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ABSTRACT

The use of auction mechanisms like the GSP in online adiregtis
can lead to loss of both efficiency and revenue when advestise
have rich preferences: even simple forms of expressiveliass
budget constraints can lead to suboptimal outcomes. Tlsidelta
to the recognition of the value of (sequential and/or stetibjpop-
timization in ad allocation. Unfortunately, natural forlations of
such optimization problems fall prey thannel explosionSpecif-
ically, available ad inventory must be partitioned into sets, or
channels of indistinguishable supplyeach channel containing in-
ventory that is interchangeable from the perspectiveamhactive
advertiser. The number of such channels grows expongntrall
the number of features of interest. We propose a means for aut
matically abstracting these channels, grouping togethanmels
so that irrelevant distinctions are ignored. Our approdised
on LP/MIP column and constraint generation, dramaticajuces
the number of distinct channels over which ads are allocalters
rendering optimization computationally feasible at piaitscales.
Our algorithms also allow revenue/efficiency to be sacrificea
principled fashion by ignoring potentially relevant ditiions, but
retaining the most important distinctions, ignoring orthpse that
have low impact on solution quality. This allows tradeoffisbie
made between tractability and solution quality. Numeregieri-
ments demonstrate the computational practicality of opragrech
as well as the quality of the abstractions generated.

1. INTRODUCTION

Online advertising has radically changed both the natur@def

*This work was sponsored by, and conducted at, CombineNet, In
Patent pending.

TExtended version of a paper that appeared inFifta Workshop
on Ad Auctions2009.

Craig Boutilier
Dept. of Computer Science
University of Toronto
Toronto, ON, Canada

cebly@cs.toronto.edu

George Nemhauser
ISYE
Georgia Inst. of Technology
Atlanta, GA, USA
gnemhaus@isye.gatech.edu

Tuomas Sandholm
Computer Science Dept.
Carnegie Mellon University
Pittsburgh, PA, USA

sandholm@cs.cmu.edu

David C. Parkes
SEAS
Harvard University
Cambridge, MA, USA
parkes@eecs.harvard.edu

vertising and the technology used to support the developareh
deployment of ad campaigns. While ad targeting and campaign
design is inherently complex, the variety of online adwwémt) ser-
vices has only increased this complexity. In particulae #iil-

ity to target ads t@pecific individualdased on detailed, personal-
ized online information—information that is simply not daale in
broadcast media—presents compelling opportunities arden-
dous technical challenges for ad delivery. For instance,di+
velopment of sophisticated matching and bidding algorittfor
sponsored search, such as position auctions usingeheralized
second price (GSPnechanism, can be viewed as a response to
such opportunities [8, 17].

In contrast to sponsored search, the sellinparfiner adgaka.
display ad$is still largely approached through manual negotiation.
There are some exceptions to this, with online exchangelsaior
ner ads established by companies like Right Media (now fart o
Yahoo!) and DoubleClick (now part of Google); however, thes
exchanges largely deal with lower-value, “remnant” ingepton
web sites. Premium display advertising space (e.g., skds the
top, or “above the fold,” of high traffic, high profile websseis
sold almost exclusively by non-automated means. The pyinea-
son for this is a perception that auction/market mechanansot
be made to work for the types of campaign-level expressagne
required for display ads (e.qg., as required by brand acezs)

Campaign-level expressiveness is addressed explicifhing],
where a variety of expressiveness forms are outlined (tinehadle
impression targets, smoothness of delivery, temporal esezing,
complements and substitutes, and many others). Althoygtiste
cated bidding strategies [5, 9, 15] for some limited formexgres-
sive preferences (e.g., long-term budgets) can help éxdraater
value from an inexpressive auction, arbitrarily large fio&ncies
can nevertheless arise [3]. Allowing richer languages irictvh
advertisers can express their campaign preferencesliginather
than forcing them into standard per-event bidding modslsiti-
cal to admitting the automated matching and selling of baads.
But a key bottleneck remains: the use of expressive biddég r

1This parallels the situation in sourcing, where advancesddel-
ing and optimization have led to the adoption of expressigdibg
(and expressive bid-taking) for what had previously beedelyi
viewed as “too valuable” to leave to auction mechanisms.[16]
The expressive auction mechanisms are now used also flr stri
ing strategic long-term contracts on the most valuablespzirthe
sourcing spend.



quiresoptimizationto match ad supply with advertisers’ demand.
The richer the expressiveness forms, the more complex ttie op
mization. For example, in [6], a stochastic optimizationd®iofor
rich, campaign-level expressiveness forms. However, evigm
very limited forms of expressiveness—as simple as perésgon
value/pricing with budget constraints and bid expiratidahat op-
timization is critical to extracting full value from one’slanven-
tory [14, 1]. Indeed, using simple myopic mechanisms likePGS
can lead to significant loss in efficiency and revenue.

In this paper, we tackle one of the greatest impedimentseo th
use of optimization in ad auctions, namely, thacbfnnel explo-
sion A key advantage advertisers have in online settings is the
ability to segment the target audience using an enormoustyar
of features: both static features (like user demographicl) dy-
namic features such as context (e.g., current browsingrjsb-
cation) or historical data (e.g., past purchases, actigity). This
means that the number of features over which ad allocatiost mu
occur is extremely large. And the number of spediicchannels
to which ads can be assigned—i.e., the number of distinttifea
instantiations—grows exponentially in the number of feasu Any
optimization model must (usually quite explicitly) assiggvertis-
ers to explicit channels over time. Both simple linear pamgming
(LP) models that use only budget constraints [1] and sophistd
mixed-integer (MIP) models [6, 14] use variables of the fotg'fn
to denote the allocation of some amount of the supply of chlann
j to advertiseri.?2 These models simply cannot scale directly to
problems involving more than a few thousand channels (ery.,
the order of 10-15 (Boolean) channel features).

ad slots. This method will converge, in principle, to an oyati
solution given enough time. However, we also discuss how the
technigue can be cut short with an approximate solution,hend

it can be used to suggest further channel refinement for pagoaf
tractability.

The remainder of the paper is organized as follows. We briefly
discuss the need for campaign-level expressiveness, iaption,
and channel abstraction in Sec. 2. We present the basic@d all
cation model in Sec. 3 and define our notion of abstract channe
precisely in Sec. 4, along with its impact on optimizatiorecS5
develops a novel and computationally effective column gatien
technique to generate useful abstractions, and providgdriead
results demonstrating that near-optimal allocations carddter-
mined using very few channels. We extend the approach in6Sec.
with an iterative constraint generation algorithm to aditecbids to
abstract channels that is sensitive to distinctions tretbstracted
away. Empirical results demonstrate significant improvenie
value when “IP expressiveness” (i.e., requiring binaryalaes) is
involved. Sec. 7 addresses possible refinements of ouritpem
and key issues inimplementation and deployment, such aseiat
resentation and uncertainty in supply. We conclude witlgested
directions for future research in Sec. 9.

2. EXPRESSIVE ADVERTISING AND OP-
TIMIZATION

We consider the problem faced by an ad network selling and
serving banner ads over a variety of web sites. Ads are served

We address the channel explosion problem through the use Of(dispatched to specific locations on web pages as the pages are

channel abstractionIntuitively, an abstract channel is any aggre-
gation of these “concrete” channels (i.e., feature ing#inhs) into
a single abstract channel for the purposes of optimizatibaor-
ing allocation optimization, ads are assigned to abstriaahigels
rather than concrete channéleence with appropriate abstraction,
we can obtain exponential reduction in the number of channel
thus rendering optimization practical. Furthermore, al\wkbsen
abstraction will often provide very little sacrifice of rewee or
efficiency (often even providing an optimal, lossless audion).
Such abstractions should be derived by considering thg@iadainon

served by members of the network. Dispatch decisions can be
based on a variety deaturesor impression attributes: features
of the web page (e.g., page identity, page category, pestiide-
mographic profile of users, page content, etc.), featuréseofiser,
if available (e.g., demographic properties such as gerndeome
level, geographic location), and transient contextuaiuies (e.g.,
day-part, browsing history, past purchases, etc.).

In typical ad auctions, advertisers bid for ad slots saitigfgpe-
cific features. Advertisers that match the features of theeatiad
slot are often allocated using GSP (more so for sponsoragisea

value (e.g., efficiency or revenue) as opposed to clustering basedhat panner ads). Expressiveness is typically non-seiglient re-

on purely, say, statistical properties of the features istjon.

We propose a suite of techniques for automatically genayati
abstractions and for optimization using a set of abstraahichls.
Our first algorithm uses a form aolumn generatiorio generate
an abstraction: starting with a crude abstraction, we grthylve-
fine the abstraction by introducing distinctions that haaximal
impact on objective value. Unlike standard column genenative
must determine whichollectionof columns to add (and remove).
We develop novel scoring techniques to do just this. We aéso d
velop a newconstraint generatioralgorithm for optimizing an ad
allocation MIP using a specific set of abstract channels,(#ngse
generated by our column generation algorithm). This methed
crementally refines the allocation of bids to abstract cenhy
posting constraints to ensure advertisers are assigngdelalant

2For example, in [1], each distinct keyword/query is a ch&nne
and bids (or more precisely, slates of bids) are allocateeath
query. Tractability is achieved by focusing on only the fdwu-
sand highest-volume queries. The MIP model of [6] uses as-
signment variables for losslessly “abstracted” channeissisting

of (bid,attribute)-intersections, and is limited to a telaly small
number of channels.

3As we discuss belovdispatchof ads assigned to an abstract chan-
nel will generally be sensitive to the actual channel, orfeédture
instantiation, in question.

stricted toper-item biddinge.qg., a bid price is offered per-impression
or per-click), time eligibility conditions, and simple bget con-
straints (often linking multiple bids/items, e.g., [13]).

Even in such a simple setting, the need for optimization @n b
acute. Consider the following example, adapted from [6]:

There are two sitest and B. Bidderb; bids $1 per
thousand impressions ad and $0.50 onB, with a
budget of $55K. Biddeb, bids $0.50 per thousand im-
pressions ord, with a budget of $45K. Suppose sup-
ply on A is 5 times that o3 for the first 50K units, but

is then exhausted (onl has supply from then on). In
a typical per-item auctior; will win all of A’s and
B’s supply until its budget is exhausted. Specifically,
b1 would win 50K impressions aft andb, would win
nothing. Total revenue is $55K. The optimal allocation
would collect revenue of $100K by selling 50K units
of A to b, and 110K units ofB to b;.

Optimization is also critical when one considelatesof ads
(multiple advertisers shown on a single web page) [1].

4Structured (tree-based) languages have been proposepeftir s
fying item prices over ad features [11]. These do hot extepdes-
siveness beyond per-item, but allow compact, natural §pation
of a set of item prices that can be exploited in optimization.



The need for richer expressiveness in ad auctions is eyident
pecially campaign-level expressiveness for banner adss point
was emphasized in [14], where various forms of expressggne
are described, along with aptimize-and-dispatchrchitecture in
which: (a) optimization is used to allocate ads over timeaiase
level of time granularity; and (b) dispatcherassigns ads in real
time to specific page impressions using parameters detednfiy
the optimizer. Further forms on campaign-level expressigs are
detailed in [6], where algorithms for the online, approxienao-
lution of the Markov decision procesgduced by the allocation
model are developed. Specifically, given uncertain supiplyhe
form of web page hits) and demand (in the form of bids or con-
tracts), the approach optimizes the allocation of (loriga)expres-
sive ad contract$o ad channelgthat is, groups of features satisfy-
ing specific properties) based on the distribution of predicup-
ply. Indeed, inexpressiveness can lead to arbitrary ineffoy in
GSP for certain distributions of agent preferences (eveh per-
item preferences) [3].

In what follows, we assume that advertisers makpressive of-
fers that articulate their preferences fsequencesr setsof im-
pressions (or clicks, conversions, etc.). These can ieghgd-item
bids, budgets, and other standard forms, but are extended tide
much richer offer terms. We enumerate just a few examples-of e
pressiveness that illustrate the power of our model:

e Minimum targets/threshold preferences. bidder pays a
fixed amount only if a minimum impression threshold is met
during a target period (e.g$d for 300K impressions satis-
fying some conditionp). Multiple targets may be mixed, as
may per-impression bids witlonusesor achieving specific

targets. Maximums, even frequency capping at the site or

individual level, can be imposed as well.

e Temporal sequencing/smoothness: bidder desires a mini-
mum number of impressions satisfying conditiprin each
of a set of time periods (e.g., 200K impressions per day for
two weeks); or the bidder may make a threshold or per-
impression offer that is only “valid” if the variance in the
number of impressions per time period is no more than 10%
(here validity may mean that the impressions outside that
range are not counted, or that the entire contract is invalid

e Complements: ads on site A and site B must appear in a
2:1 ratio (either over the life of the campaign, or duringreac
relevant time period, e.g., hour, day-part, day, week).

While per-item expressiveness and budgets can usuallydog-in
porated directly into an LP model [1], some of these richemf®
of expressiveness require the introduction of binary tdes (e.g.,
threshold preferences). Such MIP formulations are explisolved

in [6]. However, existing LP/MIP models are unable to scale t
practical problems involving a large number fefitures(impres-
sion attributes); yet it is precisely the ability to segmentvery
detailed attributes that explains the appeal of online didueg!
The key bottleneck is thehannel explosianthe number of spe-
cific ad channelgo which ads can be assigned in an LP/MIP—i.e.,
the number of distinct feature instantiations—grows exgdially

in the number of features, a problem to which we now turn.

5A similar need for campaign-level expressiveness is cteathier
media as well, e.g., in TV advertising [4]. Our techniqueplgp
directly to such problems, though the channel explosioblpra is
somewhat mitigated by the inability (or at least, currenwilling-
ness) to segment individual impressions by very fine-gchiea-
tures. The technology and willingness to monitor viewingite
and individual details to target ads as they are online woudéte
the problem addressed here as acute in such settings.

3. ALLOCATION MODEL

We first outline a generic model for display ad allocation. A
number of factors, such as the observability of impressiatuires,
stochasticity of supply, and data representation are $e¢ glsut
see Sec. 7). For now, we assume the ability to tractably neaso
with arbitrary logical formulae over multi-valued featarand joint
distributions over such features.

We assume a finite set of attributes featuresF, with each
F' € F having finite domainDom(F*) = {f{, fs,..., .. }.
Features describe attributes of an ad display such as veelpaije
location, user demographic, day part, etc. Each featurssilply
depending on the web property, is eitiobiservable—an ad display
is known to satisfy that feature with certainty or not—stochas-
tically verifiable—an ad can be determined to satisfy that feature
only with some specified probabilifyTo reduce notational clutter,
we assume all features are observable (but see Sec. 7). pldydis
occur over some finite set of time periofls ..., 7T}

Define the set ofoncrete channels (c-channelS)= Dom/(F)
to be the instantiations or “possible worlds” over featuresIn-
tuitively, a c-channet € C'is a finest-grained chunk of supply to
which an ad can be assigned. We often tkeas a model of the
propositional language over variabl@s(e.g., writingc = ¢ for
propositional formulae over F). Let s(c, t) denote the supply of
c-channek available at time < T'. We take supply to be deter-
ministic (uncertain is addressed in Sec. 7.)

Potential advertisers have particular campaign objextivenind,
which will be expressed using a set of one or more bids, witls bi
potentially linked by shared variables, constraints,, e&flecting
the forms of expressiveness discussed above. While we allow
types of expressiveness that can be expressed as a MIP, $ome o
our techniques below can be motivated by considering venpls
bid structures, embodying “LP expressiveness” only. Wesgme
this special case here. Assume a bid Satonsisting of a set of
item-based, budget-constrained bids. Each:k#dB has the form
(%, v, g%, w'), wherey® is an arbitrary logical formula over the
featuresF, v* > 0 is’s value/price per impressiog! > 0 is its
budget, andy’ is a time window{s’, '] with a start and end period
between which impressions must occiir{ s* < e* < T). Bid
1 reflects advertiser's interest in impressions satisfying the condi-
tion ¢*. The (deterministic) allocation problem in this settingnca
be formulated as a simple LP that maximizes revenue by atoca
ing 2 (t) impressions of c-channe} € C'to bid i at time¢. To
simplify notation, we formulate the optimization as if teevere a
single time period (the generalization to multiple peritsisbvi-
ous). Letv} bei's value for ac;-impression} = v’ if ¢; = ¢';

v} = 0 otherwise. Then we have:

max E
i

Zj i

s.t. Z z} < s(cj)
Y vz <g'
J

Other forms of campaign expressiveness can easily be incor-
porated into this LP. For example, if a campaign has (pial
substitutable demands (e.g., it desites or o2 with valueswv;

i i
VR
VC]‘ eC

VieBB

8E.g., impressions to registered readers of the New York Sime
may be observable with respect to gender, while the gendesrof
registered readers might only be probabilistically presticgiven
statistical data. Certain features may alsoiregplicable under
certain conditions, for example, on certain sites.



andv2), two separate bids can be posted with a joint budget con-

straint. If 1 and 2 are complements, we can constrain the al-
located impressions to meet some approximate ratio tasggt (
ent(p1) < (14 e)ent(pz2), ent(p2) < (1 + €)ent(p1), where
cnt(¢p) is the number of impressions @J. Smoothness constraints
can also be encoded linearly (e.g., requiring at least 10%taf
impressions to be allocated in each eligible time periodg. réfer

to these and any other expressiveness forms that can beeshicod
the LP ad_P expressivenesslotions such as threshold/bonus bids
cannot be expressed in an LP, requiring the introductioriradry
variables [14, 6]: we refer to these formslBsexpressiveness

4. ABSTRACT CHANNELS

The number of c-channe|€’| grows exponentially in the num-
ber of features of interest. This number can be pruned byi-elim
nating any features that interest no bidder. We can alsaqeay
tighter bound on the number of required channels by aggregat
c-channels that are indistinguishable to every biddes; pnovides
asimple lossless abstractidyy grouping sets of c-channels corre-
sponding to (logically consistent) formulae of the form: 5 + ©*;
i.e., conjunctions over all bid formulae or their negations

However, such simple lossless abstraction is unlikely talee
optimization (whether LP or MIP) practical: we still expentpo-
nential growth in the number of channels, even when abstlact
in this way. Instead, we must consider the use of “approéthat
abstract channels (a-channelshn abstract channel is any aggre-
gation of c-channels, and can be represented as a logicalfar
« over F. An abstractionis a partitioning of c-channel€’ into
a setA of a-channels, i.e., a set of mutually exclusive and cover-
ing formulae{a, ..., a4 }. We treat an a-channel and its logical
representatiom indistinguishably, writing botle € « andc = «
as appropriate.

Given an abstractiorl, our optimization problem becomes one
of assigning ads/bids t-channelgather than c-channels. Define
the supply of a-channet to bes(a) = > {s(c¢) : c € C,c E a}.

In the LP case with per-impression value, define the valuenof a
a-impression to bid:

vfx = Pr(gpi|a), where Pr(gpi|a) = s(goi Na)/s(a).

This value reflects the (expected) value ahadom dispatch pol-
icy: if 4 is assigned to an abstract channelit will be assigned
randomly to the c-channels that constitut® The optimal alloca-
tion under the random dispatch assumption is given by the LP:

max E E Vey. Ty
zi e
g i aj

s.t. Zx;] < s(ajy) Vo € C

E <
Uajxaj >4g
J

With more general IP expressiveness, we do not associate gal
rectly with impressions, but with properties of the entitecation;
specific impressions satisfying logical formulag“‘count towards”
satisfaction of a bid’s conditions. Thus we generally distahe
impressions that courtbward bid satisfaction b¥r(*|a) rather

VieB

"The dispatch of ads can be handled more intelligently: nmed f
will actually be assigned to a channel not satisfyjstgintelligent
dispatch [14] can be used to reassign such wasted supplyg thaid
can exploit it. Thusyg, will underestimate true value. We discuss
this further below, and we develop methods to assign adsstoeath
channels in a more refined fashion.

than discounting objective function value. The value distdn
the per-impression LP is a special case of this.

5. CREATING ABSTRACTIONS: COLUMN
GENERATION

The solution of the abstract LP or MIP provides us with an-opti
mal assignment of bids to a set of a-channels. This leavepbe
tion of choosing a suitable set of a-channels: a set of comtiputlly-
manageable size, yet whose optimal solution provides amapt
or near-optimal solution to the original unabstracted MDBr first
technique relies on column generation, and deals diredtly kP
expressiveness. We first describe the method using probiatims
only supply constraints, but then show how it applies mooadly
toinclude arbitrary linear constraints (including budgenstraints).
We then show how to account for IP expressiveness.

The basic approach is as follows: we solve an abstract LRjusin
some initial level of abstraction (e.g., aggregating athannels
into a single a-channél’). We refine the abstraction heuristically
by choosing an abstract chanmeto split into two by conjoining a
formula 8 and its negation, thus replacimgby o A 8 anda A 8.

A new LP is solved with the new a-channels, and the process re-
peats until the improvement in LP objective value falls laesmme
threshold or the number of channels reaches a specified limit

Consider the following LP to allocate bids= {1, 2} to a single
abstract channel (with no budget or other constraints):

Vo n

o

Max +ovlz?
s.t. +a2 < s(a)
Refining a-channed requires introducing the bid columns (and
supply rows) corresponding to A 3, a A 3 for someg.

Column generatiorj12] is used to solve LPs with very large
numbers of variables by first solving a version of the LP wighy
few variables (columns), then adding new variables intoLtReat
each iteration and resolving. At each iteration, the newrools are
chosen by solving @ricing subproblenwhich identifies columns
that potentially improve the objective. We adopt this apptohere,
but with some significant enhancements that exploit theiapec
structure of our problem, and account the introduction oftimu
ple columns at oncer@w and:cimﬁ for each bid; in the example)

while simultaneously removing other columng,j.

5.1 Scoring Abstract Channel Splits

Assume we have the solution of the abstract LP above. We first
determine the value, arcore of a potential split ofx into two a-
channelsxy A 8, a. A B. This score allows us to compare candidate
splits defined by differen8. We score a split by: (a) scoring the
new columns introduced by the split using a form of columnegen
ation scoring; and (b) combining the scores of these newnmadu
in a way that exploits the special structure of our problem.

Standard column generation methods solve a pricing sulgmob
to identify columns absent from an LP with positireduced cost
and typically add a column with maximum reduced cost (for max
imization problems), terminating when no reduced costgas-
tive. We apply a similar technique. Let, be the value of the dual
variable corresponding to the supply constraint for a-oleba in
the dual of the abstract LP (i.e., the shadow price of thetcains).
The reduced cost of variabk—imﬁ is:

rc(:cimﬁ) = vimﬁ —cm

8We illustrate with a single channel to reduce notationattetu
Unlessa = T, this LP will have a set of a-channels and alloca-

tion variablest’ for each bidi and a-channet;.



wherec is mfij;’S column andr is the vector of dual variables.  complex scoring functions that attempt to solve small oftirtion
The reduced cost of! - is defined similarly. Unfortunately, the ~ Problems to better estimate the improvement in objectiVeevéor
abstract LP does not include relevant supply constraimts fo 3 a given split? However, a key advantage is that our scoring func-
or a A B, meaning shadow prices for these constraints cannot be tion requires no_addltlonal con_ﬂputau_on over standardeedwcost
directly obtained from the LP. We consider adding two news éov calculations (using terms readily available from the LR/ephpart

the original abstract LP, reflecting split channel suppeytaiows: from a trivia! m_aximization. This i_s critical_, since the nber of
potential splits is doubly exponential: we discuss thistnex

Max  vqz, +ug el 5.2 Searching for Suitable Splits
s.t. x, +z5 < s(a) Scorin o . . .
1 5 g a split is computationally simple, requiring at trzj#s|
Pr(§|a)x? + Pr@o‘)xg < s(anp) reduced cost calculatiorl$ However, the number of potential splits
Pr(fla)za  +Pr(Bla)za < s(aAp) of an a-channeb is doubly exponential im (i.e., 2¢" formulae
. - = overn features with domain size). In addition, we need to evalu-
Sinces(a A 3) = Pr(Bla)s(a) (similarly for §), these new ate splits of each a-channe} in t%e current abstractioA
constraints are multiples of the original«) constraint, leaving p - . T
the optimal solution unaffected. This allows us to price the To manage the complexity of this search, we adopt a simple my-
new constraints: when we consider the dual of this LP, onienaht opic approach to determining the best split of an a-channeWe
solution sets the dual variabte, to its value in the original abstract  build up the formula3; on whicha; is split as follows. Denote

dual LP, and sets the two new dual variables\s = 7,3 = Dom(F)\ {fi} asf_ziv i.e.. the exclusion of the valuk for at-
0. As a result, we can compute the reduced costs of the vasiable ibute i f id 1 isting off7 f inalei
corresponding to the split channels using terms availabla the tribute . We first consider eachi; consisting off; for a single:
solution of the original abstract LP: andk. Thatis, at the first “level” we consider splits that exclaote

attribute-value. We “commit” to a single attribute-valuekision

1

rc(x =, — CTT =, — T, . =1 . . .
(ans) = vans ang = fla with the best scorecore(a;, 3}, B;). We then consider refining

1e(ZopB) = Vang = €T = Ugpg — Ta 3} by conjoining with some nevy; or disjoining with some new

Reduced cost measures the increase in objective value jter un fi (conjoining tightens@}, disjoining relaxes it). Each resulting
increase in the (nonbasic) variable, making maximum redlagost Bf is scored in a similar fashion, and we again commit toﬁﬁe
a common, easily computableeuristic for variable introduction. with the highest score. This continues fariterations, wheren
(It can also be used to prove optimality when max reducedisost s either a fixed threshold or is determined dynamically yune
nonpositive.) However, it can be misleading since it fallcon- ing a minimum score improvement be met. The best split,ofs
sider how far the target variable can be moved until conssaire determined heuristically ag3;, 3,), wheres; = 3;".
met. Furthermore, our aim is to introduceset of new columns Given a current abstractiod, the a; € A with the highest-

(all bid variables for the two new channels created by thé)spl  scoring best split is adopted, creating a new abstractionith «;
andremovea set of columns (those corresponding to the original replaced byx; A 3; anda; A Bj. The LP resulting from the new
channel). abstraction is solved, and the search for a best split regaattil

In our simple case, with only supply constraints, we can meas  the score of the best split of falls below some threshoted.
exactlythe change in objective value resulting from a split. With-

out budget constraints, all supply of the new split channel 3 5.3 Us ng Abstractions in Ad Auction Opti-
will be allocated to the bid that has maximum valug, , 5, giving mization

total objective value improvement M(ngB)s(a A B). Here the

reduced cost component reflects the precise differencejétinle f One Ilmll_tstlon of th‘? column %eneratlon mo?lelhas p;opos_ﬁd IS
value if ana-impression to a current winning bid is replaced by focus on LP expressiveness. However, recall that the atisma

ana A B-impression to bid, while the supply component tells us ~ Process is used to create the set of abstract channelsusebén

exactly how much substitution is available. Applying thengaar- MIP optimization; i.e., the intended output of this procesa set
gument tax A 3 gives us the following measure for scoring the split  of a-channels, not (necessarily) the allocation itselfe@ian allo-
of any channet into two subchannels A 3 anda A B: cation problem with IP expressiveness, we use column geoera
- i with a linear relaxation of the problem to generate abstrhen-
score(a, 8, 8) = max{re(zang)s(a A B)} nels. Once the abstract channels are constructed, we then so

+ max{re(z’ 2)s(a A B)} the "original" MIP _using _aIIocati_on to Fhe abst_ract charmete-
i€B ans ated, with appropriate discounting of impression valuesammt
This scoring function has the desirable property that thresc ~ variables by the probability of a bid receivingrelevantimpres-
of a split is exactlythe induced improvement in objective value Sion within an a-channel (see Sec."#)To evaluate this approach,
when the only constraints are supply constraints. Of comlseost W€ experimented the column generation model on a collection
all natural problems will have other constraints: budgetst@ints random problems, some with LP expressiveness only, othigs w
most certainly, and other expressive forms as well. Howefer P expressiveness. All experiments were run on a machirteavit
we limit ourselves to LP expressiveness, the reduced ctsica  3-8GHz Xeon CPU, 2BM cache, and 16GB RAM.
lation remains straightforward, requiring one vector pretd(us- .
ing dual/shadow prices computed in the LP solution). Theisgo 5.3.1 LP Expressiveness
function itself becomes heuristic—though it still provide guar-
antee of optimality if the maximum score is nonpositive. o
vides an upper bound on the possible improvement in obgctiv

SFolklore in column generation suggests this is rarely waile.
1%This is in fact an overestimat_e, since any bithat cannot use
abstract channel (i.e., o |= —¢") will not have a variable:’; and

value (e.g., consider the case where the maximizing lbod split will not contribute to the score.
a A 3 has a budget constraint that prevents it from consuming the1¢ e original problem uses only LP expressiveness, therLf
entire split supply). Despite this, it provides much befierfor- solution used to create the final refinement will be the opitatia-

mance than using reduced costs alone. One could envisioa mor cation and no re-solve is needed.



The first battery of problems involves bids that use only LP ex
pressiveness; specifically, each bid has per-impressibmtians
for a particular set of attribute-values over a given timeiquk
along with a total budget. Optimizations are performed aveéme
horizon of 30 periods. This battery contains multiple sétsrob-
lem instances, each set characterized by two parametebénary
attributes anch bidders. We ran sets of instances with= 10m
for m € {10, 20, 30, . .., 100}.

Supply distribution. The probability of a unit of supply satis-
fying attribute-valuef; is drawn fromt|0, 1]: since Dom(F*) =
{fE, i), Pr(fi) = 1 — Pr(f1). Total supply of impressions, over
all attribute-values, is 1,000,000 for each time period.

Bids. Each bidj has form{yp?, v7, g7, w’) and cares about a set
of attributesA? with size| 47| ~ U0, 10]. We assume bidders tend
to have a lot of commonality w.r.t. the attributes they cdreud, so
bid attributes are sampled from a Zipf distribution, with(F* ¢
Aj) = (1/1)/ (X1 <r<m 1/k), sampled without replacement. For
any F* € A7, bid j requires that impressions satisfy,, with
z; € {1, 2} chosen uniformly. The bid's formula is the conjunction
of all required attributesp” = A .. 4; f2,-

Our bid valuation model reflects the intuition that biddensd to
place higher value on more specific bids (i.e., with morefattes),
and higher value if the attributes in their bid formula argjinater
demand. We determine biddg¢’s per impression value’ as fol-
lows. We first draw a “base valua? from U[0.1, 1] then adjust
it by settingv’ = (1 + 10 ni 4, Pr(F?)). Thatis, if the
bid cares about no attributes, theh = 05, whereas if were to
care about alin attributes, then’ = 119;. A bid’s time win-
dow w’ is determined by sampling, andt» from U[—10, 40],
settingw’ = [min(t1, t2), max(t1, t2)], then truncatings? to lie
in [1, 30]. This incorporates the idea that some bids have windows
that extend beyond the optimization horizon. A bid’s budgetet
to a fraction of the value of the total supply that it caresubo
Namely, ifo; is the total supply of formula’ during windowaw?,
then the budget i’ = 770 ;07 with 7; ~ U[0.1, 1].

In addition to the bids above, we include a “market” bid with
value 0.1, unlimited budget, and no attribute preferences ¢ =
True). This accounts for value that might be obtained from other
sources (e.g., future bids or a spot market).

Optimization parameters. During an iteration of column gener-
ation, we continue searching for a suitable split so long asan
find a channel refinement that provides a score that offerstaice
minimum improvement over the previous abstraction. Patame
MI sets this target: if some refinement offers at leasMarfrac-
tional improvement over the allocation value of the mosentd¢.P,
we continue; if there is no such refinement on any channelewe t
minate column generation. Even if there is Md improvement,
it doesnot necessarily mean the the allocation value is witkiih
fraction of the true optimal value. Rather, it means themoisy-
opic improvement of at lea¥ll that can be obtained within the
restricted channel splitting space we consider: some seguef
channel refinements could effect greater improventent.
Estimating an upper bound on the optimal value. To measure
how good an allocation is, we need to estimate the true optimu

12The restricted space of channel splits we consider can oslyio
impact our ability to find a suitable refinement. Even withthis
restriction (i.e., even if splitting into arbitrary pair$ subsets is
allowed), one can show that myopic splitting is insufficiengen-
eral when IP expressiveness is admitted. For certain fofmh&o0
expressiveness, however, we can show that, if an abstnastimt
lossless, there always exists a two-way split of some cHahae
improves value. Hence a myopic search (over an unrestraptid
space) is sufficient to find an optimal, lossless abstraction

# Frac Runtime (sec)
m n channels uB Improve u range
10 100 12.0 0.899 0.500 11 [4,24]
20 200 11.0 0.83 0.367 40 [8,74]
30 300 10.2 0.843 0.381 75 [35,150]
40 400 9.8 0.807 0.335 153 [28,556]
50 500 10.0 0.818 0.397 212 [23,418]
60 600 8.6 0.829 0.344 245 [33,470]
70 700 8.3 0.825 0.304 314 [26,660]
80 800 9.2 0.826 0.345 461 [101,940]
90 900 8.6 0.807 0.323 566 [75,1211]
100 1000 9.3 0.806 0.345 811 [203,1438]

Table1: Averageresultsfor column generation with L P expres-
sivenessand MI = 0.01, m attributes, and n bidders.

value achievable if we generated all relevant columns. iepzde
an upper bound on the optimum as follows. When column gener-
ation is complete, we run another optimization usimgliscounted
values. That is, we remove dlir(¢’|c;) terms. This is clearly
an upper bound on the optimum because it assumes that bilds cou
actually make use of the entire amount of a channel it is atéxt
(rather than the onlPr (|, ) fraction it actually cares about for
channelj). However, this is a very loose upper bound. We can
tighten it significantly by ensuring that a bid’s allocatidoes not
exceed the supply that it actually cares about. That is, wieaddi-
tional constraints of the form’ < s(¢’ A «;)/s(ay) for all bids
1 and channelg. This is still an overestimate because it does not
account for interactions between multiple bids. Howeverpiei-
cally, this bound is quite close to an even tighter upper Hahat
we generate via constraint generation (see Sec. 6). Siffee-di
ent optimization approaches and different optimizatiorapeeters
can give different upper bounds for the same problem instame
select the tightest (i.e., smallest) valid upper bound @leap-
proaches tried on an instance.
Experimental results. Table 1 shows results from runs with pa-
rameterMI = 0.01, averaged over 20 instances for edefh, n)
pair. The table shows several key measures including thébaum
of a-channels generated. The fraction of the upper bounden t
optimal value obtained by the abstract LP when column g¢ioera
terminates (“Frac UB”) is also shown (giving us a lower bound
on the quality of the abstract allocation relative to thestoptimal
allocation). An estimate of the improvement in the degreemf
timality is shown (“Improve”). This is reported as the avggaof
(Final—Initial ) /UB, whereFinal is the final LP valuelnitial is the
LP value at the start of column generation (when a singleratitst
channel is used), arldB is the upper bound on the optimal value.
Finally, the average and range of runtimes is presented.

Table 2 shows similar results, but for runs witi/ = 0.001.

We see that, with LP expressiveness, column generationlzan o

tain a significant fraction of the upper bound value for peoi
in which it would be impossible to even enumerate the fullbina
stracted LP. Setting a lower value for the minimum improvetme
parameterMI allows us to obtain a greater fraction of the up-
per bound, but with a fairly significant increase in run tinfénis
suggests adopting a more sophisticated technique thasiooedly
computes an upper bound during the course of column geosrati
(using the current set of channels), then weighs the additipo-
tential improvement against the amount of time already spen

Fortunately, although the numbermdtentialchannels increases
exponentially inm andn, our column generation procedure can
obtain high value with very few channels. Indeed, the nundfer
generated channels, and the resulting quality of solutiomcom-



# Frac Runtime (sec)
m n channels uB Improve p range
10 100 32.4 0.965 0.515 53 [10,112]
20 200 33.8 0.905 0.439 317 [21, 758]
30 300 27.1 0.899 0.438 538 [112,1384]
40 400 28.6 0.871 0.399 1247 [211,4159]
50 500 26.8 0.871 0.450 1543 [153,4027]
60 600 22.7 0.877 0.392 1775 [88,4798]
70 700 19.3 0.867 0.346 1959 [66, 5878]
80 800 24.2 0.873 0.393 3746 [469, 8670]
90 900 24.0 0.858 0.374 4956 [807,14534]
100 1000 25.7 0.854 0.392 6687 [1677,17047]

Table2: Averageresultsfor column generation with L P expres-
siveness, M1 = 0.001, m attributes, and n bidders.
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Figure 1: Fraction of upper bound vs number of channels for
m =10, n = 100.

parable across ath andn tested. Furthermore, on average, much
of the improvement is obtained early in the procedure. Fihdws
the fraction of upper bound obtained after a given numbehahe
nels has been generated, averaged over 20 instancespwitho,

n = 100, and MI = 0.001. We obtain a high fraction of the up-
per bound from the first few channels generated, with additio
channel splitting providing more modest improvement.

5.3.2 Variants on bid distributions

We have also run our column generation algorithm on variants
of the bid distribution. Table 3 shows the average resultxdd
umn generation with LP expressiveness add = 0.01, 100 at-
tributes, 1000 bidders, for different variants. We vary thstri-
bution of number of attributes per bid, the distribution $etecting
bid attribute (either Zipf or uniform, both without replanent), the
probability p(z; = 1) that a bid wants value; = 1 for a given at-
tribute, and the distribution of the base bid value. Foré¢hess,
we show estimates both of the initial degree of optimalityi¢fal
frac UB”) with a single abstract channel, as well as the firgjrde
of optimality (“Final frac UB") after column generation.

We obtain a comparable estimate of the degree of optimatity f
all but the last variant, for which we achieve significantigher
optimality. On the first variant, which corresponds to th&t lw
in Table 1, column generation requires the most time andymes
the most channels. However, the initial degree optimaditpivest
for this variant, suggesting it is harder than the others.

5.3.3 IP expressiveness

The second set of problems includes bidders with all-ohingt
bonus bids, as well as bidders with per-impression valud$ad-
gets. Since all-or nothing bids require binary variablespmn
generation on the LP relaxation offers only an approxinmatiall

# Frac Runtime (sec)
ny, N channels UB Improve u range
10 40 7.8 0.873 0.271 41 [10, 103]
20 80 7.9 0.838 0.270 85 [17, 220]
30 120 9.1 0.806 0.295 148 [32,500]
40 160 9.2 0.809 0.310 181 [47, 455]
50 200 9.8 0.833 0.331 222 [56, 539]
60 240 7.8 0.841 0.311 184 [49, 324]

Table4: Averageresultsfor column generation with | P expres-
siveness, MI = 0.01, 100 attributes, n, bonus bidders, and n;
per-impression bidders.

problems have 100 attributes, bonus bidders, and; = 4n, per-
impression bidders, with, € {10, 20,...,60}. The preferences
of per-impression bidders is determined as before. A borulis b
der hady? andw’ chosen similarly. However, its per-impression
value isv’ = 0, and instead the bidder paysif it receives at least
¢’ impressions satisfying’, but nothing otherwise. We selegt

to be a fractionr? of the total supply the bid cares about, namely,
¢ = 7o, with 7; ~ U[0.1, 1], ando; the total supply of for-
mulay’ during time windoww’. We then set’ = 7¢’ where
b’ is chosen as’ for a flat bidder, but then multiplied by a factor
chosen front/[1.1, 1.5]. We also include a “market” bid as above.

Table 4 shows results with/I = 0.01, averaged over 20 in-
stances for eaclin, n;) pair. Shown are the number of channels
generated, the fraction of the upper bound (on the optimuwr) o
tained by when column generation terminates (“Frac UB8,ith-
provement over the fraction of the upper bound obtainedrbefo
column generation (“Improve”), and the range of runtimesrdiie
20 instances. Although we use the LP relaxation to deterotina-
nel splits, we solve MIPs to determine the abstract allocasind
value (hence fraction of the upper bound) obtained.

Although column generation operates on a relaxation ofrile t
MIP, our scoring function is nevertheless effective in gugdour
procedure to good channel splits. Indeed, the performaritel &/
expressiveness compares favorably to that with LP exwesssss.
We emphasize that these campaign-level optimizationsuarefr
fline, and used to parameterize dispatch policies that areithple-
mented in real time. Thus the times reported here allow #atu
multiple optimizations (and reoptimization) of offline adiations
(e.g., within a stochastic optimization framework [6]).

6. CONSTRAINT GENERATION FOR AB-
STRACT OPTIMIZATION

The optimization above, using the abstraction generatesuby
column generation process, assumes that any ad allocatedao
channek will be randomly dispatched to the component c-channels
that make upx. This is reflected in the MIP (or LP) objective
by replacing the per-impression valuéof bid i by v%, Pr(¢’|a).
With a well-crafted abstraction, this may produce an optiafia-
cation (e.g., consuming as much of each advertiser’s budgeds-
sible). However, if the number of a-channels is limited fompu-
tational reasons, the “pessimistic” assumption of rand@padch
may leave revenue on the table. We consider another meamps of o
timizing with a-channels that relies on constraint generain the
abstract MIP (or LP) to allocate the supply of abstract cletsto
bids non-uniformly, thus improving revenue.

6.1 Constraint Generation Procedure

Let A be an abstraction antd the optimistic MIPin which bids
are assigned to a-channels, but where each impression toidid
assumedo satisfy its formulap;. This assumption is realized by



# attributes  Attribute Base # Initial Final Runtime (sec)
per bid selection pg =1) bid value | channels fracUB frac UB Improve pu range
U0, 10] Zipf 0.5 U[0.1,1.0] 9.3 0.461  0.806 0.345 811 [203,1438]
U0, 10] Zipt 0.75 Ul[0.1,1.0] 8.3 0.476  0.817 0.341 636 [813,1509]
U0, 10] Zipf 1.0 U[0.1,1.0] 7.7 0528  0.818 0.290 542 [235,1007]
U0, 10] Zipt 0.5 N(0.5,0.1) 8.2 0.489  0.816 0.327 605 [133,1439]
U0, 10] Zipt 0.75 N(0.5,0.1) 9.0 0.508  0.808 0.301 803 [123,1839]
U0, 10] Zipf 1.0 N(0.5,0.1) 7.8 0511  0.800 0.289 595 [247,1503]
U[0,10]  Uniform 0.5 Ul[0.1,1.0] 3.9 0.743  0.801 0.059 264 [64,543]
U[0,10]  Uniform 0.75 Ul0.1,1.0] 43 0752  0.804  0.052 306 [133,706]
U[0,10]  Uniform 1.0 Ul0.1,1.0] 3.8 0.748  0.799 0.051 282 [97,785]
1 Uniform 0.5 N(0.5,0.1) 5.6 0.844 0973 0.128 322 [84,571]

Table 3: Average resultsfor column generation with L P expressivenessand M1 = 0.01, 100 attributes, 1000 bidders.

replacing the per-impression valug for a-channeb by v itself:
i.e., we assume thaweryad for: assigned tax will be dispatched

intelligently, thus guaranteeing that is satisfied. In a simple two-
bid, two a-channel case, the resulting MIP (in this case,is#)
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The optimistic assumption embodied in this formulationris u
reasonable in general. There is no reason to believe theatibo
of bids toa; permits feasible “packing” of their promised supply in
such a way that each bidgets onlyy’-impressions. However, we
can test this assumption by solving an LP that determineshghe
there is enough supply to do just this: in our example, we want
to determine ifo; contains enougkp® and? supply to meet the
“obligations” contained in the solution of the optimistid® simi-
larly, we wish to test a-channek. More generally, lek = {i{;j}
be the solution of the optimistic MIP with a-channdls; }. Let
W) ={i: igj > 0} denote the the “winners” of a-channe}.
We solve the following LP for eacty; (with a constant objective,
since our aim is only to determine feasibility):

max 1
s.t. > al=a, Vi e W(j)
cEaj,cl=pt
Z z! < s(c) Ve € o
ieW ()

This LP determines a feasible allocation of bidhat sharev;
to the c-channels that constitutg, thus guaranteeing that every
impression given ta satisfies its bid conditiory’. The first set of
constraints ensures there is enoughsupply for each bid—call
thesebid adequacy constraintswhile the second establishes that
no constituent c-channel is overallocated—call thesnnel sup-
ply constraints If LP(«;) is feasible for eacly;, then it provides
an optimal dispatch policy that extracts the full objectizdue of
the optimistic MIP. If not, we post constraints on the opstia
MIP and resolve. In particular, let P(«;) be infeasible. Then
there must be some minimal set of constraints that are yointl
feasible. LetS = S, U Ss be such a minimal set, whefg, are bid
adequacy constraints arffl are channel supply constraints. We
can show that the MIP solution violates the inequality:

Z $ij- < Z s(e)

1€Sq cESs

BAs discussed above, in general, we don't discountvileie of

an impression to a bid, but the number of impressions ¢bant
toward satisfaction of bid conditions. The optimistic Miéptaces
all discounted counts by their undiscounted counterparts.

@)

We can resolve the MIP by posting this constraint to ensuat th
overallocation of the channels & does not occur for the purposes
of maximizing value extracted from bids },. A tighter version
of this constraint can be employed: we can add to the sum on the
lefthand side any bid all of whose relevant channels are included
in S, i.e., anyi st.{c € a; : c = ¢'} C S,. At each itera-
tion, setsS leading to violated constraints are identified for each
a-channel and postél.The MIP is resolved until feasibility is at-
tained (in which case full optimistic objective value isaibied), or
computational or time bounds are reached.

Computationally, the most demanding aspect of this algoris
the solution of the LPs used to generate constraints. Wigledlu-
tion of LP(«; ) could, in principle, require an exponential number
of variables (i.e., the:’ corresponding to all c-channetse «;)
and constraints, we use simple lossless channel abstrdotiol-
lapse this number. As such, the number of winners for eaatinga
(and the interaction of their bids) determines the true derity of
the required LP solvel. The constraint generation algorithm can
be used directly to solve the ad allocation MIP without nedyon
column generation. For example, it can be applied directlthe
fully abstract MIP with a single a-channerl’). It could also be
used to optimize oveany heuristically chosen abstraction.

6.2 Empirical Results

To evaluate the effectiveness of constraint generationxpere
ment with problems with bonus and per-impression bidderslea
scribed in Sec. 5.3.3. We first perform column generationgisi
MI = 0.01, then extend the solution using constraint generation.
We initially seed the procedure with all constraints of tyfgin-
volving single bids. Hence, all subsequently generatedtcaimts
involve multiple bids.

To avoid generating an unreasonable number of constraiets,
use a tolerance (set t00.01), whereby the feasibility LP allows
the allocations from the MIP to decrease by uptoThat is, we
replace the first set of constraints in the LP by:

> el<, vi € W(j)
cEaj,cl=pt
S oalzil, - View()

cEay ,clEpt

¥These can be identified using the facilities of standardess|v
such as the CPLEX IIS (irreducible inconsistent set) rautikive
use our own special purpose algorithm to identify such sets.
The interaction is in fact even less when one accounts foe tim
windows: a separate feasibility testing/generation @eds in-
voked for each a-channel, time-period pair.



Thus, when constraint generation terminates, the allocagiguar-
anteed to be feasible, but may be suboptimal.

We found that, for larger problems, constraint generatidmdt
always terminate within a reasonable amount of time. In gpee
iments, if constraint generation did not terminate withf0&ec-
onds, we stopped generating constraints and generatedibléea
allocation that minimized the maximum difference from théPM
allocation. We accomplish this with the following LP:

min € 2
s.t. S al <l Vi e W(j)
cE€aj,cl=pt
S aizan, —c Vi € W(j)
cEaj,cl=pt
Z zl < s(c) Ve € o
EW(5)

As discussed above, the feasibility LP could require an expo
nential number of variables. In practice, we find thatiif(;) is
no greater than around 20, the size of the LP is reasonabte (an
muchsmaller tharg?°). If at any point the MIP give$V (j) > 20,
we split channek;. However, rather than using the scoring func-

tion discussed above, we attempt to reduce the maximum, over ’ o )
erated on the new channels, further “wasting” computatiefiart.

the two new channels, of the bids that care about the channel
That is, we minimizescore(a, 3,8) = max({|{i}| : B A ' #
False}, {|{i}| : B A ©" # Falsg}).

When constraint generation is complete, we compute theevalu
of the allocation based on the final feasible allocation gaee by
the LP (which might be different than that of the final MIP ako
tion, due toe), but use the final (infeasible) MIP allocation as an
upper bound on the true optimum value. This bound is clodauto,
somewhat tighter than the bound generated in Sec. 5.3.

Table 5 shows the results of experiments on the set of prablem
with bonus and per-unit bidders described in Sec. 5.3.3¢e Mer
show the results only for the constraint generation porticire ta-
ble shows several key measures, including the number ofredms
generation iterations, the number of additional channetetated
and the number of constraints generated. The fraction afipper
bound on the optimal value obtained by the MIP when constrain
generation terminates (“Frac UB”) is also shown. An esterit
the improvement in the degree of optimality over the finaLliooh
generation value is shown (“Improve”). Finally, the averaand
range of runtimes is presented. Clearly, the additionabgha-
creases value to a high degree of optimality, although piotgi
this improvement can be time consuming for larger problems.

We found in our experiments that, typically, little additad value
is obtained by performing constraint generation beyondritial
single-bid constraints. We ran additional tests to deteenthe ef-
fectiveness of adding only static, single-bid constraimghout
adding additional constraints. In these tests it was stitlessary
to run the relaxed LP (2) for each channel to determine abiEasi
allocation. As we see in Table 6, we can get nearly same ldvel o
optimality as from generating more constraints but at aiggmt
time savings. In some cases, we obtain slightly higher cityn
This is possible because, even when we generate multi-lsid co
straints, we still run the relaxed LP in the final step. It isgible
for the approximation to be worse, even when we generatedthe a
ditional constraints.

6.3 Other Uses of Constraint Generation

One of the bottlenecks in the effective use of constrainegen
ation is its tendency to scale poorly in the number of “wirsder

# Frac Runtime (sec)
ny, N channels uB Improve range

10 40 0.2 0.986 0.113 11 [4,37]

20 80 0.2 0.972 0.134 80 [12,545]
30 120 0.3 0.992 0.186 168 [17,848]
40 160 0.7 0.971 0.162 431 [22,2991]
50 200 0.3 0.985 0.152 608 [32,7092]
60 240 0.9 0.970 0.127 398 [35,2259]

Table 6: Average results for constraint generation with only
static, single-bid constraints, following column generation, with
100 attributes, n, bonus bidders, and n; per-impression bid-
ders.

Specifically, if an a-channel, time-period pair has a largeber

of bids that are allocated to it in the initial abstract MIRveo the
procedure can generate hundreds of thousands of cons}eanis-
ing the MIP to slow down significantly and dominate runtiméeT
number of winners in the MIP can be used to suggest furthar-cha
nel refinements. The development of effective channeltsmit
heuristics that attempt to “separate” bids into differehwenels
could make constraint generation much more effective. Thekq
identification of problematic a-channels during constraenera-
tion is critical as well: whenever a channel is split, all styaints
on the split channel must be discarded, and new ones mushbe ge

Thus problematic a-channels should be identified beforgfiignt
constraint generation occurs.

Constraint generation can also be used selectively. ThedsitP
be solved by using the “optimistic” values on some chanimeét
pairs—requiring constraint generation to effectivelyveaup sup-
ply with those segments—while the random dispatch policylma
assumed in others (e.g., those where constraint geneiomt
scale effectively). This offers a tractable means for imprg on
the abstract allocation problem without necessarily anting for
intelligent dispatch across the entire space.

7. DATA REPRESENTATION AND OTHER
| SSUES

The implementation and practical deployment of our teahesq
bring to light a number of subsidiary issues that need to be ad
dressed. We first discuss several ways in which our column and
constraint technigues can be extended to further enhaatabile
ity, then outline some additional challenges to practiegldyment
and how we address them.

7.1 Discussion of Techniques

The column generation procedure converges to an optinl all
cation for LP expressiveness, even with our myopic searabepr
dure. Successive conjoining of literals must eventualbdpce all
c-channels; and since our scoring function overestimatgsave-
ment in LP objective achieved by any split, all worthwhilditsp
will be made. Of course, tractability requires that we do syt
the channels too fine?. To this end, we consider complex splits
by allowing both literal conjunction and disjunction dugisplit
search. Although complete search is impractical, more istph
cated techniques for constructing split formulae may leadven
better splits. For instance, dynamic programming may be irse
special cases (e.g., under certain independence assus)pflech-

standard bounds from the column generation literature @n b
adapted to our problem to bound the degree of suboptim&lityld

we stop generating channels when some split still has pesi¢-
duced cost [12].



# # # Frac Runtime (sec)
ny, N iterations channels constraints UB Improve u range
10 40 13.9 0.2 210 0.983 0.110 162 [12,620]
20 80 12.0 0.2 562 0.977 0.139 629 [89,1635]
30 120 8.4 0.4 838 0.982 0.176 858 [356,1719]
40 160 6.2 0.8 727 0.966 0.158 1433 [625, 6417)
50 200 5.7 0.3 706 0.978 0.145 1523 [679, 8993]
60 240 54 1.1 647 0.968 0.127 1257 [663, 3773]

Table 5: Average results for constraint generation, following column generation, with 100 attributes, n, bonus bidders, and n;

per-impression bidders.

nigues for constructing logical class and concept desariptirom
the classification and concept learning literature—andengener-
ally, methods for feature selection in learning [10]—magoabe
adapted to our setting.

However, we emphasize that our goal is not to identify thelsma
est set of channels per se, but rather a set of channels #ukst te
a high value from optimization while allowing the LP to remai
tractable. Our approach obtains high value with a small rermob
channels. For our larger problems, search dominates rantien
quiring more than nine times as much time as the LP solvess Thu
our primary focus is accelerating split search, rather #asuring
completeness. As we show in Sec. 8, simple heuristics canalra
ically improve runtime performance of column generation.

Constraint generation can be used independently of colenn g
eration, but itis much more tractable if it starts with a gabdtrac-
tion. While constraint generation can improve an allocatiothe
case of LP expressiveness, it is most beneficial with IP aspre-
ness, since column generation is applied to an approximafithe
MIP (i.e., its LP relaxation). Since column generation is an the
LP relaxation at the root of the MIP search tree, it is not goar
teed to converge to optimality. Alternatively, we could daypa
branch-and-pricd2] approach, whereby column generation is ap-
plied at multiple points in the MIP search tree. This woullbal
convergence to an optimal allocation in the IP case, but ishmu
more computationally expensive than standard (LP) coluemeg
ation; it also leads to complications in the cutting plargpathms
needed to solve MIPs efficiently.

7.2 Data Representation

Our approach to channel abstraction requires manipulatfon
logical formulae describing both abstract channels and. beur-
thermore, the natural and compact description of both téaispaigns
and channel supply requires the use of logical formulae.rdbp
lems with dozens or hundreds of channel features, we carpete
supply distributions to be explicitly articulated for eachncrete
channel. Nor should we expect bidders to specify their @sisr
explicitly over such concrete channels.

Our data distributions make specific independence assonspti
that allow them to be represented tractably. While more gne
models can be used (e.g., graphical models of distributioch
as Bayesian networks), we adopt a simple clustering modeé T
channel feature séf is partitioned into a sek{ = { H;} of subsets
or factors and we assume an explicit joint distribution mwten-
tial) ¢, is provided for each factoH; (e.g., if H; = {A, B,C},
then1; is a joint distribution oveDom (A, B, C)). These poten-
tials are independent, so the probability of any chann®kig) =
IL;4; (c[i]), wherec]d] is the restriction of c-channelto its feature
values inH;. The supplys(c,t) of any channel at time is then
s(c,t) = s(t) Pr(c).r” Our assumption above of complete feature

17 impression distributions are nonstationary, the pagsican be
indexed by time, or by time “features” such as day-part.

independence is a special case of this model.

Ourimplementation of channel abstraction usetered Boolean
decision diagrams (OBDDgY] to represent logical formulae: this
includes the logical representation of bid formulaeand of ab-
stract channels;. Given the specification of probabilities in terms
of factors and potentials, we have devised efficient allgovit for:
(a) computing the probabilities of a formula representesreSBDD
(e.g., to comput®r(«) for some a-channet in order to determine
its supply); and (b) computing the conditional probabilitiyone
OBDD given another (e.g., to compute the probabifty(¢°|c)
that a-channet satisfies bid formula?).

7.3 Channel Featuresand Stochastic Supply

The nature of useful channel features varies significamtynf
one web site to another. We capture this by aggregating creis
into groups known adase channelstypically corresponding to
particular sites (or subsections of sites). Each base ehdary.,

a specific web site) is characterized by its total amount ppsu
and by the set of features that arleservabl€(i.e., features that are
known with certainty to hold of a particular impression, Iswas
day-part, gender of subscription users, etstdchastically verifi-
able(i.e., features for which a probabilistic estimate of gatiion
can be given), oimapplicable (features for which no information
is available). The distribution of channels with a base deis
specified using the method above.

C-channels cannot be defined using inapplicable featuistscinas-
tically verifiable features: for any base channel, its crrieds are
the instantiations of its observable features only. Famimse, on a
site A that has statistical data on gender, but no means of observ-
ing gender, no c-channel exists with featuséieg = A, gender =
male (Since one cannot assign an ad to such an impression with
certainty). The distribution of gender is used only to pcedhe
number ofmale-impressions (hence payment) when an ad is as-
signed tosite = A. Similarly, if a feature is inapplicable, every
feature value is assumed to go unsatisfied.

Our abstraction model is presented as if supply is detestnini
If supply is stochastic, our abstraction techniques canemeigl-
ized using the methods described in [6], where the resultieof
terministic optimization are used in a sampling and reojatition
framework to manage uncertainty and risk. Our data reptasen
tion can easily be generalized as well: (a) we replace thetpoi
estimate of the supply(b) of a base channél by a distribution
(e.g., normal, or other parametric form that makes sensecand
easily be sampled from); (b) instead of a simple multinonfaal
each observable attribute, we specify a Dirichlet, withdnparam-
eters for each domain value. This allows simple computaifax-
pected values for deterministic optimization, and simplegling
for stochastic optimization.

8. COLUMN GENERATION HEURISTICS

Searching for the best channel split dominates the runtifne o



the column generation process. Indeed, with 100 attribd@30
bidders, and\/I = 0.01, the search consumes over 90% of the
runtime, compared to only 3% for the LP solves (with the remai
ing time devoted to management and bookkeeping). To dexreas
the runtime, heuristics can be employed in selecting thertla
to split and selecting which attribute-values to split orhil& such
heuristics will result in suboptimal splits, they need netease the
optimality of the final result so long as we continue columnega-
tion to the same minimum improvement tolerance. Howevengus
heuristics may cause more channels to be generated beéota-th
erance is reached. This tradeoff can be beneficial, so lorlgeas
increase in channels is reasonable.

We tried three complementary heuristics that greatly spged
column generation, without sacrificing the optimality oétfinal
allocation. The first two involve speeding up the search feplé
on a given channel. The first, “single-value”, is to conskjaitting
channels on only a single attribute-value (as opposed tjugon
tions/disjunctions of multiple literals).

The second, “trigger”, is to heuristically order the atttid val-
ues based on an estimate of their score, then select thetfiitstite
value whose actual score (not the heuristic value) excetussh-
old (in terms of the fractional improvement over the last bR/s).

# Frac Runtime (sec)

Heuristics channels UB range
— 9.3 0.806 811 [203,1438]
S 9.9 0.801 640 [130,1184]
S,T(0.05) 9.8 0.802 566 [117,1143]
S,T(0.03) 9.8 0.804 506 [109,841]
S,T(0.02) 10.0 0.806 505 [177,952]
S,T(0.01) 10.3 0.809 432 [162,869]
S,Q(3) 10.0 0.801 470 [130,859]
S,Q(2) 10.0 0.801 390 [111,646]
S,Q(1) 10.0 0.800 344 [90,649]
S,Q(1),T(0.01)| 109 0812 292 [97,551]

Table7: Averageresultsfor column generation with L P expres-
siveness, 100 attributes, 1000 bidders, M1 = 0.01, and different
heuristics.

Heuristics Approach| # Frac Runtime (sec)
— col. gen 7.8 0.842 184 [49,324]
— constr. gen| 1.1 0.968 1257 [663,3773]
S,Q(1),T(0.01) col.gen[ 10.7 0.847 31 [7,57]
static constraints ~ constr. ge‘n 1 0.969 612 [28,3794]

The key is to make the ordering measure much faster to computeTable 8: Average results for column generation, followed by

than the actual reduced cost score. Since the most expgresive
of computing the score is computing the conditional prolitgbi
of a bid, given a channel split, we must avoid this computatio
in the heuristic. For channel, we order the attribute-valug/

by decreasingi(f), whereh(f{) = max;cp; re(x,, i)s(a A

©') and B? is the set of bids that indicate a preference on at-
tribute 5. This does not require the computation of any additionl
conditional probabilities becausgy’|a A ¢*) = 1 and because
s(a A p') = s(a)p(a A ¢'la) and we already computedc) and
pla A ¢'|a) for the previous LP solve. For the “trigger” heuris-
tic, we can choose any threshold that is at least as largesddIth
threshold for determining when to stop searching for splitsour
experiments, we got the best results by setting the triggeshold

to Ml.

Finally, we tried a heuristic for choosing which channel pdits
The “queue” heuristic orders the channels by the maximurnt spl
score last computed for the channel. Channels are ordereé-by
creasing score. New channels that have not yet been scaed ar
given a score ofo. When deciding which channel to split, we find
a split for the firstn. channels in the queue. We choose the best of
those splits that exceeds a threshold. If none of thesirshan-
nels has a threshold that exceeds a threshold, we continuette
queue until we find a channel whose split exceeds the thréshol
Whenever we choose not to split a channel, we replace thexehan
on the queue with it's queue value equal to the newly computed
split score.

Table 7 shows average results for column generation with LP
expressiveness, 100 attributes, 1000 biddér$, = 0.01, and
different combinations of heuristics. In the “heuristiagilumn,

“S” refers to the single-value heuristic, ‘U refers to the trigger
heuristic with threshold, andQ(n) refers to the queue heuristic
with a minimum evaluation of. channels. The first row shows
the results with no heuristics, and corresponds to the tastim
Table 1.

constraint generation, with heuristics and without, with IP ex-
pressiveness, M1 = 0.01, 100 attributes, 60 bonus biddersand
240 per-impression bidders.

n of the queue heuristic increases the myopic optimality efdo-
sen split, it does not significantly affect the optimalitytbé final
solution but does slow down the column generation procegst-O
all, it appears that, with good heuristics, it is beneficiespeed up
the process by performing myopically suboptimal channktssp

We see in Table 8 that heuristics are also effective on pnable
with IP expressiveness. The first two rows show the resultobf
umn generation, followed by constraint generation, withtany
heuristics. These rows correspond to the last row of Tabled4 a
the last row of Table 5, respectively. The third and fourttvso
show column generation with all heuristics applied, fokalvy
constraint generation using only static, single-bid caists. We
see that heuristics greatly speed up both column generatidn
constraint generation, without sacrificing optimality.

9. CONCLUDING REMARKS

We developed a suite of techniques based on column and con-
straint generation that effectively tackle the channel@sipn prob-
lem in the optimal allocation of online ads. Our techniqupplya
to both simple, current forms of expressiveness (e.qg., Isifopd-
get constraints) and other, richer forms of campaign-lexgres-
siveness that require the solution of large-scale integegrams.
Our experiments demonstrate that high-quality allocatican be
determined using very few abstract channels in optimipattbis
illustrates the desirable sensitivity of our methods testhohannel
distinctions that have the greatest impact on value (esgenue
or efficiency). Our techniques scale to problems with huds!ief
attributes and bidders. Given the offline nature of the ojam
tion problem we propose, our computational results sugthedt

We see that the heuristics can greatly speed up column gener-our procedures can be run and rerun frequently to deterraing,

ation with nominal impact on optimality (in some cases, even
proving it slightly) and only a small increase in the numbkectwan-
nels generated. Furthermore, the most aggressive coriairatt
heuristics (the last row) gives the best results. Note #ittipugh
increasing the threshold of the trigger heuristic and iasiry the

(approximately) optimal allocations in stochastic modabist re-
quire sampling [6].

There are a number of interesting directions in which thiskwo
can be extended, in particular, in directions that wouldagick
scaling to even larger problems. The search for channdkdpli



column generation, while effective for our problems, idl sfilite
crude, and we suggested several avenues for improving étinih
provements to constraint generation discussed in Sec.nél.&e
ploring branch-and-price techniques remain a high pyi@st well.
Finally, assessing the impact of approximate channel ati&in
and/or optimization on incentives in ad markets is of intere
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