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We initiate the study of the capacity constrained facility location problem from a 
mechanism design perspective. In the capacity constrained setting, the facility can serve 
only a subset of the population, assumed to be the k-closest with respect to agents’ 
true locations (this can be justified as the essentially unique equilibrium outcome of 
a first-come-first game induced by the facility location). The main result is a complete 
characterization of dominant-strategy incentive compatible (DIC) mechanisms via the 
family of generalized median mechanisms (GMMs). Thus, the framework we introduce 
surprisingly provides a new characterization of GMMs, and is responsive to gaps in the 
current social choice literature highlighted by Border and Jordan (1983) and Barberà et al. 
(1998). We also provide algorithmic results and study the performance of DIC mechanisms 
in optimizing welfare. Adopting a worst-case approximation measure, we attain tight lower 
bounds on the approximation ratio of any DIC mechanism.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

A common economic problem is deciding where a public facility should be located to serve a population of agents 
with heterogeneous preferences. For example, a government needs to decide the location of a public hospital or library. 
More abstractly, the ‘location’ may represent a type or quality of a service. For example, a government may have a fixed 
hospital location but must decide on the type of service the hospital will provide, perhaps whether the facility’s services 
are targeted to those suffering from acute, moderate, or mild severity of a certain illness. In such problems, agents may 
benefit by misreporting their preferences, and this can be problematic for a decision maker trying to find a socially optimal 
solution. This leads to the mechanism design problem of providing optimal, or approximately optimal, solutions while also 
being dominant-strategy incentive compatible (DIC) or strategyproof, i.e., so that no agent can profit from misreporting their 
preferences regardless of what others report.1 In this paper, we refer to this problem as the facility location problem.

The facility location problem has been studied extensively, and when it is not capacity constrained then all agents can 
benefit from the facility it is modeled as a public good (non-rivalrous and non-excludable). This problem has been explored 
in several classic papers (Black, 1948; Border and Jordan, 1983; Gibbard, 1973, 1977; Moulin, 1980; Satterthwaite, 1975), 

✩ This paper was previously circulated under the title “Mechanism Design without Money for Common Goods.” The abstract of this paper appeared in the 
Proceedings of the 15th Conference on Web and Internet Economics (WINE 2019). We owe thanks to Richard Holden, Herve Moulin, Toby Walsh, UNSW seminar 
participants, and the anonymous referees.
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and more recently in the field of algorithmic mechanism design (Feldman et al., 2016; Nisan and Ronen, 2001; Procaccia 
and Tennenholtz, 2013).

To the best of our knowledge, an unexplored setting for the mechanism design problem is where the public facility is 
also capacity constrained.2 These kinds of capacity constraints, which limit the number of agents who can benefit from a 
facility’s services, are ubiquitous in practice. Consider a hospital that is capacity constrained by the number of beds and 
doctors, for example, or a library with limited seating. Capacity constraints introduce a form of rivalry to the facility, since 
once the facility reaches its capacity limit then additional agents are prevented from using the facility.

A number of new strategic challenges arise for the mechanism designer when the public facility is capacity constrained 
but still non-excludable. For example, when the mechanism designer chooses a location for the facility we cannot stipulate 
which agents will be served. Instead, we assume that only the subset of agents with their true location closest to the facility 
will be served (up to the capacity constraint). This can be justified as the essentially unique equilibrium outcome of a first-
come-first game induced by the facility location. In this way, an agent’s utility and whether they are served depends not 
only on the facility location but also on the capacity constraint and the true locations of the other agents. This introduces 
a new technical challenge, because it results in agents having interdependent utilities and requires the designer to consider 
mechanisms that are strategyproof in this broader game-theoretic context.

In this paper, we initiate the study of the capacity constrained facility location problem from the viewpoint of mechanism 
design. In our model, n agents are located in the [0, 1] interval, and there is a single facility to be located, this facility is able 
to serve at most k agents, where k is some positive integer. When k ≥ n the problem is equivalent to the classic problem. 
Agent locations are privately known, and the mechanism induces a reporting game. Once the facility location is decided, we 
assume the k-closest agents with respect to their true locations are served. We adopt as a design goal that of maximizing 
social welfare, while also seeking strategyproofness. As with much of the literature since Gibbard-Satterthwaite (Gibbard, 
1973; Satterthwaite, 1975), we focus on the case where, conditional on being served, an agent has single-peaked and 
symmetric preferences over the facility location. This symmetry assumption is also adopted in Border and Jordan (1983). 
Strategyproofness requires that an agent never benefits from misreporting their location to the mechanism regardless of 
what other agents report, and regardless of other agents’ true locations. Unlike the classic, unconstrained problem, the 
social welfare optimal mechanism is not DIC except when the capacity constraint is trivial, i.e., k = 1 or n.3 As a result, we 
also follow the approach of Procaccia and Tennenholtz (2013) and consider the approximate mechanism design problem. 
We adopt the worst-case approximation measure, and ask what is the best approximation achievable with DIC mechanisms, 
and how does this vary as a function of the capacity constraint?

The main theoretical contribution is a complete characterization of DIC mechanisms via the family of generalized median 
mechanisms (GMMs), which therefore provides a new characterization of GMMs, and also closes a gap in the current 
literature on the facility location problem without capacity constraints. Border and Jordan (1983) has provided a partial 
characterization of strategyproof mechanisms for this classical setting via the family of GMMs. Border and Jordan show that 
a mechanism is strategyproof and unanimity respecting4 if and only if it is a GMM, and that the family of GMMs is strictly 
smaller than the complete family of strategyproof mechanisms.5 This has left a gap in the literature to characterize the 
complete family of strategyproof mechanisms and to understand the difference between strategyproof mechanisms that are 
GMMs and those that are not. Fig. 2 schematically illustrates this gap.

Our Contributions: We introduce a new mechanism problem, the capacity constrained facility location problem. This 
problem is a natural variant of the classic facility problem where the facility also faces a capacity constraint.

Our main theoretical contribution is a complete characterization of DIC mechanisms for the capacity constrained facility 
location problem. We show that a mechanism is DIC if and only if it belongs to the established family of mechanisms of 
GMMs, which appear in Moulin (1980) and Border and Jordan (1983). Thus, the framework we introduce also provides 
an interesting new characterization of GMMs, and contributes a novel perspective to a “major open question” (Barberà 
et al., 1998) posed by Border and Jordan (1983) regarding the relationship between GMMs and the larger space of DIC 
mechanisms in the non-capacity constrained facility location problem. In particular, our characterization result shows that 
any mechanism that is DIC in the non-capacity constrained problem and is not a GMM must not be DIC in the capacity 
constrained setting. That is, the strategyproofness of these (non-GMM) mechanisms is not robust to the addition of capacity 
constraints (further discussion is provided in Section 1.1).

We also provide algorithmic results and study the performance of DIC mechanisms in optimizing social welfare. We 
adopt a worst-case approximation measure, and provide a lower bound on the approximation ratio of any DIC mechanism. 
A lower bound that is greater than 1 can be viewed as an impossibility result. We show that at best the approximation ratio 

2 The purely algorithmic problem of locating multiple capacity constrained facilities when agents are not strategic has been studied (Brandeau and Chiu, 
1989; Pál et al., 2001; Vygen, 2004).

3 For the classical setting, if the objective of the mechanism designer is to maximize social welfare, then the standard median mechanism is both 
strategyproof and social welfare optimal (Black, 1948).

4 Unanimity respecting means that if there is a unanimously most preferred facility location, then the mechanism must locate the facility at this location.
5 We note that in a slightly different setting, where the single-peaked preferences are possibly asymmetric, GMMs provide a complete characterization of 

strategyproof and “peak only” mechanisms that only receive reports of peaks (Proposition 3 of Moulin (1980)). Example 2.2 in the present paper provides 
an example of a mechanism that is strategyproof in the Border and Jordan (1983) setting but not the Moulin (1980) setting. Massó and de Barreda (2011)
provides a complete characterization of strategyproof mechanisms when agents have symmetric single-peaked preferences.
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Fig. 1. Worst-case approximation ratio as a function of the capacity constraint, k.

of a DIC mechanism is 2 k
k+1 when k ≤ �(n − 1)/2�, and max{n−1

k+1 , 1} otherwise. Interestingly, this lower bound is achieved 
by the standard median mechanism (which is also DIC) when k ≤ �(n − 1)/2� or k = n, and hence the median mechanism 
is optimal among all DIC mechanisms in those ranges. Fig. 1 illustrates these approximation results.

1.1. Related literature

Facility location problems. Facility location problems have been extensively studied. The standard setting considers the 
problem of locating a single facility along the real line when agents have single-peaked preferences over the facility’s loca-
tion.6 Moulin (1980) focuses on characterizing mechanisms that are strategyproof and mechanisms that are strategyproof, 
anonymous, and efficient; however, the literature has extended this problem in a variety of directions. For example, Nehring 
and Puppe (2006, 2007) explore a setting where agents’ preferences satisfy a more general notion of single-peakedness; 
Miyagawa (1998, 2001) and Ehlers (2002, 2003) consider an extension whereby multiple facilities must be located; Barberà 
et al. (1998) study a setting where the space of feasible facility locations is restricted; and Procaccia and Tennenholtz (2013)
introduce computational and approximation properties into the mechanism design problem. Our paper contributes to this 
literature by considering a natural extension of the facility location problem where the facility is capacity constrained.

Most closely related to our paper is Procaccia and Tennenholtz (2013), where agents with single-peaked preferences are 
located along the real line and the problem of locating a (non-capacity constrained) public facility is studied with the goal 
of minimizing two distinct objective functions: the total social cost and the maximum cost across agents. In this paper, we 
focus on minimizing the total social cost in the presence of a capacity constrained facility. In contrast to the setting studied 
by Procaccia and Tennenholtz (2013), agents have interdependent utilities in our model because of the capacity constraints 
of the facility, since their utility for a choice by the mechanism depends on the true locations of others and whether they 
will gain access.

Characterization of strategyproof (DIC) mechanisms. Another large body of literature is concerned with characterizing 
DIC mechanisms for the unconstrained facility location problem. In one-dimensional space and for symmetric and single-
peaked preferences, Border and Jordan (1983) characterize a general class of DIC mechanisms which have become to be 
known as generalized median mechanisms (GMM), and in addition, show that when the property of unanimity is enforced 
every DIC mechanism is a GMM. Border and Jordan (1983) also consider the problem in higher dimensions. These results 
differ slightly from the characterization results of Moulin (1980) since the setting studied in Moulin (1980) does not restrict 
the single-peaked preferences to be symmetric. Characterizing DIC mechanisms that need not satisfy unanimity was posed 
as an open problem; as stated by Border and Jordan (1983) “[the characterization] leaves several open problems. The most obvious 
question is: what happens if the unanimity assumption is dropped?” This has become known as a “major open question” (Barberà 
et al., 1998), with only partial progress towards a resolution (Barberà and Jackson, 1994; Barberà et al., 1998; Ching, 1997; 
Peremans et al., 1997; Weymark, 2011). In particular, the results of Border and Jordan (1983) for facility location in a 
one-dimensional space leave two gaps in regard to GMMs:

6 We do not review the computer science and operations research literature on facility location problems that assumes complete information and hence 
does not require a mechanism design approach (see Brandeau and Chiu (1989)). Furthermore, this literature, when incorporating capacity constraints, 
typically focuses on the problem of locating multiple capacity constrained facilities that collectively have sufficient capacity to serve all agents (Charikar et 
al., 2002; Cygan et al., 2012; Pál et al., 2001; Vygen, 2004).
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(1) there exist non-unanimity respecting DIC mechanisms that are not GMM, and
(2) there exist DIC mechanisms that are GMMs but do not respect unanimity.

The results of Massó and de Barreda (2011) close the first gap by providing a complete characterization of DIC mecha-
nisms. Their results imply that any non-unanimity respecting DIC mechanism that is not a GMM must belong to a family of 
“disturbed minmax” mechanisms that is obtained by modifying each GMM to admit a particular kind of discontinuity. Our 
characterization of DIC mechanisms via the family of GMM, although considered in a different setting where the facility is 
capacity constrained, applies more generally to mechanisms that are not unanimity respecting. Hence, we contribute a novel 
perspective to these gaps in characterization, showing that a mechanism is DIC for all possible capacity constraints k ≤ n if 
and only if it is a GMM. This means that any mechanism in gap (1) is not DIC when the facility is capacity constrained with 
k < n. Furthermore, the unanimity property is sufficient to ensure that a mechanism that is DIC in the non-capacity con-
strained setting remains DIC when capacity constraints are present. Our results complement those of Massó and de Barreda 
(2011) by showing that the family of disturbed minmax mechanisms are not DIC in the capacity constrained setting, while 
the family of GMMs are DIC in the capacity constrained setting.

Facility location problems with capacity constraints. To the best of our knowledge, the facility location problem with 
capacity constraints has not been studied within the mechanism design literature. However, the settings studied in Jackson 
and Nicolò (2004) and Cantala (2004) share some similarities with our setting and, hence, deserve greater discussion.

Jackson and Nicolò (2004) study a non-capacity constrained facility location problem where agents have preferences over 
the facility’s location and also the number of other agents that are served. In their setting, the mechanism designer chooses 
both the location of the facility and assigns a subset of agents to be served the facility.7 This differs from the setting that 
we study where the mechanism designer does not assign a subset of agents to be served; instead, the facility’s location and 
capacity constraint determines the subset of agents that will be served.8 Thus, Jackson and Nicolò’s results are applicable 
to settings where the designer has coercive power to both force and exclude agents from accessing the facility, while our 
results are applicable to settings where the designer has no such power. Our results are complementary and show that the 
scope for designing strategyproof mechanisms is significantly enlarged when the designer does not have the power to assign 
agents to the facility.

Cantala (2004) studies the related problem of locating a non-capacity constrained facility when agents have an outside 
option. These outside options play an important role. In particular, if a facility is located sufficiently far from an agent’s ideal 
location, then the agent will prefer not to be served by the facility.9 Cantala’s results focus on a notion of efficiency that is 
specific to his setting. In particular, due to agents having an outside option, an efficient mechanism must locate the facility 
at some agent’s ideal location. This implication does not hold in the standard setting of Moulin (1980) and does not hold 
in our setting.10 For this reason, Cantala’s characterization of all strategyproof and efficient mechanisms via a subfamily of 
GMMs, which are called extreme minimax rules, does not apply.11 Towards the end of Section 2, we further discuss how our 
approximation results connect to the notion of Pareto optimality.

Capacity constraints in mechanism design problems. Finally, we note that capacity constraints, or quotas, have been 
considered in a number of related domains where the use of money is not permitted. Such domains include committee 
voting (Aziz and Lee, 2018; Bredereck et al., 2018), apportionment (Balinski and Young, 1982), and matching markets (Ab-
dulkadiroğlu and Sönmez, 2003; Kamada and Kojima, 2015).

Outline: Section 2 presents our model and formalizes the objective of the mechanism designer, Section 2.1 then presents 
our key characterization result of DIC mechanisms. Section 3 explores the performance, i.e., approximation results, of DIC 
mechanisms. Lastly, we conclude with a discussion in Section 4.

2. Model, basic properties, and definitions

Model: Let N = {1, . . . , n} be a finite set of n agents and let X = [0, 1] be the domain of agent locations. Each agent 
i ∈ N has a location xi ∈ X , which is privately known, and the profile of agent locations is denoted by x = (x1, x2, . . . , xn). 
The profile of all agents except some agent i ∈ N is denoted by x−i = (x1, x2, . . . , xi−1, xi+1, . . . , xn). There is a single 
facility to be located in X . A mechanism is a function M : ∏

i∈N X → X , mapping a profile of locations to a single location. 
We restrict our attention to deterministic mechanisms. We denote the mechanism’s output, or facility location, by s ∈ X .

7 Bogomolnaia and Nicolò (2005) also consider a similar problem where the designer must locate and assign agents to multiple facilities.
8 For expositional convenience, we assume that the k-closest agents with respect to their true locations are served. It is also straightforward to show that 

this corresponds to the unique equilibrium of a first-come-first game induced by the facility’s location.
9 This leads agents to have preferences that are “weakly” singled-peaked: agents have single-peaked preferences on an interval around their ideal location, 

but for facility locations outside of this interval they are indifferent. In our model, agents’ preferences are also weakly single-peaked; however, this arises 
due to the facility being capacity constrained rather than agents having an outside option.
10 In Moulin (1980) a Pareto efficient mechanism is only required to locate the facility in the interval that is bounded by the maximum and minimum of 

agents’ ideal locations. Although we do not focus on Pareto efficiency, in our setting, when facilities are capacity constrained with k < n, the appropriate 
definition of efficiency differs from those of Moulin (1980) and Cantala (2004). In particular, an efficient mechanism in our setting is required to locate the 
facility such that the facility location is bounded by the maximum and minimum of the k-closest agents’ ideal locations.
11 Cantala also provides a characterization for group strategyproof and efficient mechanisms.
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The facility faces a capacity constraint k : k ≤ n, which provides a limit on the number of agents that can be served. 
Given a facility location s, we assume that the k-closest agents (with respect to the Euclidean metric and the agents’ true 
locations) are served, breaking ties via some deterministic priority rule when necessary.12 We denote this priority ordering 
by the binary relation 	, so that i 	 j means that agent i has a higher priority than agent j. A served agent attains utility 
ui = 1 − d(s, xi) ≥ 0, where d(·, ·) denotes the Euclidean metric. An unserved agent attains zero utility, ui = 0. Notice that 
an agent’s utility depends not only on the facility location and their own location but also on the location of other agents 
and the capacity constraint of the facility. Thus, we will denote an agent’s utility by a function ui(s, x, k), where s ∈ X is the 
facility location, k is the facility’s capacity constraint, and x is the true location profile of all agents.

Our approximation results rely on the choice of utility function. On the other hand, our characterization results do not 
rely on this particular form, and nor do they require that locations be restricted to the closed interval [0, 1]. We only require 
that, for any true location, every agent weakly prefers to be served than not, and conditional on being served an agent’s 
utility is symmetric and (strictly) single-peaked (as per Border and Jordan (1983)).

A useful observation is that, for any profile of other agents’ locations, an agent has weakly single-peaked preferences 
over the facility location. This result is stated in Proposition 2.1 and is intuitive. If an agent i is among the k-closest agents 
for a given facility location s > xi then moving the facility location closer, to say s′ : s > s′ ≥ xi , never results in agent 
i being excluded from the k-closest agents. Thus, agent i’s utility is guaranteed to weakly increase as the facility location 
moves closer to the agent’s true location.

Proposition 2.1. For any agent i ∈ N, if s < s′ ≤ xi or xi ≤ s′ < s, then ui(s, x) ≤ ui(s′, x).

Proof. Fix k ≤ n, fix a profile of agent locations x, and let s, s′ be two distinct facility locations. Suppose there exists some 
agent i such that s < s′ ≤ xi , the case where xi ≤ s′ < s is dealt with similarly. For the sake of a contradiction, suppose 
that ui(x, s, k) > ui(x, s′, k). Since ui(x, s′, k) equals either 1 − d(s′, xi) or 0 and 1 − d(s′, xi) > 1 − d(s, xi), it is immediate 
that ui(x, s, k) = 1 − d(s, xi) and ui(x, s′, k) = 0. That is, agent i is served (and hence among the k-closest agents) when the 
facility is located at s and is not served when the facility is located at the closer location of s′ . But for any agent j such that 
agent i is closer to location s, i.e., d(xi, s) ≤ d(x j, s), it must also be true that agent i is closer to s′ , i.e., d(xi, s′) ≤ d(x j, s′). 
This is immediate for any x j ≥ xi . Now suppose that x j < xi , then it must be that x j < s, since d(xi, s) ≤ d(x j, s), but then it 
follows that

d(s′, x j) > d(s, x j) ≥ d(xi, s) > d(xi, s′).
This is a contradiction. We conclude that ui(x, s, k) ≤ ui(x, s′, k). �

In this paper, we are interested in strategyproof or dominant-strategy Incentive Compatible (DIC) mechanisms, so that 
agents do not have an incentive to misreport their location. A mechanism M is DIC if for every agent i ∈ N , we have

ui

(
M(xi, x̂−i), x,k

)
≥ ui

(
M(x′

i, x̂−i), x,k
)
,

for every x′
i , for every x̂−i , and for every x−i . Formally speaking, the DIC definition depends on the capacity constraint k, 

however we omit this k dependence as this will be clear from the context.

Objective of the mechanism designer: The design goal is to find DIC mechanisms that perform well with respect to social 
welfare, i.e., the sum of agents’ utilities, and rather than make distributional assumptions, we measure the performance of a 
DIC mechanism by its worst-case performance over the domain of preference profiles.

Given a profile of agent locations, x, and a capacity constraint, k, we define the optimal social welfare by �∗(x, k) :=
maxs∈X

∑n
i=1 ui(s, x, k), and given a mechanism M let �M(x, k) denote the social welfare attained by the mechanism, i.e.,

�M(x,k) :=
n∑

i=1

ui(s, x,k) where s = M(x).

The mechanism M is an α-approximation if

max
x∈∏n

i=1 X

{
�∗(x,k)

�M(x,k)

}
≤ α, (1)

and the LHS of (1) is the approximation ratio. A mechanism (or family of mechanisms) has a lower bound, ᾱ , on the approxi-
mation ratio if

12 This outcome can also be shown to be the essentially unique equilibrium of a simple game where agents compete to be served by the facility via a 
first-come-first-served protocol. Here essentially unique means that in the degenerate cases where multiple equilibria exist they are all payoff equivalent 
and hence the multiplicity does not affect the incentives of agents.
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ᾱ ≤ max
x∈∏n

i=1 X

{
�∗(x,k)

�M(x,k)

}
. (2)

When this lower bound is greater than 1 then this can be viewed as an impossibility result. We are also interested 
in algorithms that match the lower bound. For a given capacity constraint, k, we refer to a mechanism M that attains the 
optimal social welfare for all profiles of agent locations, x, as an optimal mechanism. Such a mechanism is a 1-approximation. 
Again, the optimal mechanism definition depends on the capacity constraint k but we omit this dependence as this will be 
clear from the context. Note that the optimal mechanism need not, and in general will not, be DIC for a given k.

The results that we provide on approximations to social welfare also have a connection with works that consider Pareto 
optimality as the primary efficiency notion (see, e.g., Cantala (2004); Moulin (1980)). A utility profile u = (u1, . . . , un) Pareto 
dominates utility profile u′ = (u′

1, . . . , u
′
n) if ui ≥ u′

i for all agents i and ui > u′
i for some agent i. Given any β ∈ [0, 1], a 

utility profile u is β-Pareto optimal if there exists no other achievable utility profile u′ such that β · u′ Pareto dominates 
u. Note that just as maximum welfare implies Pareto optimality, any outcome achieving β fraction of the maximum social 
welfare — which corresponds to what we call an α = 1/β-approximation — also satisfies β-Pareto optimality (see, e.g., Aziz 
(2019)).

Remark 1. When k = n our model reduces to the well-known facility location problem (Black, 1948; Moulin, 1980; Procaccia 
and Tennenholtz, 2013). Accordingly, this case (k = n) is fully resolved: the standard median mechanism that always locates 
the facility at the median reported location is both optimal and DIC.

To illustrate how the case where k < n differs from the standard k = n setting, consider Example 2.2. The example 
considers a mechanism that is DIC when k = n but for any capacity constraint k < n is not DIC.

Example 2.2. Let M be the mechanism such that M(x) = arg mins∈{1/4, 3/4} d(s, xi) for some i ∈ N , tie-breaking in favor of 
s = 1/4 if necessary. That is, the mechanism locates the facility at either location 1/4 or 3/4 depending on which is closest 
to agent i’s report.

First, notice that the mechanism M is DIC when k = n. If k = n then every agent i is always served by the facility 
and hence attains utility 1 − d(s, xi) for any facility location s. It is immediate that agent i can never strictly benefit from 
misreporting their location.

However, when k < n the mechanism is not DIC. To see this, consider an instance where agent i is located at 3/8 and all 
other agents are located at 1/4. When agent i truthfully reports, the facility is located at 1/4 and is not served – leading 
to zero utility. On the other hand, misreporting to x′

i ∈ (1/2, 1] leads to the facility location 3/4 and agent i is the closest 
agent to the facility. In this case agent i attains strictly higher utility equal to 1 − d(3/4, 3/8) > 0. Thus, the mechanism is 
not DIC for any k < n. �

2.1. A complete characterization of DIC mechanisms

We begin by defining the family of generalized median mechanisms (GMMs). This family was introduced by Moulin (1980)
and Border and Jordan (1983) for the k = n setting, and provides a partial characterization of DIC mechanisms. For the k = n
setting, the well-known family of phantom mechanisms (Moulin, 1980) is also attained from the family of GMMs by requir-
ing anonymity and efficiency.13 The main result of the present paper shows that GMMs provide a complete characterization 
of mechanisms that are (1) DIC for all k ≤ n, and (2) DIC for some k < n.

Definition 2.3 (Generalized median mechanism (GMM)). A mechanism M is said to be a generalized median mechanism (GMM) 
if for each S ⊆ N there are constants aS : S ⊆ T =⇒ aS ≤ aT , such that for all location profiles x,

M(x) = max
S⊆N

{
min
i∈S

{xi, aS}
}
. (3)

To build some intuition, we highlight three well-known mechanisms that belong to the family of GMMs:

• The median mechanism, which always outputs the median of the reported location profile, i.e., the �(n +1)/2�-th smallest 
report, is attained from (3) by setting aS = 0 for all subsets S ⊆ N with |S| < �(n + 1)/2� and aS = 1 otherwise.

• The s-constant mechanism, which always outputs some location s ∈ X , is attained from (3) by setting aS = s for all 
subsets S ⊆ N (including the empty set).

• The agent i dictatorship mechanism, which always outputs the location of agent i’s report, is attained from (3) by setting 
aS = 1 for all S ⊆ N : i ∈ S , and aS = 0 for all other subsets.

13 In the setting studied by Moulin (1980) where agents may have asymmetric utility functions, the family of GMMs provides a complete characterization 
of strategyproof mechanisms (Moulin, 1980, Proposition 3).
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DIC

GMM

Fig. 2. Setting where k = n (Border and Jordan, 1983).

DIC ≡ GMM

Fig. 3. Setting where k < n.

An example of a mechanism that is not a GMM is the dictatorial-style mechanism considered in Example 2.2.
We now state the main characterization result.

Theorem 2.4. Let M be a mechanism. The following are equivalent:

(1) M is a GMM,
(2) M is DIC for some k < n,
(3) M is DIC for every k ≤ n.

We present the proof via a series of propositions and utilize a characterization of Border and Jordan (1983). First, we 
illustrate the contribution of Theorem 2.4, benchmarked against the results of Border and Jordan (1983), where GMMs are 
shown to be a strict subset of DIC mechanisms when k = n. Fig. 2 presents the result of Border and Jordan (1983) and 
Fig. 3 illustrates our characterization. When considering the capacity constrained problem, with k < n, the family of DIC 
mechanisms coincides precisely with the GMM family.

First, we present a result of Border and Jordan (1983), characterizing the family of GMMs via a property of the mech-
anism that they call uncompromising. Informally speaking, an uncompromising mechanism means that an agent cannot 
influence the mechanism output in their favor by reporting extreme locations. The most obvious mechanism satisfying this 
property is the median mechanism.

Formally, a mechanism M is uncompromising if, for every profile of locations x, and each agent i ∈ N , if M(x) = s then

xi > s =⇒ M(x′
i, x−i) = s for all x′

i ≥ s and, (4)

xi < s =⇒ M(x′
i, x−i) = s for all x′

i ≤ s. (5)

Lemma 2.5 (Border and Jordan (1983)). A mechanism M is uncompromising if and only if it is a GMM.

Note that Lemma 2.5, although proved in the setting where k = n, does not rely on any strategic properties of the 
mechanism and so applies more generally to our setting with k ≤ n.

We now prove our first proposition towards the characterization result.

Proposition 2.6. Every GMM is DIC for any k ≤ n.

Proof. Fix k ≤ n and let M be a GMM. For the sake of a contradiction, suppose that M is not DIC. That is, for some agent i
with location xi , there exist a profile of other agent locations x−i , and reports x̂−i such that for some x′

i �= xi

ui(M(x′
i, x̂−i), x,k) > ui(M(xi, x̂−i), x,k). (6)

Define s′ = M(x′
i, ̂x−i) and s = M(xi, ̂x−i). It is immediate from (6) that s �= xi and s �= s′ . Without loss of generality we 

assume that xi > s. By assumption, M is a GMM and hence, by Lemma 2.5, satisfies the uncompromising property. It follows 
that x′

i < s, since otherwise x′
i ≥ s and (4) would imply s′ = s contradicting (6).

Case 1: Suppose s < s′ . Then x′
i < s′ and the uncompromising property (5) implies that

M(x′′
i , x̂−i) = s′ for all x′′

i ≤ s′.

If x′′
i ∈ [s, s′], the uncompromising property implies that M(x′′

i , ̂x−i) = M(xi, ̂x−i), i.e., s′ = s, which contradicts (6). Thus, we 
conclude that x′′ < s.
i
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Now consider a new instance where agent i has true location yi = ε ∈ (0, s), all other agents have true location y j = 0
but collectively report x̂−i . If agent i reports yi = ε, then the facility location is s′ and i attains utility 1 − d(s′, ε). If instead 
agent i reports y′

i = xi then the facility location is s < s′ and i attains strictly higher utility 1 − d(s, ε). Thus, the mechanism 
is not DIC — a contradiction.

Case 2: Suppose s > s′ . Since xi > s > s′ , it follows from the single-peaked property (Proposition 2.1) that ui(s, x, k) ≥
ui(s′, x, k). This contradicts (6). �

We now prove our second proposition towards the characterization result. Proposition 2.7 shows that the DIC require-
ment is more restrictive for k < n than for k = n — meaning that the capacity constraints induce new strategic concerns for 
the mechanism designer.

Proposition 2.7. If a mechanism M is DIC, for some k < n, then it is DIC for k = n. The converse is not true.

Proof. We prove the contrapositive. Suppose that M is not DIC for k = n. That is, for some agent i with location xi there 
exists a report x′

i , a profile of other agent reports x̂−i , and a profile of other agent locations x−i such that

ui(M(x′
i, x̂−i), x,n) > ui(M(xi, x̂−i), x,n). (7)

Let s′ = M(x′
i, ̂x−i) and s = M(xi, ̂x−i). When k = n all agents are served and so (7) simplifies to

1 − d(s′, xi) > 1 − d(s, xi). (8)

Now we consider the same profile of reports but for an arbitrary k < n. Further, suppose all agents have location equal 
to xi and agent i has the highest priority (	), i.e., after tie-breaking. The mechanism output is independent of agent true 
locations and so we still attain M(x′

i, ̂x−i) = s′ and M(xi, ̂x−i) = s. Furthermore, since i has the highest priority (recall that 
the priority is distance-based but in this instance all agents are equidistant for every facility location) they are always served 
for every facility location. In particular, the utility from reporting truthfully is 1 − d(s, xi) and misreporting is 1 − d(s′, xi) — 
the latter provides strictly higher utility, as per (8). We conclude that the mechanism is not DIC, and since k < n was chosen 
arbitrarily it holds for all k < n.

The final statement in the proposition was shown in Example 2.2. �
We now prove our third and final proposition, which completes the characterization result.

Proposition 2.8. If a mechanism M is DIC, for some k < n, then it is a GMM.

Proof. Let M be a mechanism that is DIC for some k < n.
First, consider an instance where an arbitrary agent i has location xi , and the other agents report x̂−i . If i reports 

truthfully, the mechanism outputs some location that we denote as s, i.e.,

s := M(xi, x̂−i). (9)

If s = xi , then consider an alternate location and profile of other agents’ reports so that the equality does not hold. If no 
such location and report profile exists then the mechanism always coincides with agent i’s report; that is, the mechanism 
is the agent i dictatorship mechanism, which is a GMM.

Now suppose s �= xi , and without loss of generality assume s < xi . By assumption M is DIC, for some k < n, and so it 
must be that for all x′

i

ui(s, x,k) ≥ ui(M(x′
i, x̂−i), x,k), (10)

where x denotes the true location profile of all agents.
Recall that a mechanism is a GMM if and only if it is uncompromising (Lemma 2.5). We now show that deviation by 

agent i will satisfy the uncompromising property, i.e., for any x′
i ≥ s M(x′

i, ̂x−i) = s. To do so, we analyze different cases and 
sequential refine the possible values of M(x′

i , ̂x−i), we then derive a contradiction and conclude that M(x′
i , ̂x−i) = s.

Case 1: Suppose all other agents have true location s. When agent i truthfully reports xi the facility location is s and 
agent i attains zero utility. Now consider some report x′

i ≥ s, leading to facility location

sx′
i
:= M(x′

i, x̂−i).

If sx′
i
∈ (

s+xi
2 , 1] for any x′

i ≥ s we attain a contradiction, since this means that agent i would be served from this report and 
attain strictly more utility than being truthful. We conclude that
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sx′
i
∈ [0, s) ∪ {s} ∪ (s,

s + xi

2
) for all x′

i ≥ s.

Case 2: Suppose all other agents have true location 1, noting that s < xi ≤ 1. In the event that xi = 1 (in which case 
all agents are equidistant from every facility location), assume agent i has the highest priority in the tie-breaking rule (	). 
When agent i truthfully reports their location, they are served and attain utility 1 −d(s, xi). To avoid a contradiction of (10), 
it must be that sx′

i
≤ s. Thus, we conclude

sx′
i
∈ [0, s) ∪ {s} for all x′

i ≥ s.

For the sake of a contradiction suppose there exists some x′′
i ≥ s such that

sx′′
i
∈ [0, s). (11)

Consider a new instance where agent i’s location is yi = x′′
i (note that x′′

i ≥ s), all other agents have location 1, and the 
other agents report x̂−i (the same profile of reports as per (10)). In the event that yi = x′′

i = 1 (in which case all agents 
are equidistant from every facility location), assume agent i has the highest priority in the tie-breaking rule (	). If agent 
i reports their location yi the facility location is syi = sx′′

i
< s, as per (11), and they attain utility 1 − d(syi , yi). But now 

misreporting to y′
i = xi then as per (9) the facility location is s where

syi < s ≤ yi,

leading to utility 1 − d(s, yi). This is a contradiction of the mechanism being DIC, since d(s, yi) < d(syi , yi); that is, agent i
by reporting y′

i instead of their true location yi attains strictly higher utility. We conclude that sx′
i
= s for all x′

i ≥ s. Thus, 
the mechanism is uncompromising and hence a GMM. �
3. Approximation of DIC mechanisms

Given the characterization result (Theorem 2.4) of the previous section, there is no distinction between the family of 
mechanisms that are DIC for some k < n, and the family of mechanisms that are DIC for all k ≤ n: both families are equal 
to the GMM family. Accordingly, we will now simply refer to a mechanism as being DIC.

3.1. The optimal mechanism is not DIC

We first show that in general for k < n, the optimal mechanism is not DIC. Note that this result contrasts with the k = n
setting where the median mechanism is both optimal and DIC (Remark 1).

Theorem 3.1. The optimal mechanism is DIC if and only if k ∈ {1, n}.

Proof. The backward direction of the theorem statement is straightforward: If k = 1 then for any i ∈ N the agent i dictator 
mechanism, where the mechanism output always coincides with agent i’s report, is both optimal and DIC. This is trivial and 
we do not provide further details. If k = n then the median mechanism is both optimal and DIC. This result has long been 
known and can be found in Black (1948); Moulin (1980); Procaccia and Tennenholtz (2013).

We now prove the forward direction using the contrapositive. Let k /∈ {1, n} and partition the agents into �n/k� groups 
of size k, denoted by Nt for t = 1, 2, . . . , �n/k�, and one group of size n − �n/k�, denoted by N�n/k�+1. We now identify 
�n/k� + 1 locations in [0, 1], let

yt = t

�n/k� + 1
for t = 1,2, . . . , �n/k� + 1.

Consider a scenario such that for each t = 1, 2, . . . , �n/k� + 1, all but one agent in Nt is located at yt and a single agent 
is located at yt − t ε for some sufficiently small ε > 0. In each instance denote the single agent located at yt − t ε by it ∈ Nt .

In this scenario it is immediate that the optimal welfare is attained by locating the facility at location y1, leading to a 
social welfare of k − ε and agent i1 attains utility 1 − ε.

Now in a new scenario where agent i1 has true location at y1 − 3ε the optimal mechanism must locate the facility at 
y2. In this case agent i1 attains utility zero. However, if agent i1 misreports their location to y1 − ε then (as shown above) 
the facility location will be y1 and they will attain strictly higher utility 1 − 3ε. That is, the optimal mechanism is not DIC 
for k /∈ {1, n}. �

Despite Theorem 3.1 stating a stark impossibility result, we note that absent strategic manipulations by the agents the 
optimal mechanism can be efficiently computed.

Remark 2. The optimal facility location and welfare can be computed in polynomial time for any k ≤ n.
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We sketch an informal argument. Order the agents i ∈ N such that xi ≤ x j if and only if i ≤ j. An optimal solution has 
two features: (1) the facility serves a contiguous set of k agents, i.e., if agent i and i +2 are served then agent i +1 is served, 
and (2) the facility is located at the median of these k served agents. Given this, a polynomial-time procedure exists by 
simply comparing the welfare produced by, the at most n, sets of k contiguous agents.

3.2. A lower bound on DIC approximation

Utilizing the characterization result of DIC mechanisms via the family of GMMs, we provide a lower bound on the 
approximation ratio for all DIC mechanisms.

The lower bound of Theorem 3.2 on the approximation ratio is illustrated in Fig. 1.

Theorem 3.2. Let n ≥ 2. A DIC mechanism is at best an α-approximation with α = 2 k
k+1 when 1 ≤ k ≤ �(n − 1)/2�, and α =

max{n−1
k+1 , 1} otherwise.

Proof. Let M be a DIC mechanism, and consider a scenario where all n agents have distinct (true) locations contained in 
the interval I = (1/2 − 1/2ε, 1/2 + 1/2ε) for some sufficiently small ε > 0. Denote the profile of agent locations by x, and 
the mechanism’s corresponding output by s = M(x).

We consider two cases.
Case 1: Suppose s /∈ I and without loss of generality assume s < 1/2 − 1/2ε. Now suppose that agents i = 1, 2, . . . , n

sequentially have their true (and reported) locations changed to xi = 1, and consider the sequence of facility locations 
produced by the mechanism s1, s2, . . . , sn . By the uncompromising property (satisfied by M since it is a GMM) the location 
of the facility never changes from s. That is, sn = s despite every agent having location at 1. The optimal social welfare in 
this scenario is clearly k, however, the mechanism provides welfare of

k(1 − d(s,1)) = k s < k(1/2 − 1/2ε) → k/2 as ε → 0.

Thus, the approximation ratio is at best k/(k/2) = 2.
Case 2: Suppose s ∈ I and without loss of generality assume s ≤ 1/2. Let λ1, λ2 be the number of agents with true 

location strictly less than s, and strictly above s, respectively. Note that λ1 + λ2 ∈ {n − 1, n}, since all agents have distinct 
locations. Similar to Case 1, suppose the λ1 agents instead had their true (and reported) locations shifted to 0 and the λ2
agents had true (and reported) locations shifted to 1 – by the uncompromising property the facility location is unchanged.

To attain the bound on the approximation ratio we consider two subcases where k ≤ �(n − 1)/2� and k > �(n − 1)/2�.
In the first subcase (k ≤ �(n − 1)/2�): the optimal welfare is k, since either λ1 or λ2 exceeds k meaning that k agents can 

be served at either 0 or 1. The mechanism’s welfare is at most

1 + (k − 1)(1 − d(s,0)) < 1 + (k − 1)(1/2 + 1/2ε) → 1/2 + k/2 as ε → 0.

Thus, the approximation ratio is at best k/(1/2 + k/2) = 2 k/(k + 1).
In the second subcase (k > �(n − 1)/2�): the optimal welfare is at worst �(n − 1)/2�, i.e., when the facility serves either 

λ1 or λ2 agents (whichever is larger) from location 0 or 1. The mechanism’s welfare is at most

1 + (k − 1)(1 − d(0, s)) < k − (k − 1)(1/2 + 1/2ε) → k/2 + 1/2 as ε → 0.

Thus, the approximation ratio is at best �(n − 1)/2�/(k/2 + 1/2), but

�(n − 1)/2�/(k/2 + 1/2) ≥ (n − 1)/2

(k + 1)/2
= n − 1

k + 1
.

Furthermore since k > (n − 1)/2 it follows that n−1
k+1 < 2. Of course, this bound is only meaningful when n − 1/k + 1 > 1.

We conclude that when k ≤ �(n −1)/2� the approximation ratio is at best 2 k
k+1 and otherwise is at best max{n−1

k+1 , 1}. �
3.3. An optimized approximation ratio for DIC mechanism

We now analyze the performance of the median mechanism for general k ≤ n. In instances where k ∈ {1, n}, the median 
mechanism is both optimal mechanism and DIC (Theorem 3.1). Furthermore, this mechanism is DIC for all k ≤ n since the 
median mechanism is a GMM (Theorem 2.4).

By Theorem 3.3, the median mechanism is optimal among all DIC mechanisms for k ≤ �(n − 1)/2� since the 
approximation-ratio matches the lower bound found in Theorem 3.2. These approximation results are also illustrated in 
Fig. 1.

Theorem 3.3. The median mechanism is an α-approximation with α = 2 k
k+1 for k ≤ 2

3 (n + 1), and α = min{2 k
k+1 , 1 + 2 n−k+1

3k−2n−2 }
otherwise.
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Proof. Throughout the proof let im denote the agent with median location (choose the agent arbitrarily if multiple such 
agents exist), and let sm denote the median location. The median mechanism provides welfare

�M(x,k) = max
N ′∈Nk

∑
i∈Nk

(1 − d(sm, xi)) = 1 + max
N ′∈Nk−1,im

∑
i∈Nk−1,im

(1 − d(sm, xi)),

where Nk is the set of all k-sized subsets of N and Nk−1,im is the set of all (k − 1)-sized subsets of N\{im}. This follows 
since the subset of agents served are always the k-closest to the facility location. Hence, given a facility location, the served 
subset is welfare maximizing. Furthermore, the median location coincides with at least one agent’s location, i.e., agent im .

First, we provide an upper bound on the approximation-ratio for all k. The median mechanism locates the facility at the 
�(n + 1)/2�-th location and hence there are �(n + 1)/2� − 1 agents with locations (weakly) below and �(n + 1)/2� − 1 with 
locations (strictly) above. A lower bound on the median mechanism’s welfare is attained when the agents below and above 
the median location at located at 0 and 1, respectively. Thus,

�M(x,k) ≥ 1 + (k − 1)max{1 − d(sm,0), 1 − d(sm,1)},
and since either d(sm, 0) ≤ 1/2 or d(sm, 1) ≤ 1/2 it follows that �M(x, k) ≥ (k + 1)/2. This leads to an upper bound on the 
approximation-ratio of k/((k + 1)/2) = 2 k

k+1 for all k, since the optimal welfare is always bounded by k.

Now we attain a tighter upper bound for certain values of k. To do so, we bound the median welfare using the optimal 
welfare. Let s∗ be the location of the facility under the optimal mechanism. Let N∗

m denote the set of k agents served under 
the median mechanism, and let N∗ denote the set of k agents served under the optimal mechanism. We have

�M(x,k) =
∑
i∈N∗

m

(
1 − d(sm, xi)

)

≥
∑
i∈N∗

(
1 − d(sm, xi)

)

=
∑
i∈N∗

(
1 − d(sm, xi) − d(s∗, xi) + d(s∗, xi)

)

= �∗(x,k) −
∑
i∈N∗

(
d(sm, xi) − d(s∗, xi)

)
.

Clearly, the lower bound is smallest when sm �= s∗ , without loss of generality assume that sm < s∗ . Let N∗
1, N∗

2 be a partition 
of N∗ such that |N∗

1|, |N∗
2| ≤ �(n +1)/2� and all agents in N∗

1 have location in [0, sm] and agent in N∗
2 have location in [sm, 1]. 

Such a partition of N∗ exists since the location sm coincides with the �(n + 1)/2� highest location. Using this partition we 
further bound the median mechanism’s welfare:

�M(x,k) ≥ �∗(x,k) −
∑
i∈N∗

1

(d(sm, xi) − d(s∗, xi)) −
∑
i∈N∗

2

(d(sm, xi) − d(s∗, xi))

≥ �∗(x,k) − |N∗
1| max

x∈[0,sm]

(
sm − s∗ − 2x

)
− |N∗

2| max
x∈[sm,1]

(
xi − sm − |s∗ − x|

)
≥ �∗(x,k) − |N∗

1|(sm − s∗) − |N∗
2|(s∗ − sm)

≥ �∗(x,k) − (|N∗
2| − |N∗

1|)(s∗ − sm)

≥ �∗(x,k) − (|N∗
2| − |N∗

1|).
We now attain our lower bound by considering the maximum value of |N∗

2| − |N∗
1|. For k ≤ �(n + 1)/2�, the value can only 

be guaranteed to be no larger than k – leading to a trivial zero lower bound for �M(x, k). However, for k > �(n + 1)/2� we 
attain a more useful bound by noting that

(|N∗
2| − |N∗

1|) ≤ �(n + 1)/2� − (k − �(n + 1)/2�) = 2�(n + 1)/2� − k ≤ n + 1 − k.

This leads to an approximation-ratio upper bound of

max
x∈∏n

i=1 X

{
�∗(x,k)

�∗(x,k) − n − 1 + k

}

whenever the denominator can be guaranteed to be positive. Noting that �∗(x, k) ≥ k/2, since at least as much welfare is 
attained by locating the facility at s = 1/2, we conclude that the denominator is positive whenever
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k >
2

3
(n + 1).

Thus, for k > 2
3 (n + 1) an upper bound for the approximation-ratio is

max
x∈∏n

i=1 X

{
�∗(x,k)

�∗(x,k) − n − 1 + k

}
= max

x∈∏n
i=1 X

{
1 + n + 1 − k

�∗(x,k) − n − 1 + k

}

≤ 1 + n + 1 − k

k/2 − n − 1 + k

= 1 + 2
n + 1 − k

3k − 2n − 2
.

This completes the proof. �
4. Discussion and conclusion

Extensions to multiple facilities. In the present paper we focused on the case of a single facility problem. However, more 
generally, facility location problems can be extended to consider the problem of locating multiple facilities; see, for ex-
ample, Bogomolnaia and Nicolò (2005); Ehlers (2002, 2003); Fotakis and Tzamos (2013); Heo (2013); Miyagawa (1998, 
2001), and Procaccia and Tennenholtz (2013). Incorporating capacity constraints within the multiple facilities location prob-
lem presents a number of challenges.14 Firstly, the assumption of the k-closest agents being served by the facility can no 
longer be justified as the unique equilibrium outcome of a first-come-first-served game, since issues of multiple equilibria 
arise. Furthermore, and even ignoring this issue, the mechanism design problem is drastically more complicated due to the 
interdependence of agent utilities and the possibility that an agent’s report could simultaneously affect the location of mul-
tiple facilities. Golowich et al. (2018) have explored the mechanism design problem for multiple facilities without capacity 
constraints via deep learning. The algorithmic problem of finding optimal facility locations is also more complicated (see 
Brimberg et al. (2001)).

Weakening DIC. Another natural direction to consider is weakening the DIC requirement, which requires that agents must 
attain maximal utility from reporting their location no matter what other agents report, and no matter other agents’ true 
locations. A weaker, ex post notion of incentive compatibility may be interesting to explore, requiring instead that agents 
attain maximal utility from reporting their location no matter the other agents’ true locations, but conditional on the other 
agents reporting truthfully. It is straightforward to construct ex post IC mechanisms that out-perform the median mechanism 
for certain parameter ranges. However, a complete characterization seems to be a challenging problem, which we leave for 
future research.
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