the precise difference in objective
value if anα-impression to a current winning bid is replaced by
anα ∧ β-impression to bidi, while the supply component tells us
exactly how much substitution is available. Applying the same ar-
gument toα∧β gives us the following measure for scoring the split
of any channelα into two subchannelsα ∧ β andα ∧ β:

score(α, β, β) = max
i∈B

{rc(xi
α∧β)s(α ∧ β)}

+ max
i∈B

{rc(xi

α∧β)s(α ∧ β)}

This scoring function has the desirable property that the score
of a split is exactly the induced improvement in objective value
when the only constraints are supply constraints. Of course, almost
all natural problems will have other constraints: budget constraints
most certainly, and other expressive forms as well. However, if
we limit ourselves to LP expressiveness, the reduced cost calcu-
lation remains straightforward, requiring one vector product (us-
ing dual/shadow prices computed in the LP solution). The scoring
function itself becomes heuristic—though it still provides a guar-
antee of optimality if the maximum score is nonpositive. It pro-
vides an upper bound on the possible improvement in objective
value (e.g., consider the case where the maximizing bidi for split
α ∧ β has a budget constraint that prevents it from consuming the
entire split supply). Despite this, it provides much betterperfor-
mance than using reduced costs alone. One could envision more

complex scoring functions that attempt to solve small optimization
problems to better estimate the improvement in objective value for
a given split.9 However, a key advantage is that our scoring func-
tion requires no additional computation over standard reduced cost
calculations (using terms readily available from the LP solve) apart
from a trivial maximization. This is critical, since the number of
potential splits is doubly exponential: we discuss this next.

5.2 Searching for Suitable Splits
Scoring a split is computationally simple, requiring at most 2|B|

reduced cost calculations.10 However, the number of potential splits
of an a-channelα is doubly exponential inn (i.e., 2kn

formulae
overn features with domain sizek). In addition, we need to evalu-
ate splits of each a-channelαj in the current abstractionA.

To manage the complexity of this search, we adopt a simple my-
opic approach to determining the best split of an a-channelαj . We
build up the formulaβj on whichαj is split as follows. Denote
Dom(F i) \ {f i

k} asf i
k, i.e., the exclusion of the valuek for at-

tribute i. We first consider eachβ1
j consisting off i

k for a singlei
andk. That is, at the first “level” we consider splits that excludeone
attribute-value. We “commit” to a single attribute-value exclusion
with the best scorescore(αj , β

1
j , β

1

j). We then consider refining

β1
j by conjoining with some newf i

k or disjoining with some new
f i

k (conjoining tightensβ1
j , disjoining relaxes it). Each resulting

β2
j is scored in a similar fashion, and we again commit to theβ2

j

with the highest score. This continues form iterations, wherem
is either a fixed threshold or is determined dynamically by requir-
ing a minimum score improvement be met. The best split ofαj is
determined heuristically as〈βj , βj〉, whereβj = βm

j .
Given a current abstractionA, theαj ∈ A with the highest-

scoring best split is adopted, creating a new abstractionA′ with αj

replaced byαj ∧ βj andαj ∧ βj . The LP resulting from the new
abstraction is solved, and the search for a best split repeated until
the score of the best split ofA falls below some thresholdτ .

5.3 Using Abstractions in Ad Auction Opti-
mization

One limitation of the column generation model as proposed isits
focus on LP expressiveness. However, recall that the abstraction
process is used to create the set of abstract channels to beusedin
MIP optimization; i.e., the intended output of this processis a set
of a-channels, not (necessarily) the allocation itself. Given an allo-
cation problem with IP expressiveness, we use column generation
with a linear relaxation of the problem to generate abstractchan-
nels. Once the abstract channels are constructed, we then solve
the “original” MIP using allocation to the abstract channels cre-
ated, with appropriate discounting of impression values orcount
variables by the probability of a bid receiving arelevant impres-
sion within an a-channel (see Sec. 4).11 To evaluate this approach,
we experimented the column generation model on a collectionof
random problems, some with LP expressiveness only, others with
IP expressiveness. All experiments were run on a machine with a
3.8GHz Xeon CPU, 2BM cache, and 16GB RAM.

5.3.1 LP Expressiveness

9Folklore in column generation suggests this is rarely worthwhile.
10This is in fact an overestimate, since any bidi that cannot use
abstract channelα (i.e.,α |= ¬ϕi) will not have a variablexi

j and
will not contribute to the score.

11If the original problem uses only LP expressiveness, then the LP
solution used to create the final refinement will be the optimal allo-
cation and no re-solve is needed.



The first battery of problems involves bids that use only LP ex-
pressiveness; specifically, each bid has per-impression valuations
for a particular set of attribute-values over a given time period,
along with a total budget. Optimizations are performed overa time
horizon of 30 periods. This battery contains multiple sets of prob-
lem instances, each set characterized by two parameters:m binary
attributes andn bidders. We ran sets of instances withn = 10m
for m ∈ {10, 20, 30, . . . , 100}.

Supply distribution. The probability of a unit of supply satis-
fying attribute-valuef i

1 is drawn fromU [0, 1]: sinceDom(F i) =
{f i

1, f
i
2}, Pr(f i

2) = 1 − Pr(f i
1). Total supply of impressions, over

all attribute-values, is 1,000,000 for each time period.
Bids. Each bidj has form〈ϕj , vj , gj , wj〉 and cares about a set

of attributesAj with size|Aj | ∼ U [0, 10]. We assume bidders tend
to have a lot of commonality w.r.t. the attributes they care about, so
bid attributes are sampled from a Zipf distribution, withPr(F i ∈
Aj) = (1/i)/(

∑
1≤k≤m 1/k), sampled without replacement. For

any F i ∈ Aj , bid j requires that impressions satisfyf i
zi

, with
zi ∈ {1, 2} chosen uniformly. The bid’s formula is the conjunction
of all required attributes,ϕj =

∧
F i∈Aj f

i
zi

.
Our bid valuation model reflects the intuition that bidders tend to

place higher value on more specific bids (i.e., with more attributes),
and higher value if the attributes in their bid formula are ingreater
demand. We determine bidderj’s per impression valuevj as fol-
lows. We first draw a “base value”̂vj from U [0.1, 1] then adjust
it by settingvj = v̂j(1 + 10

∑
F i∈Aj Pr(F i)). That is, if the

bid cares about no attributes, thenvj = v̂j , whereas if were to
care about allm attributes, thenvj = 11v̂j . A bid’s time win-
dow wj is determined by samplingt1 and t2 from U [−10, 40],
settingwj = [min(t1, t2),max(t1, t2)], then truncatingwj to lie
in [1, 30]. This incorporates the idea that some bids have windows
that extend beyond the optimization horizon. A bid’s budgetis set
to a fraction of the value of the total supply that it cares about.
Namely, ifσj is the total supply of formulaϕj during windowwj ,
then the budget isgj = τ jσjv

j with τj ∼ U [0.1, 1].
In addition to the bids above, we include a “market” bid with

value 0.1, unlimited budget, and no attribute preferences (i.e.,ϕ =
True). This accounts for value that might be obtained from other
sources (e.g., future bids or a spot market).
Optimization parameters. During an iteration of column gener-
ation, we continue searching for a suitable split so long as we can
find a channel refinement that provides a score that offers a certain
minimum improvement over the previous abstraction. Parameter
MI sets this target: if some refinement offers at least anMI frac-
tional improvement over the allocation value of the most recent LP,
we continue; if there is no such refinement on any channel, we ter-
minate column generation. Even if there is noMI improvement,
it doesnot necessarily mean the the allocation value is withinMI
fraction of the true optimal value. Rather, it means there isno my-
opic improvement of at leastMI that can be obtained within the
restricted channel splitting space we consider: some sequence of
channel refinements could effect greater improvement.12

Estimating an upper bound on the optimal value. To measure
how good an allocation is, we need to estimate the true optimum

12The restricted space of channel splits we consider can obviously
impact our ability to find a suitable refinement. Even withoutthis
restriction (i.e., even if splitting into arbitrary pairs of subsets is
allowed), one can show that myopic splitting is insufficientin gen-
eral when IP expressiveness is admitted. For certain forms of LP
expressiveness, however, we can show that, if an abstraction is not
lossless, there always exists a two-way split of some channel that
improves value. Hence a myopic search (over an unrestrictedsplit
space) is sufficient to find an optimal, lossless abstraction.

# Frac Runtime (sec)
m n channels UB Improve µ range
10 100 12.0 0.899 0.500 11 [4, 24]

20 200 11.0 0.83 0.367 40 [8, 74]

30 300 10.2 0.843 0.381 75 [35, 150]

40 400 9.8 0.807 0.335 153 [28, 556]

50 500 10.0 0.818 0.397 212 [23, 418]

60 600 8.6 0.829 0.344 245 [33, 470]

70 700 8.3 0.825 0.304 314 [26, 660]

80 800 9.2 0.826 0.345 461 [101, 940]

90 900 8.6 0.807 0.323 566 [75, 1211]

100 1000 9.3 0.806 0.345 811 [203, 1438]

Table 1: Average results for column generation with LP expres-
siveness and MI = 0.01, m attributes, and n bidders.

value achievable if we generated all relevant columns. We compute
an upper bound on the optimum as follows. When column gener-
ation is complete, we run another optimization usingundiscounted
values. That is, we remove allPr(ϕi|αj) terms. This is clearly
an upper bound on the optimum because it assumes that bids could
actually make use of the entire amount of a channel it is allocated
(rather than the onlyPr(ϕi|αj) fraction it actually cares about for
channelj). However, this is a very loose upper bound. We can
tighten it significantly by ensuring that a bid’s allocationdoes not
exceed the supply that it actually cares about. That is, we add addi-
tional constraints of the formxi

j ≤ s(ϕi ∧ αj)/s(αj) for all bids
i and channelsj. This is still an overestimate because it does not
account for interactions between multiple bids. However, empiri-
cally, this bound is quite close to an even tighter upper bound that
we generate via constraint generation (see Sec. 6). Since differ-
ent optimization approaches and different optimization parameters
can give different upper bounds for the same problem instance, we
select the tightest (i.e., smallest) valid upper bound overall ap-
proaches tried on an instance.
Experimental results. Table 1 shows results from runs with pa-
rameterMI = 0.01, averaged over 20 instances for each〈m,n〉
pair. The table shows several key measures including the number
of a-channels generated. The fraction of the upper bound on the
optimal value obtained by the abstract LP when column generation
terminates (“Frac UB”) is also shown (giving us a lower bound
on the quality of the abstract allocation relative to the true optimal
allocation). An estimate of the improvement in the degree ofop-
timality is shown (“Improve”). This is reported as the average of
(Final− Initial)/UB, whereFinal is the final LP value,Initial is the
LP value at the start of column generation (when a single abstract
channel is used), andUB is the upper bound on the optimal value.
Finally, the average and range of runtimes is presented.

Table 2 shows similar results, but for runs withMI = 0.001.
We see that, with LP expressiveness, column generation can ob-

tain a significant fraction of the upper bound value for problems
in which it would be impossible to even enumerate the full unab-
stracted LP. Setting a lower value for the minimum improvement
parameterMI allows us to obtain a greater fraction of the up-
per bound, but with a fairly significant increase in run time.This
suggests adopting a more sophisticated technique that occasionally
computes an upper bound during the course of column generation
(using the current set of channels), then weighs the additional po-
tential improvement against the amount of time already spent.

Fortunately, although the number ofpotentialchannels increases
exponentially inm andn, our column generation procedure can
obtain high value with very few channels. Indeed, the numberof
generated channels, and the resulting quality of solution,are com-



# Frac Runtime (sec)
m n channels UB Improve µ range
10 100 32.4 0.965 0.515 53 [10, 112]

20 200 33.8 0.905 0.439 317 [21, 758]

30 300 27.1 0.899 0.438 538 [112, 1384]

40 400 28.6 0.871 0.399 1247 [211, 4159]

50 500 26.8 0.871 0.450 1543 [153, 4027]

60 600 22.7 0.877 0.392 1775 [88, 4798]

70 700 19.3 0.867 0.346 1959 [66, 5878]

80 800 24.2 0.873 0.393 3746 [469, 8670]

90 900 24.0 0.858 0.374 4956 [807, 14534]

100 1000 25.7 0.854 0.392 6687 [1677, 17047]

Table 2: Average results for column generation with LP expres-
siveness, MI = 0.001, m attributes, and n bidders.
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Figure 1: Fraction of upper bound vs number of channels for
m = 10, n = 100.

parable across allm andn tested. Furthermore, on average, much
of the improvement is obtained early in the procedure. Fig. 1shows
the fraction of upper bound obtained after a given number of chan-
nels has been generated, averaged over 20 instances, withm = 10,
n = 100, andMI = 0.001. We obtain a high fraction of the up-
per bound from the first few channels generated, with additional
channel splitting providing more modest improvement.

5.3.2 Variants on bid distributions
We have also run our column generation algorithm on variants

of the bid distribution. Table 3 shows the average results for col-
umn generation with LP expressiveness andMI = 0.01, 100 at-
tributes, 1000 bidders, for different variants. We vary thedistri-
bution of number of attributes per bid, the distribution forselecting
bid attribute (either Zipf or uniform, both without replacement), the
probabilityp(zi = 1) that a bid wants valuezi = 1 for a given at-
tribute, and the distribution of the base bid value. For these runs,
we show estimates both of the initial degree of optimality (“Initial
frac UB”) with a single abstract channel, as well as the final degree
of optimality (“Final frac UB”) after column generation.

We obtain a comparable estimate of the degree of optimality for
all but the last variant, for which we achieve significantly higher
optimality. On the first variant, which corresponds to the last row
in Table 1, column generation requires the most time and produces
the most channels. However, the initial degree optimality is lowest
for this variant, suggesting it is harder than the others.

5.3.3 IP expressiveness
The second set of problems includes bidders with all-or-nothing

bonus bids, as well as bidders with per-impression values and bud-
gets. Since all-or nothing bids require binary variables, column
generation on the LP relaxation offers only an approximation. All

# Frac Runtime (sec)
nb ni channels UB Improve µ range
10 40 7.8 0.873 0.271 41 [10, 103]
20 80 7.9 0.838 0.270 85 [17, 220]
30 120 9.1 0.806 0.295 148 [32, 500]
40 160 9.2 0.809 0.310 181 [47, 455]
50 200 9.8 0.833 0.331 222 [56, 539]
60 240 7.8 0.841 0.311 184 [49, 324]

Table 4: Average results for column generation with IP expres-
siveness, MI = 0.01, 100 attributes, nb bonus bidders, and ni

per-impression bidders.

problems have 100 attributes,nb bonus bidders, andni = 4nb per-
impression bidders, withnb ∈ {10, 20, . . . , 60}. The preferences
of per-impression bidders is determined as before. A bonus bid-
der hadϕj andwj chosen similarly. However, its per-impression
value isvj = 0, and instead the bidder paysbj if it receives at least
qj impressions satisfyingϕj , but nothing otherwise. We selectqj

to be a fractionτ j of the total supply the bid cares about, namely,
qj = τ jσj , with τj ∼ U [0.1, 1], andσj the total supply of for-
mulaϕj during time windowwj . We then setbj = b̂jqj where
b̂j is chosen asvj for a flat bidder, but then multiplied by a factor
chosen fromU [1.1, 1.5]. We also include a “market” bid as above.

Table 4 shows results withMI = 0.01, averaged over 20 in-
stances for each〈nb, ni〉 pair. Shown are the number of channels
generated, the fraction of the upper bound (on the optimum) ob-
tained by when column generation terminates (“Frac UB”), the im-
provement over the fraction of the upper bound obtained before
column generation (“Improve”), and the range of runtimes over the
20 instances. Although we use the LP relaxation to determinechan-
nel splits, we solve MIPs to determine the abstract allocation and
value (hence fraction of the upper bound) obtained.

Although column generation operates on a relaxation of the true
MIP, our scoring function is nevertheless effective in guiding our
procedure to good channel splits. Indeed, the performance with IP
expressiveness compares favorably to that with LP expressiveness.
We emphasize that these campaign-level optimizations are run of-
fline, and used to parameterize dispatch policies that are then imple-
mented in real time. Thus the times reported here allow frequent,
multiple optimizations (and reoptimization) of offline allocations
(e.g., within a stochastic optimization framework [6]).

6. CONSTRAINT GENERATION FOR AB-
STRACT OPTIMIZATION

The optimization above, using the abstraction generated byour
column generation process, assumes that any ad allocated toan a-
channelαwill be randomly dispatched to the component c-channels
that make upα. This is reflected in the MIP (or LP) objective
by replacing the per-impression valuevi of bid i by vi

α Pr(ϕi|α).
With a well-crafted abstraction, this may produce an optimal allo-
cation (e.g., consuming as much of each advertiser’s budgetas pos-
sible). However, if the number of a-channels is limited for compu-
tational reasons, the “pessimistic” assumption of random dispatch
may leave revenue on the table. We consider another means of op-
timizing with a-channels that relies on constraint generation in the
abstract MIP (or LP) to allocate the supply of abstract channels to
bids non-uniformly, thus improving revenue.

6.1 Constraint Generation Procedure
LetA be an abstraction andM theoptimistic MIPin which bids

are assigned to a-channels, but where each impression to bidi is
assumedto satisfy its formulaϕi. This assumption is realized by



# attributes Attribute Base # Initial Final Runtime (sec)
per bid selection p(zi = 1) bid value channels frac UB frac UB Improve µ range
U [0, 10] Zipf 0.5 U [0.1, 1.0] 9.3 0.461 0.806 0.345 811 [203, 1438]

U [0, 10] Zipf 0.75 U [0.1, 1.0] 8.3 0.476 0.817 0.341 636 [813, 1509]

U [0, 10] Zipf 1.0 U [0.1, 1.0] 7.7 0.528 0.818 0.290 542 [235, 1007]

U [0, 10] Zipf 0.5 N(0.5, 0.1) 8.2 0.489 0.816 0.327 605 [133, 1439]

U [0, 10] Zipf 0.75 N(0.5, 0.1) 9.0 0.508 0.808 0.301 803 [123, 1839]

U [0, 10] Zipf 1.0 N(0.5, 0.1) 7.8 0.511 0.800 0.289 595 [247, 1503]

U [0, 10] Uniform 0.5 U [0.1, 1.0] 3.9 0.743 0.801 0.059 264 [64, 543]

U [0, 10] Uniform 0.75 U [0.1, 1.0] 4.3 0.752 0.804 0.052 306 [133, 706]

U [0, 10] Uniform 1.0 U [0.1, 1.0] 3.8 0.748 0.799 0.051 282 [97, 785]

1 Uniform 0.5 N(0.5, 0.1) 5.6 0.844 0.973 0.128 322 [84, 571]

Table 3: Average results for column generation with LP expressiveness and MI = 0.01, 100 attributes, 1000 bidders.

replacing the per-impression valuevi
α for a-channelα by vi itself:

i.e., we assume thateveryad fori assigned toα will be dispatched
intelligently, thus guaranteeing thatϕi is satisfied. In a simple two-
bid, two a-channel case, the resulting MIP (in this case, LP)is:13

Max v1x1
α1

+v2x2
α1

+v1x1
α2

+v2x2
α2

s.t. x1
α1

+x2
α1

≤ s(α1)
x1

α2
+x2

α2
≤ s(α2)

The optimistic assumption embodied in this formulation is un-
reasonable in general. There is no reason to believe the allocation
of bids toα1 permits feasible “packing” of their promised supply in
such a way that each bidi gets onlyϕi-impressions. However, we
can test this assumption by solving an LP that determines whether
there is enough supply to do just this: in our example, we want
to determine ifα1 contains enoughϕ1 andϕ2 supply to meet the
“obligations” contained in the solution of the optimistic MIP; simi-
larly, we wish to test a-channelα2. More generally, leṫx = {ẋi

αj
}

be the solution of the optimistic MIP with a-channels{αj}. Let
W (j) = {i : ẋi

αj
> 0} denote the the “winners” of a-channelαj .

We solve the following LP for eachαj (with a constant objective,
since our aim is only to determine feasibility):

max 1

s.t.
∑

c∈αj ,c|=ϕi

xi
c = ẋi

αj
∀i ∈ W (j)

∑

i∈W (j)

xi
c ≤ s(c) ∀c ∈ αj

This LP determines a feasible allocation of bidsi that shareαj

to the c-channels that constituteαj , thus guaranteeing that every
impression given toi satisfies its bid conditionϕi. The first set of
constraints ensures there is enoughϕi supply for each bidi—call
thesebid adequacy constraints—while the second establishes that
no constituent c-channel is overallocated—call thesechannel sup-
ply constraints. If LP (αj) is feasible for eachαj , then it provides
an optimal dispatch policy that extracts the full objectivevalue of
the optimistic MIP. If not, we post constraints on the optimistic
MIP and resolve. In particular, letLP (αj) be infeasible. Then
there must be some minimal set of constraints that are jointly in-
feasible. LetS = Sa ∪Ss be such a minimal set, whereSa are bid
adequacy constraints andSs are channel supply constraints. We
can show that the MIP solution violates the inequality:

∑

i∈Sa

xi
αj

≤
∑

c∈Ss

s(c) (1)

13As discussed above, in general, we don’t discount thevalue of
an impression to a bid, but the number of impressions thatcount
toward satisfaction of bid conditions. The optimistic MIP replaces
all discounted counts by their undiscounted counterparts.

We can resolve the MIP by posting this constraint to ensure that
overallocation of the channels inSs does not occur for the purposes
of maximizing value extracted from bids inSa. A tighter version
of this constraint can be employed: we can add to the sum on the
lefthand side any bidi all of whose relevant channels are included
in Ss, i.e., anyi s.t. {c ∈ αj : c |= ϕi} ⊆ Ss. At each itera-
tion, setsS leading to violated constraints are identified for each
a-channel and posted.14 The MIP is resolved until feasibility is at-
tained (in which case full optimistic objective value is obtained), or
computational or time bounds are reached.

Computationally, the most demanding aspect of this algorithm is
the solution of the LPs used to generate constraints. While the solu-
tion of LP (αj) could, in principle, require an exponential number
of variables (i.e., thexi

c corresponding to all c-channelsc ∈ αj )
and constraints, we use simple lossless channel abstraction to col-
lapse this number. As such, the number of winners for each channel
(and the interaction of their bids) determines the true complexity of
the required LP solves.15 The constraint generation algorithm can
be used directly to solve the ad allocation MIP without relying on
column generation. For example, it can be applied directly to the
fully abstract MIP with a single a-channel (⊤). It could also be
used to optimize overanyheuristically chosen abstraction.

6.2 Empirical Results
To evaluate the effectiveness of constraint generation we experi-

ment with problems with bonus and per-impression bidders, as de-
scribed in Sec. 5.3.3. We first perform column generation using
MI = 0.01, then extend the solution using constraint generation.
We initially seed the procedure with all constraints of type(1) in-
volving single bids. Hence, all subsequently generated constraints
involve multiple bids.

To avoid generating an unreasonable number of constraints,we
use a toleranceǫ (set to0.01), whereby the feasibility LP allows
the allocations from the MIP to decrease by up toǫ. That is, we
replace the first set of constraints in the LP by:

∑

c∈αj ,c|=ϕi

xi
c ≤ ẋi

αj
∀i ∈ W (j)

∑

c∈αj ,c|=ϕi

xi
c ≥ ẋi

αj
− ǫ ∀i ∈ W (j)

14These can be identified using the facilities of standard solvers,
such as the CPLEX IIS (irreducible inconsistent set) routine. We
use our own special purpose algorithm to identify such sets.

15The interaction is in fact even less when one accounts for time
windows: a separate feasibility testing/generation process is in-
voked for each a-channel, time-period pair.



Thus, when constraint generation terminates, the allocation is guar-
anteed to be feasible, but may be suboptimal.

We found that, for larger problems, constraint generation did not
always terminate within a reasonable amount of time. In our exper-
iments, if constraint generation did not terminate within 600 sec-
onds, we stopped generating constraints and generated a feasible
allocation that minimized the maximum difference from the MIP
allocation. We accomplish this with the following LP:

min ǫ (2)

s.t.
∑

c∈αj,c|=ϕi

xi
c ≤ ẋi

αj
∀i ∈W (j)

∑

c∈αj,c|=ϕi

xi
c ≥ ẋi

αj
− ǫ ∀i ∈W (j)

∑

i∈W (j)

xi
c ≤ s(c) ∀c ∈ αj

As discussed above, the feasibility LP could require an expo-
nential number of variables. In practice, we find that ifW (j) is
no greater than around 20, the size of the LP is reasonable (and
muchsmaller than220). If at any point the MIP givesW (j) > 20,
we split channelαj . However, rather than using the scoring func-
tion discussed above, we attempt to reduce the maximum, over
the two new channels, of the bids that care about the channel.
That is, we minimizescore(α, β, β) = max({|{i}| : β ∧ ϕi 6=
False}, {|{i}| : β ∧ ϕi 6= False}).

When constraint generation is complete, we compute the value
of the allocation based on the final feasible allocation generated by
the LP (which might be different than that of the final MIP alloca-
tion, due toǫ), but use the final (infeasible) MIP allocation as an
upper bound on the true optimum value. This bound is close to,but
somewhat tighter than the bound generated in Sec. 5.3.

Table 5 shows the results of experiments on the set of problems
with bonus and per-unit bidders described in Sec. 5.3.3. Here we
show the results only for the constraint generation portion. The ta-
ble shows several key measures, including the number of constraint
generation iterations, the number of additional channels generated
and the number of constraints generated. The fraction of theupper
bound on the optimal value obtained by the MIP when constraint
generation terminates (“Frac UB”) is also shown. An estimate of
the improvement in the degree of optimality over the final column
generation value is shown (“Improve”). Finally, the average and
range of runtimes is presented. Clearly, the additional phase in-
creases value to a high degree of optimality, although obtaining
this improvement can be time consuming for larger problems.

We found in our experiments that, typically, little additional value
is obtained by performing constraint generation beyond theinitial
single-bid constraints. We ran additional tests to determine the ef-
fectiveness of adding only static, single-bid constraints, without
adding additional constraints. In these tests it was still necessary
to run the relaxed LP (2) for each channel to determine a feasible
allocation. As we see in Table 6, we can get nearly same level of
optimality as from generating more constraints but at a significant
time savings. In some cases, we obtain slightly higher optimality.
This is possible because, even when we generate multi-bid con-
straints, we still run the relaxed LP in the final step. It is possible
for the approximation to be worse, even when we generate the ad-
ditional constraints.

6.3 Other Uses of Constraint Generation
One of the bottlenecks in the effective use of constraint gener-

ation is its tendency to scale poorly in the number of “winners.”

# Frac Runtime (sec)
nb ni channels UB Improve µ range
10 40 0.2 0.986 0.113 11 [4, 37]

20 80 0.2 0.972 0.134 80 [12, 545]

30 120 0.3 0.992 0.186 168 [17, 848]

40 160 0.7 0.971 0.162 431 [22, 2991]

50 200 0.3 0.985 0.152 608 [32, 7092]

60 240 0.9 0.970 0.127 398 [35, 2259]

Table 6: Average results for constraint generation with only
static, single-bid constraints, following column generation, with
100 attributes, nb bonus bidders, and ni per-impression bid-
ders.

Specifically, if an a-channel, time-period pair has a large number
of bids that are allocated to it in the initial abstract MIP solve, the
procedure can generate hundreds of thousands of constraints, caus-
ing the MIP to slow down significantly and dominate runtime. The
number of winners in the MIP can be used to suggest further chan-
nel refinements. The development of effective channel splitting
heuristics that attempt to “separate” bids into different channels
could make constraint generation much more effective. The quick
identification of problematic a-channels during constraint genera-
tion is critical as well: whenever a channel is split, all constraints
on the split channel must be discarded, and new ones must be gen-
erated on the new channels, further “wasting” computational effort.
Thus problematic a-channels should be identified before significant
constraint generation occurs.

Constraint generation can also be used selectively. The MIPcan
be solved by using the “optimistic” values on some channel-time
pairs—requiring constraint generation to effectively carve up sup-
ply with those segments—while the random dispatch policy can be
assumed in others (e.g., those where constraint generationcannot
scale effectively). This offers a tractable means for improving on
the abstract allocation problem without necessarily accounting for
intelligent dispatch across the entire space.

7. DATA REPRESENTATION AND OTHER
ISSUES

The implementation and practical deployment of our techniques
bring to light a number of subsidiary issues that need to be ad-
dressed. We first discuss several ways in which our column and
constraint techniques can be extended to further enhance scalabil-
ity, then outline some additional challenges to practical deployment
and how we address them.

7.1 Discussion of Techniques
The column generation procedure converges to an optimal allo-

cation for LP expressiveness, even with our myopic search proce-
dure. Successive conjoining of literals must eventually produce all
c-channels; and since our scoring function overestimates improve-
ment in LP objective achieved by any split, all worthwhile splits
will be made. Of course, tractability requires that we do notsplit
the channels too finely.16 To this end, we consider complex splits
by allowing both literal conjunction and disjunction during split
search. Although complete search is impractical, more sophisti-
cated techniques for constructing split formulae may lead to even
better splits. For instance, dynamic programming may be used in
special cases (e.g., under certain independence assumptions). Tech-

16Standard bounds from the column generation literature can be
adapted to our problem to bound the degree of suboptimality should
we stop generating channels when some split still has positive re-
duced cost [12].



# # # Frac Runtime (sec)
nb ni iterations channels constraints UB Improve µ range
10 40 13.9 0.2 210 0.983 0.110 162 [12, 620]

20 80 12.0 0.2 562 0.977 0.139 629 [89, 1635]

30 120 8.4 0.4 838 0.982 0.176 858 [356, 1719]

40 160 6.2 0.8 727 0.966 0.158 1433 [625, 6417]

50 200 5.7 0.3 706 0.978 0.145 1523 [679, 8993]

60 240 5.4 1.1 647 0.968 0.127 1257 [663, 3773]

Table 5: Average results for constraint generation, following column generation, with 100 attributes, nb bonus bidders, and ni

per-impression bidders.

niques for constructing logical class and concept descriptions from
the classification and concept learning literature—and more gener-
ally, methods for feature selection in learning [10]—may also be
adapted to our setting.

However, we emphasize that our goal is not to identify the small-
est set of channels per se, but rather a set of channels that leads to
a high value from optimization while allowing the LP to remain
tractable. Our approach obtains high value with a small number of
channels. For our larger problems, search dominates runtime, re-
quiring more than nine times as much time as the LP solves. Thus
our primary focus is accelerating split search, rather thanensuring
completeness. As we show in Sec. 8, simple heuristics can dramat-
ically improve runtime performance of column generation.

Constraint generation can be used independently of column gen-
eration, but it is much more tractable if it starts with a goodabstrac-
tion. While constraint generation can improve an allocation in the
case of LP expressiveness, it is most beneficial with IP expressive-
ness, since column generation is applied to an approximation of the
MIP (i.e., its LP relaxation). Since column generation is run on the
LP relaxation at the root of the MIP search tree, it is not guaran-
teed to converge to optimality. Alternatively, we could employ a
branch-and-price[2] approach, whereby column generation is ap-
plied at multiple points in the MIP search tree. This would allow
convergence to an optimal allocation in the IP case, but is much
more computationally expensive than standard (LP) column gener-
ation; it also leads to complications in the cutting plane algorithms
needed to solve MIPs efficiently.

7.2 Data Representation
Our approach to channel abstraction requires manipulationof

logical formulae describing both abstract channels and bids. Fur-
thermore, the natural and compact description of both bids/campaigns
and channel supply requires the use of logical formulae. In prob-
lems with dozens or hundreds of channel features, we cannot expect
supply distributions to be explicitly articulated for eachconcrete
channel. Nor should we expect bidders to specify their interests
explicitly over such concrete channels.

Our data distributions make specific independence assumptions
that allow them to be represented tractably. While more general
models can be used (e.g., graphical models of distributionssuch
as Bayesian networks), we adopt a simple clustering model. The
channel feature setF is partitioned into a setH = {Hi} of subsets
or factors, and we assume an explicit joint distribution (orpoten-
tial) ψi is provided for each factorHi (e.g., ifHi = {A,B,C},
thenψi is a joint distribution overDom(A,B,C)). These poten-
tials are independent, so the probability of any channel isPr(c) =
Πiψi(c[i]), wherec[i] is the restriction of c-channelc to its feature
values inHi. The supplys(c, t) of any channel at timet is then
s(c, t) = s(t)Pr(c).17 Our assumption above of complete feature

17If impression distributions are nonstationary, the potentials can be
indexed by time, or by time “features” such as day-part.

independence is a special case of this model.
Our implementation of channel abstraction usesordered Boolean

decision diagrams (OBDDs)[7] to represent logical formulae: this
includes the logical representation of bid formulaeϕi and of ab-
stract channelsαi. Given the specification of probabilities in terms
of factors and potentials, we have devised efficient algorithms for:
(a) computing the probabilities of a formula represented asan OBDD
(e.g., to computePr(α) for some a-channelα in order to determine
its supply); and (b) computing the conditional probabilityof one
OBDD given another (e.g., to compute the probabilityPr(ϕi|α)
that a-channelα satisfies bid formulaϕi).

7.3 Channel Features and Stochastic Supply
The nature of useful channel features varies significantly from

one web site to another. We capture this by aggregating c-channels
into groups known asbase channels, typically corresponding to
particular sites (or subsections of sites). Each base channel (e.g.,
a specific web site) is characterized by its total amount of supply
and by the set of features that areobservable(i.e., features that are
known with certainty to hold of a particular impression, such as
day-part, gender of subscription users, etc.),stochastically verifi-
able(i.e., features for which a probabilistic estimate of satisfaction
can be given), orinapplicable(features for which no information
is available). The distribution of channels with a base channel is
specified using the method above.

C-channels cannot be defined using inapplicable features orstochas-
tically verifiable features: for any base channel, its c-channels are
the instantiations of its observable features only. For instance, on a
siteA that has statistical data on gender, but no means of observ-
ing gender, no c-channel exists with featuressite = A, gender =
male (since one cannot assign an ad to such an impression with
certainty). The distribution of gender is used only to predict the
number ofmale-impressions (hence payment) when an ad is as-
signed tosite = A. Similarly, if a feature is inapplicable, every
feature value is assumed to go unsatisfied.

Our abstraction model is presented as if supply is deterministic.
If supply is stochastic, our abstraction techniques can be general-
ized using the methods described in [6], where the results ofde-
terministic optimization are used in a sampling and reoptimization
framework to manage uncertainty and risk. Our data representa-
tion can easily be generalized as well: (a) we replace the point
estimate of the supplys(b) of a base channelb by a distribution
(e.g., normal, or other parametric form that makes sense andcan
easily be sampled from); (b) instead of a simple multinomialfor
each observable attribute, we specify a Dirichlet, with hyperparam-
eters for each domain value. This allows simple computationof ex-
pected values for deterministic optimization, and simple sampling
for stochastic optimization.

8. COLUMN GENERATION HEURISTICS
Searching for the best channel split dominates the runtime of



the column generation process. Indeed, with 100 attributes, 1000
bidders, andMI = 0.01, the search consumes over 90% of the
runtime, compared to only 3% for the LP solves (with the remain-
ing time devoted to management and bookkeeping). To decrease
the runtime, heuristics can be employed in selecting the channel
to split and selecting which attribute-values to split on. While such
heuristics will result in suboptimal splits, they need not decrease the
optimality of the final result so long as we continue column genera-
tion to the same minimum improvement tolerance. However, using
heuristics may cause more channels to be generated before the tol-
erance is reached. This tradeoff can be beneficial, so long asthe
increase in channels is reasonable.

We tried three complementary heuristics that greatly speedup
column generation, without sacrificing the optimality of the final
allocation. The first two involve speeding up the search for asplit
on a given channel. The first, “single-value”, is to considersplitting
channels on only a single attribute-value (as opposed to conjunc-
tions/disjunctions of multiple literals).

The second, “trigger”, is to heuristically order the attribute val-
ues based on an estimate of their score, then select the first attribute
value whose actual score (not the heuristic value) exceeds athresh-
old (in terms of the fractional improvement over the last LP solve).
The key is to make the ordering measure much faster to compute
than the actual reduced cost score. Since the most expensivepart
of computing the score is computing the conditional probability
of a bid, given a channel split, we must avoid this computation
in the heuristic. For channelα, we order the attribute-valuef j

k

by decreasingh(f j
k), whereh(f j

k) = maxi∈Bj rc(xi
α∧ϕi)s(α ∧

ϕi) andBj is the set of bids that indicate a preference on at-
tribute j. This does not require the computation of any additionl
conditional probabilities becausep(ϕi|α ∧ ϕi) = 1 and because
s(α∧ϕi) = s(α)p(α∧ϕi|α) and we already computeds(α) and
p(α ∧ ϕi|α) for the previous LP solve. For the “trigger” heuris-
tic, we can choose any threshold that is at least as large as the MI
threshold for determining when to stop searching for splits. In our
experiments, we got the best results by setting the trigger threshold
to MI.

Finally, we tried a heuristic for choosing which channel to split.
The “queue” heuristic orders the channels by the maximum split
score last computed for the channel. Channels are ordered byde-
creasing score. New channels that have not yet been scored are
given a score of∞. When deciding which channel to split, we find
a split for the firstn channels in the queue. We choose the best of
those splits that exceeds a threshold. If none of the firstn chan-
nels has a threshold that exceeds a threshold, we continue down the
queue until we find a channel whose split exceeds the threshold.
Whenever we choose not to split a channel, we replace the channel
on the queue with it’s queue value equal to the newly computed
split score.

Table 7 shows average results for column generation with LP
expressiveness, 100 attributes, 1000 bidders,MI = 0.01, and
different combinations of heuristics. In the “heuristics”column,
“S” refers to the single-value heuristic, “T(t)” refers to the trigger
heuristic with thresholdt, andQ(n) refers to the queue heuristic
with a minimum evaluation ofn channels. The first row shows
the results with no heuristics, and corresponds to the last row in
Table 1.

We see that the heuristics can greatly speed up column gener-
ation with nominal impact on optimality (in some cases, evenim-
proving it slightly) and only a small increase in the number of chan-
nels generated. Furthermore, the most aggressive combination of
heuristics (the last row) gives the best results. Note that,although
increasing the threshold of the trigger heuristic and increasing the

# Frac Runtime (sec)
Heuristics channels UB µ range

— 9.3 0.806 811 [203, 1438]

S 9.9 0.801 640 [130, 1184]

S,T(0.05) 9.8 0.802 566 [117, 1143]

S,T(0.03) 9.8 0.804 506 [109, 841]

S,T(0.02) 10.0 0.806 505 [177, 952]

S,T(0.01) 10.3 0.809 432 [162, 869]

S,Q(3) 10.0 0.801 470 [130, 859]

S,Q(2) 10.0 0.801 390 [111, 646]

S,Q(1) 10.0 0.800 344 [90, 649]

S,Q(1),T(0.01) 10.9 0.812 292 [97, 551]

Table 7: Average results for column generation with LP expres-
siveness, 100 attributes, 1000 bidders, MI = 0.01, and different
heuristics.

Heuristics Approach # Frac Runtime (sec)
— col. gen 7.8 0.842 184 [49, 324]

— constr. gen 1.1 0.968 1257 [663, 3773]

S,Q(1),T(0.01) col. gen 10.7 0.847 31 [7, 57]

static constraints constr. gen 1 0.969 612 [28, 3794]

Table 8: Average results for column generation, followed by
constraint generation, with heuristics and without, with IP ex-
pressiveness, MI = 0.01, 100 attributes, 60 bonus bidders and
240 per-impression bidders.

n of the queue heuristic increases the myopic optimality of the cho-
sen split, it does not significantly affect the optimality ofthe final
solution but does slow down the column generation process. Over-
all, it appears that, with good heuristics, it is beneficial to speed up
the process by performing myopically suboptimal channel splits.

We see in Table 8 that heuristics are also effective on problems
with IP expressiveness. The first two rows show the results ofcol-
umn generation, followed by constraint generation, withtout any
heuristics. These rows correspond to the last row of Table 4 and
the last row of Table 5, respectively. The third and fourth rows
show column generation with all heuristics applied, followed by
constraint generation using only static, single-bid constraints. We
see that heuristics greatly speed up both column generationand
constraint generation, without sacrificing optimality.

9. CONCLUDING REMARKS
We developed a suite of techniques based on column and con-

straint generation that effectively tackle the channel explosion prob-
lem in the optimal allocation of online ads. Our techniques apply
to both simple, current forms of expressiveness (e.g., simple bud-
get constraints) and other, richer forms of campaign-levelexpres-
siveness that require the solution of large-scale integer programs.
Our experiments demonstrate that high-quality allocations can be
determined using very few abstract channels in optimization: this
illustrates the desirable sensitivity of our methods to those channel
distinctions that have the greatest impact on value (e.g., revenue
or efficiency). Our techniques scale to problems with hundreds of
attributes and bidders. Given the offline nature of the optimiza-
tion problem we propose, our computational results suggestthat
our procedures can be run and rerun frequently to determine,say,
(approximately) optimal allocations in stochastic modelsthat re-
quire sampling [6].

There are a number of interesting directions in which this work
can be extended, in particular, in directions that would enhance
scaling to even larger problems. The search for channel splits in



column generation, while effective for our problems, is still quite
crude, and we suggested several avenues for improving it. The im-
provements to constraint generation discussed in Sec. 6.3 and ex-
ploring branch-and-price techniques remain a high priority as well.
Finally, assessing the impact of approximate channel abstraction
and/or optimization on incentives in ad markets is of interest.
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