
HarTAC - The Harvard TAC SCM ’03 Agent

Rui Dong, Terry Tai and Wilfred Yeung
Harvard College,

Cambridge, MA 02138�
ruidong,tai,wyeung � @fas.harvard.edu

David C. Parkes
Division of Engineering and Applied Sciences,

Harvard University,
33 Oxford Street, Cambridge MA 02138

parkes@eecs.harvard.edu

Abstract

The Trading Agent Competition (TAC) is an annual event
in which teams from around the world compete in a given
scenario concerning the trading agent problem. This pa-
per describes some of the key features and strategies em-
ployed by HarTAC, the Harvard University TAC SCM 2003
agent. HarTAC was built to be a moderately aggressive,
production-oriented agent, combining a semi-conservative
component purchasing strategy with a highly aggressive
cycle-based sell side.

1. Introduction
The Trading Agent Competition (TAC) is an annual

event in which teams from around the world compete in
a given scenario concerning some form of the “trading
agent problem.” The generalized trading agent problem es-
sentially asks the question: given a market situation with
specific rules, how does one act to buy, sell, and produce
goods to maximize expected profits? This is of particular
interest to the AI community given automated trading and
the increasing number of electronic markets. TAC was de-
signed to spur research in this topic as well as “present dif-
ficult decision problems and admit a wide variety of poten-
tial bidding and negotiation strategies.”1 TAC Supply-Chain
Management (SCM) and TAC Classic were scenarios con-
structed to elicit different strategies for solving the trading
agent problem.

In this paper, we provide an in-depth discussion of Har-
TAC, the Harvard TAC SCM agent for TAC’03. An inter-
esting characteristic of the TAC environment was that many
teams ran their programs on public game servers, allow-
ing knowledge to be shared between teams in the months
leading up to the competition. Consequently, our agent’s
design was greatly influenced by this shared knowledge.
Ultimately, we chose a moderately aggressive strategy for

1 TAC Website, http://www.sics.se/tac/

our agent based on aggressive production with added safe-
guards designed to protect ourselves against unfavorable
game conditions. Central to our design is a steady-state
analysis, with a control loop to achieve the desired factory
production cycles. In the end, our agent made it to the semi-
finals of the competition before being eliminated.2

1.1. TAC SCM BACKGROUND

In the TAC SCM scenario, contestants are presented with
a virtual business world in which each contestant manages
a PC manufacturing company. Six teams compete against
one another in any given 220-day game, and the team whose
company makes the most profit wins the game. In manag-
ing their company, each team must purchase components,
schedule computer production at its factory, and manage
the sale of computers to customers. Starting with no sav-
ings, no inventory, and no pending orders, each agent is en-
dowed with limitless credit and its own factory.

Supply contracts are arranged by sending RFQ bun-
dles (requests for quotes on a certain quantity of a type of
component) to component manufacturers (automated global
agents run by the game itself). These manufacturers respond
with information on price and availability of the quantity re-
quested, which the agent can then decide to either order or
decline. Customer demands are similarly handled by receiv-
ing a different type of RFQ bundle from automated cus-
tomers, which request computers by a specified due date.
The agent responds with an offered price, and the customer
determines the winner through a first price procurement
auction. The winning agent must then produce and deliver
the ordered goods by the specified due date to be paid or
otherwise incur monetary penalties. Finally, the agent must
submit a production schedule each day that indicates how
many of each type of computer to build. Each computer type
requires a different number of cycles to construct (besides

2 In the semi-finals, we ran into technical difficulties with the computer
we were using to run the agent that contributed to our loss. This will
be discussed later on in the paper.

just different components), and the total number of cycles
used per day may not exceed 2000.

In summation, on any given day, an agent needs to make
the following decisions:

1. Which RFQs to issue to which providers

2. Which providers’ offers (received in response to the
RFQs sent the previous day) to accept

3. Which products to produce using the 2000 production
cycles and the components in inventory

4. Which finished products to ship to customers

5. Which customer RFQs (received daily) to answer, and
the price to be given to the customer

The agent that is able to make the most money at the end
of the game is declared the winner.3

1.2. TAC SCM DESIGN AND METHODOLOGY
As seen in the description above, the TAC SCM sce-

nario presents an agent with limited knowledge about its
environment and other competitors. This partial knowledge,
coupled with a large number of possible actions each day,
makes the decision problem very complex. There is an in-
tractable number of possible situations in which an agent
might find itself, given what it knows each day about inven-
tories, bankroll, prices, and RFQs. An agent also has a large
number of possible actions each day.

With that in mind, we first modeled the agent’s problem
as one of control in a small, finite state space for which we
specified rules to direct our agent’s behavior. Control theory
provides a straightforward model for dynamic systems, and
we found this to be an intuitive simplification for the TAC
scenario [1]. In truth, several of our state-specific mecha-
nisms are modeled as control mechanisms as well. Our ap-
proach therefore shares some features with the methods of
Kiekintveld et al. [5]

Our state space is designed with the assumption that
there exists some steady state in which our agent will re-
main for most of the game. We define the steady state to be
the game situation where we are in the best position to make
a profit (a more precise definition will be given later). In that
case, we construct our agent’s behavior to maximize perfor-
mance in this steady state and to maximize the time spent
in the steady state. Meanwhile, we define states for the sit-
uations where our agent is knocked out of the steady state
for various reasons (i.e. changing demand, changing sup-
ply, actions of other agents), and for each such state, we
outline a set of actions for our agent to return to the steady
state. We also need to specify states for start game condi-
tions, which are designed with the goal of quickly reach-
ing the steady state and of possibly preventing competitors

3 Interested readers should refer to the full specifications of the game in
Sadeh et al. [6].

from reaching their steady states (i.e. sabotage). Finally, we
define states for end game conditions whose purpose is to
maximize final revenue by selling off the remainder of the
parts and products from the time spent in the steady state.

Since throughout the rest of the paper we refer to vari-
ables determined via experimentation, it is also important
to note that our experimental methodology consisted of run-
ning numerous trials both on the public servers and on our
own servers playing against agents that we designed to rep-
resent specific strategies. In analyzing our sell-side mecha-
nism, for instance, we logged all of the prices at which or-
ders were won when playing against a wide range of dif-
ferent agents. We then used statistical analysis (mostly sim-
ple linear regression) on the data from these games to deter-
mine the constants.

2. Organization of the Agent States
Central to the design of the HarTAC agent is the no-

tion of the steady state. This defines an operating condi-
tion in which we believe we can make the most profit. Most
of our behavior is geared towards achieving this state, to-
wards remaining in this state, and towards maximizing our
profit while in the steady state. We define the steady state as
follows:� Positive profits (calculated as the difference between

current customer demand prices and current inventory
costs) can be obtained by fulfilling orders.� HarTAC has spent less than five days straight incurring
penalties for unfulfilled orders.� HarTAC possesses some minimal level of components
(to be explained later, Section 4).� We have not yet hit our end game state conditions (i.e.
we have more than 45 days left in the game).

Under these conditions, we assume that it is to HarTAC’s
advantage to sell as many computers as possible, as con-
strained by our production capacity. This strong assump-
tion is based upon empirical evidence that suggested that
simple profit maximization of the price used in response to
an RFQ yielded prices with winning probabilities that ex-
ceeded the factory capacity.

Due to our assumptions, the steady-state problem be-
came a control problem, defined in terms of targeted fac-
tory production, to consistently win 2000 factory cycles
worth of computers while maximizing the price for the or-
ders won. In steady-state, our sell side uses a modified “pro-
portional” control mechanism [1]. Thus, it is characterized
by smooth functions determining the prices offered to cus-
tomers through various changing factors indicating chang-
ing demand and level of competition. The buy side works to
fulfill the needs of production and sales via a tiered control
mechanism that maintains a good level of inventory, con-
stantly adjusts its estimates to total needs of inventory, and

steady state. We also need to specify states for start game conditions, which are designed
with the goal of reaching and maintaining the steady state for as long as possible and
possibly preventing competitors from reaching their steady states (i.e. sabotage). Finally,
we define states for end game conditions whose purpose is to maximize final revenue by
selling off the remainder of the parts and products from the time spent in the steady state.

The rest of the paper is then structured as follows: Section 2 explains the organization of
our agent into different states; sections 3, 4, and 5 focus on the steady state production,
buy, and sell sides respectively; section 6 explains how we deal with perturbations from
the steady state; and finally, sections 7 and 8 discuss our actual competition results and
some ideas for the future.

Figure 2 – Organization of the Agent States

Start State:
-Day 0 Buyout
-Sabotage
-Counter

STEADY STATE
Goal: Production and Sales
Maximization
- 4 inventory substates on buyside
- Smooth pricing functions on

sell-side
- Greedy production function

Accruing Penalties:
- Production drops late

orders.

0-Profit Prices:
- Purchasing halted.
- Targeted production and

sales decreased.

 End State:
 -Refuse late supplier
 offers.
-Liquidation price

adjuster.

INCREASED
DEMAND

NO
PENALTIES

INCREASED
COMPETITION

PRICES RISE
ABOVE
PURCHASING
COSTS

Figure 1. Organization of the agent states.

probes in hopes of finding good prices on components. Its
behavior is determined by various sub-states of the inven-
tory.

A host of other states work to maximize the time spent
in the steady-state. These states are illustrated in Figure 1.
The start-state procures the components necessary before
passing onto steady-state. The accruing-penalties state al-
leviates the trend of penalties from the agent before pass-
ing it back to the steady-state, while the negative-profit state
handles the situation when prices are pushed below costs.
Finally, the end-state is an aggressive seller/conservative
buyer strategy state where the agent tries to liquidate all in-
ventory before exiting the game.

3. Steady State — Production
In order to sell as many computers as possible (i.e. 2000

cycles’ worth daily), we need to be constantly producing
computers. The steady-state production side is therefore a
greedy algorithm: sell-side orders are processed in order of
due date. Yet, should there be factory cycles available on
a daily factory schedule, we fill the vacancy by producing
computers uniformly at random across different types (sub-
ject to the availability of inventory).

4. Steady State — Purchasing
To fuel production, the purchasing of components was

basically performed to maintain a reasonable quantity of all
components in stock at all times.

In the short-run, a dearth of components is expensive as
it stalls our production and sell side. On the other hand, due
to the low inventory costs, a large amount of inventory does
not hurt, as long as this inventory was bought at low costs.
Inventory only becomes excessive when the agent cannot
finish selling all of it by the end of the game. Consider-

ing these issues, our buy-side control problem focused on
maintaining enough components in the short-run, determin-
ing the maximum inventory usable for the rest of the game,
and maintaining the inventory level below this maximum.

We defined four substates for each possible component
in our inventory: the Critical substate defines when it is ur-
gent to purchase more inventory at any cost; the Minimum
substate defines when the agent replaces inventory used
while waiting for good deals to buy more components; the
Probing substate defines when the agent merely probes for
good deals; the Maximum substate defines when the agent
stops buying totally, having surpassed the maximum level
of inventory it can consume. These substates are illustrated
in Figure 2. The goal substates for the agent are the Min-
imum and Probing substates. Note that the substates are
component-specific. It is entirely possible for one particu-
lar component to be in the Critical substate while another
component exists in Probing, or any combination thereof.

To define such substates, we experimentally defined
three component constant thresholds—critical, mini-
mum, and maximum. The four substates are placed in the
four sections delineated by these three limits. The criti-
cal and minimum levels are fixed at 240 and 1600, respec-
tively (for non-CPU components, and 120 and 800 for
CPU components), while the maximum levels were deter-
mined during the game (as different games supported dif-
ferent maximum levels) and reduced during the course of
a game as the end of the game approached.4 Higher de-
mand games allow more purchases with little risk,
while lower-demand games might inflict severe punish-
ment for the over-ordering of components, even at de-
sirable prices. We set the maximum level, Max to be�����	�

, where
�
�

is the ratio of the average number of cy-
cles HarTAC is managing to sell daily to the target of 2000,
and

�
is the number of days left in the game. The con-

stant,
�
, is set to 160 units, which is roughly the ex-

pected number of any non-CPU component that the agent
can use at maximal production in a single day. (There
are twice as many options for CPUs, and we set the con-
stant to 80 for CPU components). The role of

� �
, the best

estimate of how much the agent seems to be success-
fully selling, is to handle games with exceptionally low
demand that prevented the agent from meeting the de-
sired selling quota. The parameter was estimated during a
game with a discounted moving average. When Max is less
than the default value of 1600 for Min, then the Max thresh-

4 Roughly, at full capacity 2000 cycles/day would yield around 350
computers/day, and each computer can be constructed from 4 differ-
ent CPU types and 2 different types of each component. This yields a
full-capacity demand of roughly 80–85 for each CPU type, and 160–
170 for each non-CPU component. Thus, a critical level of 240 for
non-CPU components is a little less than the required capacity for
around 1.5 days of continual production (similarly for the 120 criti-
cal level for CPU components).

3 STEADY STATE – PRODUCTION

In order to sell as many computers as possible (i.e. 2000 cycles’ worth daily), we need to
be constantly producing computers. The steady-state production side is thus a greedy
algorithm: orders are processed in order of due date. Yet, should there be factory cycles
available on a daily factory schedule, we fill the vacancy by producing computers
uniformly randomly distributed across the different types.

4 STEADY STATE – PURCHASING

To fuel production, the purchasing of components was basically performed to maintain a
reasonable quantity of all components in stock at all times. However, we didn’t want so
many components that we could not use them all or lost opportunities at lower priced
components later in the game. Therefore, we defined four substates for each possible
component in our inventory: the Critical substate defines when it is urgent to purchase
more inventory at any cost; the Minimum substate defines when the agent merely replaces
inventory used while waiting for good deals to buy more inventory; the Probing substate
defines when the agent merely probes for good deals; the Maximum substate defines
when the agent stops buying. Note that the substates are component-specific. It is
entirely possible for one particular component to be in the Critical substate while another
component exists in Probing, or any combination thereof.

To define such substates, we experimentally defined three component constant
thresholds—critical, minimum, and maximum. Given this then, the four substates were
then placed in the four sections delineated by these three limits. The Critical substate
corresponded to an inventory level below the critical level; the Minimum substate for
levels between critical and minimum; Probing for levels between minimum and
maximum; and finally Maximum anytime we have more than maximum components. The
rest of the buy-side mechanism was devoted to maintaining component inventory levels
in the Probing substate.

< critical

Critical Substate

>critical
< minimum

Minimum Substate

>minimum
<maximum

Probing
Substate

> maximum

Maximum
Substate

Figure 2. Organization of the inventory substates
(one state machine for each component type).

Critical: Minimum: Probing: Maximum:
Inventory Inventory Inventory Inventory�

240 [240, [��
������������ ,Max � , � Max��
������������ ,Max �] Max]�����! "�$#&%' (��) *�+, "�$#&%- (��) �$#�%- .�/) none0 +21,1 0 +21,1 3����! (�/45��6 0 +(1,1
Table 1. Summary of the buy-side strategy for
a component, which is defined according to the
inventory substate (all numbers are for non-CPU
components). Quantity 0 + denotes the (mean dis-
counted historical price of component 7)/(current
price of component 7). Quantity *�+ denotes the to-
tal quantity of component 7 sold (as a component
of produced computers) on the current day.

old takes over.
The Probing substate uses small RFQs to try to identify

low component pricing. Daily, we send RFQs to all sup-
pliers requesting 1 component for 15, 25, and 75 days into
the future. These three dates were chosen experimentally
to offer a reasonable spread into the future. After we sub-
mit these RFQs, suppliers return on the following day with
their estimated delivery dates and their prices. This pricing
information is averaged over the days, with price informa-
tion discounted by a multiplicative factor of 8-9 : per elapsed
day. From this, we can make informed decisions on when
and from whom to buy components, based on their prices,
delivery dates, and our current inventory stocks.

The quantity of each component purchased on a given

day depends on the inventory substate for that component.
The buy-side strategy is summarized in Table 1. Quantity;�< denotes the (mean discounted historical price on com-
ponent =)/(current price of component =). Quantity > < de-
notes the total quantity of component = sold (as a component
within manufactured computers) on the current day. Notice
that ;�<@?BA when the current price is better than the histori-
cal average and ; <DC A when the current price is worse than
the historical average.

In the Critical substate we always purchase at least 600
units of each component, and more when ;�<E?FA , i.e. when
the current price is better than historical prices. The quan-
tity, 600, is chosen to represent the approximate number of
components that allow continual production for 4 days (the
corresponding purchase quantity is set to 300 for CPU com-
ponents). In the Minimum substate we always purchase at
least > < units of each component, and more when ; < ?GA
and current prices are better than historical prices. Given a
target quantity, RFQs are constructed with the quantity di-
vided equally across all suppliers with the required capabil-
ity. In the Probing substate, we only purchase when ; < ?FA
and current prices are better than historical prices, and we
purchase from only the lowest-cost supplier. Moreover, we
will submit an RFQ for at most 500 units of the component
(c.f. 250 for non-CPU components) in the Probing substate.
Finally, we never make any purchases in the Maximum sub-
state, whatever the prices.

5. Steady State — Sell Side
For the general case, we wanted the sell side to sell as

many computers as possible, given our constraints on pro-
duction capacity. Aside from this, we desired to sell at the
highest price possible. These desires and constraints were
often in conflict, but in accordance to our production be-
lief, we opted for selling more computers (up to 2000 cy-
cles) instead of selling less computers at higher prices. Un-
der the steady state assumptions of positive profits, reason-
able inventory levels, and no accruing penalties, this desire
to sell exactly 2000 factory cycles’ worth of computers daily
formed the cornerstone of the sell-side strategy.

The major question was then, how does one control the
number of orders won and therefore the number of com-
puters sold? We somehow needed to consistently regulate
the orders won to 2000 cycles’ worth daily. One popular
scheme among existing agents at the time seemed to dic-
tate bidding only on a fraction of all RFQs. Instead, we bid
on all “sellable RFQs”, and use price-based control to ad-
just the orders won to keep the associated number of cy-
cles around 2000. The sellable RFQs are those for comput-
ers that we hold at least 80 in stock. Given that at least one
other agent has submitted a bid on a particular RFQ, the
winner is defined to be the agent that offered to complete the
job for the least compensation. Assuming that there were

enough bidding agents at any time, an agent can use this
scheme to control the orders won by simply adjusting its
prices. Higher prices would inevitably lead to fewer orders
won, while lower prices would increase the computers sold.

When successfully implemented, this method achieves
high prices while winning around 2000 cycles’ worth of or-
ders per day. Had we raised prices any higher, we would
have won too few orders, and vice versa. Also, our agent dy-
namically adjusts prices on a day-to-day basis, and proves
sensitive to changes in the market and quick to respond.
Thus, we reduced the price search space to a product-
specific space, and used the same rules for each product ir-
respective of whether the product is in stock.

Our price-control loop adjusts prices separately, with one
price for each computer type. We use two adjustors: the cy-
cle adjustor and the order-specific dampener. The cycle ad-
justor translates into a variation of the classic “proportional”
control mechanism. The order-specific dampener limits cer-
tain price changes and provides additional price stability.

The cycle adjustor uses the number of cycles’ worth of
orders won in the previous few days to adjust prices. Ex-
perimentally, we found that the chances of winning seemed
to vary approximately according to the square of the price.
Therefore, we took the derivative of our demand function
with respect to price in order to determine the change in
price required to effect the change in cycles won necessary
to maintain the steady-state. This yields a linear function,
and so we alter our bidding prices linearly with respect to
the error in the number of cycles won in the past few days,
with older data weight decaying exponentially with time.
More technically, we used HJI , defined as the weighted av-
erage of the differences between the number of factory cy-
cles associated with the orders won in recent days and 2000.
Let K denote the current day. HJI is defined as:

HJIML N(OQPR S,TVUVW N(OQP�O S�XZY 8/8!8\[]I S�^
where I S was the number of cycles won on day _ , and W ,
our decay factor, was experimentally defined to be 9 ` . The
next day’s bidding price for computer type = was then deter-
mined, as: � N.abP< L � N <�c Aed X2f HJI ^(g (1)

where = denotes a computer type. Experimentally, we chosef Lh9 8/8/8 A ` .
Any day in which we overbid, we would automatically

underbid the next few days, yielding an average of approxi-
mately 2000 cycles. The opposite was also true; those days
during which we won few orders would generally be com-
pensated for during the next few days, still yielding on av-
erage 2000 cycles.

The order-specific dampener acts on specific orders, and
aims to obtain greater profits on RFQs disfavored by other

agents. Throughout the game, we detect when we were win-
ning certain types of RFQs with very high or very low prob-
ability. By categorizing all RFQs according to their prod-
uct types, due dates, and penalties, we tracked our winning
probability for each specific type of RFQ. We are always
willing to raise prices if we always win particular orders,
and we’re willing to lower prices if we never win other order
types. However, we only allowed price decreases on types
of RFQs for which we win less than 10%. Symmetrically,
only price increases were made on categories of RFQs that
we win with a 90% probability or higher. In addition to al-
lowing for different winning prices for different types of
RFQs, this dampener had a more global effect of stabiliz-
ing our agent’s pricing scheme. This stabilization prevented
wild fluctuations in our prices (and in our RFQs won daily),
allowing for the stability that preserved the steady-state.

6. Other States in the HarTAC System

Although our steady state controls act to smooth out
shocks to the system, our agent is still subject to severe per-
turbations requiring more active corrective actions. To ad-
dress such cases, we defined perturbation states to help the
agent return more quickly to the steady state. In particular,
we focused our attention on the states of accruing penal-
ties and negative-profits. We also defined states for the start
game and end game conditions. In these situations, we must
be able to enter and exit the steady state quickly while still
maximizing our profits.

6.1. Perturbation State 1: Accruing Penalties

Accruing penalties occur whenever the agent accepts cy-
cles in far excess of 2000 in one particular day, but then
on following days never undergoes a corresponding day of
fewer than normal orders (C Y 8/8!8 cycles). As a result of
this, we end up with more total orders than we can possi-
bly fulfill. However, since the greedy delivery algorithms
take into account only the dates of delivery, late penalties
tended to spread in perpetuum, serving as a constant drain
on our cash flow. This most often occurred directly as the
result of dramatic upward shifts in demand or sudden de-
creases in competition.

However, determining when we’re in this state is diffi-
cult. How do we know whether a few penalties are simply a
temporary problem (that will be fixed by the price adjuster
winning fewer orders), or actually accruing without end? In
this regard, we simply counted the number of days that our
agent experienced penalties. Experimentally, we found that
5 days of continued penalties with high probability signi-
fied accruing penalties.

Once in this accruing penalties state, we make efforts to
return to the steady state simply by dropping orders. In this
state, only orders that are not late are considered for factory

production and delivery. Let K denote the current day.ikj X.l!m	n�o�m ^ Lqpsr mut'o if vxw'y	v!z�{,y X.l!m	n�o�m ^E| K}2~/��� o
otherwise.

By dropping all non-late orders, it gives us a chance to
catch up on our order fulfillment, essentially forcing our
agent to return to the steady-state, albeit at a loss from the
penalties. Everything else, on both the buy side and sell
side, remains unchanged.

6.2. Perturbation State 2: Negative Profits
On the flip side, very high competition levels and low

customer demand may allow for the winning of RFQs only
at prices below our costs. The price adjustors recommend
sell-prices below costs, and we enter the negative profit
state, where any sold computer represents a loss for the
agent. Sadly, there is nothing that our agent can do about
this case, as negative profits are a feature of the market it-
self. Therefore, the agent waits in this state for market con-
ditions to improve, only offering computers to sell off our
inventory before the game ends and freezing purchases on
the buy side. The number of desired cycles, used by the
sell side to set prices, is also reduced from the steady-state
value to that specified by the liquidation adjustor (see Sec-
tion 6.4). This state persists until prices rise above purchas-
ing costs, at which point the agent returns to the steady state.

6.3. Start Game State
At the start of the game, we begin with a completely

empty inventory and no orders taken from customers. Our
goal is to transition as quickly as possible to the steady-
state. This occurs once we have received enough of our first
component shipments to begin producing, and once our sell
side has adjusted prices so that we win at least 2000 cy-
cles each day.

On the buy side of the agent, we needed to establish the
minimum levels of inventory assumed in the steady state
in order to begin producing and selling. Because buy-side
prices were based on the previous days’ demand, prices
were always cheapest on the very first day (before there was
any demand). This has been termed the day-0 effect. To take
advantage of this day-0 effect, we order a sizable amount of
components on day 0 in three separate orders, giving us a
large amount of cheap components that come in at times
spaced throughout the game.

Because of the delays in inventory delivery caused by
massive day-0 purchases by competing agents, we found
that HarTAC generally only managed to start producing
around day 60 on average. As such, we wanted components
for an average of 300 computers sold per day (empirically
found, slightly lower than the 360 average number of com-
puters equivalent to 2000 factory cycles) for 160 days (the
remaining time in the game). This amounted to a total in-
ventory of 48000 computers. Our buy-side RFQs then had

this inventory distributed uniformly amongst the different
types of computers (keep in mind that the sell side does not
attempt to form niches in particular products). Any extra
components that we needed due to either high demand or to
spaces between our three major shipments were bought in
the steady state based on our price probing.

We also devised a sabotage/counter-sabotage system to
heighten our profits from day-0 ordering while preventing
other agents from building up the same cushion of inven-
tory. For sabotage, we sent to one supplier a single RFQ for
a ridiculously huge quantity that suppliers could only fin-
ish by the last days of the game. As such, swamped with
demand, the supplier will offer unreasonable dates for com-
ponent delivery to all the other agents queued after us. We
refuse the order sent to us by the supplier on the next day,
with a small expense on our reputation (which is used to
prioritize responses by our agent’s suppliers). Since there
is more than one supplier offering a single type of compo-
nent for all components other than CPUs, we can recover
the number of components needed through a different sup-
plier.

Other agents also adopted sabotage strategies in the fi-
nal games [3]. This can be a problem because the effect is
that incoming orders can have very late delivery dates. To
counter this effect, we go through all the supplier offers and
choose to accept the combination of offers that minimizes a
penalty function that penalizes deviation from an “optimal”
continual replenishment of components. We determine the
combination of orders that best satisfy our demand for com-
ponents (i.e. an average number of 160 for non-CPUs, 80
for CPUs per day, at any time within the game), using a
penalty function that places greater emphasis on avoiding
short-term shortage than short-term excess. A “veto” is also
used to avoid accepting an RFQ that would yield quantity
that cannot be consumed even by the end of the game. This
can be important because the quantities ordered per RFQ
can be very large on the first day. As such, we mix the em-
phasis on avoiding short-term shortage with a greater em-
phasis on avoiding long-term excess.

At the beginning of the game, we also need to start sell-
ing quickly, to attain the volume required for steady-state.
For our first bid to customers, we choose to overbid in or-
der to avoid penalties, and set the initial price to exactly
the reserve price. After bidding on all of the different types
of computers, the steady-state adjustors kicked in (initially
lowering the price) to attain and maintain the right level of
orders won.

6.4. End Game State

At the end of the game, leftover inventory is essentially
wasted money since its final value is 0, and so we aim to
liquidate our entire inventory. Therefore, 45 days before the
end of the game, HarTAC prepares to exit the game by mov-

ing into the end-game state.
On the buy side,we check that supplier offers will be de-

livered before the last two days of the game, to avoid receiv-
ing components that cannot be used in production.

On the sell side, we adopt an additional price adjuster–
the liquidation adjustor –to ensure that we will be able to
sell all current inventory before the end of the game. We
consider the number of remaining days, and consider the
number of cycles-worth of computers that are normally sold
over that length of time (i.e. allowing for 2000 cycles/day).
If there is an excess of computers to sell then we further
reduce the price on those computers. In particular, for ev-
ery 10 extra cycles to be sold per day we drop the price
by an additional 1%, with

� N.abP< L � N <�c A [f'� HJI � g wheref � L�8'9 8!8 A and HJI � is the per-day excess inventory to
shift. The liquidation adjustor clashes with the cycle adjus-
tor (which is seeking to maintain a sell volume of 2000 cy-
cles/day). However, the constant

f � L�8-9 8/8 A dominates the
constant

f L�8-9 8/8!8 A ` in the cycle adjustor (Equation 1),
and the liquidation adjustor dominates in the late game.

7. Performance in the Competition
HarTAC made it through to the semi-finals of the com-

petition when hardware problems made for one catastrophic
game from which the agent could not recover.5 Yet, as rec-
ognized in other papers, HarTAC could have done much
better had it not been for this particular game [4]. We will
discuss in this part strategic peculiarities that distinguish
HarTAC from other agents and contribute to its success.

On the sell side, HarTAC was one of the only agents in
the semi-finals to bid on all the customer bundles for which
it has inventory available. In principle, this is to help Har-
TAC achieve the highest prices for all inventory. In prac-
tice, HarTAC achieved excellent results in attaining the tar-
geted production and sales level, with average penalty lev-
els around 4.33%. Details of the semi-final round’s delivery
penalties are summarized in Table 2.

Yet, we did not yet find a satisfactory way to handle mar-
kets where HarTAC, lacking in full inventory, could only
bid on a segment of the market. Thus, where the optimal
number of bundles to win lies below the full production
level, HarTAC’s final profitability was lower than that of
some other agents [4].

5 We ran HarTac from Acapulco, Mexico. The computer that we brought
to the competition to run the agent turned out to be a bit unstable,
so from time to time different programs would crash. Unfortunately,
during the competition we thought that our agent had crashed, but it
turned out that it was still running in the background. Consequently,
when we restarted it, one version would cause the other version to dis-
connect, which would itself promptly attempt to reconnect. Upon re-
connecting, it would a) disconnect the other agents, and b) perform
our day-0 ordering. This made for the record of the single lowest scor-
ing game in the entire competition.

0 50 100 150 200 250 300 350
−80

−60

−40

−20

0

20

40

Average Number RFQs

P
ro

fit
 A

dv
an

ta
ge

 o
f H

ar
TA

C
 (m

ill
io

ns
)

vs. RedAgent
vs. PackaTAC

Figure 3. HarTAC performance in the semifinals.

Meanwhile, on the buy side, HarTAC distinguishes it-
self through a successful mix of aggressive and conserva-
tive strategies. Due to the day-0 buy-out effect, two main
types of agents emerged in the finals of TAC SCM before
the introduction of widespread counter day-0 strategies by
Deepmaize. The first is an aggressive day-0 buyer, of which
the most successful is RedAgent, the winner of TAC SCM
2003. Aggressive agents build large and cheap inventories
at the beginning of the game in hopes of selling them later
on. Such agents perform very well in mid to high demand
games, but do much worse in low demand games due to
the large sunk costs invested at the beginning of the game.
On the opposite side, PackaTAC was built upon conserva-
tive strategies [2]. In this case, inventories were kept low
during the game and bought in small quantities as inven-
tory was sold by the sell side. PackaTAC did well in low de-
mand games, but failed to capitalize upon the highly prof-
itable markets due to the lack of cheap inventory.

HarTAC tried to mix in these two strategies by tun-
ing down the day-0 demand and probing for good prices
throughout the game, and only committing to a level of in-
ventory after it has a good idea of the average market level.
This gave us a high customer RFQ response rate, surpassed
only by RedAgent in the semi-finals, while permitting flex-
ibility for responding to low-demand markets [4]. Figure 3
compares our performance with RedAgent and PackaTAC
in the semifinals. We did not include the record-low game
during which our agent crashed.

Although based on a small amount of data, this analy-
sis suggests that our strategy is somewhat successful in per-
forming robustly across both low- and high-demand games.
In games with lower demand, we are often able to outper-
form the aggressive bidding strategy of RedAgent, since
this aggressive strategy results in many wasted components
when it is unable to get all of the orders it needs. In games

HarTAC PackaTAC RedAgent Deepmaize TAC-O-Matic PSUTAC
Average % orders not 4.33 0 10.222 15.625 51.222 1
delivered by due date

Table 2. Percentage of orders completed late in the semi-finals in TAC’03.

with higher demand, we are often able to perform better
than the conservative bidding strategy of PackaTAC. How-
ever, the added costs of the in-game buying (i.e. prob-
ing costs and the fact that our probing does not guaran-
tee the absolute cheapest purchases) are still quite signifi-
cant, and RedAgent outperforms HarTAC in high-demand
games. Meanwhile, we find that PackaTAC slightly outper-
forms us in the low demand games, when we waste some of
our day-0 component purchases.

In general, HarTAC was moderately aggressive in its
strategy. This allowed us to capitalize on some of the bene-
fits resulting from high-demand, while avoiding the pitfalls
of over-aggressiveness, resulting in moderate success over-
all.

8. Conclusions
For HarTAC, the state formulation provided a relatively

simple formalization for us to work from, and our steady
state definition provided us with a starting place from which
we could define all our other states. Ultimately, the states
also provided us with the intuition for our behavior rules.
HarTAC is, we think, unique in its focus on targeted pro-
duction cycles throughout the agent, even in adopting this
approach to its sell-side mechanism.

Although encouraged by HarTAC’s performance, the
current state-based design is perhaps overly simplistic. With
so many possible environmental conditions, it became dif-
ficult to keep the agent in the steady state. This was most
clearly shown by the complicated sub-state system for our
steady state, and in the sweeping behavior rules that we
were forced to define that perhaps warranted more com-
plex, context-specific behavior. With these issues in mind,
we would be interested in pursuing a more fine-grained con-
trol model in future work.

References
[1] K J Astrom and B Wittenmark. Adaptive Control, Addison-

Wesley, second edition, 1994.
[2] E. Dahlgren and P. R. Wurman. PackaTAC: A Conservative

Trading Agent. SIGecom Exchanges, 4(3):33–40, 2004.
[3] J. Estelle, Y. Vorobeychik, M. Wellman, S. Singh, C. Kiek-

intveld, and V. Soni. Strategic interactions in a supply chain
game. Technical report, University of Michigan, 2003.

[4] P. W. Keller, F.-O. Duguay, and D. Precup. RedAgent– Win-
ner of TAC SCM 2003. SIGecom Exchanges, 4(3):1–8, 2004.

[5] C. Kiekintveld, M. P. Wellman, S. Singh, J. Estelle, Y. Vorob-
eychik, V. Soni, and M. Rudary. Distributed feedback con-
trol for decision making on supply chains. In Proc. 14th Int.

Conf. on Automated Planning and Scheduling, 2004. To ap-
pear.

[6] N. M. Sadeh, R. Arunachalam, J. Eriksson, N. Finne, and
S. Janson. TAC’03: A supply chain trading competition. AI
Magazine, 24(1), Spring 2003.

