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Prior work. Much of the literature on crowdlearn-
ing focus on the static case where we have a batch
of noisy labels (Raykar, 2010) (Karger, 2011) and
need to infer the true labels. The emerging online
crowdlearning papers either assumes 1) we can re-
peatedly access any worker (Yan, 2011), or 2) each
worker only labels one item. The decision task is how
many labels to obtain for each item (Sheng, 2008).

The contributions of this work are:

• We introduce a new model where the workers
arrive sequentially and the decision problem of
which items to assign to a worker must be made
online.

• We use loopy belief propagation to estimate
the posterior distribution of the true labels and
worker types given the current set reported la-
bels. The current literature use maximum likeli-
hood point estimate of the true label and worker
type (usually through EM type approach). In
our online setting, it is advantageous to know
the variances (uncertainty) as well as the mode
of the distribution at every time step.

• Using the approximate posterior distribution
over true labels and worker types, we design and
evaluate a family of active learning algorithms.

Model set up. We have a fixed set of items X =
{x1, ..., xm} that need to be labeled. The labels are
binary {0, 1}, and initially we do not have any known
labels (no gold standard). Workers are employed
to label these data. Let yij denote the label that
worker wi assigns to item xj . Let {y∗j } denote the
(unknown) true labels.

A simple worker model often used in crowdlearning
literature (Karger, 2011) (Sheng, 2008) is:

• each worker is an iid sample from a binary dis-
tribution of good and bad workers.

• P (worker = good) = α;

P (worker = bad) = 1− α.

• P (yij = y∗j |wi good) = β > 0.5

P (yij = y∗j |wi bad) = 0.5.

We assume that workers arrive sequentially
{w1, w2, ...}. Each wi is an iid sample from the bi-
nary distribution above. At each time step, we may
assign any item xj to the current worker wi to label.
Alternatively, we can dismiss wi and assign any item
xj to the new worker wi+1.

A worker is given only one item to label at a time,
and returns the label instantaneously. We assume
that if we assign the same item to a worker repeat-
edly, he will return the same label. A worker may be
assigned an arbitrary number of items in total. After
he is dismissed, he is no longer available for future
tasks (gone for good). This captures many natural
settings including: 1) where workers are anonymous
and can not be identified once the engagement is dis-
continued; 2) where workers are busy and we only
get one shot to learn from each one.

There is a fixed budget to pay for total of T labeling
tasks. It costs the same for any worker to label any
item. After collecting all the labels, the designer
submits a subset of items along with predicted la-
bels to the oracle: {(xj , yj)|xj ∈ X̃ ⊆ X}. From the
submissions, he receives reward q1 for every correctly
labeled data, and penalty −q2 for each incorrect pre-
diction. The total reward is R = q1 ∗ n1 − q2 ∗ n2,
where n1 = |{xj |yj = y∗j }| and n2 = |{xj |yj ̸= y∗j }|.
The objective is to maximize R.

Result I: posterior inference over labels and
worker types. Let Wi and Yj denote the random
variables over the true worker type and item label,
respectively. Let D = {(xj , yij)} be the data col-
lected. The posterior is given by

P ({Wi}, {Yj}|D) =
1

Z
P (D|{Wi}, {Yj})P ({Wi}, {Yj})

where Z is the normalization factor.

This can be represented by a Markov random field on
a bipartite graph with one node for every worker Wi

and one for every item Yj . The adjacency matrix of
the graph, A, is also the assignment matrix: Aij = 1
if wi has labeled xj and Aij = 0 otherwise. The
factor associated to the edge between Wi and Yj is
P (yij |Wi, Yj).



We run loopy belief propagation on this graph
(Murphy, 1999). Message from node Wi to Yj en-
capsulates worker wi’s belief on the true label of xj .
And message from Yj to Wi encodes item xj ’s con-
tribution to the posterior belief of the true type of
wi. Before we obtain any labels, the initial marginals
are P (Yj = 0) = 0.5 and P (Wi = good) = α. The
algorithm quickly converges and the belief at each
node approximates the posterior marginals P (Wi)
and P (Yj). By comparing with exact marginals on
tractable examples, we verify that the Loopy BP al-
gorithm performs effective inference for our model.

So far the model assumes that we have α and β. In
some applications, rather than knowing α and β, we
may have some prior distributions over these param-
eters. This more general model can also be encoded
in a Markov Random Field, and we use a modified
loopy BP to approximate its posterior marginals.

Result II: active learning. The Bayesian optimal
prediction is yj = argmaxl∈{0,1} P (Yj = l), where
P (Yj) is the posterior approximated from loopy BP.
The expected reward is

R({yi}) =
∑
i

[q1P (Yi = yi)− q2P (Yi ̸= yi)]. (1)

To maximize R, the designer should only submit pre-
diction (xj , yj) if q1P (Yj = yj) > q2P (Yj ̸= yj).

Example 1. Suppose we have a budget to collect 20
labels from a large set of items (M ≫ 20). One naive
strategy is to ask the first worker that comes along to
label 20 different items. The probability that a label is
correct is 0.5+α(β−0.5). Suppose the penalty is rel-

atively large: q2
q1

> 0.5+α(β−0.5)
0.5−α(β−0.5) . Then the Bayesian

optimal decision is to not submit any predictions at
the end. This strategy greedily explores item infor-
mation to learn the most bits about {P (Yj)}. It does
not learn anything about the worker type, nor does
it learn enough about P (Yj) for any particular item
xj in order to make a confident prediction.

Example 2. Following the same set up, an al-
ternative is to have the first worker label items 1-
7, second worker label items 1-7, and the third
worker label 1-6. At the end, we can infer accu-
rately the type of each worker (sharpe marginals for
P (W1), P (W2), P (W3)), but have high variance in
item posteriors.

Example 3. In the third strategy, we recruit ten
workers to label item 1 and ten other workers to label
item 2. We can infer the two correct item labels with
high probability, but we only get at most 2q1 reward.

We identify three dimensions in the learning prob-
lem as illustrated by the examples: item explo-
ration, worker exploration, and reward exploitation.

Item and worker exploration greedily learn the item
and worker marginals. Reward exploitation greedily
maximizes the expected reward. The general ap-
proach we adopt for online learning is to select at
each step the action that, in expectation, maximizes
a weighted combination of these three objectives.
Let Mt < M be the number of items with at least
one label by time t. Then the action space at t has
size at most 2(Mt + 1): assign one of the Mt points
to either the current worker or to the new worker, or
give an unlabeled data to the current or new worker.
It doesn’t matter which of the M − Mt unlabeled
items to pick since they are symmetric a priori.

Item exploration. Let D(t) be the set of labels
collected up to time t and {P (Yj , t)} be the item
marginals at t. Consider an action, a, that as-
signs xj to wi. There are two outcomes, yij = 0
or yij = 1. Run loopy BP on D(t)

∪
(xi, yij = 0)

and D(t)
∪
(xi, yij = 1) to obtain the new marginals

{P (Yj , a, 0)} and {P (Yj , a, 1)} respectively. De-
fine △Y (a, 0) =

∑
j ∥ P (Yj , a, 0) − P (Yj , t) ∥ and

△Y (a, 1) =
∑

j ∥ P (Yj , a, 1) − P (Yj , t) ∥. The
norm is L2. Set △Y (a) = △Y (a, 0)P (yij = 0) +
△Y (a, 1)P (yij = 1). △Y (a) measures the expected
gain in item information from action a.

Worker exploration. For each action a and pos-
sible outcome, we similarly compute the marginal
distributions: {P (Wi, a, 0)} and {P (Wi, a, 0)}. De-
fine △W (a, 0) =

∑
i ∥ P (Wi, a, 0) − P (Wi, t) ∥ and

△W (a, 1) =
∑

i ∥ P (Wi, a, 1)−P (Wi, t) ∥. The gain
in worker information is △W (a) = △W (a, 0)P (yij =
0) +△W (a, 1)P (yij = 1).

Reward exploitation. Let R(t) be the expected
reward based on D(t) as in Eqn.1. For each ac-
tion a and outcome, compute the expected reward
R(a, 0) and R(a, 1). Define R(a) = R(a, 0)P (yij =
0) + R(a, 1)P (yij = 1). Then the gain in reward is
△R(a) = R(a)−R(t).

The algorithm chooses the action a that maximizes
△R(a) + γ1△Y (a) + γ2△W (a). The parameters γ1
and γ2 determine the relative weight of the objec-
tives, and characterize our algorithmic space. We
give analytic characterizations of the algorithm in
the asymptotic limits of γ1 and γ2. We empirically
investigate the optimal choices of the parameters as
a function of α, β while allowing it to also depend
on time: γ1(α, β, t) and γ2(α, β, t). We also bench-
mark the performance of our active learning algo-
rithm against several non-adaptive strategies for as-
signing items to workers.
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