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We consider the design of experiments to evaluate treatments that are administered by self-interested
agents, each seeking to achieve the highest evaluation and win the experiment. For example, in an ad-
vertising experiment, a company wishes to evaluate two marketing agents in terms of their efficacy in viral
marketing, and assign a contract to the winner agent. Contrary to traditional experimental design, this
problem has two new implications. First, the experiment induces a game among agents, where each agent
can select from multiple versions of the treatment it administers. Second, the action of one agent – selec-
tion of treatment version – may affect the actions of another agent, with the resulting strategic interference
complicating the evaluation of agents. An incentive-compatible experiment design is one with an equilibrium
where each agent selects its natural action, which is the action that would maximize the performance of the
agent if there was no competition (e.g., expected number of conversions if agent was assigned the contract).

Under a general formulation of experimental design, we identify sufficient conditions that guarantee
incentive-compatible experiments. These conditions rely on the existence of statistics that can estimate
how agents would perform without competition, and their use in constructing score functions to evaluate
the agents. In the setting with no strategic interference, we also study the power of the design, i.e., the
probability that the best agent wins, and show how to improve the power of incentive-compatible designs.
From the technical side, our theory uses a range of statistical methods such as hypothesis testing, variance-
stabilizing transformations and the Delta method, all of which rely on asymptotics.
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1. INTRODUCTION
Experiments are the gold-standard for evaluating the effects of different treatments.
The design of experiments is crucial in order to avoid systematic biases and to min-
imize random errors in the statistical evaluation of treatment effects [Cox and Reid
2000]. There are three fundamental concepts in any experiment design. The treatment
is a well-defined prescription or set of rules, e.g., a pharmaceutical drug, a marketing
campaign, or a new material. The goal of the experiment is to evaluate the effects of
different treatments. The experimental unit is the indivisible entity that will receive
a treatment within the experiment, e.g., a patient, a potential customer, or a factory
process. Typically, every unit receives only one treatment, but there are important ex-
ceptions as well. The treatment is assigned according to a treatment assignment rule
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specified by the design and necessarily involves randomization in order to avoid sys-
tematic biases. When a unit receives the treatment it exhibits a measurable outcome,
e.g., a health assessment, a product purchase or not, or a material failure rate.

Statistical analysis of unit outcomes is necessary for the evaluation of treatments
because it accounts for the errors that are inherent to randomization of treatment and
the measurement process. A key idea in experimental design is blocking. Background
information on units is almost always available, e.g., age, gender, socioeconomic sta-
tus, health status, and so on. If an experimenter believes that units’ outcomes vary
systematically with respect to such covariate information, then it is necessary to block
units with respect to the available covariates. Blocking helps to avoid systematic bias
and variability that is not of scientific interest. The unofficial mantra in experimental
design is “block what you can and randomize what you cannot” [Box et al. 1978]).

To illustrate, consider the example of a new flu shot. A pharmaceutical company,
the experimenter, wants to compare between the new flu shot and a baseline that is
currently in the market. The treatments are the two flu shots. The experimenter has a
set of volunteer patients who form the set of experimental units. When a unit receives a
treatment the outcome is whether the unit got flu or not for the three months following
the treatment. As a treatment assignment rule, the experimenter could simply give the
new flu shot to half of the patients at random, and give the baseline to the other half.
However, the outcomes could be confounded with factors such as age (older people are
more vulnerable to flu), geography (urban areas are more crowded and possibly more
contagious), occupation, and so on. In a blocking design, the experimenter could block
the population based on age and occupation, and perform the randomization within
blocks.

There are two crucial assumptions in experimental design and the related topic
of causal inference, collectively known as the stable unit treatment value assumption
(SUTVA) [Rubin 1980]. First, there are no hidden versions of a treatment. In the previ-
ous example, this means that there are no strong or weak versions of the new flu shot.
Otherwise, the outcomes would be confounded with the hidden version of the treat-
ment. This is an important problem, especially in social science studies. For example,
in an educational study a new treatment could be a new type of curriculum, however
a possible hidden version of the treatment is the delivery method by each teacher. A
second crucial assumption is that of no interference among experimental units. Inter-
ference is present when the treatment assignment on one unit affects the outcome of
another unit. In the flu shot example, a unit that is not vaccinated is still protected
when the friends of the unit are vaccinated. Neither of these assumptions hold in our
setting.

We introduce the idea of incentive-compatible experimental design in the context of
viral marketing.1 Imagine a company that designs a test to determine which of two
vendors has the best algorithm for running an advertising campaign. The firm uses
randomization to prevent systematic bias, and defines a criterion for success; e.g., the
number of conversions over a two week period. The winning vendor is promised a
one-year contract with the firm running the test. One challenge in this setting is that
the vendors might deviate from how they would normally run a campaign, trying to
win the test. For example, a lower quality vendor may try to follow a more aggressive
strategy, hoping to get lucky. This is a problem for the firm designing the test, who
wants to get an unbiased estimate of the usual performance of the vendor. Another
challenge comes from interference between the participants. In viral marketing, for

1An early extended abstract of this paper was presented in the Conference on Digital Experimentation at
MIT [Toulis et al. 2014].



example, one vendor may try to free-ride on word-of-mouth effects that come from
another vendor.

1.1. Results
A first contribution of the present paper is to formalize this problem of incentive-
compatible experimental design. The difference with traditional experimental design
is that, in our framework, strategic agents administer the treatments to be evaluated,
and each agent can select from multiple treatment versions. In this way, the experi-
ment induces a non-cooperative game. The action available to an agent in the resulting
treatment selection game is the version of the treatment that the agent will adminis-
ter to its assigned units. The experimenter has a performance metric to evaluate each
treatment version. This is the quantity of interest to the experimenter. Each agent has
a natural action, which is the action that maximizes its performance, and is assumed to
be the way the agent would act if not competing in the game. The quality of an agent is
the maximum value of the performance metric, achieved when the agent plays the nat-
ural action without competition from other agents. The goal of the experimenter is to
design an experiment to estimate the agent of highest quality. An incentive-compatible
experiment design is one with an equilibrium in which each agent’s best response is
to select the treatment version corresponding to its natural action. We will focus on
dominant-strategy equilibrium in this paper.

We show that incentive-compatible designs are possible when an identifying statistic
exists that can estimate the quality difference between agents (Theorem 3.2). Criti-
cally, the variance of such a statistic has to be less sensitive to agent actions than its
expected value, otherwise an agent can take advantage of the variance of the statis-
tic. Under a no interference assumption, a class of incentive-compatible designs can
be constructed through a variance-stabilizing transformation (Theorem 4.2), which
makes the variance of the identifying statistic insensitive to agent actions; a worse
agent cannot hope to increase its chances by being more aggressive. This leads to re-
sults that may sound counter-intuitive. For example, in a viral marketing application
where performance is the expected number of conversions, and where higher expected
conversions also correspond to increasingly higher risks, it is not incentive-compatible
to select as the winner the agent with the highest average performance; rather, it is
incentive-compatible to select as the winner the agent with the lowest reciprocal of
average performance (see Example 2(d)).

Identifying statistics and incentive-compatible designs are generally harder to ob-
tain under strategic interference. However, under specific modeling assumptions about
the interference, better designs can yield more information about the agent perfor-
mances, and thus produce identifying statistics. We illustrate this idea in a viral mar-
keting example, which we reuse throughout this paper.

2. PRELIMINARIES
In this section we introduce notation for the operational and statistical components
of incentive-compatible experimental design. The operational components include the
treatment assignment, the treatment selection game and the experiment outcomes. The
statistical components include the estimand– the quantity of interest to the experi-
menter –and the estimators, i.e., the data statistics used to estimate the estimand.

2.1. Treatment assignment
Let U = {1, 2, . . . ,m} denote the set of experimental units, indexed by u, and I =
{1, 2, . . . , n} denote the set of agents, indexed by i. Each agent, for example, a market-
ing firm or a drug company, represents a treatment to be evaluated. An experimenter
needs to design the experiment that will evaluate the agents. Relative to traditional



experimental design, the new aspect is that each agent is associated with a set of treat-
ment versions and each agent has a strategic choice about which version to administer
in the experiment. We make this precise in Section 2.2.

For each unit u ∈ U there is covariate information that is common knowledge to
agents and the experimenter. We assume the experimenter uses covariates to split
units into blocks, such that units within one block are similar in terms of covariates,
e.g., similar age, gender, income, etc. Without loss of generality, we will assume there
is just a single block. In Appendix A of this paper, we discuss how the theory can be
extended to multiple blocks.

A treatment assignment rule ψ assigns each unit to a single agent. Let Z = (Zu)
denote the m× 1 assignment vector, such that Zu = i indicates that unit u is assigned
to agent i. The assignment rule ψ is a probability distribution over all possible as-
signments Z. Without loss of generality, we assume that the number of units m is a
multiple of the number of agents n. We will also assume complete randomization, such
that Zu = i, for exactly k def

= m/n units, for each agent i.

2.2. Treatment selection game
The set of actions Ai ⊆ A denotes the feasible action space for agent i, where A is the
set of all possible actions. Subsequent to treatment assignment, every agent i simulta-
neously selects an action Ai ∈ Ai, which corresponds to a version of the treatment ad-
ministered by agent i. The same version is applied to all units assigned to agent i.2 Let
A = (A1, . . . An) denote the joint action profile, and A−i = (A1, . . . , Ai−1, Ai+1, . . . , An)
denote the action profile without i’s action.

We refer to this stage of the process as the treatment selection game in order to em-
phasize that agents (i.e., the treatments) can be strategic in selecting the treatment
version they administer to units. This differentiates our setting from traditional ex-
perimental design, because it allows multiple versions of the same treatment to be
available, hidden to the experimenter, and subject to selection by strategic agents. The
traditional setting of experimental design is recovered if all action spaces of all agents
are singletons, i.e., there is only one treatment version for each agent.3

2.3. Outcomes
Subsequent to the treatment selection game, an outcome is measured on each experi-
mental unit u. Generally, the potential outcome of unit u, denoted by Yu(Z,A), is the
outcome that will be observed under assignment Z and agent actions A. We assume
that outcomes are numerical values; e.g., expenditure in dollars, number of product
purchases, etc.

However, only one potential outcome can be observed at any given experiment, de-
pending on the realized assignment Z and actions A, while the rest will be missing. To
emphasize the difference between potential outcomes and observed outcomes, we use
additional notation. Let Y obs

ui denote the observed outcome on unit u that was assigned
to agent i. The notation Y obs

ui implies that u was assigned to i (i.e., Zu = i), and it is un-
defined if Zu �= i, i.e., u was not assigned to i. Following a “dot-notation,” Y obs

.i denotes
the k×1 vector of observed outcomes of units assigned to agent i, and Y obs

.. denotes the
m× 1 vector of observed outcomes of all units.

2In Appendix A, we introduce multiple blocks and allow an agent to pick a different action for each block.
All units within a block receive the same treatment version, but versions might differ across blocks.
3Dealing with multiple hidden treatments remains an open problem in traditional experimental design and
causal inference, although not in a game theoretic setting as ours, and it is typically assumed away, for
example, through SUTVA [Rubin 1980].



Note the dependence of potential outcomes on the complete assignment vector Z; this
allows the outcome of unit u to depend on assignment Zu′ of some other unit u′, even
when agent actions A are held fixed. This situation is reasonable, for example, when
units form social networks and influence each other, and is generally known as social
network interference [Toulis and Kao 2013]. In our setting, interference between units
affects the actions agents take (treatment versions), which then affect the interference
on units, and so on. We collectively refer to this situation as strategic interference.4

We now illustrate the notation with an example application in viral marketing,
which we will reuse throughout this paper.
Example 1. Assume four units U = {1, 2, 3, 4} in a single block, say, undergradu-
ate students, and two marketing agents I = {1, 2}. Further assume that 1 and 2
are close friends and 3 and 4 are close friends. The experimenter wants to under-
stand which agent is better at advertising to students. Assume a treatment assign-
ment Z = (1, 2, 1, 2)ᵀ, i.e., units 1, 3 are assigned to agent 1, and units 2, 4 to agent 2.
Each agent has two actions (treatment versions): advertise through phone or through
social media. The action sets are thus A1 = A2 = {phone, social}, and a possible action
profile is A = (phone, social)ᵀ with A1 = phone (agent 1 uses phone to reach units 1
and 3) and A2 = social (agent 2 uses social media to reach units 2 and 4.)

The potential outcome Yu(Z,A) could denote the number of product purchases (in-
teger outcome) made by unit u, or the net profit from advertising to unit u (continuous
outcome). Dependence on the assignment and treatment versions of both agents is
reasonable because there could be word-of-mouth effects between students.

Consider observed data Y obs
.. = (0, 1, 4, 1)ᵀ; for example, Y obs

31 = 4, which indicates
that unit 3 was assigned to agent 1 and purchased four product items; Y obs

32 is undefined
because the outcome of unit 3 when assigned to agent 2 is not observed. To illustrate
the dot-notation, Y obs

.1 = (0, 4)ᵀ indicates the outcomes of units assigned to agent 1,
and Y obs

.2 = (1, 1)ᵀ indicates the outcomes for agent 2.

In Example 1, the experimenter might be tempted to declare agent 1 as the winner,
because it achieves Y obs

.1 = 2.0 purchases/unit, as opposed to Y obs
.2 = 1.0 purchases/unit

for agent 2. However, these sample averages are subject to random variability from the
randomization in the experiment, and may result from actions that are not the natural
actions of the agents. Therefore, it is unclear whether the sample averages actually
estimate how agents would do if they were selecting treatments without competition.

2.4. Estimand and estimators
A principled approach is to define the quantity of interest to the experimenter, the
estimand, and then devise appropriate estimators for that quantity. The estimand is
the agent with best possible performance, and thus we need a concrete notion of per-
formance. For this, we want to estimate how good an agent’s action would be if it was
played without competition and thus without strategic interference. This is important

4There exists work in experimental design with between-unit interference [David and Kempton 1996], al-
though not under a strategic interference setting as ours. In this paper, we will not be concerned with such
forms of interference, but it will be the focus of future work. There is also related work in estimation of treat-
ment effects in the context of strategic agents. For example, Athey et al. [2008] and Toulis and Parkes [2015]
evaluate mechanisms in terms of their revenue, under the causal framework of potential outcomes. In both
papers, the treatments are two different mechanism formats, and the units are the agents competing in the
mechanism. The present work differs because, under our framework, the treatments are in fact strategic
agents that are evaluated through an experiment, whereas the units passively exhibit treatment outcomes.
See, also, the discussion by Dash and Druzdzel [2001] on the challenges of causal inference in dynamical
systems within a different causal framework, namely causal graphs [Pearl 2000].



because, ultimately, the experimenter wants to assign a contract (e.g., an advertising
campaign) to the winner agent, after which the winner will act by itself.

Let’s define the performance of agent i with respect to its action αi, denoted by χ(αi),
as

χ(αi) = E (Yu(Z,A)|A = αi1, Zu = i) ; (1)

notation A = αi1 denotes the hypothetical situation where all agents other than agent
i are replaced by “replicates” of i, and each replicate plays action αi. The dependence
of χ(αi) on agent index i will be implicit in the notation. Given assignment vector Z
and actions A, we assume that the distribution of potential outcomes is known to all
agents.

The expectation in Eq. (1) is taken with respect to this distribution, and defines the
quantity of interest to the experimenter because it captures how agent i would do, on
average, if the agent was acting alone without competition.5 We also refer to χ as the
performance function, and define χ(A) = (χ(A1), χ(A2), . . . , χ(An))

ᵀ. For brevity, all
following definitions for an agent, e.g., natural action, quality, etc., will be implicitly
assumed to be stated with respect to a particular performance function χ.

The natural action of agent i is the action that maximizes the quantity of interest to
the experimenter in a system where agent i acts alone without competition. In particu-
lar, the natural action of agent i, denoted by A�

i , is defined as the action that maximizes
its performance, i.e.,

A�
i

def
= arg max

αi∈Ai

{χ(αi)} . (2)

The natural action profile is denoted by A� = (A�
1, A

�
2, . . . , A

�
n). The quality of agent

i, denoted by χ�
i ∈ R, is the maximum performance that the agent can achieve, i.e.,

χ�
i = χ(A�

i ). The estimand, denoted by τ , is the agent of highest quality, i.e.,

τ = argmax
i∈I

{χ�
i }. (3)

To estimate the agent of highest quality the experimenter needs to use the observed
outcomes Y obs

.. . We will assume that the experimenter uses a score function φ : Rm →
R

n, mapping all outcomes to a n × 1 vector of scores for each agent, denoted by φi for
agent i. For convenience, we will write φ(Y obs

.. ) = (φ1(Y
obs
.. ), φ2(Y

obs
.. ), . . . , φn(Y

obs
.. ))ᵀ.

In the experiment, agents will be evaluated according to their scores, and the winner
is the agent with the highest score. Several options for the score functions are possible.
For example, φi(Y obs

.. ) = Y obs
.i , the sample mean of outcomes of units assigned to agent

i, is one choice for the score function; other choices are possible, e.g., the sample Sharpe
ratio, the sample median, etc.

The key challenge in incentive-compatible experimental design is to align maximiz-
ing the probability of winning the experiment, as induced in part by the score function
φ, with selecting the action with maximum performance, i.e., the natural action.

5In causal inference, Eq. (1) is a superpopulation estimand, where the experimental units are assumed
to be a random sample from a superpopulation of units, which is the target of statistical inference. The
expectation in Eq. (1) is thus over all units in the superpopulation and all treatment assignments, for fixed
agent actions. Other estimands in that superpopulation are possible; for example, the experimenter might
be interested in the median outcomes, med(Yu(Z,A)), or the Sharpe ratio, E(Yu(Z,A))/SD(Yu(Z,A)), all
conditional on fixed actions as in Eq. (1). In this paper, we work under the estimand of Eq. (1), mainly for
simplicity, however our theory applies to all aforementioned estimands as well.



2.5. Incentive-compatible experiment designs
Let’s first define an experiment design using the concepts of estimand and estimators
from Section 2.4.

Definition 2.1. An experiment design D = (ψ, φ) operates in the following steps:

(1) Receives units U and agents I, as input.
(2) Samples a treatment assignment Z according to ψ.
(3) Each agent i picks a treatment version Ai, and administers the treatment to the

set of its assigned units, {u ∈ U : Zu = i}.
(4) Outcomes on units Y obs

.. are observed.
(5) The winner agent τ̂ is declared according to the rule

τ̂(Y obs
.. ) = argmax

i∈I
{
φi(Y

obs
.. )

}
. (4)

Given experiment design D and action profile A, the probability Pi(A|D) that agent
i wins the experiment is given by:

Pr
(
τ̂(Y obs

.. ) = i|A,D) def
= Pi(A|D) = Pi(αi,A−i|D). (5)

The randomness in Eq. (5) comes from the randomness of observed data Y obs
.. , and

the randomization in the treatment assignment. The winning probability Pi(·|D) in
Eq. (5) is the expected utility of agent i under action profile A, because agents care
only about winning the experiment.

Definition 2.2 (Incentive-compatible experiment design). An experiment design
D = (ψ, φ) is incentive-compatible if the natural action A�

i is a dominant strategy
for each agent i, i.e., it maximizes the probability (5) of winning the experiment
regardless of other agents’ actions, such that

arg max
αi∈Ai

{Pi(αi,A−i|D)} = A�
i , (6)

for all actions A−i, and every agent i.

Remark. In an incentive-compatible experiment, the score function φ induces a prob-
ability of winning (5) that is monotonically increasing with the performance function
χ that the experimenter cares about. If this monotonicity holds, an agent will prefer to
play the action that maximizes its performance (i.e., the natural action), because this
will also maximize the winning probability.

The notation is summarized in Table I. We now return to the viral marketing
problem that was introduced in Example 1. Examples 2(a)-(c) deal with Normally-
distributed outcomes, whereas Examples 3(a)-(g) deal with Poisson-distributed out-
comes. Examples 3(c)-(g) deal specifically with the problem of interference, and work
with a more realistic form of the viral marketing problem.
Example 2(a). – Normal outcomes6. Consider the viral marketing problem of Ex-
ample 1, with multiple units and two agents, where the outcomes of interest are
the profit achieved from advertising to each unit. We assume that an agent action

6This two-agent example (low-quality agent vs. high-quality agent) is different from the example in the
original paper published at EC’2015. The example was edited to illustrate a scenario where the low-quality
agent prefers to play an action that is not its natural action and also reduces the winning chances of the
high-quality agent. In the example of the original paper, the deviation from the low-quality agent actually
increased the chances of the high-quality agent.



Table I. Notation for incentive-compatible experimental design

Symbol Description Value/Domain
U Set of m units {1, 2, . . . ,m}
I Set of n agents {1, 2, . . . , n}
Zu Treatment assignment of unit u Zu ∈ I
Z Vector of treatment assignment (m× 1) (Z1, . . . , Zm)ᵀ

k Units per agent k = m/n

A Generic action space
Ai Action space of agent i Ai ⊆ A
Ai Action of agent i Ai ∈ Ai

A Complete action profile (n× 1) (A1, . . . , An)ᵀ

Yu(Z,A) Potential outcome of unit u under assignment Z, actions A Yu(Z,A) ∈ R

Y obs
ui Observed outcome for unit u assigned to agent i

Y obs
.i Vector of observed outcomes of units assigned to agent i (k × 1) Y obs

.i ∈ R
k

Y obs
.. Vector of observed outcomes of all units (m× 1) Y obs

.. ∈ R
m

χ(αi) Performance of agent i playing action αi χ(αi) ∈ R

χ(A) Vector of performances (n× 1) (χ(A1), . . . , χ(An))
ᵀ

A�
i Natural action of agent i – maximizes performance A�

i ∈ Ai

χ�
i Quality of agent – performance at natural action χ�

i ∈ R

τ Agent of highest quality τ ∈ I
φi(Y

obs
.. ) Score of agent i φi(Y

obs
.. ) ∈ R

φ(Y obs
.. ) Vector of agent scores (n× 1)

(
φ1(Y obs

.. ), . . . , φn(Y obs
.. )

)ᵀ

τ̂(Y obs
.. ) Estimated agent of highest quality – agent with maximum score τ̂(Y obs

.. ) ∈ I
Pi(A|D) Probability agent i wins under design D, given fixed actions A

αi = (μi, σ
2
i ) ∈ R × R

+, determines the mean and variance of the profit from advertis-
ing to unit u, such that, given assignment Z, actions A,

Yu(Z,A) ∼ N (μi, σ
2
i ), if Ai = αi, Zu = i. (7)

Note that Eq. (7) implies there is no interference between units, and no strategic in-
terference between agent actions. We will make this precise in Section 3.

The experimenter is interested only in expected profit, ignoring the risk. Thus, the
performance of action αi = (μi, σ

2
i ) of agent i is

χ(αi)
def
= E (Yu(Z,A)|A = αi1, Zu = i) = μi. (8)

Hence, the quality χ�
i of agent i is the maximum μi the agent can achieve over its

action space Ai. Now, consider an experiment design D = (ψ, φ), where the score func-
tion φ is defined as φi(Y obs

.. ) = Y obs
.i , i.e., the score of agent i is the sample mean profit

from all units assigned to agent i. Ignoring ties, the winning agent is given using Eq.
(4):

τ̂(Y obs
.. ) =

{
1, if Y obs

.1 > Y obs
.2 ,

2, if Y obs
.1 < Y obs

.2 .
(9)

By Eq. (7), Y obs
.i ∼ N (μi, σ

2
i /k), where k is the number of units per agent. Hence, the

probability that agent 1 wins is

P1(A|D)
def
= Pr

(
τ̂(Y obs

.. ) = 1|A,D)
= P (Y obs

.1 > Y obs
.2 ) = Φ(

√
k
μ1 − μ2√
σ2
1 + σ2

2

), (10)

where Φ is the normal cumulative distribution function (CDF). This design is not
incentive-compatible because the winning probability P1(A|D) is not monotone with



performance χ(α1) = μ1 for action α1 = (μ1, σ
2
1). For example, an increase in μ1 may

be associated with an increase in the risk σ2
1 , such that the probability of winning is

reduced.
To see this, assume there are only two actions for agent 1, which induce mean

and variance A1 = {(1.5, 100), (2, 20)}, and only one action for agent 2, A2 = {(9, 1)}.
The quality of agent 1 is χ�

1
def
= max{μ : (μ, σ2) ∈ A1} = 2 and thus (2, 20) is agent

1’s natural action. However, when agent 1 plays the natural action, its winning
probability is approximately equal to 0.12, whereas action (1.5, 100) yields winnining
probability 0.364, approximately. When agent 1 does not play the natural action,
the expected value of its outcomes are reduced but their variance is increased, thus
overall increasing agent 1’s chances to win the experiment. Therefore, this experiment
is not incentive compatible since agent 1 prefers not to play the natural action.

Example 2(b). – Normal outcomes – High risk/reward. Continuing Example 2(a),
let’s suppose that the variance of the unit’s outcome satisfies σ2

i = μ4
i , indicating a

delicate trade-off between expected return and risk. The probability that agent 1 wins
is easily obtained from (10) as,

P1(A|D) = P (Y obs
.1 > Y obs

.2 ) = Φ(
√
k
μ1 − μ2√
μ4
1 + μ4

2

). (11)

The experiment design is still not incentive-compatible because (11) is not increasing
monotonically with μ1. As before, the better agent will choose to be more conservative,
and will not reveal its quality (maximum possible μ1). However, we will show in Sec-
tion 3 that an incentive-compatible design can be achieved through the score function
φi(Y

obs
.. ) = −1/Y obs

.i , i.e., the negative reciprocal of the sample mean profit. We will
show that, with this score function, the risk-reward trade-off in (11) disappears, which
allows the experimenter to estimate agents’ qualities.

Example 3(a) – Poisson outcomes. Now suppose the outcomes are integer-valued,
e.g., representing the number of purchases. In this case, we assume that an agent’s
action αi = (λi) ∈ R

+ determines the purchase rate by unit u, such that, given assign-
ment Z, actions A,

Yu(Z,A) ∼ Pois(λi), if Ai = αi, Zu = i. (12)

As in Eq. (7) of Example 2(a), Eq. (12) implies no interference. Let’s suppose the
experimenter is interested in performance that is the expected purchase rate. Thus,
using Eq. (1), the experimenter measures performance of action αi = (λi) of agent i,
through

χ(αi)
def
= E (Yu(Z,A)|A = αi1, Zu = i) = λi. (13)

Hence, the quality χ�
i of agent i is the maximum purchase rate λi that the agent can

achieve over its action space Ai. Now, consider the experiment design D = (ψ, φ), where
the score function φ is defined as φi(Y obs

.. ) = Y obs
.i , i.e., the score of agent i is the sample

mean purchase rate from all units assigned to agent i. Ignoring ties, the winning agent
τ̂(Y obs

.. ) is given using Eq. (9). By the central limit theorem, Y obs
.i

D−→ N (λi, λi/k), where
“ D−→” denotes convergence in distribution, and k is the number of units per agent. The



probability that agent 1 wins is, asymptotically,

P1(A|D) = P (Y obs
.1 > Y obs

.2 ) = Φ(
√
k
λ1 − λ2√
λ1 + λ2

). (14)

This design is incentive-compatible because the winning probability P1(A|D) is
monotone with the agent performance; for example, an increase in λ1 incurs a larger
increase in the nominator of Eq. (14) than in the denominator. By symmetry, the win-
ning probability for agent i is maximized at its natural action.

In Section 4.1, we will show that a more powerful design is possible, i.e., there exists
an experiment design D′ that is incentive-compatible and also guarantees higher
winning chances to the better agent.

The examples highlight the challenges in incentive-compatible experimental design
that arise because the experimenter is interested in some quality of an agent (e.g., ex-
pected return) but cannot find a design that incentivizes agents to play in a way that
reveals their qualities. The problem that can arise is because of a mismatch between
the score function φ that is used to declare the winner, and its effect in inducing a
non-cooperative game, and the performance function χ that is of interest to the exper-
imenter.

Compared with classical mechanism design theory, incentive-compatible experimen-
tal design differs in that:

— In mechanism design, the private information is an agent’s preferences, whereas
here the private information is an agent’s quality (i.e., the performance of its natural
action).

— In mechanism design, there may be side payments that can be made, whereas here
the incentives are winner-take-all and depend on the outcome of the experiment.

— In mechanism design, it is standard to appeal to the revelation principle and de-
sign a direct-revelation mechanism, in which agents report their preference type to
the mechanism. In comparison, the agents in our setting select an action and the
designer observes the effect of this action, but not the action itself.

3. THEORY OF INCENTIVE-COMPATIBLE EXPERIMENTAL DESIGN
In this section we prove our main result, which provides a construction of score func-
tions to design incentive-compatible experiments. The proof relies on the existence of
statistics that can estimate the individual agent performances χ(Ai), as the number of
units grows large.

Definition 3.1 (Identifiable performance, identifying statistic). An experiment de-
sign D = (ψ, φ) has identifiable performance χ, if for every fixed action profile A, there
exists a statistic T : Rm → R

n calculated over data Y obs
.. , such that

√
k
(
T (Y obs

.. )− χ(A)
) D−→ N (0,Σ(A)), (15)

as the number of units per agent k grows large; N is the n-variate standard normal,
and Σ(A) is the n × n covariance matrix of T that can depend on A. The statistic T is
an identifying statistic for experiment design D.

An identifying statistic is important because it estimates the individual perfor-
mances χ(Ai), which are the quantities of interest to the experimenter. Although find-
ing such a statistic is not an easy task, one simple strategy is to use sample quantities,
such as averages, and then appeal to the central limit theorem, or other large-sample
asymptotic results. We use this strategy extensively in this paper.



However, an identifying statistic T calculated over data Y obs
.. need not be sufficient

for incentive alignment in our winner-take-all experiments. Thus, we consider score
functions defined as φi(Y obs

.. ) = f(Ti), for an appropriate transformation f : R → R.
The transformation is used to add flexibility in the design of the score function. Agents
will be evaluated according to the score vector φ(Y obs

.. ). The covariance matrix of the
score vector φ(Y obs

.. ) is, asymptotically, equal to

Vf (A) = JφΣ(A)J ᵀ
φ , (16)

where Jφ is the Jacobian of φ calculated at χ(A), actually a diagonal matrix with
elements f ′(χ(Ai)). Whether an experiment design (ψ, φ) is incentive-compatible or
not, depends crucially on the matrix Vf (A) because this matrix defines the variances
of the scores used to evaluate the agents.

THEOREM 3.2. Fix agent actions A, and consider design D = (ψ, φ) that has
an identifying statistic T with covariance matrix Σ(A). Define the score function as
φi(Y

obs
.. ) = f(Ti), for some function f : R → R, and let vij(A) be the ijth element of V (A)

defined in Eq. (16). Also define,

vijf (α|A−i) = vii(α,A−i) + vjj(α,A−i)− vij(α,A−i)− vji(α,A−i). (17)

Design D is incentive-compatible, if, for every agent i,

arg max
αi∈Ai

{
f(χ(αi))

vijf (αi|A−i)1/2

}
= arg max

αi∈Ai

{χ(αi)} def
= A�

i , (18)

for every agent j �= i, and all actions A−i.

For a fixed action profile A, the element vijf in Eq. (18), is the variance of the differ-
ence between the scores of agents i and j, φi(Y obs

.. ) − φj(Y
obs
.. ), as defined in Theorem

3.2. Thus, Eq. (18) is the probability that agent i has a larger score than agent j, and
implies that this probability is maximized at the natural action.

Theorem 3.2 suggests a recipe to construct incentive-compatible experiments, as we
illustrate through examples in the following sections.

— First, one needs to find an identifying statistic to estimate the performances of
agents, i.e., their outcomes without competition. A parametric model for the unit
outcomes together with known asymptotic results, such as the central limit theo-
rem, or the asymptotic normality of the maximum-likelihood estimator, can provide
such an identifying statistic with known covariance matrix Σ(A); see also Appendix
D for a relevant discussion.

— Second, given the identifying statistic, one then needs to find an appropriate trans-
formation f to satisfy Eq. (18). This transformation can be as simple as the identity
function, as in Example 3(g), or the reciprocal function, as in Example 2(c). Intu-
itively, the design goal for f is to make the denominator of (18) less sensitive to
agent actions than the nominator.

Theorem 3.2 makes no assumption about interference. In the following sections, we
will specialize and apply Theorem 3.2 on the viral marketing example, both with and
without interference.

4. INCENTIVE-COMPATIBLE EXPERIMENTS WITHOUT INTERFERENCE
The setting without interference is formally defined through the following assumption.



ASSUMPTION 1 (NO INTERFERENCE). There is no strategic interference among
agents and no interference between units, i.e., for all assignments Z and all agent ac-
tions A,

Yu(Z,A) ≡ Yu(Ai), where Zu = i. (19)

Assumption 1 postulates that the potential outcome Yu(Z,A) of a unit u assigned
to agent i, remains constant as long as agent i’s action and unit u’s assignment to
agent i are held fixed. Under no interference, the distribution of a score function de-
fined through an identifying statistic is a univariate normal, as shown in the following
proposition.

PROPOSITION 4.1. Consider design D = (ψ, φ) with an identifying statistic T with
covariance matrix Σ(A). Let φi(Y obs

.. ) = f(Ti), for some function f : R → R, and suppose
Assumption 1 holds. Then, for fixed actions A,

√
k
(
φi(Y

obs
.. )− f(χ(Ai)

) D−→ N (0, σ2(Ai)), (20)

where σ2(Ai) = f ′(χ(Ai))
2σ2

ii, with σ2
ii being the ith diagonal element of Σ(A).

PROOF. By Assumption 1 (no interference), the covariance matrix Σ(A) of T is di-
agonal with elements σ2

ii. Thus, by definition of the identifying statistic,
√
k(Ti − χ(Ai))

D−→ N (0, σ2
ii).

Since, φi(Y obs
.. ) = f(Ti), Eq. (20) follows from a simple application of the Delta theorem;

see, for example, Bickel and Doksum [2001, Chapter 5], or Cox [1998].

Proposition 4.1 provides the asymptotic distribution of the score function, given an
identifying statistic and a known transformation f , when there is no interference. This
will be useful to derive the winning probabilities for agents in the experiment. We first
illustrate Proposition 4.1, and then show how it can be used to simplify the conditions
of the more general Theorem 3.2.
Example 2(c). We continue from Example 2(b), where agent i’s action isAi = (μi), and
Y obs
.i ∼ N (μi, μ

4
i /k), where k is the number of units per agent. The statistic T (Y obs

.. ) =

(Y obs
.1 , Y obs

.2 , . . . , Y obs
.n )ᵀ ≡ T , is an identifying statistic, since χ(A) = (μ1, μ2, . . . , μn)

ᵀ def
=

μ, and
√
k(T − μ)

D−→ N (0,Σ), (21)

where Σ = diag(μ4
1, . . . , μ

4
n), is the diagonal matrix with elements μ4

i .
Consider the score functions φi(Y obs

.. ) = 1/Ti = 1/Y obs
.i , i.e., f(x) = 1/x, in the nota-

tion of Proposition 4.1. Using the result in Proposition 4.1, σ2(Ai) = f ′(μi)
2μ4

i = 1, and
thus

√
k(φi(Y

obs
.. )− 1/μi)

D−→ N (0, 1). (22)

The variance of the score function in Eq. (22) is stabilized. The following theorem
shows that such variance stabilization can lead to incentive-compatible designs, when
there is no interference.



THEOREM 4.2. Consider design D = (ψ, φ) with an identifying statistic T with
covariance matrix Σ(A). Suppose Assumption 1 holds. If, for every agent i,

φi(Y
obs
.. ) = f(Ti), where f : R → R, (23)

Var(φi(Y
obs
.. )) = const., (24)

arg max
αi∈Ai

f(χ(αi)) = arg max
αi∈Ai

{χ(αi)} def
= A�

i , (25)

then design D is incentive-compatible.

Condition (24) is related to variance-stabilizing transformations in statistics, which
also play an important role in hypothesis testing; we discuss this relationship in Ap-
pendix C.
Example 2(d). – Normal outcomes – High risk/reward. Continuing from Example
2(c), we consider the high risk-reward setting of the viral marketing problem, where an
agent’s action is to pick an expected return, i.e., Ai = (μi), and the winning probability
is given by

P1(A|D) = Φ(
√
k
μ1 − μ2√
μ4
1 + μ4

2

). (26)

The performance function is χ(αi) = μi, and thus the natural action is A�
i =

argmaxαi∈Ai{αi}. It was shown that design D in Example 2(b) –using the sample mean
as the score function– is not incentive-compatible. Consider instead a design D′ with
score function φi(Y

obs
.. ) = −1/Y obs

.i . Using the result of Example 2(c),
√
k
(
φi(Y

obs
.. )− (−1/μi)

) D−→ N (0, 1). (27)

Condition (23) is satisfied by definition of φi. Condition (24) is also satisfied, because
the variance of φi(Y obs

.. ) in Eq. (27) is constant. Furthermore,

arg max
αi∈Ai

{f(χ(αi))} = arg max
αi∈Ai

{−1/αi} = arg max
αi∈Ai

{αi} = A�
i ,

which satisfies Condition (25). Thus, all conditions of Theorem (4.2) are fulfilled. It
follows that the new design D′ is incentive-compatible.

By construction of the probabilistic model in Example 2(b), there is a very delicate
trade-off between expected return (agent performance) and risk; for example, if an
agent doubles its performance, then the risk will quadruple. In such situations, it is
a bad idea to adopt the sample mean as the score statistic. Intuitively, Eq. (26) shows
that the higher-quality agent will try more conservative actions, thus hiding its true
quality. However, if agents are scored according to the negated reciprocal of their sam-
ple mean, the probability that an agent wins increases monotonically with an agent’s
performance. Thus, agents have the incentive to select actions that maximize their
performance, and thus it is a dominant strategy to select their natural action.

4.1. Powerful incentive-compatible experiment designs
Given the choice of two incentive-compatible designs, it is natural to prefer the design
in which the highest-quality agent has the highest probability of winning. We formalize
this intuition through the following definition.

Definition 4.3 (Powerful incentive-compatible design). Consider two experiment
designs D and D′ that are both incentive-compatible and operate on the same set of
units U . Let τ be the agent of highest quality. Design D′ is (weakly) more powerful than



design D if the probability that agent τ wins in the dominant strategy equilibrium is
higher in D′ than D; i.e.,

Pτ (A
�|D′) ≥ Pτ (A

�|D), (28)

where A� is the natural action profile, which is the same in both designs.

In the following theorem, we give a simple case where we can transform an
incentive-compatible design into a more powerful one.

THEOREM 4.4. Consider an incentive-compatible design D = (ψ, φ), where action
sets Ai ⊆ R are compact, and performance χ is one-to-one and continuous. Let,

√
k
(
φi(Y

obs
.. )− χ(Ai)

) D−→ N (0, σ2(Ai)), (29)

where function σ2 : A → R
+ satisfies

χ(α′
i) ≥ χ(αi) ⇒ σ2(α′

i) ≥ σ2(αi), (30)

for every agent i, and all actions α′
i, αi ∈ Ai.7

Consider a design D′ = (ψ, φ′), where φ′i(Y obs
.. ) = ν(φi(Y

obs
.. )), for each agent i, with

ν(·) defined by

ν(y) =

∫ y 1√
σ(χ−1(z))

dz. (31)

Then, design D′ is incentive-compatible and more powerful than D, if ν(·) is convex, or
1/

√
σ2(χ−1(·)) and σ2(χ−1(·)) are both convex.

The variance of the new score function, Var(φ′i(Y obs
.. )), is constant, because function

ν defined in Eq. (29) is a variance-stabilizing transformation [Cox 1998]. This fulfills
Condition (24) of Theorem 4.2, while the monotonicity (30) of σ(·) maintains the mono-
tonicity Condition (25). The new design D′ is thus incentive-compatible.
Example 3(b) – Poisson outcomes. Continuing from Example 3(a), the actions are
Ai = (λi) ∈ R

+ with performance χ(Ai) = λi, while the score statistic is φi(Y obs
.. ) =

Y obs
.i ; thus,

√
k
(
φi(Y

obs
.. )− λi

) D−→ N (0, λi). Let agent 1 be the best agent. Consider a
new design D′ with the transformation

ν(y) =

∫ y 1√
σ(χ−1(z))

dz =

∫ y 1√
z
dz = 2

√
z,

and score function φ′i(Y
obs
.. ) = ν(φi(Y

obs
.. )) = 2

√
Y obs
.i . Design D′ is incentive-

compatible and more powerful than design D of Example 3(a) by Theorem 4.4, since
1/

√
σ2(χ−1(z)) = 1/

√
z and σ2(χ−1(z)) = z, are both convex. Another way to see this

is through Proposition 4.1, which implies
√
k
(
φ′i(Y

obs
.. )− 2

√
λi

) D−→ N (0, 1). Thus, the
probability that agent 1 wins is

P1(A|D′) = Φ(
√
2k(

√
λ1 −

√
λ2)). (32)

7Condition (30) posits that an agent cannot increase its expected score without increasing the variance of
the score. This is a reasonable assumption in practice because actions that do increase the expected score
without increasing the variance, are strongly preferred.



We can verify P1(A|D′) > P1(A|D) by comparing Eq. (32) with Eq. (14):

Φ
(√

2k(
√
λ1 −

√
λ2)

)
> Φ

(√
k
λ1 − λ2√
λ1 + λ2

)
⇔

√
2(
√
λ1 −

√
λ2) >

λ1 − λ2√
λ1 + λ2

.

The last inequality always holds because it reduces to (
√
λ1 −

√
λ2)

2 > 0.

In Example 3(b), the better agent (agent 1) has higher chances of winning in the new
design D′. Since D′ is also incentive-compatible, it follows that D′ is more powerful
than D. Intuitively, the square root transformation in the new design stabilizes the
variance – there is no denominator in Eq. (32) – which achieves incentive-compatibility
through Theorem 4.2.

5. INCENTIVE-COMPATIBLE EXPERIMENTS WITH INTERFERENCE
We now consider strategic interference, whereby an action of an agent can affect the
outcomes of units assigned to another agent. Therefore, agent scores calculated on
individual agent outcomes are confounded with the entire action profile.
Example 3(c) – Poisson outcomes with interference. Building upon Exam-
ple 3(b), we now introduce a more realistic model of the viral marketing experiment,
which we assume operates as follows.

As before, units are assigned to agent 1 or agent 2. We refer to the units assigned to
agent i, i.e., the set {u ∈ U : Zu = i}, as the test set of agent i. In addition, each agent
is free to pick a seed set; each seed set is in a separate population that is disjoint from
the test sets. The seed set i corresponds to treatment version –agent action– Ai. The
seed set will be targeted with a promotional campaign, and outcomes will be measured
on units only in the test sets, say, number of purchases for each unit. The rationale is
that the experimenter is interested in the viral marketing efficacy of the agents, i.e.,
their ability to select influential seed sets.

Under interference, the treatment version (seed set) selected by agent i induces a
rate λi on units assigned to i, and a rate γλ

′
i, where 0 ≤ γ ≤ 1, on units assigned

the other agent. The parameter γ models the amount of interference; if γ = 0 there is
no interference, whereas γ = 1 indicates maximum interference. For the rest of this
paper we will consider γ known to agents and the designer, but this is without loss
of generality. Rate λ

′
i can be interpreted as the rate that agent i would achieve if the

units that are targeted were its own units. Parameter γ represents a discount because
the targeted units are in the test set of another agent.

The setting with interference is depicted in Figure 1. The labels on the edges cor-
respond to the effects from the seed sets, including interference effects. For example,
the purchase rate in test set 2 (units assigned to agent 2) is equal to γλ

′
1 + λ2; the first

term is the discounted influence from the seed set of agent 1, and the second term
is the influence from the seed set of agent 2. Agents are scored based on outcomes
of units in their respective test sets. Therefore, an agent can also “free-ride” on the
conversion rate that comes from the action of the other agent.

Example 3(d) – Poisson outcomes with interference. Given the interference
model of Example 3(c), the actions are A1 = (λ1, λ

′
1), A2 = (λ2, λ

′
2), and the observed

outcomes on the units in the test sets have the following distributions:

Y obs
u1 ∼ Pois(λ1 + γλ

′
2),

Y obs
u2 ∼ Pois(λ2 + γλ

′
1). (33)



seed 1

Test set 1

seed 2

Test set 2

λ1 ............λ2

γλ
′
2 γλ

′
1

Fig. 1. Test set i has units assigned to agent i, i.e., {u ∈ U : Zu = i}. Seed set i corresponds to the treatment
version Ai. The seed sets influence the purchase rate of units in the test sets, for example, through word-of-
mouth effects between units. In particular, Ai = (λi, λ

′
i), where λi is the induced rate from seed set i to test

set i, and γλ
′
i is the induced rate from seed set i to the other test set, where 0 ≤ γ ≤ 1 is a parameter that

models interference. Outcomes, i.e., product purchases, are measured on units in the test sets; the score of
agent i will be calculated based on observed purchases in test set i. Arrows indicate induced purchase rates
from the seed sets; dashed arrows indicate that the rate is discounted by γ. The presence of interference,
where an agent can affect the purchase rate on a test set of another agent, changes how agent select their
seed sets, i.e., their treatment versions.

To derive the performance of an agent, say agent 1, we need to replace agent 2 with
a replicate of agent 1, playing action A2 = (λ1, λ

′
1). In this case, the induced rate on

the units assigned to agent 1 is actually equal to λ1 + λ
′
1 since, by definition of our

interference model in Example 3(c), a rate is discounted only from a seed set of one
agent to the test set of another agent. Thus, the performance of agent i for action
αi = (λi, λ

′
i) is equal to

χ(αi) = E (Yu(Z,A)|A = αi1, Zu = i) = λi + λ
′
i. (34)

It can be seen, by inspection of Eq. (33), that the outcomes of one unit depend on the
action of the other agent. For example, the outcomes Y obs

.1 on units assigned to agent
1 depend on action λ1 of agent 1 as well as action λ

′
2 of agent 2. Hence, the observed

outcomes for one agent carries statistical information for the action of the other agent.
This information should be used in order to correctly estimate the agent qualities, and
then the agent of highest quality.

However, the estimation of qualities is not possible through outcomes (33), because
there exist multiple action profiles for which the observed outcomes are equally likely.
It follows that there is no identifying statistic, and our theory (e.g., Theorem 3.2)
cannot be applied. Furthermore, the variance-stabilization transformations that were
shown to give more powerful designs in Example 3(b) do not work. This is illustrated
in the following example.
Example 3(e). – Poisson outcomes with interference. Consider the setup of Ex-
ample 3(c) and an experiment D with the usual score function φi(Y

obs
.. ) = Y obs

.i . As the
number of experimental units grows, Eq. (33) result in the following asymptotics.

√
k
(
Y obs
.1 − (λ1 + γλ

′
2)
)

D−→ N (0, λ1 + γλ
′
2),

√
k
(
Y obs
.2 − (λ2 + γλ

′
1)
)

D−→ N (0, λ2 + γλ
′
1).



Therefore, the probability that agent 1 wins is

P1(A|D) = Pr(Y obs
.1 > Y obs

.2 ) = Φ

(√
k
(λ1 − γλ

′
1)− (λ2 − γλ

′
2)√

λ1 + γλ
′
1 + λ2 + γλ

′
2

)
. (35)

This design is not incentive-compatible because agent 1 prefers a large λ1 − γλ
′
1 and

a small λ1 + γλ
′
1. As can been seen from Figure 1, a purchase rate of γλ

′
1 from the

seed set of agent 1 only benefits agent 2. Thus, agent 1 wants to benefit its assigned
units (test set 1) while minimizing the spillovers to test set 2 that benefit only agent
2. However, the experimenter wants to know something very different. In particular,
given the definition of performance in Example 3(d), the experimenter wants to know
the maximum λ1 + λ

′
1 that agent 1 can achieve (and maximum λ2 + λ

′
2, for agent 2).

This quantity is of interest because it is the quantity that agent 1 would maximize if a
copy of agent 1 substituted agent 2, and also played (λ1, λ

′
1).

Using the variance-stabilizing transformation of Example 3(b), does not solve the

problem. In particular, if we use φi(Y
obs
.. ) = 2

√
Y obs
.i as the score function, then the

winning probability of agent 1 becomes

P1(A|D) = Φ

(√
k/2(

√
λ1 + γλ

′
2 −

√
λ2 + γλ

′
1)

)
.

The incentive problem remains because agent 1 still wants achieve a high purchase
rate λ1 on units in test set 1, and a low rate λ

′
1 in units of test set 2.

5.1. Dealing with strategic interference through better designs
We now describe a method to construct an incentive-compatible design in the viral
marketing problem with interference. The idea is to introduce a new design that will
provide an identifying statistic, and then define appropriate score functions to fulfill
the conditions of Theorem 3.2 that guarantee incentive-compatibility.
Example 3(f). – Poisson outcomes with interference – New design. We consider
the following new design. The units are split in two groups, say G1 and G2. Within
each group, units are randomly assigned to the two agents, resulting in 2 test sets per
agent. For example, group G1 has two test sets, namely G11 with units assigned to
agent 1, and G12 with units assigned to agent 2. Similarly, group G2 has test sets G21

with units assigned to agent 1, and G22 with units assigned to agent 2. Test sets in the
same group may be overlapping. In addition, each agent is free to pick one seed set;
each seed set is in a separate population that is disjoint from the test sets. The seed
set i corresponds to treatment version –agent action– Ai. The outcomes Y , say number
of purchases for each unit, for each agent i, will be measured on units only in their two
test sets, namely G1i and G2i. This design is depicted in Figure 2.

The outcomes model is similar to the design of Example 3(c) (see also Figure 1). A
seed set i –actionAi– induces a rate λi on units of groupGi, and a rate λ

′
i on units of the

other group. The rate is assumed to be discounted when the seed set is targeting units
in a test set of another agent. For example, units in test set G12 will have purchase
rate λ

′
2 + γλ1; the rate λ

′
2 originates from seed set 2 affecting units in group G1, and

rate λ1 is from seed set 1 affecting units in G1, discounted by γ because G12 is a test
set of agent 2. Thus, action Ai is associated with a pair of rates, Ai = (λi, λ

′
i).
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Test set G11 Test set G12Test set G11 Test set G12

Group G1

seed 2

Test set G21 Test set G22Test set G21 Test set G22

Group G2

Fig. 2. Test sets G1j and G2j have the units assigned to agent j, i.e., {u ∈ U : Zu = i}; there are two test
sets per agent. Agent i selects an influential seed set i, that corresponds to the treatment version Ai. The
seed sets influence the purchase rate of units in the test sets. In particular, Ai = (λi, λ

′
i), where λi is the

induced rate from seed set i to a test set with units assigned to i, and γλ
′
i is the induced rate from seed set

i to a test set with units assigned to the other agent. Outcomes are measured on units in the test sets; the
score of agent i will be calculated based on observed purchases of units assigned to agent i; for example,
agent 1 will be scored based on outcomes of units in G11 and G21. Arrows indicate induced purchase rates
from the seed sets; dashed arrows indicate that the rate is discounted by γ. Agent scores are calculated
based on outcomes in their respective test sets. The presence of interference, where an agent can affect the
purchase rate on a test set of another agent, changes how agent select their seed sets, i.e., their treatment
versions.

Agent 1’s action is A1 = (λ1, λ
′
1), and agent 2’s action is A2 = (λ2, λ

′
2). Therefore, the

observed outcomes of units are distributed as follows:

Y obs
ui ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Pois(λ1 + γλ

′
2), if u ∈ G11,

Pois(λ
′
2 + γλ1), if u ∈ G12,

Pois(λ
′
1 + γλ2), if u ∈ G21,

Pois(λ2 + γλ
′
1), if u ∈ G22.

(36)

Using the same interference model (parameter γ of discounted influence) introduced
in Example 3(c), the new design of Figure 2 now provides more information about
the agent actions, and thus their performance, through outcomes (36). This additional
information provides an identifying statistic that can be used to define score functions
that make the design of Figure 2 incentive-compatible.
Example 3(g). – Poisson outcomes. By symmetry of the new design, the experi-
menter is interested to estimate χ(Ai) = λi + λ

′
i. Let Ȳij be the sample mean of out-

comes of units in test set Gij , and let Y = (Ȳ11, Ȳ12, Ȳ21, Ȳ22)
ᵀ. Define the matrices

B =

(
1 1 0 0

0 0 1 1

)
, and C =

⎛
⎜⎜⎝

1 0 γ 0

γ 0 1 0

0 1 0 γ

0 γ 0 1

⎞
⎟⎟⎠ .

Denote the action profile as A = (λ1, λ
′
1, λ

′
2, λ2)

ᵀ. Further, let DA = diag(CA) be
the diagonal matrix with diagonal elements from the vector CA. By Eq. (36), as the



number of units grows, we have√
m/4(Y − CA)

D−→ N (0, DA). (37)

The term m/4 is because there are m/4 units per test set. Now define the statistic
T = BC−1Y . Since χ(A) = (λ1 + λ

′
1, λ2 + λ

′
2)

ᵀ = BA, it holds, asymptotically,8√
m/4(T − χ(A))

D−→ N (0, BC−1DA(C−1)ᵀBᵀ). (38)

Therefore, the new design has identifiable performance, and T is an identifying statis-
tic, with covariance matrix Σ(A) = BC−1DA(C−1)ᵀBᵀ.

Now, using notation of Theorem 3.2, define the score function simply as

φi(Y
obs
.. ) = f(Ti) = Ti. (39)

Thus, the Jacobian of φ is Jφ = I, the identity matrix. The matrix V (A) of Theorem 3.2
is calculated as

V (A) = JφΣ(A)J ᵀ
φ = BC−1DA(C−1)ᵀBᵀ. (40)

Through simple but tedious matrix algebra we obtain,

V (A) =
1

(1− γ2)2

(
d1 + γ2d2 + d3 + γ2d4 −γ∑4

i=1 di
−γ∑4

i=1 di γ2d1 + d2 + γ2d3 + d4

)
, (41)

where (di) are the diagonal elements of DA; thus, d1 = λ1 + γλ
′
2, d2 = γλ1 + λ

′
2, d3 =

λ
′
1 + γλ2, and d4 = γλ

′
1 + λ2. In particular,

4∑
i=1

di = (1 + γ)
[
(λ1 + λ

′
1) + (λ2 + λ

′
2)
]
. (42)

It follows from Theorem Eq. (17) of Theorem 3.2,

vijf (α|A−i) =(d1 + γ2d2 + d3 + γ2d4) + (γ2d1 + d2 + γ2d3 + d4)− (−2γ

4∑
i=1

di)

=(1 + γ)2
4∑

i=1

di = (1 + γ)3
[
(λ1 + λ

′
1) + (λ2 + λ

′
2)
]
,

if i �= j, and 0 otherwise. It follows that,

arg max
αi∈Ai

{
f(χ(αi))

vijf (αi|A−i)1/2

}
∝ arg max

αi∈Ai

{
λi + λ

′
i√

(λ1 + λ
′
1) + (λ2 + λ

′
2)

}
. (43)

The expression on the right of Eq. (43) is increasing with respect to χ(αi) = λi + λ
′
i.

Therefore, each agent prefers to play actions (λi, λ
′
i) so as to maximize their sum, λi +

λ
′
i, which is the quantity of interest to the experimenter. Condition (18) of Theorem

3.2 is fulfilled. Thus, incentives are aligned under the new design. Intuitively, the new
design allows all agents to benefit from spillovers. For example, in the previous design,

8The normality of T follows from normality of Y . The expected value of T is E(T ) = E(BC−1Y ) =
E(BC−1CA) = BA, and its variance is Var(T ) = Var(BC−1Y ) = BC−1

Var(Y )(C−1)ᵀBᵀ =
BC−1(DA/m)(C−1)ᵀBᵀ.



agent 1 could not benefit from the spillover of seed set 1 to test set 2, because agent 1’s
score was calculated only on test set 1. However, in the new design, the score of agent
1 includes outcomes from units in the test set G21, which receives spillovers from seed
set 1.

6. CONCLUSION
We introduced game theory into experiments where the treatments are determined by
actions of strategic agents, and where treatments can interfere with each other. The
goal of the experiment is to estimate the agent that is best with respect to a quantity of
interest, defined in a context without competition; e.g., average number of conversions
from the agent’s algorithm for viral marketing. However, statistical estimation of the
best agent is based on experiment data, generated with competition among agents.
Thus, the game-theoretic setting poses new challenges to the statistical analysis of ex-
periment data, and may often invalidate well-established experimental design meth-
ods. The goal of incentive-compatible experimental design is to promote behaviors by
agents that accord to the natural actions the agents would take in the experiment if
there was no competition.

When agent actions do not interfere with each other, we showed that incentive-
compatible designs are possible through variance-stabilizing transformations of statis-
tics that estimate how agent would perform without competition. Furthermore, we
proved a result suggesting that variance stabilization might, more generally, lead to
more powerful incentive-compatible experiment designs, in which better agents have
higher chances of winning. In the presence of interference, we showed that more elab-
orate designs are generally necessary to obtain statistics that estimate agent perfor-
mances. In the context of a viral marketing application, we showed how a better design
can be constructed that can account for interference among agents, e.g., when agents
are able to free-ride on the advertising campaign of other agents.

REFERENCES

ATHEY, S., LEVIN, J., AND SEIRA, E. 2008. Comparing open and sealed bid auctions: Evidence
from timber auctions. Tech. rep., National Bureau of Economic Research.

BESAG, J. AND KEMPTON, R. 1986. Statistical analysis of field experiments using neighbouring
plots. Biometrics, 231–251.

BICKEL, P. AND DOKSUM, K. 2001. Mathematical Statistics: Basic Ideas and Selected Topics.
Number v. 1 in Holden-Day series in probability and statistics. Prentice Hall.

BOX, G. E., HUNTER, W. G., HUNTER, J. S., ET AL. 1978. Statistics for experimenters.
COX, C. 1998. Delta method. Encyclopedia of biostatistics.
COX, D. R. AND REID, N. 2000. The theory of the design of experiments. CRC Press.
DASH, D. AND DRUZDZEL, M. 2001. Caveats for causal reasoning with equilibrium models. In

Symbolic and Quantitative Approaches to Reasoning with Uncertainty. Springer, 192–203.
DAVID, O. AND KEMPTON, R. A. 1996. Designs for interference. Biometrics, 597–606.
PEARL, J. 2000. Causality: models, reasoning and inference. Vol. 29. Cambridge Univ Press.
RUBIN, D. B. 1980. Comment. Journal of the American Statistical Association 75, 371, 591–593.
TOULIS, P. AND KAO, E. 2013. Estimation of causal peer influence effects. In Proceedings of

The 30th International Conference on Machine Learning. 1489–1497.
TOULIS, P. AND PARKES, D. C. 2015. Long-term causal effects of interventions in multiagent

economic mechanisms. arXiv preprint arXiv:1501.02315.
TOULIS, P., PARKES, D. C., PFEFFER, E., ZOU, J., AND GILDOR, G. 2014. Incentive-

compatible experiment design (extended abstract). In Conference on Digital Experimentation
(CODE@MIT, 2014).



Online Appendix to:
Incentive-Compatible Experimental Design

PANOS TOULIS, Harvard University, Department of Statistics
DAVID C. PARKES, Harvard University, SEAS
ELERY PFEFFER, Harvard University, SEAS
JAMES ZOU, Microsoft Research

A. EXTENSION TO MULTIPLE BLOCKS
In this paper, our theory is developed and applied assuming only one block. However, it is
straightforward to extend it to multiple blocks in a typical blocking experiment design. In this
section, we give an outline of this extension.

The treatment assignment rule ψ now groups units into B blocks based on their covariates,
and then randomizes treatment (i.e., the assignment of units to agents) within the blocks; block-
ing is performed in a deterministic way based on the publicly known covariates {Xu}, for each
unit u. Formally, rule ψ is a probability distribution over the space of pairs of binary matrices
Ψ

def
= ({0, 1}m×B , {0, 1}m×n).
A pair (W,Z) ∈ Ψ is called a treatment assignment, and has the following interpretation. The

element Wub = 1 if unit u is assigned to block b, and it is 0 otherwise. Similarly, Zui = 1 if unit u
is assigned to agent i, and it is 0 otherwise. Using dot-notation W.b is the bth column of matrix
W , Wu. is the uth row of W as a B × 1 vector, and W.. ≡ W . Similarly for Z and other matrices.
Finally the notation (W,Z) ∼ ψ will denote a treatment assignment (W,Z) ∈ Ψ, that is sampled
according to rule ψ.

Example A1. Consider four experimental units (consumers) and two treatments (marketing
agents) that an experimenter wishes to evaluate. In particular, the experimenter is interested
to estimate which agent can achieve the highest number of sales. Suppose that, for each
unit u, the experimenter and the agents know the marriage status (only covariate). We
assume that units {1, 2} are not married and {3, 4} are, and these correspond to the two
blocks b ∈ {1, 2}. The experimenter suspects that the outcomes differ systematically based
on marriage status, and randomizes treatment within blocks. This design corresponds to
treatment assignment rule ψ which samples with equal probability 1/4 from the treatment

assignments {W,Z} where Z ∈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

1 0

0 1

1 0

0 1

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

0 1

1 0

1 0

0 1

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

1 0

0 1

0 1

1 0

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

0 1

1 0

0 1

1 0

⎞
⎟⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

and W =

⎛
⎜⎜⎜⎝

1 0

1 0

0 1

0 1

⎞
⎟⎟⎟⎠

is the matrix that indicates the blocking. Some examples of dot-notation follow: W1. = (1 0)ᵀ is
the assignment of unit u over blocks, W.2 = (0 0 1 1)ᵀ is the assignment over units in block 2, etc.

With multiple blocks, agents are allowed to play different actions across blocks. We would
thus write Aib for the action of agent i in block b, and Aib for the action space of this action.

With multiple blocks, there is also an additional block index for the potential and observed
outcomes. For example, Y obs

ubi is now the observed outcome of unit u assigned to block b and agent
i; with dot-notation, Y obs

.b. denotes the observed outcomes of units in block b. The experiment
design D has now multiple score functions, φb, one per block. For example, φib(Y

obs
.b. ) is the score

of agent i in block b with data Y obs
.b. . Similar extensions are straightforward for the concepts of

performance, natural action, and quality.
Given block-specific score functions, the winner of the experiment is the agent who won the

majority of blocks, ignoring ties. When there is no interference across and within-blocks, then
the experimenter can design an incentive-compatible design within each block using Theorem
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3.2. In this case, each block would have a separate identifying statistic. When the action space
of an agent is the product space of the block action spaces, the agent will prefer to maximize
its winning probability within each block. Therefore, the incentive-compatibility results of The-
orems 3.2 and 4.2 can be readily applied. The same results can be applied in the problem with
interference, assuming that there is no between-block interference, i.e., an action of agent i in
block b does not affect the outcomes for agent j in some other block b′.

B. PROOFS
THEOREM 3.2. Fix agent actions A, and consider design D = (ψ, φ) that has an identifying

statistic T with covariance matrix Σ(A). Let φi(Y
obs
.. ) = f(Ti) for some function f : R → R, and

let vij(A) be the ijth element of V (A) defined in Eq. (16). Also define,

vijf (α|A−i) = vii(α,A−i) + vjj(α,A−i)− vij(α,A−i)− vji(α,A−i).

The design D is incentive-compatible, if, for every agent i,

arg max
αi∈Ai

{
f(χ(αi))

vijf (αi|A−i)1/2

}
= arg max

αi∈Ai

{χ(αi)} def
= A�

i ,

for every agent j, and all actions A−i. In such case, we say that T is aligned with performance χ
through score φ.

PROOF. For a vector x ∈ R
n, let f(x) = (f(x1), f(x2), . . . , f(xn))

ᵀ. From the Delta theorem
[Bickel and Doksum 2001; Cox 1998], and the asymptotic property (15) of the identifying statistic
T , we obtain

√
k (f(T )− f(χ(A)))

D−→ N (0,JφΣ(A)J ᵀ
φ ), (44)

where Jφ is the Jacobian of f at χ(A) (by definition, this is a diagonal matrix). The probability
that agent i wins over j is equal to

Pr
(
φi(Y

obs
.. ) > φj(Y

obs
.. )

)
= Pr (cᵀf(T ) > 0) , (45)

where c = (0, . . . , 1, 0, . . . ,−1, 0, . . .)ᵀ, is a n× 1 vector, with zero elements, except for ci = 1 and
cj = −1. Using Eq. (44), we have

√
k (cᵀf(T )− cᵀf(χ(A)))

D−→ N (0, cᵀJφΣ(A)J ᵀ
φ c). (46)

From (46), probability (45) becomes

Pr
(
φi(Y

obs
.. ) > φj(Y

obs
.. )

)
= Φ

(
fi(χ(A))− fj(χ(A))

vijf (A)1/2

)
= Φ

(
χ(Ai)− χ(Aj)

vijf (A)1/2

)
,

where vijf (A) is given in Eq. (17). Therefore, agent i maximizes its winning probability by playing
the natural action, by property (18).

THEOREM 4.2. Consider design D = (ψ, φ) with an identifying statistic T with covariance
matrix Σ(A). Suppose Assumption 1 holds. If, for every agent i,

φi(Y
obs
.. ) ≡ f(Ti), where f : R → R,

Var(φi(Y
obs
.. )) = const.,

arg max
αi∈Ai

f(χ(αi)) = arg max
αi∈Ai

{χ(αi)} def
= A�

i ,

then design D is incentive-compatible.

PROOF. By Assumption 1 (no interference), Σ(A) is diagonal; let Σ(A) = diag(σ2
ii(A)). Then,

from Theorem (4.2) and Condition (23),

Var(φi(Y
obs
.. )) = f ′(χ(Ai))

2σ2
ii(A) = c,
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for some constant c > 0. Also by Condition (23), the Jacobian of φ at A, is given by Jφ =
diag(f ′(χ(Ai))). Using the notation of Theorem 3.2,

V (A) = JφΣ(A)J ᵀ
φ = diag(f ′(χ(Ai))

2σ2
ii(A)) = cI.

It follows, vijf (α|A−i) = 2c for any i, j, where vijf is defined in Eq. (17), Theorem 3.2. Using
Condition (25),

arg max
αi∈Ai

{
f(χ(αi))

vijf (αi|A−i)1/2

}
= (1/2c) arg max

αi∈Ai

{χ(αi)} = A�
i .

Thus, all conditions of Theorem 3.2 are fulfilled, and the design D is incentive-compatible.

THEOREM 4.4. Consider an incentive-compatible design D = (ψ, φ), where action sets Ai ⊆ R

are compact, and performance χ is one-to-one and continuous. Let,
√
k
(
φi(Y

obs
.. )− χ(Ai)

)
D−→ N (0, σ2(Ai)),

where function σ2 : A → R
+ satisfies

χ(α′
i) ≥ χ(αi) ⇒ σ2(α′

i) ≥ σ2(αi),

for every agent i, and all actions α′
i, αi ∈ Ai. Consider a design D′ = (ψ, φ′), where φ′

i(Y
obs
.. ) =

ν(φi(Y
obs
.. )), for each agent i, with ν(·) defined by

ν(y) =

∫ y 1√
σ2(χ−1(z))

dz.

Then, design D′ is incentive-compatible and more powerful than D, if ν(·) is convex, or
1/

√
σ2(χ−1(·)) and σ2(χ−1(·)) are both convex.

PROOF. From the univariate Delta theorem,
√
k
(
ν(φi(Y

obs
.. )− ν(χ(Ai))

)
D−→ N (0, 1),

since ν′(χ(Ai))
2σ2(Ai) = 1, by Eq. (31). For brevity, set χ(Ai)

def
= χi and σ2(Ai)

def
= σ2

i . Without
loss of generality, assume χi ≥ χj . The probability that agent i wins over agent j in design D′ is
equal to,

P1(A|D′) = Φ
(√

k/2(ν(χi)− ν(χj))
)
.

In the old design, D, this probability is equal to

P1(A|D) = Φ

⎛
⎝√

k
χi − χj√
σ2
i + σ2

j

⎞
⎠ .

Case 1 – Convex ν(·). By convexity of ν we have

ν(χi)− ν(χj)

χi − χj
≥ ν′(χj). (47)

By definition (29), ν′(χj)
2σ2

j = 1. By property (30), σ2
i ≥ σ2

j since χi ≥ χj . Hence, ν′(χi)
2σ2

i =

1 ⇒ ν′(χi)
2 ≤ ν′(χj)

2. It follows,

ν′(χj)
2σ2

j + ν′(χj)
2σ2

i ≥ 2 ⇒

ν′(χj) ≥
√

2

σ2
i + σ2

j

. (48)
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Combining (47) and (48), we obtain

ν(χi)− ν(χj)√
2

≥ χi − χj√
σ2
i + σ2

j

⇒ Φ
(√

k/2(ν(χi)− ν(χj))
)
≥ Φ

⎛
⎝√

k
χi − χj√
σ2
i + σ2

j

⎞
⎠ ,

which implies that design D′ is more powerful than D.

Case 2 – 1/
√

σ2(χ−1(·)) and σ2(χ−1(·)) are both convex. It holds,

ν(χi)− ν(χj)

χi − χj
=

1

χi − χj

∫ χi

χj

1√
σ2(χ−1(z))

dz ≥ 1√
σ2(χ−1((χj + χi)/2))

≥ 1√
σ2(χ−1(χj))/2 + σ2(χ−1(χi))/2

def
=

√
2

σ2
i + σ2

j

.

The first inequalty is obtained by convexity of 1/
√

σ2(χ−1(·)), and the second by convexity of
σ2(χ−1(·)). To finish the proof we follow the same arguments as in Case 1.

C. REMARKS ON VARIANCE STABILIZATION
In Theorem 4.2, the variance of the score functions φi is stabilized (made constant) through
a transformation f . Such transformations that stabilize the variance of a statistic, are known
as variance-stabilizing transformations in statistics, and they are of fundamental importance
in various tasks, such as hypothesis testing and estimation. For example, consider a sample
average of n independent Poisson random variables with mean λ. The asymptotic distribution
of the sample average is Ȳ ∼ Poisson(λ/n). In the limit,

√
n(Ȳ − λ)

D−→ N (0, λ). This asymptotic
result is not useful to construct a confidence interval for the unknown parameter λ because
the variance of Ȳ depends on that unknown parameter. However, through the Delta theorem,
2
√
n(

√
Ȳ −√

λ)
D−→ N (0, 1) i.e., the variance of

√
Ȳ is constant; the statistic

√
Ȳ can be used to

obtain exact confidence intervals for λ.
In our setting, the variance stabilization helps to mitigate the risk-return trade-off that strate-

gic agents can undertake in an experiment. Loosely speaking, when the variance is stabilized a
worse agent cannot benefit by being more risky, and a better agent cannot benefit by being more
conservative. Rather, incentives are aligned such that every agent will do its best, assuming the
remaining conditions of Theorem 4.2 are fulfilled.

D. DISCUSSION
Our approach to design incentive-compatible experiments has been through the use of an identi-
fying statistic, i.e., a statistic that can estimate the agent performances without competition. In
many situations, such a statistic exists, e.g., by using sample summaries (means, variances, etc),
and then appealing to the central limit theorem. In most realistic cases, a key assumption will
be that the outcomes have a known parametric form. In this paper, we made such parametric
assumptions in our viral marketing example.

However, an experimenter might be unwilling to make such parametric modeling assump-
tions. An alternative would then be either to use a nonparametric test for the quantities of
interest (i.e., agent performances), or a randomization-based analysis. The former includes a
wide-class of nonparametric methods, and we plan to investigate it in future work. It should
be noted, however, that even nonparametric tests have crucial underlying assumptions, e.g.,
exchangeability of observed data, that are not easy to validate. In many situations, such as-
sumptions are more critical than, for example, normality assumptions that can be quite robust
under many scenarios [Box et al. 1978, Appendix 3A]. The latter method of randomization-based
analysis usually starts from a null hypothesis which aims to provide evidence for the likelihood
of certain observed quantities, e.g., through p-values. However, it is hard to test such hypotheses
in our setting because agents can freely choose the versions of the treatment to apply. Therefore,
one cannot use the null hypothesis to impute counterfactuals, i.e., outcomes that would have
been observed under a different randomization because agents act in a strategic, non-random
way.
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In the case with interference, the assumption that an identifying statistic exists has two
components. First, it is required that the experimenter has a good idea about the model of inter-
ference, e.g., that an agent action affects the outcomes for another agent linearly, as in Example
3(c). Assumptions on the model of interference are frequent in practice because they help to
deal with interference after the experiment has been performed [Besag and Kempton 1986].
Second, it is required that the experimenter knows exactly the hyperparameters of the assumed
interference model. In the viral marketing problem of Section 5, a scalar parameter γ was used
to model interference. In our examples, we assumed that γ was known. One way to avoid this
problem is to treat such parameters of interference as nuisance parameters, and then use a suit-
able statistical method; e.g., use profile likelihood instead of the true, but unknown, likelihood
to obtain proxies for the maximum-likelihood estimates. A Bayesian approach would be to set
priors for such parameters and then obtain a posterior predictive distribution for the unknown
agent performances. Agents would then be scored according to this posterior distribution, but
this would not alter the core of our methodology.
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