
A Decentralized Auction Framework to Promote Efficient
Resource Allocation in Open Computational Grids

Laura Kang
School of Engineering and Applied Sciences

Harvard University
Cambridge, MA 02138

kang@eecs.harvard.edu

David C. Parkes
School of Engineering and Applied Sciences

Harvard University
Cambridge, MA 02138

parkes@eecs.harvard.edu

ABSTRACT
Computational grids enable the sharing, aggregation, and
selection of (geographically distributed) computational re-
sources and can be used for solving large scale and data
intensive computing applications. Computational grids are
an appealing target application for market-based resource
allocation especially given the attention in recent years to
“virtual organizations” and policy requirements. In this pa-
per, we present a framework for truthful, decentralized, dy-
namic auctions in computational grids. Rather than a fully-
specified auction, we propose an open, extensible framework
that is sufficient to promote simple, truthful bidding by end-
users while supporting distributed and autonomous control
by resource owners. Our auction framework incorporates
resource prediction in enabling an expressive language for
end-users, and highlights the role of infrastructure in en-
forcing rules that balance the goal of simplicity for end users
with autonomy for resource owners. The technical analysis
leverages simplifying assumptions of “uniform failure” and
“threshold-reliability” beliefs.

1. INTRODUCTION
Computational grids enable the sharing, aggregation, and

selection of (possibly geographically distributed) computa-
tional resources, and can be used for solving large-scale and
data intensive computing applications. Distributed owner-
ship and users with competing needs make market mecha-
nisms, where prices coordinate decision making both within
and between organizations, a good fit for solving the re-
source allocation problems in grids. Market mechanisms
promote efficiency: in the short run, resources are allocated
to the best use, and in the long run, prices provide sig-
nals to promote good long-term investments in appropriate
resources. Market mechanisms also enable policy, and to-
gether with appropriate macroeconomic controls may offer
the compelling solution to the problem of “virtual organiza-
tions” that has taxed the grid community [7].

Substantial advances have been made in grid software and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NetEcon+IBC June 11, 2007, San Diego, CA.
Copyright 2007 ACM 1-59593-049-3/05/0006 ...$5.00.

its conceptual framework in recent years. However, real-
world open science grids are still limited in size to hundreds
of sites and thousands of computers. The complexity in ex-
pressing a user’s needs coupled with the lack of flexibility,
optimization and autonomy in the allocation of resources
have been some of the main obstacles. Users should be able
to focus on computational experiments, not gaming to ob-
tain sufficient resources, and organizations should be able to
share resources in a flexible and locally managed manner.

In a companion paper [3], we describe our vision for market-
based computational grids and the broad scope of the Egg

project. Egg is a collaborative project between Harvard and
Boston University, involving high-energy physicists, com-
puter scientists, and economists.

Here we provide additional details about the microeco-
nomic aspect of Egg and ignore macroeconomic issues (e.g.
currency supply, inflation, questions of policy, etc.). These
are of equal importance and part of the fabric of Egg, com-
ponents of which are currently being implemented and will
be deployed as a practical platform.

The auction framework is designed around the following
principles:

• Efficiency: in the long-run, as the system adapts,
high value jobs should be allocated to resource owners
best able to run the job at low cost (subject to other
policy constraints), and low value jobs should not be
scheduled in an under-provisioned gird.

• Simplicity: A simple bidding language is provided for
end-users and the framework is strategyproof for users,
and thus non-manipulable.1 Strategyproof mechanisms
mean that users need not engage in wasteful counter-
speculation about how best to game the system and
can focus on using grids rather than gaming grids.

• Decentralized control: Resource owners retain con-
trol and flexibility over their own resources. A com-
plete auction (e.g. with pricing policy) is not speci-
fied, but rather the framework provides a minimal set
of rules that ensure truthfulness.

• Extensibility: Resource owners can replace and im-
prove components (e.g. pricing strategies, resource es-
timation algorithms) over time. This supports innova-
tion.2

1Given the simplifying assumptions of uniform-failure and
threshold-reliability beliefs, to be discussed in Section 2.2.
2See Clark et al. [5] for a related, informative discussion of
the role of extensibility in the success of the Internet.

We provide no details about how resource owners can im-
plement algorithms for resource estimation or pricing in this
paper. Instead we shall focus on the design of the auction
framework. The novelty here is that we consider a dynamic
model in which jobs arrive over time and allocation decisions
need to be made dynamically. These dynamics complicate
the question of strategyproofness (introducing new oppor-
tunities for manipulation). They also make the problem a
poor fit for existing technologies, such as combinatorial auc-
tions [6] and combinatorial exchanges, that assume all bids
are present at the same time. This does, however, fit nicely
into the current trend towards dynamic mechanisms in com-
putational mechanism design [14].

1.1 Related Work
A number of existing systems employ market-based ap-

proaches to allocate computational resources [15, 13, 2, 1,
4]. Gomoluch and Schroeder [9] compare auctions with con-
ventional methods. However, none of these papers consider
dynamic manipulations, none provide the bid expressiveness
that is supported here, and none embrace the need for open,
flexible and decentralized control in computational grids.
Galstyan et al. [8] share our motivation for a minimalist
infrastructure where resource owners can dynamically de-
fine their own models but without advocating the use of
market-based methods. Several recent papers have focused
on dynamic auctions. See Parkes [14] for a recent survey.
Our model can be seen as an extension of Hajiaghayi et
al. [10] that allows for general value schedules, additional
parameters (e.g., job description and reliability metric) and
supports strategyproofness via a minimal set of rules.

2. MODEL AND KEY COMPONENTS
We consider the problem of allocating computational re-

sources on compute servers when jobs can have different
size/lengths and arrive dynamically. A similar problem of
allocating storage space and time can be defined for file
servers, but is not analyzed in this paper. We do not study
combinatorial issues related to how a user structures her
work across multiple jobs (see Section 3.2); rather we as-
sume that each user has a predetermined set of jobs.

In overview, a user can bid for resources at any time by
describing her job and annotating the job with a value sched-
ule that defines her willingness to pay as a function of the
job completion time. This bid spawns a one-time reverse
auction in which qualified resource providers compete for
the right to execute the job. The market infrastructure
completes this auction by consulting price tables maintained
by each resource provider (representing the bids of the re-
source providers) and the resource estimates of each resource
provider for the job. The auctioneers (and not the sellers)
look up a price to quote to the user in the context of the
reverse auction after performing payoff-maximization on be-
half of the user. The market infrastructure enforces rules
on price tables and resource estimation that ensure strate-
gyproofness for end users.

2.1 Actors
Our model consists of four types of actors: the market

infrastructure, auctioneers, users, and resource providers:

Market infrastructure: Trusted by both users and re-
source providers and implemented as part of the Egg system.

Figure 1: Actors

One important role is to impose constraints on the resource
providers (e.g. on the price tables, resource estimates) in
order to ensure strategyproofness. The infrastructure also
maintains and publishes statistics which the auctioneers can
use to compute the reliability metrics for resource providers.
Auctioneers: Part of the infrastructure, a “single-use”
auctioneer is created on-the-fly for a user whenever she runs
a job. This auctioneer is personalized in terms of the collec-
tion of resource providers from which the auctioneer should
solicit offers (i.e., the user’s own view of the grid.)
Users: Individuals or organizations who wish to employ the
resources available on the grid to run jobs, e.g., a physicist
who wants to run Monte Carlo simulations.
Resource Providers: Resource providers maintain a col-
lection of computational resources and schedule and per-
form jobs that are won through auctions. Each resource
provider maintains a resource prediction module and price
tables within the market infrastructure, and also runs its
own local scheduler.

2.2 Modeling Users: Jobs and Beliefs
Each job has a description, an arrival time, and a user has

a value schedule for the completion time of the job, and a
“minimum reliability threshold” for resource providers from
which she wishes to solicit offers. The arrival time of a job
is the earliest time the value of the job is known to the user,
and the job can be described. A user can be associated with
multiple jobs. Taken together, type, θi = (Ji, wi, ai, γi),
completely characterizes the information about a job:

• Ji is a string describing the job to be submitted. Ji

can be thought of as a list of fields for executable files,
input files, number of loops, etc., and specifies how to
perform the job (e.g., file location). The default syn-

tax and semantics are defined by the market infras-
tructure. We assume that attributes can be extracted
from Ji, to be used for resource prediction.

• wi : [ai, ai +∆] → R≥0 is a function of the completion
time where wi(τ) is a nonnegative real number rep-
resenting the willingness to pay for job completed by
time τ . We call wi the value schedule for job i. We as-
sume every job has bounded patience, i.e., there exists
a minimal constant ∆ ∈ R≥0 such that wi(τ) = 0 for
all τ > ai + ∆, for all jobs i. We assume ∆ is known
to the market infrastructure and resource providers.3

• ai ∈ R≥0 is the arrival time

• γi ∈ [0, 1] is the minimum tolerable reliability on re-
source providers that is acceptable to the job.

Throughout this paper, let di denote the latest time τ for
which wi(τ) > 0, i.e., the maximal deadline or departure
time of the job. We assume that a user has no value for
receiving a completed job outside of a job’s arrival-departure
interval, or for an incomplete job.

The reliability metric for each resource provider is a mea-
sure of the frequency with which the provider has success-
fully completed a job by the scheduled completion time.
Note that while reliability is a similar concept to reputa-
tion, we emphasize that reliability here is defined objectively
from information available to the market infrastructure and
maintained by the infrastructure.

A bid for a job consists of the job description, value
schedule and an optional parameter specifying a minimal
reliability. The arrival time constrains when a user can
bid but is not explicitly included in a bid. For example,
a bid with a linear value schedule could define (“down-
load Atlas 5.x”4,(10, 2,Apr-01-06 00:00:01), 99%), where
the second component describes a monotonically decreas-
ing willingness-to-pay of (2 + (10 − 2)(td − τ))/(td − t0),
where τ is the time of completion, td is the maximal deadline
(Apr-01-06 00:00:01 in the example), and t0 is the time at
which the bid is submitted to the auctioneer. The auction-
eer should then only accept offers from resource providers
with reliability ≥ 99%. A simple special case is a constant
willingness-to-pay with a hard deadline.

We assume that there is a partial order ≻ on job descrip-
tions such that J ′ ≻ J whenever a job with description J ′

has as much value as a job with description J , to a user who
has a job with description J . In other words, we assume that
if J ′ ≻ J , then any user with a job with description J val-
ues another job with description J ′ as much. For example,
a job with description J ′ ≻ J may run on a larger input file,
request more Monte Carlo iterations, or use a more recent
software installation version number (assuming backwards
compatibility). Given this we formalize what it means for a
user to be “single-minded” in our model:

Definition 1 (single-minded). Let Ji be the descrip-
tion for job i. Define νi(J

′
i , τ) to be the value to the user

(who submits job i) if she is given some completed job with

3It is easy to extend our framework to allow for different ∆
values for different times of the day, or for users of different
kinds of resources.
4http://atlas.web.cern.ch/Atlas/index.html

description J ′
i by time τ . A user is single-minded if:

νi(J
′
i , τ) =



wi(τ), if J ′
i ≻ Ji;

0, otherwise.

This assumption of single-minded users with respect to
some partial order ≻ may be restrictive in some settings.
This is because it must uniformly hold for all users; e.g., a
more recent software version must either be backwards com-
patible for everyone or backwards compatible for no-one.
But the assumption is useful because it allows the strate-
gyproofness of our auction framework to be established with-
out requiring accurate resource predictions (see Section 2.3).

Our technical results about strategyproofness rely crit-
ically on two simplifying assumptions about user beliefs.
Threshold-reliability beliefs are beliefs that a user holds
about the comparative reliability across resource providers
(and for a particular job) while uniform-failure beliefs are
beliefs that a user holds about the comparative reliability
across different jobs (and for a particular provider). Denote
the set of resource providers with reliability metric at least
γi by Γi.

Definition 2 (threshold-reliability beliefs). A
user has threshold-reliability beliefs for job i with description
Ji if she holds belief that all resource providers ∈ Γi are
equally likely to successfully complete a specific job with
description J ′

i such that J ′
i � Ji, and that success is

independent of the completion time.

By this assumption, a user does not reason about the
probability that the winning resource provider will success-
fully complete a specific job. For example, if γi = 90%, the
user is indifferent between a resource provider with reliabil-
ity 93% and another resource provider with reliability 95%
(given that both yield the same payoffs at their respective
scheduled completion times).

Definition 3 (uniform-failure beliefs). A user
has uniform failure beliefs if she holds beliefs that Pr(A
job with description J ′

i successfully completes if scheduled
with resource provider k) ≤ Pr(A job with description Ji

successfully completes if scheduled with resource provider
k), for all jobs with description J ′

i ≻ Ji, for all k with
reliability at least γi.

With uniform-failure beliefs, a user believes that she can-
not improve the probability that a job completes by replac-
ing it with another job with description J ′

i ≻ Ji. Note that
the uniform failure assumption is about completion prob-
abilities if scheduled by the same resource provider. It al-
lows for different providers to have different levels of re-
liability, but requires that this does not vary for any one
provider when conditioned on the job being accepted by
that provider.

2.3 Resource Prediction: Auction Rules
A resource predictor takes the description Ji and the ar-

rival time ai of job i as inputs, and outputs a vector Qi of es-
timated resource requirements. A resource provider can use
any learning algorithm it chooses, but the market infrastruc-
ture imposes a monotonicity requirement that constrains the
estimates for different jobs and also how the model can be
refined across time. We assume that the learned model has
a concise representation so it can easily be verified by the

infrastructure (e.g., naive Bayes, continuous Gaussian linear
regression, decision tree, etc.).

A resource provider can also select periods in which it is
inactive, where it does not generate any resource estimates
(but simply queues jobs arriving in this period such that
an estimate will be given once the inactive period is over,
if these jobs are still not scheduled by any other resource
provider).

Let Qt
ik = R̂t

k(Ji) ∈ (R≥0)
L denote the L-dimensional

vector of resource requirements given Ji produced by the
learned model used by resource provider k to estimate re-
source requirements at time t.

Definition 4 (job description monotonicity).

Resource provider k’s estimator R̂t
k(J) is monotonic if

R̂t
k(J ′) ≥ R̂t

k(J) for all J ′ ≻ J, for all t.

Monotonicity with respect to the partial order on jobs is
a reasonable property. For example, using a larger input
file or a running a larger number of Monte Carlo iterations
of a loop should not require less disk space or runtime. In
another sense it is without loss, in that if the job is explic-
itly annotated with enough information and some J ′ ≻ J
requires less resources than J , then a resource provider can
perform J ′ for the user instead, and set Rt

k(J) = Rt
k(J ′).

For instance, installing Atlas 5.x should never have a lower
resource estimate than installing Atlas 4.x because if Atlas
5.x actually requires less resources (and is backwards com-
patible, as implied by 5.x ≻ 4.x), then whenever Atlas 4.x
needs to be installed, Atlas 5.x can be installed instead.

Monotonicity of the resource estimates with respect to
time is also imposed, to ensure that users cannot benefit
from misreporting the arrival time, i.e., delaying job sub-
mission, hoping to get a lower price from a lower future
resource estimate. Recall that ∆ defines the maximal user
patience. Time monotonicity is defined as:

Definition 5 (time monotonicity). Resource

provider k’s estimator R̂t
k(J) is monotonic with respect to

time if R̂t′

k (J) ≥ R̂t(J) ∀ J, for all t < t′ < t + ∆ such that
resource provider k is not inactive in either t and t′.

If a resource provider wishes to introduce a new model with
lower estimates for some jobs then it can become inactive for
a period of length at least ∆. No inactive period is required
if the new model does not decrease resource estimates.

2.4 Price Tables: Auction Rules
A resource provider maintains a price table visible to the

market infrastructure, and a function of a vector of resource
requirements Q and the completion time τ . It can be thought
of as a table of dimension 1+dim(Q) where dim(Q) is the di-
mension of the vector Q and the last dimension corresponds
to period in which the job is to be completed. The price
table is used by the market infrastructure to generate a re-
source provider’s bid, given a reverse auction for a particular
job in some time period.

The ability of resource providers to fill the price table
based on their own objectives is a key feature that pro-
vides autonomous control. A resource provider can update
its price table entries to incorporate scheduling constraints,
meet a target load level, or to improve its revenue. How-
ever, in order to maintain strategyproofness for end-users,
the market infrastructure imposes that the price table en-
tries are admissible.

Let φt
k(Q, τ) denote the price table entries quoted by re-

source provider k in period t for resource requirement Q for
the completion time τ . φt

k(Q, τ) can be interpreted as: the
price (quoted in time t) that resource provider k wishes to
receive for completing a job with resource requirements Q,
if it were scheduled to complete by time τ . Given a job, a
scheduled completion time τ∗

k for each resource provider k is
selected by the auctioneer, such that the payoff of the user
is maximized.

Let Q[l] denote the lth component of the vector Q, and
let ∆ be the bound on user patience.

Definition 6 (admissibility). Price table entries
φt

k(Q, τ) are admissible if both:

φt
k(Q′[l], τ) ≥ φt

k(Q[l], τ) ∀Q′[l] > Q[l],∀l,∀τ,∀t (1)

φt′

k (Q, τ) ≥ φt
k(Q, τ) ∀t′ > t,∀t′ ≤ τ ≤ t + ∆,∀Q. (2)

Prices are admissible if (1) the price table entries are non-
decreasing in each component of the resource requirements,
e.g., if Q consists of runtime (r) and disk space (s)

φt
k((r′, s), τ) ≥ φt

k((r, s), τ) ∀r′ > r

φt
k((r, s′), τ) ≥ φt

k((r, s), τ) ∀s′ > s

and (2) the price table entry for a given completion time
within the user-patience window (t + ∆) does not decrease
over time. Note that this still allows a resource provider to
decrease prices outside of the user-patience window.

Example 1 (Admissible prices). Consider the follow-
ing 2-dimensional price table where each row corresponds to
estimated memory usage, and each column to the scheduled
completion time. Let t0 denote the current time. Suppose
the intervals for memory are [0, 2), [2, 4), [4, 8) MegaBytes,
and the intervals for a job’s scheduled completion time is
[t0, t0 + 1), [t0 + 1, t0 + 2), [t0 + 2, t0 + 3),[t0 + 3, t0 + 4)
hours. Suppose the table entries are currently:

memory τ ∈ [0, 1) τ ∈ [1, 2) τ ∈ [2, 3) τ ∈ [3, 4)
[0,2) 5 4 6 10
[2,4) 17 13 15 12
[4,8) 20 15 21 25

Suppose ∆ = 3 hours. Then, by admissibility the resource
provider can increase or decrease all the entries beyond the
user patience window. For example, the entries 10, 12, and
25 from the fourth column of the table can be updated to 4,
16, and 18, respectively. However, the other entries cannot
be decreased. An updated price table with admissible entries
may look like:

memory τ ∈ [0, 1) τ ∈ [1, 2) τ ∈ [2, 3) τ ∈ [3, 4)
[0,2) 8 4 7 4
[2,4) 18 17 15 16
[4,8) 24 18 100 18

Note that earlier completion times may have higher prices.
While we might expect later completion times to have lower
prices that earlier ones, the system does not require this.

3. AUCTION FRAMEWORK
We now define the rules of the reverse auction that is

created on-the-fly each time a user submits a job. As well
as defining the auction, which determines which resource
provider (if any) gets to run the job the Egg auction frame-
work imposes the following additional requirements:

• When a user reports job Ĵi via her bid, then this de-
scribes the job that will be performed (a user cannot

report Ĵi and then have the resource perform some
other job, Ji, instead).

• A user makes no payment and does not receive the re-
sults from an incomplete job if the job is not completed
by the scheduled completion time.

Both of these are requirements are reasonable properties
to police by the market infrastructure. Consider the follow-
ing auction protocol:

1. On receiving bid (Ĵi, âi, ŵi, γ̂i):

(a) Let d̂i be the latest time τ such that ŵi(τ) > 0.

(b) Consider the resource providers with reliability
at least γ̂i. Ensure the resource provider does not
change its estimator function based on informa-
tion about the job.

i. For each resource provider k, compute the re-

source estimates R̂âi

k (Ĵi). Let r̂k denote the
estimated runtime.

ii. The relevant price table entries are revealed
to the auctioneer by the market infrastruc-
ture. Given the price table entries at time
t = âi, the auctioneer computes τ∗

k where τ∗
k

is the earliest time in [âi + r̂k, d̂i] such that:

τ∗
k = arg max

τ∈[âi+r̂k,d̂i]
{ŵi(τ)−φâi

k (R̂âi

k (Ĵi), τ)}

(3)

(c) Select a resource provider k∗ with maximal utility.
Denote the set of resource providers with reliabil-
ity at least γ̂i by Γ̂i. Let k∗ be

k∗ = arg max
k∈Γ̂i

{ŵi(τ
∗
k) − φâi

k (R̂âi

k (Ĵi), τ
∗
k)} (4)

The price that a user submitting job i whose type

is θ̂i = (Ĵi, âi, ŵi, γ̂i) faces is:

pi(Ĵi, âi, ŵi, γ̂i) = φâi

k∗(R̂âi

k∗(Ĵi), τ
∗
k∗) (5)

The job is not scheduled if all resource providers
have prices higher than value. Break ties in favor
of earlier times.

(d) Collect payment from job i and place in escrow.

(e) The market infrastructure requires that resource
provider k∗ encrypts the outcome of job to pre-
vent job i from accessing outcome until τ∗

k∗ .

2. On the scheduled completion time τ∗
k∗ :

(a) Check whether job is completed. Update resource
provider reliability.

(b) If completed, allow job to transfer outcome of
computation.

(c) If completed, transfer payment from escrow to re-
source provider. Else return payment to job.

A resource provider can employ a scheduling algorithm
of choice, and retains autonomy to decide when to actually
schedule a job. Notice though, that to get paid for a job it
wins, it must schedule the job so the job can be completed
on or before the scheduled completion time τ∗

k , specified by
the auctioneer.

Example 2 (Looking up prices in a price table).
Given a job request and a price table then a row is chosen
based on the estimated resource requirement of the job. The
ultimate price is determined based on the optimal scheduled
completion time, which is chosen by the reverse auction to

be where value - price is maximal among the entries before
the deadline, breaking ties earlier.

memory τ ∈ [0, 1) τ ∈ [1, 2) τ ∈ [2, 3) τ ∈ [3, 4)
[0,2) 9 5 4 6
[2,4) 19 17 13 15
[4,8) 24 20 15 21

Suppose the estimated memory usage is 2.5 megabytes and
the value schedule given by the user is wi([t0, t0 + 2)) = 19,
wi([t0 + 2, t0 + 3)) = 17, and wi([t0 + 3, t0 + ∆]) = 0. Then
the auctioneer examines the row 19, 17, 13, and chooses
the scheduled completion time of 2 hours from now, at a
price of 13 (i.e., the entry corresponding to [t0 + 2, t0 + 3)),
since 17-13 = 4 is the maximum value - price among the
corresponding entries.

3.1 Simplicity for Users
Given that users are modeled with threshold-reliability be-

liefs we work with the following relaxed notion of strate-
gyproofness:

Definition 7 (t-strategyproofness). An online
mechanism with limited misreports (no early arrivals) is
t-strategyproof if all users hold threshold-reliability beliefs,
and no user has incentive to misreport her job descrip-
tion, value schedule, arrival time, or minimum tolerable
reliability, regardless of the reports of other users.

A formal definition of t-strategyproofness is provided in
the longer version of this paper [11]. A t-strategyproof mech-
anism chooses the most favorable resource provider for a user
with threshold-reliability beliefs when given the user’s true
parameters Ji, wi, ai, and γi, for any reports of the other
users.

Theorem 1. The auction framework is t-strategyproof for
jobs with bounded patience and users with limited misreports,
uniform-failure and threshold-reliability beliefs, if price ta-
ble entries are admissible, resource predictors satisfy mono-
tonicity for each resource provider.

Proof. Omitted. See longer version of the paper.

We give some intuition for this result. By monotonicity
of the resource estimator and admissible prices, a user can-
not receive a lower price by reporting a later arrival time or
J ′

i ≻ Ji. (Note that the resource estimate does not need to
be accurate for the auction to remain truthful.) The uni-
form failure belief assumption implies that for a specific job
Ji, a user has no incentive to report J ′

i ≻ Ji to achieve a
higher probability of success on a specific resource provider.
Threshold-reliability beliefs spare us from reasoning about
the probability that a job will complete on the winning re-
source provider.

3.2 Discussion: Strategic Properties
First, we discuss properties that are essential for the non-

manipulability of the grid market:
• The market infrastructure requires that the resource
provider holds the result of a job until the scheduled com-
pletion time. This is to prevent a job from benefiting by
overstating its patience and getting a lower price, while still
getting the result of the computation early enough.
• The market infrastructure ensures that the price quotes
do not change based on the bid of a job. It is a role of the
auctioneer, not of the resource providers, to select the best

scheduled completion time for a user and perform the payoff-
maximization decision. Resource providers define admissible
prices but can update prices only in between receiving bids.
• Prices are set based on scheduled completion times rather
than based on the actual times in which jobs are performed.
This is to prevent a resource provider from deliberately
rescheduling the job in order to extract more revenue.
• Completion risk is carried by resource providers, in that
if they fail to complete a job by the scheduled completion
time, they receive no payment and the user makes no pay-
ment (in this case, the user also receives no benefit). This
prevents users from benefiting from misreports of their value
schedules.

One possible form of useful manipulation that remains,
e.g. when prices are super-additive in the size of resource
allocations, is for a user to split a job into multiple smaller
jobs. This kind of manipulation has been observed in a de-
ployed market for sensor-network resources in the presence
of very strategic users [12]. On balance, we have chosen
not to preclude this because we believe that super-additive
prices can provide opportunities for significant improvement
in overall social welfare, e.g. by price discrimination with
“rich” users with large jobs that are unable, or unwilling,
to split up jobs into smaller jobs having the potential to
subsidize the usage of smaller users.

One additional concern that is relevant to the performance
of the system is what happens when resource estimates are
poor quality, as would be expected when a new user en-
ters the system or when a new class of jobs are run. Here,
we can augment our proposal to allow a user to optionally
state explicit (computational) resource requirements.5 A
user should exercise this “override option” and report ex-
plicit information about resource requirements, either to get
a lower price by providing a lower estimate or to ensure a
successful completion by providing a higher estimate. If a
user believes that all resource providers have accurate esti-
mators, then she has no incentive to override the estimates.

4. CONCLUSIONS
We presented a framework with which to support truth-

ful, dynamic and decentralized auctions in computational
grids. Our framework is designed to be extensible, aligned
with incentives, simple for users, and allows for distributed
and autonomous control of resources. We deliberately strive
for a strategyproof, simple interface for users (our mantra
is “physicists just want to run their jobs”) while assuming
that resource providers are more willing to compete through
sophisticated pricing algorithms and other innovations. In a
sufficiently competitive grid this competition should propel
improvements in overall efficiency, for instance through bet-
ter and better resource predictors and schedulers. We are
building an initial version of the Egg system, part of which
will encompass the microeconomic framework outlined in
this paper.

5The auction would also need to be changed slightly, so
that the resource estimate is adopted as a hard limit on the
amount of resources provided to a job. This prevents a new
manipulation in which a user under-reports resource require-
ments of a job but is able to complete her work anyway for
a lower price. This change was not needed for the current
model because of the coupling of resource estimation with
job descriptions.

Acknowledgments
We would like to thank the EGG team members, John
Brunelle, Peter Hurst, Chaki Ng, Margo Seltzer, and Saul
Youssef for helpful discussions. This work is partially sup-
ported by NSF ITR 0427348.

5. REFERENCES
[1] D. Abramson, R. Buyya, and J. Giddy. A

computational economy for grid computing and its
implementation in the Nimrod-G resource broker.
Future Gener. Comput. Syst., 18(8):1061–1074, 2002.

[2] M. Backschat, A. Pfaffinger, and C. Zenger.
Economic-based dynamic load distribution in large
workstation networks. In Euro-Par, Vol. II, pages
631–634, 1996.

[3] J. Brunelle, P. Hurst, J. Huth, L. Kang, C. Ng,
D. Parkes, M. Seltzer, J. Shank, and S. Youssef. Egg:
An extensible and economics-inspired open grid
computing platform. In Proceedings of the 2006 Grid
Asia, Singapore, May 2006.

[4] R. Buyya, D. Abramson, J. Giddy, and H. Stockinger.
Economic models for resource management and
scheduling in grid computing. Concurrency and
Computation: Practice and Experience (CCPE),
14(13-15):1507–1542, 2002.

[5] D. D. Clark, J. Wroclawski, K. R. Sollins, and
R. Braden. Tussle in cyberspace: Defining Tomorrow’s
Internet. In Proc. SIGCOMM’02, 2002.

[6] P. Cramton, Y. Shoham, and R. Steinberg, editors.
Combinatorial Auctions. MIT Press, January 2006.

[7] I. Foster, C. Kesselman, and S. Tuecke. The anatomy
of the grid: Enabling scalable virtual organizations.
Int. J. of SuperComputer Applications, 15(3), 2001.

[8] A. Galstyan, K. Czajkowski, and K. Lerman. Resource
allocation in the grid using reinforcement learning. In
Proc. AAMAS, 2004.

[9] J. Gomoluch and M. Schroeder. Market-based
resource allocation for grid computing: A model and
simulation. In Proceedings of the First International
Workshop on Middleware for Grid Computing (MGC
‘03), 2003.

[10] M. T. Hajiaghayi, R. Kleinberg, M. Mahdian, and
D. C. Parkes. Online auctions with re-usable goods. In
Proc. ACM Conf. on Electronic Commerce, pages
165–174, 2005.

[11] L. Kang and D. C. Parkes. A decentralized auction
framework to promote efficient resource allocation in
open computational grids. Technical report, Harvard
University, 2007.

[12] C. Ng, P. Buonadonna, B. N. Chun, A. C. Snoeren,
and A. Vahdat. Addressing Strategic Behavior in a
Deployed Microeconomic Resource. In Proc. 3rd
Workshop on Economics of Peer to Peer Systems,
2005.

[13] N. Nisan, S. London, O. Regev, and N. Camiel.
Globally distributed computation over the internet -
the POPCORN project. In ICDCS ’98: Proceedings of
the The 18th International Conference on Distributed
Computing Systems, page 592, Washington, DC, USA,
1998. IEEE Computer Society.

[14] D. C. Parkes. Online mechanisms. In N. Nisan,
T. Roughgarden, E. Tardos, and V. Vazirani, editors,
Algorithmic Game Theory, chapter 16. Cambridge
University Press, 2007.

[15] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O.
Kephart, and W. S. Stornetta. Spawn: A distributed
computational economy. Software Engineering,
18(2):103–117, 1992.

