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Abstract

ITER A TIV E COM BINATO RIAL AUCTIONS:

ACHIEVING ECONOM IC AND CO M PU TA TIO NAL EFFICIEN C Y  

David C hristopher Parkes 

Supervisor: Lyle H. U ngar

A fundam ental problem  in building open d istribu ted  system s is to design mechanisms 

th a t com pute optim al system -wide solutions despite the self-interest of individual users and 

com putational agents. Classic gam e-theoretic solutions are often prohibitively expensive 

com putationally. For example, the Generalized Vickrey A uction (GVA) is an  efficient and 

strategy-proof solution to the com binatorial allocation problem  (CAP), in which agents 

dem and bundles of items, bu t every agent m ust reveal its value for all possible bundles 

and  the auctioneer m ust solve a sequence o f N P -hard  optim ization problem s to com pute 

the outcome.

I propose iBundle, an iterative com binatorial auction in which agents can bid for com­

binations of item s and ad just their bids in response to bids from o ther agents. iBundle 

com putes the  efficient allocation in the  C A P when agents follow myopic best-response bid­

ding strategies, bidding for the  bundle(s) th a t m aximize th e ir surplus taking the current 

prices as fixed. iBundle solves problem s w ithout com plete inform ation revelation from 

agents and  term inates in com petitive equilibrium . Moreover, an  agent can follow a  myopic 

best-response strategy  w ith approxim ate values on bundles, for exam ple w ith lower- and 

upper- bounds.

My approach to iterative m echanism  design decomposes the  problem  into two parts. 

F irst, I use linear program m ing theory  to  develop an  efficient iterative auction under the 

assum ption th a t  agents will follow a  myopic best-response bidding strategy. Second, I 

extend the approach to also com pute Vickrey paym ents a t  the  end of the  auction. This

iv
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makes myopic best-response a  sequentially-rational s tra teg y  for agents in equilibrium , in­

heriting  m any of the useful gam e-theoretic properties of the  GVA.

iBundle im plem ents a  prim al-dual algorithm , C o m b A u c t i o n ,  for the CA P, com puting 

a feasible prim al (th e  provisional allocation) and  a  feasible dual (th e  ask prices) th a t sa t­

isfy com plem entary slackness conditions. An extended auction, iBundle Extend& A djust, 

in terprets a  prim al-dual algorithm , VlCKAUCTION, as an itera tive auction. VlCKAUCTION 

com putes the efficient allocation and  Vickrey paym ents w ith  only best-response informa­

tion from agents. E xperim ental results dem onstrate th a t iB undle E xtend& A djust, which 

keeps iBundle open for a  second phase before ad justing  prices towards Vickrey paym ents, 

com putes Vickrey paym ents across a  suite of problems.
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Chapter 1

Introduction

T h e Internet embodies a  new paradigm  of d istrib u ted  open com puter networks, in which 

agents— users and com putational devices—are not cooperative, bu t self-interested, w ith 

private inform ation and  goals. A fundam ental problem  in building these system s is to  de­

sign incentive-compatible protocols, which com pute optim al system -wide solutions despite 

the self-interest of individual agents. T his em erging area of study, called computational 

mechanism design, is a t the interface of gam e theory, artificial intelligence, and algorithm ic 

theory.

Examples of the m any interesting applications of m echanism  design in open system s 

include: (a) network routing problem s, w ith self-interested packets and  routers; (b) pro­

curem ent problem s in electronic commerce between businesses and suppliers; (c) logistics 

problem s, for exam ple w ith delivery problem s and  m ultiple self-interested shipping com­

panies; (d) scheduling problem s, for exam ple to  schedule tim e slots a t a irpo rt gates across 

self-interested airlines.

We can view these problem s as d istribu ted  optim ization problem s, w ith an  objective 

function th a t depends on the private inform ation  of the agents in the  system . It is often 

necessary to assum e th a t ra tional self-interested agents will choose reveal incom plete, and 

perhaps un tru thfu l, inform ation ab o u t their goals and preferences when th a t can lead to 

an individually preferable outcom e. As such, the  central goal in m echanism  design is to 

address this problem  o f agent self-interest, an d  design incentives to encourage agent be­

havior th a t leads to  good system -w ide solutions to  d istribu ted  m ulti-agent optim ization 

problem s. One classic approach is to  design incentives for agents to provide truthful infor­

m ation abou t their preferences, and  com pute an  optim al system -wide solution w ith this 

inform ation.
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Given th a t m arket-based mechanisms have proved able to  coord inate the  activities of 

m any autonom ous individuals in hum an societies, it is perhaps natu ra l to look to  eco­

nomic principles to design coordination m echanisms in com putational system s. Indeed, 

the explosion of In ternet-based commerce creates a  huge dem and for efficient m arket-based 

m echanisms, for exam ple to  support autom ated  negotiation across and  w ithin groups of 

individuals and  businesses. M arket-based mechanisms are a  very n a tu ra l way to respect 

the autonom y and  inform ation decentralization in open  system s, and  prom ise to  revolu­

tionize how we design and  evaluate open com puter system s. In  particu lar, auction-based 

m echanisms can often provide enough structu re  to enable strong  theoretical claims about 

the strategies th a t agents will select and the optim ality  properties of final solutions.

Exploring the  interface between economic mechanisms and  d istribu ted  com putation 

exposes a  num ber of deep com putational problems. Lim ited a n d /o r  costly com putation, 

bo th  a t the  netw ork and a t the level of d istribu ted  com putational agents, coupled w ith 

the inherent com binatorial complexity of many interesting problem  dom ains (e.g. those in 

scheduling and  resource allocation) quickly break naive im plem entations of classic game- 

theoretic mechanisms. Yet, com putation and  self-interest in teract in non-obvious ways: 

while approxim ate solutions can destroy the incentive properties of a  mechanism, agent 

bounded-rationality  can also be used to design m echanism s th a t cannot be m anipulated 

w ithout solving an  in tractab le problem.

1.1 Computational Mechanism Design

T he challenge in com putational mechanism design is to resolve the  tensions between what 

one m ight choose to  do gam e-theoretically and w hat is desirable com putationally. In some 

cases the best gam e-theoretic solution also provides useful com putational benefits. T he 

m ost obvious exam ple is the concept of dom inant strategy im plem entation , which implies 

th a t each agent has an  optim al strategy  irrespective of the  preferences or strategies of other 

agents. T his is useful com putationally  because agents do not need to  m odel or deliberate 

about the strategies of the o ther agents in the system . We are not always so lucky. To give 

a counterexam ple, a  direct-revelation dom inant s tra tegy  im plem entation, in which every 

agent m ust com pute and reveal its com plete preferences over all possible outcomes, is a  

useful sim plifying concept gam e-theoretically b u t often in trac tab le  com putationally.

2

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



A useful mechanisms m ust control b o th  the  com putational costs of the auctioneer (or 

in general, to  the m echanism  infrastructure) and  the  com putational costs of the agents, 

while re ta in ing  useful gam e-theoretic properties to  handle agent self-interest.

In  w hat follows I introduce the m echanism  design problem , and  consider com putational 

problem s w ith the classic gam e-theoretic approach, in particu la r in application to  combi­

nato ria l problem  dom ains. T hen  I briefly highlight some im portan t com putational costs 

in m echanism  im plem entation, and in troduce a  num ber of different approaches to  make 

m echanism s more com putationally  reasonable.

1.1.1 The Mechanism Design Problem

C onsider a  system  w ith I  agents, indexed i =  1 , . . .  , I ,  and  a  set of outcom es O. Each 

agent has private inform ation abou t its utility  for different outcom es, which is a  quan tita tive  

m easure of its "happiness” given each outcom e. It is useful to th ink of an agent having 

a  type, denoted 0; G 0 ; ,  th a t determ ines its u tility  over different outcomes. T he set 0 ;  

represents all possible preferences available to agent i. We can write u,(o, 0*) to denote the 

utility  of agent w ith type 0* for outcom e o G O . W ith  this, then  outcom e ot is preferred 

to outcom e 02 by agent i, w ritten  0 1  >- 02 , if an d  only if U j(oi,0j) >  Uj(o2 , 0 t)-

T he im plem entation problem , illustra ted  in Figure 1.1, is to com pute the solution to 

a  social choice function , /  : ( 0 i ,  x , . . .  , x , 0 / )  -*  O , th a t selects an optim al outcom e 

°* =  /  W  based on the  types 0 =  ( 0 i , . . .  ,0 /)  of all agents.

A com m on social choice function selects an  outcom e to m aximize to tal u tility  over 

agents:

/ (0 )  =  a r g m a x ^ U j ( o ,0*), for all 0 G 0
i

T his is the classic u tilitarian  objective, known as allocative-efficiency in allocation prob­

lems.

T he mechanism design problem  is to solve the im plem entation problem  w ith self- 

in terested  agents th a t have private inform ation ab o u t their preferences. Essentially a 

m echanism  defines the “rules of a  gam e” ; i.e., the  actions available to  agents and  the 

m ethod  th a t is used to com pute the outcom e based on those actions.

A uctions are simple mechanisms for resource allocation, in which the  actions available 

to agents are to subm it bids and  the outcom e is com puted, for example, to  m aximize 

revenue given bids.
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Figure 1.1: The Abstract Implementation Problem.

A gam e-theoretic approach is central to m echanism  design. G am e theory is a  m ethod 

to study  a system  of self-interested agents in conditions of stra teg ic  interaction, w ith 

rational agents m odeled as expected-u tility  m aximizers. G am e-theoretic analysis com putes 

the equilibrium outcome in a  mechanism, for particu la r agent preferences, in which every 

agent plays an expected-utility  m axim izing best-response to  every o th er agent. A num ber 

of solution concepts are defined, each of which makes different assum ptions abou t the 

inform ation available to agents and  m ethods used by agents to  select strategies.

W ith  this, a  m echanism  is said  to  im plem ent a  particu la r social choice function, or 

solve an  im plem entation problem , if the solution to the social choice function is com puted 

by the m echanism  in a  gam e-theoretic equilibrium , w ith self-interested agents.

1.1.2 The Classic Vickrey-Clarke-Groves Solution

One particu larly  useful solution concept in m echanism  design is dom inant strategy imple­

m entation, in which each agent has the  sam e optim al s tra tegy  whatever the strategies and 

preferences of o ther agents. A m echanism  th a t im plem ents a  desired social choice function 

in dom inant s tra tegy  is a  robust solution to  an  im plem entation problem , because it makes 

very few assum ptions abou t the  inform ation available to  agents, or ab o u t agents’ beliefs
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abou t th e  ra tionality  of o ther agents. Informally, we m ight say th a t a  dom inant s tra t­

egy solution “removes gam e-theory” from the  problem . Agents can partic ipa te  w ithout 

m odeling the  preferences or strategies o f o th er agents.

T his dom inant-strategy  solution concept is achieved in th e  im portan t Vickrey-Clarke- 

Groves (VCG) family of mechanisms, in which an  agent’s dom inant stra tegy  is to truthfully  

reveal its preferences to  the mechanisms, w hatever the strategies or preferences of o ther 

agents. T h is p roperty  of dom inant-strategy tru th -revelation  is known as strategy-proofness. 

Moreover, in  the context of resource allocation problem s the  VCG mechanisms im plement 

the allocatively-efficient solution, or the  resource allocation th a t maximizes value over all 

agents. In fact, there is quite a  strong sense in which any  strategy-proof and  efficient 

mechanisms m ust com pute the outcom e of the VCG m echanism.

U nfortunately, the VCG m echanism  provides an  extremely centralized solution to the 

resource allocation problem. Every agent m ust provide complete inform ation  abou t its 

preferences to the mechanism. T here are m any problem s, for exam ple the com binatorial 

allocation problem , in which this is in tractab le for an  agent. Agents often have difficult 

local valuation problem s [MilOOa]. Resolving th is tension between com putational concerns 

and gam e-theoretic concerns, and  moving tow ards an  itera tive im plem entation of the VCG 

m echanisms, is a central contribution of this d issertation.

1.1.3 Computational Considerations

C om puta tion  occurs a t two different levels w ith in  a  m echanism:

•  For the  m echanism  infrastructure: How much com putation  is required to com pute 

the  outcom e of the mechanism, for exam ple given bids from agents?

•  For agents:

(a) (strategic complexity) Is game-theoretic reasoning required to  follow an  optim al 

strategy, or does an  agent have a  dom inant strategy?

(b) (valuation complexity) M ust an  agent com pute evaluate its preferences for all 

possible outcom es to com pute its optim al strategy?

Approaches to  reduce the com putational dem ands on th e  m echanism  include: intro­

ducing approxim ations; identifying trac tab le  special-cases; and  d istribu ting  com putation  

to the agents in the system . T he challenge in each case is to  relax com putational dem ands
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w ithout losing useful gam e-theoretic properties. Perhaps one can identify a  set of ax­

ioms th a t an  approxim ation algorithm  m ust satisfy to re ta in  strategy-proofness, or restrict 

problem  instances to  a  sm aller set of trac tab le  special-cases. Section 3.2.1 in chapter 3 

discusses some interesting approaches in more detail.

T h e  strategic complexity of a  m echanism  is closely linked to  its gam e-theoretic prop­

erties. In particu lar, a  m echanism  in which every agent has a  dom inant stra tegy— an 

optim al strategy  w hatever the strategies and  preferences o f o th er agents — is useful game- 

theoretically and  com putationally. From a  com putational perspective, w ith a  dom inant 

s tra tegy  an agent can avoid costly m odeling and  gam e-theoretic reasoning about o ther 

agents.

T he valuation complexity of a  m echanism  is related to the am ount of inform ation rev­

elation th a t is required from agents, and the com plexity of providing th a t inform ation. 

Agents m ust often com pute their value for different outcom es, each of which might involve 

solving a  hard  local optim ization problem . This is an  im portan t problem  th a t is essentially 

ignored in classic m echanism  design. For example, in a  single-shot direct-revelation mecha­

nisms such as the VCG m echanism, agents m ust provide complete inform ation  abou t their 

preferences to the mechanism.

Approaches to  reduce valuation com plexity include:

•  Design dynam ic mechanisms th a t solve problem s w ith m inim al inform ation revelation 

from agents.

•  Provide struc tu red  bidding languages to  allow com pact representations of agent pref­

erences in high-dim ensional problem s, and  exploit the  s tru c tu re  com putationally  

throughout the mechanism.

An iterative m echanism  can allows agents to provide increm ental inform ation, and 

hope to solve the im plem entation problem  without unnecessary inform ation  about agent 

preferences.

O f course, to reduce the am ount of valuation work required of an  agent it is also 

necessary th a t an agent can provide th is increm ental inform ation w ithou t first evaluating 

its com plete preferences over every possible outcome. We m ust also allow an  agent to 

follow its optim al s trategy  in the m echanism  w ithout com puting its com plete preferences 

over all outcom es. For example, it is useful if partia l orderings over outcom es allow an

6
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agent to  provide a  response.

m any in teresting  dom ains, where agents m ust solve local op tim ization  problem s to 

understand  their values for different outcomes.

C om plete inform ation is not required to  solve m any d is trib u ted  optim ization  problems, 

even when the  central agent (the auctioneer) selects the  final solution.

Dynam ic m echanisms allow solutions to  problem s to  be com puted w ithout com plete in­

form ation revelation, while any optim al single-shot m echanism  clearly requires th a t agents 

provide all inform ation to the center.

1.1.4 A Challenge: Incentive-Compatible Iterative Mechanisms

One im portan t challenge in com putational m echanism  design, given bounded-rational bu t 

self-interested agents, and  hard  com binatorial dom ains, is:

. . .  develop an iterative mechanism in which increm ental revelation o f truthful infor­

m ation is a dom inant strategy fo r  every agent, and which computes an optimal solution to 

the system -w ide problem with m inim al total in form ation revelation.

A ddressing this challenge requires a  very careful synthesis of ideas from AI, for exam ­

ple to handle high-dim ensional bid spaces; from algorithm  theory, for exam ple to solve 

in term ediate allocation and  pricing problems; and  from gam e-theory to  wrap all of this 

w ithin a  s tra tegy-proof system .

T he goal is to  allow agents to  reveal inform ation abou t th e ir preferences, perhaps 

approxim ate and  perhaps incom plete, whenever th a t inform ation is required to  com pute 

the optim al system -w ide solution and  w ithout concern for strateg ic  effects. In this way 

d istribu ted  agent com putation  on the value for different outcom es can be perform ed in 

parallel w ith in  a  jo in t search for a  system -wide solution, w ith only as much inform ation 

com puted ab o u t the local problems of each agent as is required to  com pute and  verify an 

solution.

T he problem  of designing paym ents to  make tru th fu l inform ation revelation optim al for 

an  agent is orthogonal to  the  problem  o f designing ap propria te  representa tion  languages. 

T he language should be allow an  agent to  accurately  s ta te  inform ation ab o u t its preferences 

a n d /o r  respond to challenges, and  also to  allow an  agent to  represent this inform ation in 

a com pact form.
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T his d issertation  proposes an  iterative com binatorial auction, tBundle E xtend& A djust, 

th a t makes significant progress towards th is challenge for the combinatorial allocation prob­

lem  (C A P), described in the  next section. I t  is im portan t to  avoid com plete inform ation 

revelation in solving the com binatorial allocation problem , because agents often have hard 

valuation problem s to com pute their value for any single outcom e, and  there are an  expo­

nential num ber of possible outcom es.

1.2 The Combinatorial Allocation Problem

T he com binatorial allocation problem  (C A P) is a  resource allocation problem  in which 

a  set of items are to be allocated across a  set of agents. Agents are assum ed to have 

non-linear values for sets of item s, e.g. “I only want A if I also get B” , and  the goal is to 

determ ine the allocation th a t maximizes the  to ta l value over all agents.

T he CAP is relevant to m any interesting and  im portan t real-world applications, in­

cluding scheduling, logistics and  network com putation  dom ains. Indeed, it has a ttra c ted  

considerable recent a tten tio n  in the academ ic lite ra tu re  because o f its application to the 

FCC spectrum  auctions. It is qu ite  reasonable th a t there are geographical synergies across 

licenses, for exam ple w ith the  value of a  wireless license for the New York m etropolitan  

area  contingent on also acquiring a  license for the  P hiladelphia and  B oston areas.

Moreover, the classic m echanism  design solution to th e  CAP, th e  Vickrey-Clarke-Groves 

mechanism, often requires the solution to a  num ber of in tractab le problem s. Not only must 

agents report their values for a  perhaps exponentially large num ber of different com bina­

tions of items (and solve a perhaps N P-hard  problem  to com pute their value for any one 

com bination), bu t the m echanism  in frastructu re  m ust solve a  num ber of N P-hard  problems 

to com pute the outcom e of the  mechanism.

In  the CAP there are a  set Q o f discrete item s and  a  set X  of agents. Each agent has 

a valuation function V( : 2 °  -> R+, th a t defines its value Vi{S) >  0 for bundles of items, 

5  C Q. The valuation function defines the  agen t’s type, i.e. its preferences over different 

outcomes. Assume u,(0) =  0, and  free disposal of item s, im plying th a t agents have weakly 

increasing values for bundles, i.e. Vi(S) < Vi(S') for all S '  D S .

An outcom e defines an  allocation S =  ( S i , . . .  ,5 / )  of item s to  agents, w ith agent i 

receiving bundle 5 ,. A feasible allocation assigns each item  to no more th an  one agent.
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A, 4 D ,8 
Agent 1 Agent 2

E, 5 
Agent 3

Figure 1.2: An Example Combinatorial Allocation Problem.

T he social choice function, or objective, is allocative-efficiency, i.e. to select the allocation 

th a t maximizes the to ta l value over agents.

value over the agents, w ithout assigning the sam e item  to more th an  one agent.

O f course, in m echanism  design we assum e th a t the  valuation functions are private

self-interest, for exam ple providing incentives to prom ote tru th-revelation .

A sim ple com binatorial allocation problem  is illustra ted  in Figure 1.2. In th is example

contains the indicated  bundle). For example, agent 1 has value 4 for the  bundle identified 

.4, and  value 8 for the  bundle identified B . T he optim al solution, to  m axim ize the totcil 

value across all agents, is to  allocate bundle A  to agent 1 and  bundle C  to agent 2, with 

no allocation to agent 3, for to ta l value 10.

1.2.1 Application Domains

T he com binatorial allocation problem  arises in m any dom ains. C onsider the following 

examples:

max (CAP)

s.t. Si n  S j =  0 , v i ^  j

In words, the C A P problem  is to com pute an  allocation of item s to  m aximize the to tal

inform ation  to agents, and  agent self-interest. A solution to  the C A P m ust handle this

there are nine item s (shown as disks) and  three agents, w ith positive values for bundles of 

item s as shown (and zero values for sm aller bundles, the sam e value for any bundle th a t
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•  D ynam ic resource allocation [FNSY96, CheOO]. C onsider a  bandw id th  allocation 

problem . Slots of bandw id th  are available, o f a  fixed size and  du ra tion , w ith network 

tie-in points. Agents have value for bundles of slots, for exam ple representing a 

v irtual circuit of a  particu lar bandw idth  in  a  particu lar tim e interval.

•  Job shop scheduling. [WWWMM01] M achine tim e in a  flexible m anufacturing envi­

ronm ent is to  be allocated across com peting jobs. Jobs require tim e slots across a 

sequence of machines, and have deadlines and  costs of delay.

• Course registration. [GSS93] A num ber of slots are available in different classes and 

sections, and each student wants to register for a  bundle of classes th a t fit their m ajor 

and  have no tim e scheduling conflicts.

•  Airport landing and takeoff scheduling. [RSB82] A num ber of take-off and  landing 

slots are available across m ajor airpo rts  in the U.S. C om peting airlines need pairs of 

takeoff and  landing slots th a t are com patible w ith flight-tim e and  schedule require­

ments.

•  Distributed vehicle routing. [San93, L O P+00] A num ber of delivery tasks are to be 

assigned to a  fleet of independent trucks. T h e  m arginal cost to pick-up a  packet from 

a location where a  drop-off is to be perform ed is quite sm all, so the  value to an agent 

for perform ing one task is contingent on being able to  perform  o ther com patible 

tasks.

•  The FC C  Spectrum allocation problem. [McM94] T he FCC was m andated  by Congress 

to  achieve an efficient (value-maximizing) allocation of new spectrum  license to wire­

less telephone companies. T he m obility o f clients leads to  synergistic values across 

geographically consistent license areas, for exam ple the value for New York City, 

Philadelphia, and W ashington DC m ight be expected to  be much greater th an  the 

value of any one license by itself.

•  Collaborative planning. [HGOO] Consider a  system  of robots th a t want to  perform  

a set of tasks, and  have a  jo in t goal to  perform  the tasks a t as low a  to ta l cost as 

possible. Roles in a  team  to  be conditioned on various constrain ts, for exam ple tim e 

constrain ts, to protect the feasibility of local com m itm ents.
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•  Distributed Query O ptim ization. [SDK+ 94] Consider the  problem  o f perform ing a 

query th a t has a  num ber o f com ponents. Each agent m ight have a  different expertise, 

and  be able to  efficiently answer different decom positions of the  query, (e.g. consider 

a tree structu re).

•  Supply-chain coordination. [WWYOO] Consider the  problem  of allocating compo­

nents to com peting m anufacturers. Each m anufacturer needs a  supply  of the right 

com bination of com ponents for its own product, w ithout all the  com ponents the 

supply is useless.

• Travel packages. [W W O+ 01] Consider the allocation of flights, hotel room s, and 

en tertainm ent tickets to agents th a t represent clients w ith different preferences over 

location, price, hotels, and  en tertainm ent. Moreover, a  client has no value for an 

outw ard flight w ithout a  m atching re tu rn  flight or a  hotel room  w ithou t a  flight.

1.2.2 The Generalized Vickrey Auction

T he Vickrey-Clarke-Groves [Vic61, Cla71, Gro73] provides a  dom inant-strategy  solution 

to the com binatorial allocation problem . Known as the  Generalized Vickrey A uction (or 

GVA) in this dom ain, the m echanism  is a  one-shot direct-revelation solution. In  the  first 

stage the agents are asked to report their valuation functions. T hen , the mechanism 

com putes an allocation based on th a t inform ation, and  com putes paym ents to agents. 

T he paym ents make tru th -revelation  the  dom inant s tra tegy  for an  agent, w hatever the 

inform ation reported  by o ther agents (and even if o ther agents are untru thfu l!). As such, 

the m echanism  successfully aligns the  incentives of individual agents w ith the  system -wide 

objective of com puting an  efficient allocation.

T he VCG m echanism  is introduced in detail in the  next chapter, b u t for now let us 

note th a t it satisfies the  following desirable properties:

Desiderata

• A llo c a tiv e  effic iency . T he m echanism  im plem ents the  efficient allocation, the al­

location th a t m aximizes to ta l value across agents, given ra tional agent strategies.

•  S tr a te g y -p ro o fn e s s .  T ruth-revelation  is optim al for an agent w hatever the  stra te ­

gies of o ther agents, there can be no successful (unilateral) m anipulation  of the
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outcom e.

• In d iv id u a l - r a t io n a l i ty .  T h e  expected utility  from partic ipa tion  is non-negative 

(w ith a  ra tional strategy), w hatever the strategies o f o th er agents.

• (Weak) B u d g e t-b a la n c e .  Each agent makes a  non-negative paym ent to  the  auc­

tioneer, so the net revenue collected by the  auctioneer is non-negative.

In fact, in qu ite  a  strong  sense (see the next chapter) the  Vickrey-Clarke-Groves mech­

anism  defines the only m echanism  for the com binatorial allocation  problem  w ith these 

properties.

However, as discussed in Section 1.1.3, the  single-shot d irect revelation characteristic 

of the m echanism  is qu ite  unattractive  com putationally  in m any interesting application 

dom ains. Consider for exam ple the d istribu ted  vehicle rou ting  application, in which each 

truck would need to com pute and  report its value for all com binations of jobs th a t it has 

positive value.

My d issertation  develops an  iterative com binatorial auc tion  w ith provable efficiency 

properties for agents th a t follow a  myopic best-response strategy ; i.e. tak ing  prices as 

fixed and  bidding for the  bundle th a t maximizes their surp lus in each round. C om binatorial 

auctions allow agents to bid explicitly for com binations of item s. I also propose an extended 

auction th a t  provably term inates w ith Vickrey paym ents in a  num ber of interesting special- 

cases, and  an  experim ental m ethod to  com pute Vickrey paym ents in all problems.

An itera tive com binatorial auction  th a t term inates w ith  Vickrey paym ents and  the 

efficient allocation shares many o f the good gam e-theoretic properties of the GVA, but 

relaxes the  com putational dem ands on agents—  in p articu la r the  unrealistic dem ands on 

inform ation revelation. An agent can follow a  myopic best-response stra tegy  w ith an 

approxim ate evaluation o f its preferences over different outcom es, for exam ple w ith lower- 

and upper- bounds on its values o f different bundles.

1.3 Iterative Combinatorial Auctions

C om binatorial auctions allow agents to bid for bundles of item s directly, and  express logical 

constra in ts over item s, such as "I only want A if I also get B .n Early com binatorial auctions 

were proposed to solve d istribu ted  optim ization problem s w ith  self-interested agents th a t
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have contingent values for items; e.g. an  a irp o rt scheduling problem  in which planes 

need pairs of com patible takeoff and  landing slots, or a  course reg istra tion  problem  in 

which studen ts can bid to  take sets of classes. A lthough com binatorial auctions can be 

approxim ated by m ultiple auctions on single item s, this often results in inefficient outcomes.

In an  iterative com binatorial auction agents can ad just their bids in response to bids 

from o ther agents, as the  auctioneer updates a  provisional allocation and  bundle prices. I t­

erative com binatorial auctions can com pute op tim al solutions to realistic problem  instances 

w ith  less inform ation th an  sealed-bid auctions, and  w ithout agents com puting accurate val­

ues for all in teresting sets of items. Despite a  considerable research effort over the past 

decade, in bo th  artificial intelligence and  economics, it was not known how to design an  

optim al iterative com binatorial auction in general problem s until my dissertation.

iBundle is an  ascending-price com binatorial auction  in which agents can bid for bundles 

of item s in each round. T h e  auction com putes a  provisional allocation to  maxim ize revenue 

in each round, and increases prices on sets o f item s based on unsuccessful bids from agents. 

It term inates as soon as soon as every agent still b idding in the auction wins a  set of item s 

in the provisional allocation, w ith an  efficient allocation (m axim izing to ta l agent value) for 

agents th a t follow a myopic best-response bidding strategy. Myopic best-response assumes 

th a t agents bid for sets of item s th a t m aximize their u tility  taking the curren t ask prices 

as fixed.

T he two most im portan t contributions are:

(a )  an iterative com binatorial auction th a t term inates w ith the efficient allocation for 

agents th a t follow myopic best-response bidding strategies.

(b )  an  iterative com binatorial auction th a t term inates w ith the  efficient allocation and 

Vickrey-Clarke-Groves paym ents, provably in  special-cases, and  conjectured (w ith experi­

m ental support) in all cases.

W ith  this result the auction  inherits much o f the  strategy-proofness of the  VCG solu­

tion, and  myopic best-response becomes a  sequentially-rational s tra tegy  for an  agent.

T he central com ponents of my solution rue:

•  {B undle. I in troduce an  ascending-price auction , iBundle, which is th e  first iterative 

auction  for the  C A P th a t im plem ents efficient allocations for a  reasonable bidding 

strategy, in this case w ith myopic best-response strategies. A myopic best-response 

strategy  is to bid for the bundle th a t m aximizes surplus (value - price), taking the

13

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



prices in th e  curren t round as fixed and  ignoring the  effect of bids on fu ture prices and 

fu ture strategies of o ther agents. (Bundle allows increm ental inform ation revelation 

by agents and  solves realistic problem s w ithout agents revealing, or even com puting, 

com plete inform ation abou t their local preferences.

•  E x te n d  a n d  A d ju s t .  I propose the  Extend& Adjust m ethodology to extend iBundle 

for a  num ber of additional rounds, and com pute a  price discount to each agent at 

the end of the auction. My conjecture , 1 is th a t the d iscounted prices are equal to 

the paym ents in the Vickrey-Clarke-Groves (VCG) m echanism  for the com binatorial 

allocation problem . T his is significant because it makes myopic best-response a 

sequentially-rational s tra tegy  in equilibrium , inheriting a  good degree of robustness- 

to -m anipulation from the VCG mechanism.

•  P ro x y  B id d in g  A g e n ts .  Finally, I propose proxy bidding agents, th a t sit between 

real agents and  the auction and  restric t agents to  myopic best-response strategies for 

some (perhaps un tru thfu l) valuation function. Agents provide proxy agents with in­

crem ental value inform ation, and the proxy agents subm it best-response bids when­

ever there is enough inform ation. T he proxies enforce consistency of increm ental 

preference inform ation across rounds. T he effect is to fu rth er boost robustness-to- 

m anipulation, while retain ing useful com putational properties.

T he com bined system , of (Bundle Extend& A djust and  proxy bidding agents, provides 

a  qu ite  compelling framework for an iterative and  strategy-proof m echanism  for the com­

binatorial allocation problem .

1.3.1 Theoretical Underpinnings

T he proof of optim ality  makes an interesting connection w ith linear program m ing theory. 

iBundle im plem ents a  prim al-dual algorithm  for a  linear program  form ulation of the  combi­

natoria l allocation problem . T he provisional allocation in each round is a  feasible solution 

to the prim al problem , and  the ask prices in each round have a  n a tu ra l in terpre tation  as 

a  feasible solution to the  dual problem.

‘This conjecture is proved in a number of special cases, and a general proof is limited only by the lack 
of a technical lemma about termination.
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Myopic best-response strategies from agents provide enough inform ation to  com pute 

and  verify prim al and  dual solutions to  C A P th a t satisfy com plem entary slackness condi­

tions. T his is the basic m ethodology th a t allows optim al solutions to  the com binatorial 

allocation problem  to be com puted w ithout com plete inform ation about agents’ valuation 

functions. Simply announcing a  feasible dual solution and  com puting a  primed solution 

th a t satisfies com plem entary slackness conditions is enough. A sim ilar connection was 

m ade by Bertsekas for the Assignm ent problem  [Ber87], in which each agent wants at 

m ost one item.

Perhaps the most significant technical con tribu tion  in this d issertation  is to  connect 

this prim al-dual auction-based m ethodology back to the  Vickrey-Clarke-Groves mecha­

nism. A lthough previous au thors have recognized th a t it is useful to com pute Vickrey 

paym ents a t the end of an  itera tive auction, to the  best of my knowledge th is is the first 

d irect application of prim al-dual techniques to com pute Vickrey paym ents in the  general 

com binatorial allocation problem .

In its basic form, an agent can m anipulate the outcom e of iBundle, for exam ple placing 

ju m p  bids, signaling false intentions, or waiting to  bid until the end of the auction. A 

concrete exam ple is provided in chapter 7. By com puting the Vickrey paym ents a t the end 

of the auction, myopic best-response becomes a  sequentially ra tional stra tegy  for an  agent 

in equilibrium . In addition, w ith the proxy bidding agents, increm ental tru th-revelation  

becomes a  dom inant best-response to  any value inform ation provided by o th er agents, 

so long as th a t inform ation is not itself conditioned on inform ation revealed dynam ically 

during the  auction.

I provide a  linear program  form ulation to com pute Vickrey paym ents, and  derive a 

prim al-dual algorithm , VlCKAUCTION, to  com pute the  Vickrey paym ents and  efficient al­

location. V ic k A u c t io n  com putes the  outcom e of the  GVA w ithout com plete inform ation 

revelation from agents, instead requiring th a t agents provide myopic best-response to a 

sequence of ascending prices on bundles. VICKAUCTION has a  n a tu ra l in terp re ta tion  as an 

iterative com binatorial auction, iBundle E xtend& A djust. T h e  linear program  form ulation 

for Vickrey paym ents com putes the  m inim al “com petitive equilibrium ” (CE) price on the 

bundle each agent receives in the efficient allocation. A lthough there are some problems 

in which no single set of C E  prices su p p o rt Vickrey paym ents to  every agent, I show th a t 

it is always possible to  com pute the  Vickrey paym ent as the  m inim al price to  each agent
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over all CE prices.

T he approach in iB undle E xtend& A djust is to:

(a) keep the  auction  open  long enough to  collect enough best-response inform ation 

from agents to com pute Vickrey paym ents, as the  m inim al C E  prices

(b) ad ju st prices tow ards Vickrey paym ents after the  auc tion  term inates, so th a t agents 

pay less th an  w hat they finally bid.

1.3.2 Approximations and Special-Cases

T he w inner-determ ination problem  in each round of iB undle rem ains N P-hard . However, 

each problem  instance in iB undle is typically sm aller and  easier to solve th an  the problem  

instances th a t  an  auctioneer m ust solve in the  single-shot d irect-revelation  Vickrey-Clarke- 

Groves m echanism . Agents only need to bid for the sets o f bundles th a t  m aximize their 

u tility  in each round o f iBundle, while they m ust bid for all bundles w ith some positive 

value in the  VCG solution.

However, there is no escaping the  N P-hardness of the top-level com binatorial allocation 

problem , and  it is necessary to in troduce approxim ations a n d /o r  identify special-cases for 

large problem  instances. T here  are a  num ber o f interesting ways to  in troduce approxim a­

tions w ith in  iBundle w ithou t changing the incentives for agents to follow the sam e myopic 

best-response strategy.

F irst, we can increase the  m inim al bid-increm ent in the  auction , which defines the ra te  

a t which prices are increased across rounds. T he num ber o f rounds in the auction are 

approxim ately inversely-proportional to the bid increm ent, so doubling the  bid increment 

halves the num ber of rounds to term ination  and  the num ber of w inner-determ ination 

problem s to  solve. E m pirical results dem onstrate  an  order-of-m agnitude speed-up over 

the VCG m echanism  w ith  a t  least 99% allocative efficiency, w ith  the  sam e com binatorial 

op tim ization algorithm  to  solve w inner-determ ination problem s in b o th  mechanisms. Ad­

d itional significant speed-ups are achieved as the bid increm ent is increased and  allocative 

efficiency is traded  for com putational efficiency.

Second, we can in troduce approxim ate w inner-determ ination algorithm s into iBundle. 

A sim ple p roperty  of ub id  m onotonicity” (see chapter 5) ensures th a t th e  sam e incentives 

are present for agents to  follow a  myopic best-response b idd ing  strategy. Em pirical anal­

ysis dem onstrates th a t  th e  auc tion  can often achieve qu ite  high allocative-efficiency w ith
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negligible com putation  using a  greedy w inner-determ ination algorithm .

T h ird , we can identify trac tab le  special-cases of the  w inner-determ ination, and restric t 

agents to  bidding languages th a t are com patible w ith  these trac tab le  special-cases. In 

cases in which this restriction leaves agents w ith  enough expressiveness to  follow tru th ­

ful myopic best-response this gives a  significant com putational speed-up w ith  no loss in 

allocative-efficiency. In  general the  expressiveness o f the language leads to  a tradeoff be­

tween com putational and  allocative efficiency, and  can also change the incentive properties 

of an auction  if an  agent is forced to  choose from a  “second-best” set of bids.

1.3.3 Myopic Best-response vs. Direct Revelation

I would like to com m ent briefly abou t the  com plexity of myopic best-response, in com par­

ison w ith direct revelation. In add ition  to  solving the  C A P w ith increm ental inform ation 

revelation, it is im portan t th a t agents can follow myopic best-response strategies w ithout 

com puting their exact value for all bundles.

Consider the sim pler case of an  ascending-price auction for a  single item. Let us com­

pare the com putation required of an  agent in th is auction to a sealed-bid second-price 

Vickrey auction. We will assum e th a t the agent has in itia l bounds on its value for the 

item , and  can refine those bounds by a  m ultiplicative factor a  < I for an  additive cost 

C  > 0. I adopt this sim ple model of a  bounded-rational agent in chapter 8 . Consider now 

the two auctions:

(a )  ascending-price auction. In  the  ascending-price auction the  agent can bid while the  

price is less th an  its lower bound, and  drop ou t when the price is g reater th an  its upper 

bound. It only needs to perform  valuation work when the price is between its two bounds 

and  the  auction is abou t to  term inate. Intuitively, if the  agen t’s actual value is close to 

the highest value over all o ther agents then  it will need to  com pute a  quite accurate value 

to place optim al bids. However, if the  agent’s ac tua l value is quite far from the highest 

outside value then it will be able to  bid optim ally  w ith  a  qu ite  rough approxim ation.

(b )  sealed-bid auction. In  the  sealed-bid auction  an  uninform ed agent, th a t has no infor­

m ation abou t the bids from the o th er agents, m ust com pute its exact value to  subm it an  

optim al bid. As soon as it bids an  approxim ate value it risks missing a  good outcome, if 

the second highest bid in the auction  is between its tru e  value tru e  and  its bid price.

17

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



For now, I claim  th a t the  sam e argum ents can be m ade for itera tive auctions in  com­

binatorial allocation problem s. W hat becomes im portan t in a  com binatorial search space 

is th a t an agent can prune th a t space effectively based on ask prices and  its values for 

bundles, for exam ple m aking inferences abou t the  value for a  set o f bundles based on its 

exact value for one bundle, or the  price for a  set of bundles based on the  price of one 

bundle. This is discussed in more deta il in chapter 8 .

1.4 Bounded Rational Compatible Auctions

To capture the notion of an  auction th a t allows an  agent to bid w ithout com puting its exact 

value for all possible outcom es, I define bounded-rational compatible auctions. A bounded- 

rational com patible (BRC) auction allows an agent to  com pute its equilibrium  bidding 

strategy w ith only approxim ate inform ation abou t its own preferences across outcomes. 

T his parallels the concept of a  strategy-proof auction, in which an  agent can com pute its 

optim al strategy  w ithout m odeling the  o ther agents. BRC auctions are useful in application 

to domains w ith agents th a t have lim ited com putation and  hard  valuation problems.

Iterative auctions present a  special case of bounded-rational com patib le auctions. As 

discussed above, in an  iterative auction an  agent can follow a  myopic best-response strategy 

in response to a sequence of prices w ith an  approxim ate valuation functions. I say th a t an 

iterative auction is myopic bounded-rational compatible. By com parison, a  strategy-proof 

single-shot sealed-bid auction, in which tru th-revelation  is an  agen t’s dom inant strategy, 

is not (dom inant-strategy) bounded-rational com patible because an  agent cannot reveal 

com plete inform ation abou t its valuation function w ith an  approxim ate valuation function.

A bounded-rational com patib le auction need not be allocatively-efficient. For exam ­

ple, a posted-price auction  is bounded-rational com patible, b u t not efficient unless the 

auctioneer is well-informed abou t the preferences o f agents and  able to  set equilibrium  

prices. E xperim ental results for a  sim ple model of bounded-rational agents, w ith costly 

an d /o r lim ited com putation, dem onstra te  th a t iterative auctions can com pute more effi­

cient allocations th an  sealed-bid auctions. Feedback in an  itera tive auction  allows agents 

to focus lim ited com putational resources on com puting values for those outcom es th a t are 

im portan t to find a  good fit w ith  the  preferences of o ther agents. In  add ition  to  leading 

to more efficient allocations, the  results also dem onstrate th a t it is possible to  reduce the
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to ta l am ount of com putation  th a t agents m ust perform  to com pute an  efficient allocation.

1.5 Important Related Work

I in troduce related  lite ra tu re  th roughout my d issertation , in app ropria te  places. However, 

let me briefly m ention some work th a t is very closely related  in m otivation and  m ethodol­

ogy-

Nisan & Ronen [NROO, NR01] have m ade some progress in connections between ap­

proxim ate algorithm s, bounded-rational agents, and  mechanism  design. T his work, th a t 

they coin “A lgorithm ic mechanism design” , considers the following aspects:

(a) connections between approxim ate w inner-determ ination algorithm s and  approxim ate 

m echanisms

(b) a  “challenge and  response” m echanism to improve incentive-com patibility w ith  approx­

im ate w inner-determ ination algorithm s

(c) a  “feasible dom inance” concept, th a t describes an  auction  in which tru th  revelation is 

op tim al given a  subset of possible strategies.

One th ing th a t is absent from their work is any consideration o f the  costs of agent val­

uation  and preference revelation. T he focus instead is on the cost of w inner-determ ination  

and  strateg ic behavior. Similarly, the work o f Tennenholtz et al. [TKDMOO] on the prop­

erties required for an  approxim ate w inner-determ ination algorithm  to satisfy incentive- 

com patib ility  w ithin a  Vickrey like mechanism  focuses in on single-shot sealed-bid mech­

anism s.

N isan [NisOO] has also considered the  tradeoffs between the  expressiveness and  effi­

ciency of bidding languages, and  proposed a  language OR* w ith  a  good com bination of 

properties. Recently La M ura and Shoham  [MS99] have considered the  role of concise 

bidding languages in auctions, for exam ple using hierarchical tree s tructu res to  represent 

preferences and  reasoning in th is ab strac t representation  language.

Shoham  & Tennenholtz’s [ST01] work on the com m unication com plexity of auction 

m echanisms does draw com parisons between itera tive and single-shot sealed-bid auctions. 

For example, the au thors note th a t a  D utch (descending-price auction) is a  m inim al com­

p u ta tio n a l com plexity solution to a  single-item  allocation problem . T his work does not 

consider the valuation work required of agents, ju s t the com m unication complexity.
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Feigenbaum et al. [FPSOO] have proposed a  decentralized m echanism  design for routing 

in a  m ulti-cast tree, w ith self-interested users a t the nodes interested in receiving optim al 

stream s of inform ation. T h e  m echanism  design is innovative in th a t it decentralizes the 

w inner-determ ination work to  nodes in the  tree.

W urm an & W ellman propose a  design for an  iterative com binatorial auction, A ABA 

[Wur99, WWOO]. T h e  m ain differences A ABA and iBundle are in the  s tru c tu re  o f prices 

and  price updates. AABA has only anonym ous prices, and a lthough it term inates in an 

equilibrium  (for agents, b u t not the  auctioneer), the cost is a  loss in allocative efficiency 

in some CAP problem  instances. Nevertheless, experim ental results dem onstrate  high 

allocative efficiency for myopic best-response agents across a  set o f problem s. An analysis 

of the incentive properties of m inim al and  m axim al dual price solutions is also perform ed, 

bu t no strong connection is m ade to  Vickrey-Clarke-Groves paym ents.

O ther im portan t work in iterative auction  design includes th a t of G ul h  S tacchetti 

[GSOO], and particu larly  A usubel [Aus97, AusOO]. Ausubel is able to  achieve Vickrey pay­

ments even in some problem s in which Vickrey paym ents are supported  in no com petitive 

equilibrium . Recent analysis by B ikchandani et al. [BdVSVOl] provides a  prim al-dual 

in terpretation  of his m ethods.

Recently, B ikchandani et al. [BdVSVOl] and B ikchandani & O stroy [BOOO] have dis­

cussed a  linear program m ing m odel for com puting VCG paym ents, and  also characterized 

the trac tab le special-cases of the  com binatorial allocation problem . However the  authors 

were not able to  propose a  prim al-dual m ethod or auction algorithm  to com pute the 

Vickrey paym ents in the general problem . Sim ilar connections were earlier m ade for the 

Assignment problem  by Leonard [Leo83] and  Demange et al. [DGS86 ].

Sandholm  [San93, SL95, SL96, SL97, SanOO] has proposed a  num ber of m ethods to 

handle agent bounded-rationality  and  gam e-theoretic concerns in a  d is trib u ted  system . In 

contrast to my work on auction  m echanisms, much of Sandholm ’s work relates to decentral­

ized task /resource allocation system s w ith no centralized auctioneer. Some contributions 

th a t are relevant to my work include:

( 1) a  m arginal-cost analysis of a  contract-net style protocol, th a t dem onstrates how agents 

might bid w ith approxim ate solutions to  local valuation problem s.

(2 ) a  leveled com m itm ent protocol th a t allows agents to make in itia l contracts under un­

certain ty  and  decom m it if necessary a t a  la ter time.
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(3) a  m echanism  to  allow coalition form ation between bounded-rational self-interested 

agents, th a t allows explicitly for the  cost of com puting th e  values of different coalitions 

during negotiation.

In recent work, Larson & Sandholm  [LSOO] have stu d ied  a m odel of deliberation in 

equilibrium , for bounded-rational agents in a  strateg ic  environm ent.

1.6 Outline

C hap ter 2 in troduces im portan t ideas from gam e theory, economics, and  m echanism  design, 

including concepts of N ash equilibrium  and dom inant s tra tegy  equilibrium , the Revelation 

Principle, uniqueness and  im possibility results, and  the  Vickrey-Clarke-Groves family of 

mechanisms. A survey of possibility and  im possibility results in the  literature is also 

com pleted.

C h ap ter 3 then  introduces concerns in com putational m echanism  design, and consid­

ers a num ber of ways to handle com putational complexity, a t b o th  the agent and  the 

in frastructu re  level.

C hap ters 4 and  5 relate to the design of an  iterative auction  under the assum ption th a t 

agents follow myopic best-response bidding strategies, while C hapters 6 and  7 relate to 

an extension to  the design to justify  myopic best-response w ith  a  connection back to  the 

Vickrey-Clarke-Groves mechanism.

C h ap ter 4 introduces a  linear program m ing approach to  iterative mechanism design, 

and  presents a  prim al-dual algorithm  COMBAUCTION for the com binatorial allocations 

problem . T he algorithm  corresponds w ith iBundle for myopic best-response agent s tra te ­

gies. C h ap te r 5 also surveys the known trac tab le  special-cases of the  com binatorial allo­

cation problem . C h ap ter 4 also contains a  survey of earlier iterative auction designs both 

(im plicitly a t least) prim al-dual based, and  more ad-hoc. C h ap te r 5 presents iBundle, my 

ascending-price com binatorial auction, along w ith  experim ental results relating to bo th  

the economic and  com putational efficiency of the auction.

C hap ter 6 introduces a  linear program m ing approach to com puting Vickrey paym ents 

in the com binatorial allocation  problem. A novel linear program m ing form ulation is derived 

to com pute Vickrey paym ents from a  su itable set of com petitive equilibrium  prices and 

the efficient allocation. T his leads to  an  ad justm ent procedure ADJUST* to  take prices at
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the end of tBundle and  com pute discounts to each agent, ad justing  prices tow ards Vickrey 

paym ents. I characterize necessary an d  sufficient conditions for the procedure to com pute 

Vickrey paym ents, and  propose a  com plete prim al-dual algorithm , V i c k A u c t i o n  to com­

pu te Vickrey paym ents. T his is significant, because it has a  n a tu ra l auction in terp re ta tion  

as an extension to iBundle.

C hap ter 7 presents the  E xtend& A djust m ethod, which introduces a  second phase to  

iBundle. T he purpose of the second phase is to collect enough additional inform ation 

from agents to com pute Vickrey paym ents when the auction term inations, in addition 

to the efficient allocation. Proxy bidding agents are introduced, to boost robustness-to- 

m anipulation  in an  iterative auction th a t term inates w ith Vickrey paym ents w ith myopic 

best-response agent bidding strategies. E xperim ental results dem onstrate  the  convergence 

of auction prices in iBundle E.xtend&A djust to  Vickrey paym ents in general C A P problem s. 

Vickrey paym ents make myopic best-response a  Bayesian-Nash equilibrium  of the auction.

C hap ter 8 focuses on agent com putation  in m echanisms, in particu lar on the agent 

valuation work th a t is required across different solutions. Bounded-rational compatibility 

is proposed to characterize auctions th a t allow an agent to com pute an  optim al strategy  

w ith approxim ate inform ation abou t its own preferences. E xperim ental results com pare 

the  efficiency and agent com putation  in iterative and  sealed-bid auctions, for a sim ple 

m odel of agent bounded-rationality  and  myopic m etareasoning. I also present a structural 

analysis of the worst-case complexity of myopic best-response in com binatorial auctions, in 

com parison w ith the worst-case com plexity of com plete revelation, and identify conditions 

th a t provide an exponential speed-up for iterative mechanisms.

C h ap ter 9 considers a  concrete application  of an  auction m ethod to a  d istribu ted  op­

tim ization  problem, a  d istribu ted  tra in  scheduling problem . T he problem  is to com pute 

a  shared schedule for trains over a  network, such th a t tra in s rim  as close to  on-tim e as 

possible and  the cost of e a rly /la te  arrivals and  departu res is minim ized. T h e  s tru c tu ra l 

assum ption is th a t trains are self-interested and  autonom ous, and  would like to  travel on- 

tim e irrespective of the effect on o ther trains. In addition, individual d ispatcher agents 

control separate network territories. T rains bid for th e  right to  enter and  exit territories a t 

particu lar times, and dispatchers select bids to  m axim ize revenue such th a t a  safe schedule 

exists to  get trains across the region. T he continuous quality  of tim e is handled in the 

auction w ith a  constrain t-based bidding language. T he train-scheduling problem  is no t a
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com binatorial allocation problem , for exam ple because th e  feasible com binations of items 

(which we can th ink of as en try  and  exit tim es) are not s ta tically  defined, bu t depend 

on the ability  to  construct feasible tim e-location schedules for trains. However, iBundle 

price-update, w inner-determ ination and term ination  sem antics prove useful in this domain.

My conclusions are in chapter 10, together w ith  a  b rief discussion of interesting areas 

for fu ture work.
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Chapter 2

Classic Mechanism Design

M echanism design is the sub-field of microeconomics and game theory th a t considers how 

to im plem ent good system -wide solutions to  problems th a t involve m ultiple self-interested 

agents, each w ith private inform ation abou t their preferences. In  recent years mecha­

nism design has found m any im portan t applications; e.g., in electronic m arket design, in 

d istribu ted  scheduling problem s, and  in com binatorial resource allocation problem s.

T his chapter provides an  in troduction  to  the the gam e-theoretic approach to  mechanism 

design, and  presents im portan t possibility and  im possibility results in the literature . There 

is a  well-understood sense of w hat can and  cannot be achieved, a t least w ith fully rational 

agents and w ithout com putational lim itations. T he next chapter discusses the emerging 

field of computational m echanism  design, and  also surveys the economic lite ra tu re  on lim­

ited com m unication and agent bounded-rationality  in m echanism  design. T he challenge 

in com putational m echanism  design is to design mechanisms th a t are both trac tab le  (for 

agents and the auctioneer) an d  re ta in  useful gam e-theoretic properties. For a m ore general 

in troduction  to  the m echanism  design literature , M asColell et al. [MCWG95] provides a 

good reference. Varian [Var95] provides a  gentle in troduction to the role of mechanism 

design in system s of com putational agents.

In a m echanism  design problem  one can imagine th a t each agent holds one of the 

“inpu ts” to  a  well-formulated bu t incom pletely specified optim ization problem , perhaps a 

constra in t or an objective function coefficient, and  th a t the system -wide goal is to  solve 

the specific in stan tia tion  of the optim ization  problem  specified by the  inputs. C onsider for 

exam ple a  network routing problem  in  which the  system -wide goal is to allocate resources 

to minim ize the  to ta l cost of delay over all agents, b u t each agent has private inform ation 

ab o u t param eters such as message size and  its unit-cost of delay. A typical approach
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in m echanism  design is to  provide incentives (for exam ple w ith  su itab le  paym ents) to 

prom ote tru th -revela tion  from agents, such th a t an optim al solution can  be com puted to 

the d is trib u ted  optim ization  problem.

Groves mechanisms [Gro73] have a  central role in classic m echanism  design, and  promise 

to rem ain very im portan t in com putational mechanism design. Indeed, Groves mechanisms 

have a  focal role in my dissertation , providing strong guidance for the  design of mechanisms 

in the com binatorial allocation problem . Groves mechanisms solve problem s in which the 

goal is to select an  outcom e, from a  set of discrete outcom es, th a t maximizes the total 

value over all agents. T he Groves mechanisms are strategy-proof, which means th a t tru th - 

revelation o f preferences over outcom es is a  dom inant strategy  for each agent— optim al 

whatever th e  strategies and preferences of o ther agents. In  addition  to providing a  robust 

solution concept, strategy-proofness removes gam e-theoretic com plexity from each individ­

ual agents decision problem; an agent can com pute its optim al s tra tegy  w ithout needing 

to model the  o ther agents in the system . In fact (see section 2.4), Groves mechanisms are 

the only s tra tegy-proof and  value-m aximizing (or efficient) mechanisms.

But Groves mechanisms have quite  bad com putational properties. Agents m ust report 

com plete inform ation abou t their preferences to the  m echanism, and  the optim ization 

problem — to m axim ize value — is solved centrally once all th is inform ation is reported. 

Groves m echanisms provide a  com pletely centralized solution to  a  decentralized problem. 

In addition  to difficult issues such as privacy of inform ation, tru s t, etc. the approach 

fails com putationally  in com binatorial dom ains either when agents cannot com pute their 

values for all possible outcomes, or when the m echanism  cannot solve the centralized 

problem. C om putational approaches a ttem p t to re ta in  the  useful gam e-theoretic properties 

bu t relax th e  requirem ent of com plete inform ation revelation. As one introduces alternative 

d istrib u ted  im plem entations it im portan t to  consider effects on gam e-theoretic properties, 

for exam ple the effect on strategy-proofness.

Here is an  outline of the chapter. Section 2.1 presents a  brief in troduction  to game- 

theory, in troducing the  m ost im portan t solution concepts. Section 2.2 introduces the 

theory of m echanism  design, and  defines desirable m echanism  properties such as efficiency, 

strategy-proofness, individual-rationality, and  budget-balance. Section 2.3 describes the 

revelation principle, which has proved a  powerful concept in m echanism  design theory, and 

introduces incentive-com patibility and  direct-revelation m echanisms. Section 2.4 presents
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the  efficient and  strategy-proof Vickrey-Clarke-Groves m echanisms, including the Gener­

alized Vickrey A uction for the com binatorial allocation problem . Sections 2.5 and  2.6 

sum m arize the  central im possibility and  possibility results in m echanism  design. Finally, 

section 2.7 is provides a  brief discussion of op tim al auction  design and the conflict between 

the goals of revenue-m axim ization and  efficiency.

2.1 A Brief Introduction to Game Theory

Gam e theory [vNM47, Nas50] is a  m ethod to  study  a  system  of self-interested agents in 

conditions of strateg ic interaction. T his section provides a  b rief tour of im portan t game- 

theoretic solution concepts. Fudenberg & T irole [FT91] and  O sborne & R ubinstein  [OR94] 

provide useful introductions to the  subject. Places to s ta r t for auction  theory include 

McAfee & M cM illan [PMM87] and  W urm an et al. [WWWOO].

2.1.1 Basic Definitions

It is useful to  introduce the idea o f the  type of an  agent, which determ ines the  preferences 

of an  agent over different outcom es of a  game. T h is will bring  clarity  when we discuss 

mechanism design in the next section. Let 0j €  ©i denote the  type of agent i, from a  set of 

possible types 0 , .  An agent’s preferences over outcom es o €  O , for a  set O  o f outcom es, 

can then be expressed in term s of a  u tility  function th a t is param eterized on the  type. Let 

0 ,) denote the u tility  of agent i  for outcom e o 6  O  given type 0,. Agent i  prefers 

outcom e 0 [ over 02 when U i(o i,0;) >  Ui(o2 , 0 j).

T h e  fundam ental concept of agent choice in  gam e-theory is expressed as a  strategy. 

W ithou t providing unnecessary s tru c tu re , a  s tra tegy  can loosely be defined as:

D e f in it io n  2 .1  [ s tr a te g y ]  A s t r a t e g y  is  a  c o m p le te  c o n t in g e n t  p la n ,  o r  d e c is io n  ru le ,  

th a t d e f in e s  th e  a c t i o n  a n  a g e n t  w ill  s e le c t  in  e v e r y  d is t i n g u i s h a b le  s t a t e  o f  t h e  w o rld .

Let Si(9i) 6  Si denote the stra tegy  of agent i  given type 0;, where Si is the  set of all 

possible strategies available to  an  agent. I t is often useful to  leave the  conditioning on 

an agen t’s type implicit, and  sim ply w rite Si for the  stra tegy  selected by agent i given its 

type.

In add ition  to pure, or determ inistic strategies, agent strategies can  also be mixed, or 

stochastic. A mixed strategy, w ritten  <t; 6  A  (Si) defines a  probability  d istribu tion  over
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pure strategies.

Example. In a  single-item  ascending-price auction , the s ta te  o f the  world (p, x) defines

the  curren t ask price p > 0  and  w hether or not the  agent is holding the  item  in the 

provisional allocation x  6  { 0 ,1}. A stra teg y  defines the bid b (p ,x ,v )  th a t  an  agent will

One can imagine th a t a  game defines the set of actions available to  an  agent (e.g. valid 

bids, legal moves, etc.) and  a  m apping from agent strategies to  an  outcom e (e.g. the agent 

w ith highest bid a t the end of the auction  wins the  item  and  pays th a t price, checkm ate 

to win the game, etc.)

Again, avoiding unnecessary detail, given a  gam e (e.g. an  auction, chess, etc.) we can 

express an  agent’s u tility  as a  function o f the  strategies of all the  agents to  cap tu re  the 

essential concept of strateg ic  interdependence.

D e f i n i t i o n  2 . 2  [utility in a  game] Let u*(si , . . .  , s / , 0 j )  denote the u tility  of agent i 

a t the outcom e of the game, given preferences £>,• and  strategies profile s  =  ( s i , . . .  , s /)  

selected by each agent.

In o ther words, the utility, u,-(-), o f agent i determ ines its preferences over its own 

stra tegy  and the strategies of o ther agents, given its type 9i, which determ ines its base 

preferences over different outcom es in the  world, e.g. over different allocations and  pay­

m ents.

Example. In a  single-item  ascending-price auction, if agent 2 has value =  10 for 

the item  and  follows stra tegy  6b r ,2 (p>x ,  vz) defined above, and  agent 1 has value vi and  

follows stra tegy  6 b r ( p , x , v i ) ,  then  the  u tility  to  agent 1 is:

place for every sta te , (p, x) and  for every value v >  0 it m ight have for th e  item. A 

best-response stra tegy  is as follows:

p , if x  =  0  and  p < v 

no bid , otherw ise

u i (&BR,i(p,x,i/i),f>BR,2(p,s, 10), 10) =
i/i — (10  +  e) , if i/i >  10 

0 , otherw ise

where e >  0 is the m inim al bid increm ent in the  auction  an d  agent i ’s u tility  given 

value Vi and  price p  is u* =  t/j — p, i.e. equal to  its surplus.

27

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



T h e basic m odel of agent rationality  in gam e-theory is th a t  of an  ex p ec ted  u t i l i ty  m a x ­

im iz e r .  An agent will select a  strategy  th a t m aximizes its expected utility, given its pref­

erences Oi over outcom es, beliefs abou t the  strategies of o ther agents, and  s tru c tu re  of the 

game.

2.1.2 Solution Concepts

G am e theory provides a  num ber of solution concepts to  com pute the outcom e of a game 

w ith self-interested agents, given assum ptions ab o u t agent preferences, rationality, and 

inform ation available to agents about each other.

T he m ost well-known concept is th a t of a Nash equilibrium  [Nas50], which states th a t 

in equilibrium  every agent will select a utility-m axim izing stra tegy  given the strategy  of 

every o ther agent. It is useful to introduce notation  s  =  ( s i , . . .  , S [ )  for the jo in t strategies 

of all agents, or s tr a te g y  p ro file , and s - i  =  ( s i , . . .  , s«_i, Sj+i, s / )  for the  strategy  of every 

agent except agent i. Similarly, let denote the type of every agent except i .

D e f i n i t i o n  2 . 3  [Nash equilibrium] A strategy  profile s  =  ( s i , . . .  , S [ )  is in Nash equi­

librium  if every agent maximizes its expected utility, for every i ,

u t(s i(0 i) .s - i(0 -i) .0 « ) >  for all ^  Si

In  words, every agent maximizes its u tility  w ith  stra teg y  Si, given its preferences and 

the stra tegy  of every o ther agents. T his definition can be extended in a straightforw ard 

way to include mixed strategies.

A lthough the Nash solution concept is fundam ental to  gam e-theory, it does make very 

strong  assum ptions abou t agents’ inform ation and  beliefs ab o u t o ther agents, and also loses 

power in games w ith m u ltip le  equilibria. To play a  N ash equilibrium  in a  one-shot game 

every agent m ust have perfect inform ation (and know every o ther agent has the  same 

inform ation, etc., i.e. common knowledge) ab o u t the  preferences o f every o ther agent, 

agent ra tionality  m ust also be common knowledge, and  agents m ust all select the  same 

Nash equilibrium .

A stronger solution concept is a  d o m in a n t s tr a te g y  equilibrium . In  a  dom inant strategy  

equilibrium  every agent has the same utility-m axim izing strategy, for ail strategies of o ther 

agents.
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D e f i n i t i o n  2 .4  [Dom inant-strategy] S trategy  Si is a  dom inant s tra teg y  if it (weakly) 

maximizes the agent’s expected u tility  for all possible strategies o f o th er agents,

U i(s i,s - i,8 i)  > Ui(s'i t s - i ,0 i) ,  for all s( ±  s - i  €  S - i

In o ther words, a  strategy  s* is a  dom inant s trategy  for an  agent w ith preferences 0, if 

it maximizes expected utility, w hatever the strategies of o ther agents.

Example. In a  sealed-bid second-price (Vickrey auction), the item  is sold to the  highest 

bidder for the second-highest price. Given value ui, b idding strategy

bi(vi) = Vi

is a  dom inant s trategy  for agent i because its u tility  is

f  v t - V  , if 6j >  b’
mbi,b,vi) =  <

I 0 otherw ise

for bid bi and highest bid from ano ther agent b1. By case analysis, when 6' <  Vj then  any 

bid bi > b' is optim al, and when b' >  Vi then  any bid 6; <  b' is optim al. Bid bi =  u, solves 

bo th  cases.

D om inant-strategy equilibrium  is a  very robust solution concept, because it makes 

no assum ptions abou t the inform ation available to agents abou t each other, and  does not 

require an agent to  believe th a t o ther agents will behave rationally  to select its own optim al 

strategy. In the context of m echanism  design, dom inant s trategy  im plem entations of social 

choice functions are much more desirable th an  Nash im plem entations (which in the context 

of the inform ational assum ptions a t the core of mechanism design are essentially useless).

A th ird  solution concept is Bayesian-Nash equilibrium. In  a  Bayesian-Nash equilibrium  

every agent is assum ed to share a  common prior  about the  d istribu tion  of agent types, 

F (0 ), such th a t for any particu lar game the agent profiles are d istribu ted  according to F (0 ). 

In equilibrium  every agent selects a  strategy  to  maximize expected u tility  in equilibrium  

with expected-utility  m aximizing strategies o f o ther agents.

D e f i n i t i o n  2.5  [Bayesian-Nash] A stra tegy  profile s =  ( s i ( - ) , . . .  ,s /( -))  is in Bayesian- 

Nash equilibrium  if for every agent i and all preferences 6i €  0 t

U i(s i(0 j),s-i(-) ,0 i) >  u.-(Si(0i ) i s -i(-)»0i)) for all s((-) ^  Si(-)
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where u, is used here to  denote the expected u tility  over d is trib u tio n  F(6)  of types.

Compaxing Bayesian-Nash w ith  Nash equilibrium , the  key difference is th a t agent i ’s 

stra tegy  s;(0*) m ust be a  best-response to  the distribution  over strateg ies of o ther agents, 

given d istribu tional inform ation about the preferences of o ther agents. Agent i does not 

necessarily play a  best-response to  the actual s trategies of the o ther agents.

Bayesian-Nash makes m ore reasonable assum ptions abou t agent inform ation than  Nash, 

bu t is a  weaker solution concept than  dom inant s tra teg y  equilibrium . R em aining problems 

w ith Bayesian-Nash include the existence of m ultiple equilibria, inform ation asym m etries, 

and  ra tionality  assum ptions, including common-knowledge of rationality.

T he solution concepts, of Nash, dom inant-strategy, and  Bayesian-Nash, hold in bo th  

static  and dynam ic  games. In a s ta tic  game every agent com m its to  its stra tegy  sim ulta­

neously (th ink  of a  sealed-bid auction for a  sim ple exam ple). In  a  dynam ic game actions 

are interleaved w ith observation and agents can learn inform ation abou t the preferences 

of o ther agents during  the  course of the  game (th ink  of an  iterative auction, or stages in 

a negotiation). A dditional refinements to these solution concepts have been proposed to 

solve dynam ic games, for exam ple to enforce sequential rationality (backw ards induction) 

and to remove non-credible threats off the equilibrium  path . O ne such refinement is sub- 

gam e perfect Nash, ano ther is perfect Bayesian-Nash (which applies to dynam ic games of 

incom plete inform ation), see [FT91] for more details.

Looking ahead to  m echanism  design, an ideal m echanism  provides agents w ith a dom ­

inant stra tegy  and  also im plem ents a  solution to  the  m ulti-agent d is trib u ted  optim ization 

problem. We can s ta te  the  following preference ordering across im plem entation concepts: 

dom inant >- Bayesian-Nash >- Nash. In fact, a  N ash solution concept in  the concept of a 

m echanism  design problem  is essentially useless unless agents are very well-informed about 

each o thers’ preferences, in  which case it is surprising th a t  th e  m echanism  infrastructure 

itself is not also well-informed.

2.2 Mechanism Design: Important Concepts

T he m echanism  design problem  is to im plem ent an  op tim al system -w ide solution to a 

decentralized optim ization  problem  w ith  self-interested agents w ith  private inform ation 

abou t their preferences for different outcomes.
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Recall the  concept of an  agen t’s type, 9{ G 0 j ,  which determ ines its preferences over 

different outcomes; i.e. Ui(o,9i) is the  u tility  of agent i  w ith  type 9{ for outcom e o G O.

T h e system -wide goal in m echanism  design is defined w ith  a  social choice function, 

which selects the optim al outcom e given agent types.

D e f in i t i o n  2 .6  [Social choice function] Social choice function /  : 0 i  x  . . .  x 0 /  —► O  

chooses an  outcom e f {9)  G O,  given types 9 =  ( # i , . . .  , 9[).

In o ther words, given agent types 9 =  ( 0 i , . . .  ,9[),  we would like to  choose outcom e 

f ( 9 ) .  T h e  mechanism design problem  is to  im plem ent “rules of a  gam e” , for exam ple 

defining possible strategies and  the  m ethod  used to select an  outcom e based on agent 

strateg ies, to im plement the solution to  the  social choice function despite agen t’s self- 

in terest.

D e f in i t i o n  2 .7  [m e c h a n is m ] A  m e c h a n is m  M  = [ S i , . . .  , S i , g( - ) )  d e f in e s  th e  s e t  o f  

s t r a t e g i e s  Si a v a i la b le  to  e a c h  a g e n t ,  a n d  a n  outcome rule g : S i X . . . x S [  - *  O,  s u c h  t h a t  

g[s)  is th e  o u tc o m e  im p le m e n te d  b y  t h e  m e c h a n is m  fo r  s t r a t e g y  p ro f ile  s  =  ( s i , . . .  , s / ) .

In words, a mechanism defines the strategies available (e.g., bid a t least the  ask price, 

etc.) and  the m ethod used to select th e  final outcom e based on agent strategies (e.g., the 

price increases until only one agent bids, then  the item  is sold to  th a t agent for its bid 

price).

G am e theory is used to analyze the  outcom e of a  m echanism . Given m echanism  M  

w ith outcom e function g(-), we say th a t a  m echanism  im plem ents  social choice function 

f [ 9 )  if the outcom e com puted w ith equilibrium  agent strategies is a solution to  the social 

choice function for all possible agent preferences.

D e f in it io n  2 .8  [mechanism im plem entation] M echanism  M  =  ( S i , . . .  , S[,g{-)) im ­

p lem ents  social choice function f ( 9 )  if g ( s j ( 0 i ) , . . .  , s m{ (9[)) =  f ( 9 ) ,  for all ( 0 i , . . .  ,9[)  G 

0 ! x . . .  x 0 / ,  where strategy  profile ( s [ , . . .  , s j )  is an  equilibrium  solution to  the  game 

induced by M..

T h e equilibrium  concept is deliberately  left undefined a t this stage, b u t may be Nash, 

Bayesian-Nash, dom inant- or some o th er concept; generally as strong  a  solution concept 

as possible.

To understand  why the m echanism  design problem  is difficult, consider a  very naive 

m echanism  design, and suppose th a t the  system -w ide goal is to  im plem ent social choice
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function / (0 ) .  T h e  m echanism  asks agents to report their types, an d  then  sim ply imple­

m ents the solution to the  social choice function th a t corresponds w ith  th e ir reports, i.e. 

the outcom e rule is equivalent to  the social choice function, g(9)  =  / (0 )  given reported 

types 8 =  ( 0 i , . . .  , 8[).  B ut, th ere  is no reason for agents to  rep o rt their tru e  types! In a 

Bayesian-Nash equilibrium  each agent will choose to  announce a  type Oi to  maximize its 

expected utility, and solve:

m ax u i (8,i ,s - i( - ) ,8 i)
s'eGi

given d istribu tional inform ation abou t the types of o ther agents, and  under the assump­

tion th a t the o ther agents are also following expected-utility  m axim izing strategies. This 

announced type 0, need not equal the agent’s true type.

Looking ahead, the m echanism  design problem  is to design a  m echanism — a set of 

possible agent strategies and  an  outcom e rule — to im plem ent a  social choice function with 

desirable properties, in as strong  a  solution concept as possible; i.e. dom inant is preferred 

to Bayesian-Nash because it makes less assum ptions abou t agents.

2.2.1 Properties of Social Choice Functions

Many properties of a  m echanism  are s ta ted  in term s of the properties of the social choice 

function th a t th e  m echanism  im plem ents. A good place to s ta r t  is to outline a  num ber of 

desirable properties for social choice functions.

A social choice function is Pareto optimal (or Pare to  efficient) if it im plem ents outcomes 

for which no a lternative outcom e is strongly preferred by a t least one agent, and  weakly 

preferred by all o ther agents.

D e f in it io n  2 .9  [Pareto optim al] Social choice function f ( 9 )  is P are to  optim al if for 

every o' ^  f {9) ,  and all types 9 =  ( 0 i , . . .  , 0 /),

Ui{o',9i) > Ui(o,8i) => 3j  Uj{o',9j) < Uj{o,9j)

In o ther words, in a  Pare to  optim al solution no agent can every be m ade happier 

w ithout m aking a t least one o th er agent less happy.

A very com m on assum ption  in  auction theory and  m echanism  design, and  one which I 

will follow in my d issertation, is th a t agents are risk neutral an d  have quasi-linear utility  

functions.
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D e f in it io n  2 .1 0  [Quasi-linear Preferences] A quasi-linear u tility  function for agent i 

w ith type 0* is of the form:

Ui(o,0j) =  Vi ( x , d i )  -  p i

where outcom e o defines a  choice i  €  1C from a  discrete choice set and  a  paym ent pi by the 

agent.

An agent’s type in this sim pler case defines its valuation function , Vi (x) ,  which is its 

value for different choices x  G 1C. Set /C is the  choice set. In an allocation problem  the al­

ternatives K. represent allocations, and the  transfers represent paym ents to  the  auctioneer.

Example. In an  auction for a  single-item, the outcom e defines the allocation, i.e. which 

item  gets the item, and the paym ents of each agent. Assum ing th a t agent i  has value 

V, =  S10 for the item, then  its utility  for an  outcom e in which it is allocated th e  item  is 

Ui = V i -  p =  10 -  p, and the agent has positive u tility  for the outcom e so long as p  <  $10.

Risk neutrality  follows because an expected utility  m axim izing agent will pay as much 

as the expected value of an item. For exam ple in a  s ituation  in which it will receive the 

item  w ith value $10 w ith probability ir, an  agent would be happy to pay as much as $107r 

for the item.

W ith  quasi-linear agent preferences we can separate  the  outcom e of a  social choice 

function into a choice x(9)  €  K. and a  paym ent Pi(9) m ade by each agent i:

/ (0 )  =  (x (0 ),P l ( 0 ) , . . .  ,p/ (9))

for preferences 8 =  (0 ^ ,.. .  , 0/).

T he outcome rule in a  mechanism w ith quasi-linear agent preferences, g{s),  is decom­

posed into a  choice rule, k(s) ,  th a t selects a  choice from the  choice set given stra tegy  profile 

s, and  a paym ent rule ti[s) th a t selects a  paym ent for agent i  based on strategy  profile s.

D e f in it io n  2 .11  [quasi-linear mechanism] A quasi-linear m echanism  

M  = ( S i , . . .  , S [ , k ( - ) , t \ ( - ) , . . .  , t[(-))  defines: the sec of strategies Si available to each 

agent; a  choice rule k  : S i  x  . . .  x  Sr -> 1C, such th a t k(s)  is the  choice im plem ented for 

s trategy  profile s = ( s i , . . .  , sr);  and transfer rules ti : S i  x  . . .  x  Sr  -> R, one for each 

agent i, to  com pute the paym ent tt (s) m ade by agent i.
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Properties of social choice functions im plem ented by a  m echanism  can  now be stated  

separately, in term s o f the  choice selected and  the  paym ents.

A social choice function is efficient if:

D e f i n i t i o n  2 .12  [allocative efficiency] Social choice function f ( 8 )  =  (x(8) ,p(8))  is 

allocatively-efficient if for all preferences 0 — ( # i , . . .  , 9[)

I
5 3  Vi{x{0),  0i) > 5 3  ”»(*'> ft) . for all x ' €  /C (Eff)
i=i i

It is common to s ta te  th is as allocative efficiency, because the  choice sets often define 

an allocation of item s to agents. A n efficient allocation m aximizes the  to ta l value over all 

agents.

A social choice function is budget-balanced if:

D e f i n i t i o n  2 .1 3  [budget-balance] Social choice function f ( 9 )  = (x{9) ,p(9))  is budget- 

balanced if for all preferences 6 =  ( 0 j , . . .  , 9[ )

I

£ > ( * ) =  0 (BB>
i=i

In o ther words, there are no net transfers ou t of the system  or into th e  system . Taken

together, allocative efficiency and budget-balance imply Pareto  optim ality.

A social-choice function is weak budget-balanced if:

D e f i n i t i o n  2 .14  [weak budget-balance] Social choice function f {9)  =  (x{9) , p(9)) is 

weakly budget-balanced if for all preferences 9 = (8i , . . .  , 9[)

t
5 3 Pi ( 0 ) > °  (WBB)
i=l

In o ther words, there can be a  net paym ent m ade from agents to  th e  m echanism , bu t 

no net paym ent from the m echanism  to the agents.

2.2.2 Properties of Mechanisms

Finally, we can define desirable properties o f mechanisms. In  describing the properties of 

a m echanism  one m ust state:
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-  the  solution concept, e.g. Bayesian-Nash, dom inant, etc.

-  the domain o f agent preferences, e.g. quasi-linear, m onotonic, etc.

T he definitions follow quite natura lly  from th e  concept o f im plem entation  (see definition 

2.8) and  properties of social choice functions. A m echanism  has property  P if it im plements 

a  social choice function w ith property  P.
For exam ple, here consider the definition o f a  Pareto optimal mechanism:

D e f in it io n  2 .15  [Pareto optim al mechanism] M echanism  M  is P are to  optim al if it im ­

plem ents  a  P are to  optim al social choice function f {9)  for all agent profiles 9 = [9 \ , . . .  , 9[).

Technically, this is ex post P are to  o p tim a lity - outcom e is P are to  op tim al for the specific 

agent types. A weaker form of P areto  optim ality  is ex ante, in  which there is no outcom e 

th a t a t least one agent s tric tly  prefers in expectation  and  all o ther agents weakly prefer in 

expectation.

Similarly, a  m echanism  is efficient if it selects the  choice x {&) 6  K. th a t maximizes to tal 

value for all agent preferences:

D e f in it io n  2 .16  [efficient mechanism] M echanism  M  is efficient if it im plem ents an 

allocatively-efficient social choice function f {9)  for all agent profiles 9 =  ( 9 i , . . .  ,9j) .

C orresponding definitions follow for budget-balance and  weak budget-balance. In the 

case of budget-balance it is im portan t to  make a  careful d istinction  between ex ante and 

ex post budget balance.

D e f in it io n  2 .1 7  [ex ante BB] M echanism M  is ex ante budget-balanced if the  equi­

librium  net transfers to  the mechanism sure balanced in  expectation for a  d istribu tion  over 

agent preferences.

D e f in it io n  2 .18  [ex post BB] M echanism M  is ex post budget-balanced if the equilib­

rium  net transfers to the  m echanism  are non-negative fo r  all agent preferences.

A nother im portan t p roperty  of a  m echanism  is individual-rationality, sometimes known 

as “voluntary  partic ipa tion” constraints, which allows for the  idea th a t an  agent is often 

not forced to partic ipa te  in a  m echanism  b u t can  decide w hether or not to partic ipate . 

Essentially, individual-rationality  places constra in ts on the  level of expected u tility  th a t 

an  agent receives from participation.

Let Ui{9i) denote the  expected u tility  achieved by agent i outside o f the m echanism, 

when its type is 0*. T he m ost n a tu ra l definition o f individual-rationality  (IR) is interim
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IR, which sta tes th a t the  expected utility  to an  agent th a t knows its own preferences but 

has only distributional in form ation about the preferences o f the other agents is a t least its 

expected outside utility.

D e f in it io n  2 .1 9  [ i n d iv id u a l  r a t io n a l i ty ]  A m e c h a n is m  M  is  ( in terim ) in d i v id u a l - r a t io n a l  

if for a ll  p re f e re n c e s  0 , i t  im p le m e n ts  a  s o c ia l  c h o ic e  f u n c t io n  f {9)  w ith

ui(m,0-i))>5i(0i) (ir)

where Ui( f (8i ,9- i ) )  is the expected utility  for agent i a t the outcom e, given d istribu tional 

inform ation abou t the preferences of o ther agents.

In o ther words, a  m echanism  is individual-rational if an  agent can always achieve as 

much expected u tility  from partic ipation  in the  mechanism as not partic ipa ting , for any 

preferences, given prior beliefs abou t the preferences of o ther agents.

In a  m echanism  in which an  agent can w ithdraw  once it learns th e  outcom e ex post IR 

is more appropriate, in which the  agent’s expected u tility  from partic ipa tion  m ust be a t 

least its best outside u tility  fo r  all possible types of agents in the system . In  a  mechanism 

in which an agent m ust choose to  partic ipa te  before it even knows its own preferences 

then  ex ante IR  is appropriate; ex ante IR  sta tes th a t the agen t’s expected utility  in the 

mechanism, averaged over all possible preferences, m ust be a t least its expected utility  

w ithout partic ipating , also averaged over all possible preferences.

One last im portan t m echanism  property, defined for direct-revelation  mechanisms, is 

incentive-compatibility. T h e  concept of incentive com patibility  and  direct-revelation mech­

anism s is very im portan t in classic mechanism design, and discussed in the  next section in 

the context of the revelation principle.

2.3 The Revelation Principle, Incentive-Compatibility, and 

Direct-Revelation

T he revelation principle  s ta te s  th a t under quite weak conditions any m echanism  can be 

transform ed into an equivalent incentive-compatible direct-revelation m echanism , such th a t 

it im plem ents the  sam e social-choice function. T his proves to  be a  powerful theoretic tool, 

leading to the central possibility and  im possibility results of m echanism  design.

A direct-revelation m echanism  is a  m echanism  in which th e  only actions available to
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agents are to  make direct claims abou t their preferences to  the  m echanism. An incentive- 

com patible m echanism  is a  direct-revelation m echanism  in which agents report truthful 

in form ation  ab o u t their preferences in equilibrium . Incentive-com patibility  captures the 

essence of designing a  m echanism  to overcome the  self-interest of agents— in an  incentive- 

com patible m echanism  an agent will choose to  repo rt its p rivate inform ation truthfully, 

ou t of its own self-interest.

Example. T he second-price sealed-bid (Vickrey) auc tion  is an  incentive-com patible (ac­

tually  strategy-proof) direct-revelation m echanism  for th e  single-item  allocation problem.

Com putationally , the revelation principle m ust be viewed w ith great suspicion, direct- 

revelation mechanisms are often too expensive for agents because they place very high 

dem ands on inform ation revelation. An iterative m echanism  can som etim es implement 

the sam e outcom e as a  direct-revelation m echanism  bu t w ith  less inform ation revelation 

and  agent com putation . T he revelation principle restric ts  what we can do, bu t does not 

explain how  to  construct a  mechanism to achieve a  p articu la r set of properties.

2.3.1 Incentive Compatibility and Strategy-Proofness

In a  d irect-revelation m echanism  the only action available to  an  agent is to subm it a  claim 

abou t its preferences.

D e f in it io n  '2.20 [ d i r e c t - r e v e la t io n  m e c h a n is m ]  A d i r e c t - r e v e la t io n  m e c h a n is m  M  =  

( 0 j , . . .  , 0 / , g (  )) in  s e ts  th e  s t r a t e g y  s e t  5, =  0 j  fo r  a l l  i, a n d  h a s  o u tc o m e  r u le  g : 

0 i  x . . .  x 0 /  —> O  w h ic h  s e le c ts  a n  o u tc o m e  g{9) b a s e d  o n  r e p o r t e d  p re f e re n c e s  9 =

M .

In o ther words, in a  direct-revelation m echanism  the  stra teg y  o f agent i is to report 

type 9i =  S{(9i), based on its ac tual preferences 9{.

A truth-revealing s trategy  is to  report tru e  inform ation ab o u t preferences, for all pos­

sible preferences:

D e f in it io n  2 .21  [truth-revelation] A s tra tegy  s, G Si is tru th-revealing  if s ,( f l ,)  =  9i 

for all 9i €  0 ,-

In an incentive-compatible (IC) m echanism  the  equilibrium  stra teg y  profile s* =  (s j, 

. . .  , s]) has every agent reporting  its tru e  preferences to  th e  m echanism . We first define
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Bayesian-Nash incentive-com patibility:

D e f in it io n  2 .22  [Bayesian-Nash incentive com patible] A direct-revelation m echanism  

M  is Bayesian-Nash incentive-com patible if tru th -revelation  is a  Bayesian-Nash equilib­

rium  of the gam e induced by th e  mechanism.

In  o ther words, in an  incentive-com patible m echanism  every agen t’s expected u tility  

m axim izing strategy  in equilibrium  w ith every o ther agent is to  report its tru e  preferences.

A m echanism  is strategy-proof (or dom inant-strategy incentive-com patible) if tru th - 

revelation is a dominant-strategy  equilibrium :

D e f in it io n  2 .23  [ s tr a te g y - p r o o f ]  A d i r e c t - r e v e la t io n  m e c h a n is m  M  is s t r a t e g y - p r o o f  i f  

i t  t r u th - r e v e l a t i o n  is  a  d o m i n a n t - s t r a te g y  e q u i l ib r iu m .

Strategy-proofness is a  very useful property, b o th  gam e-theoretically and  com putation­

ally. D om inant-strategy im plem entation is very robust to  assum ptions ab o u t agents, such 

as the  inform ation and  rationality  of agents. C om putationally, an agent can com pute its 

optim al strategy  w ithout m odeling the preferences and strategies of o ther agents.

A sim ple equivalence exists between the  outcom e function g(9) in a  d irect-revelation 

m echanism, which selects an outcom e based on reported  types 9 and  the social choice

function f{9 )  im plem ented  by the m echanism, i.e. com puted in equilibrium .

P r o p o s it io n  2.1 ( in c e n t iv e - c o m p a t ib le  im p le m e n ta t io n ) .  A n  incentive-compatible 

direct-revelation mechanism  M  im p le m e n ts  social choice function  f ( 9 )  =  g{9), where g{9) 

is the o u tc o m e  r u le  o f the mechanism.

In o ther words, in an incentive-com patible m echanism  the outcom e rule is precisely

the social choice function im plem ented by the m echanism. In  section 2.4 we in troduce the 

Groves mechanisms, which are strategy-proof efficient mechanisms for agents w ith  quasi- 

linear preferences, i.e. the  choice rule k ( th e ta ) com putes the efficient allocation given 

reported  types 9 and  an  agent’s dom inant s tra tegy  is tru th-revelation .

2.3.2 The Revelation Principle

T he revelation principle s ta tes th a t under quite  weak conditions any m echanism  can be 

transform ed into an  equivalent incentive-compatible direct-revelation m echanism  th a t im­

plem ents the same social-choice function. T he revelation principle is an  im portan t tool for

38

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



the theoretical analysis o f w hat is possible, and  of w hat is im possible, in  m echanism  design. 

T he revelation principle was first form ulated for dom inant-strategy  equilibria [Gib73], and 

later extended by Green & Laffont [GJJ77] and M yerson [Mye79, Mye81].

One in terp re ta tion  o f the  revelation principle is th a t incentive-com patibility comes for 

free. T his is not to  say th a t tru th-revelation  is easy to  achieve, b u t sim ply th a t if a  non 

direct-revelation an d /o r  non tru th fu l mechanism solves a  d is trib u ted  optim ization  problem, 

then we would also expect a  direct-revelation tru th fu l im plem entation.

T he revelation principle for dom inant s trategy  im plem entation sta tes th a t any social 

choice function th an  is im plem entable in dom inant stra tegy  is also im plem entable in a

strategy-proof m echanism. In o ther words it is possible to  restric t a tten tio n  to tru th -

revealing direct-revelation mechanisms.

T h e o r e m  2.1 (R evelation Principle). Suppose there exists a mechanism  (direct or 

otherwise) M. that im plem ents the social-choice function  / ( • )  in  dom inant strategies. Then  

/ ( • )  is tru th fu lly  im plem entable in  dom inant strategies, i.e. in  a strategy-proof mechanism.

P r o o f . If M  =  ( S i , . . .  ,S / ,g ( - ) )  im plements /(• )  in dom inant strategies, then  there 

exists a  profile of strategies s*(-) =  ( s j ( - ) , . . .  ,s j( -))  such th a t g{s*(9)) = f (9 )  for all 9, 

and  for all i and  all 9i 6  0 j ,

u«(s(s.'(0i).s-i).0«) > Ui(g{si,s-i),9i)

for all 6  Sj and  all s - i  €  S_j, by definition of dom inant stra tegy  im plem entation. 

S ubstitu ting  s l j(0 _ i)  for s_ j and  s*(9i) for Sj, we have:

for all 9( 6  0 j  and  all 6  0 - j .  Finally, since g(s*(9)) =  f ( 9 )  for all 9, we have:

for all 8i €  0 ,  and  all 0_, 6  0 _ t. T h is is precisely the  condition required for /( • )  to be tru th ­

fully im plem entable in dom inant strategies in a  direct-revelation mechanism. T he outcom e

rule in the strategy-proof m echanism, g : 9\ x . . .  x 8[ —> O , is sim ply equal to the  social 
choice function /(■). |
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T he in tu ition  behind the  revelation principle is as follows. Suppose th a t  it is possible 

to  sim ulate  the  en tire system —  the b idding strategies of agents and  the outcom e rule — 

of an  indirect m echanism, given com plete and  perfect inform ation abou t the  preferences 

of every agent. Now, if it is possible to  claim  credibly th a t the “sim ulator” will im plement 

an  agent’s op tim al s tra tegy  faithfully, given inform ation abou t the preferences (or type) 

of the  agent, then  it is optim al for an  agent to tru th fu lly  report this private inform ation 

(or type) to  the  new mechanism.

T his dom inant-strategy  revelation principle is qu ite  striking. In  particu lar, it suggests 

th a t to  identify which social choice functions are im plem entable in dom inant strategies, we 

need only identify those functions /( • )  for which tru th -revelation  is a  dom inant strategy  

for agents in a  direct-revelation m echanism  w ith outcom e rule g{-) =  /( • ) .

A sim ilar revelation principle can be s ta ted  in  Bayesian-Nash equilibrium .

T h e o r e m  2 .2  (Bayesian-Nash R evelation Principle). Suppose there exists a mecha­

nism  (direct or otherwise) M. that im plem ents the social-choice function  / ( • )  in  Bayesian- 

Nash equilibrium. Then  / ( • )  is implementable in  a (Bayesian-Nash) incentive-compatible 

direct-revelation mechanism.

In o ther words, if the goal is to  im plem ent a  particu lar social choice function in 

Bayesian-Nash equilibrium , it is sufficient to  consider only incentive-com patible direct- 

revelation mechanisms.

T he proof closely follows th a t of the  dom inant-strategy  revelation principle. One prob­

lem w ith the  revelation principle for Bayesian-Nash im plem entation is th a t the  d istribu tion  

over agent types m ust be common knowledge to  the  direct-revelation mechanism, in addi­

tion to the  agents.

2.3.3 Implications

W ith  the revelation principle in hand  we can  prove impossibility results over the  space 

of direct-revelation mechanisms, and  construct possibility results over the space of direct- 

revelation mechanisms.

However, the  revelation principle ignores com putational considerations and  should not 

be taken as a  sta tem ent th a t  it is sufficient to  consider only direct-revelation mechanisms
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in practical m echanism  design. T he revelation principle sta tes  w hat can be achieved, 

w hat cannot be achieved, b u t w ithout s ta ting  the com putational structure  to  achieve a 

particu la r set of properties. In  particu lar, in my dissertation  I argue th a t iterative and 

indirect mechanisms are im portan t in m any com binatorial applications, and  can provide 

trac tab le  solutions to  problem s in which single-shot d irect-revelation mechanisms fail.

R ather, the revelation principle provides a  rich s tru c tu re  to  th e  m echanism  design 

problem , focusing goals and delineating w hat is not possible. For exam ple, if a  particular 

direct-revelation m echanism  M  is the only mechanism w ith a  p a rticu la r com bination of 

properties, then any mechanism, including iterative and indirect m echanism s, m ust imple­

m ent the sam e outcom e (e.g. allocation and  paym ents) as m echanism  M  for the  same 

agent preferences.

For example:

•  Suppose th a t the only d irect mechanisms w ith useful p roperties P I ,  P2 and  P3 are 

in the class of mechanisms M ' . It follows th a t any m echanism  m  w ith properties 

P I ,  P 2 and  P3 m ust be “outcom e equivalent” to a  d irect m echanism  in M ! , in the 

sense th a t m  m ust im plem ent the sam e outcom e as a  m echanism  in this class for all 

possible agent types.

• Suppose th a t no d irect m echanism  has properties P I ,  P2 an d  P3. It follows th a t 

there can be no m echanism  (direct or otherwise) w ith p roperties P I ,  P2 and  P3.

2.4 Vickrey-Clarke-Groves Mechanisms

In sem inal papers, Vickrey [Vic61], C larke [Cla71] and  Groves [Gro73], proposed the 

Vickrey-Clarke-Groves family of m echanisms, often sim ply called th e  Groves mechanisms, 

for problem s in which agents have quasi-linear preferences. T h e  Groves mechanisms are 

allocatively-efficient and  strategy-proof direct-revelation m echanisms.

In special cases there is a  Groves m echanism  th a t is also ind iv idual-rational and  satisfies 

weak budget-balance, such th a t the  m echanism  does not require a n  outside subsidy to 

operate. T his is the case, for exam ple, in the Vickrey-Clarke-Groves m echanism  for a 

com binatorial auction.

In fact, the Groves family of mechanisms characterize the  only m echanism s th a t are 

allocatively-efficient and  strategy-proof [GJJ77].
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T h e o r e m  2 .3  (Groves Uniqueness). The Groves mechanism s are the only allocatively- 

efficient and strategy-proof mechanisms fo r  agents with quasi-linear preferences and general 

valuation functions.

T his uniqueness property  provides good m otivation for the  work in my dissertation. 

Given the prem ise th a t iterative mechanisms often have preferable com putational prop­

erties in com parison to sealed-bid mechanisms, then  we can focus on iterative Groves 

mechanisms because:

any iterative mechanism that achieves allocative efficiency in  dominant-strategy imple­

m entation m ust im plem ent a Groves outcome.

T his necessary requirem ent follows from the  revelation principle, although (see chapter 

7) an  iterative m echanism  th a t im plements th e  Vickrey outcom e can have slightly weaker 

properties th an  those of a  single-shot Vickrey scheme.

K rishna & Perry  [KP98] and W illiams [Wil99] have recently proved the uniqueness of 

Groves m echanisms am ong efficient and Bayesian-Nash m echanisms.

2.4.1 The Groves Mechanism

Consider a  set of possible alternatives, 1C, and  agents w ith  quasi-linear u tility  functions,

such th a t

Ui(k,Pi,Qi) = Vi(k,0i) -  pi

where Vi(k,9i) is the agent’s value for a lternative k , an d  p,- is a  paym ent by the agent to 

the mechanism. Recall th a t the type 0, €  0 j  is a  convenient way to  express the  valuation 

function of an  agent.

In a direct-revelation mechanism for quasi-linear preferences we write the outcom e 

rule g(9) in term s of a  choice rule, k  : 0 i  x  . . .  x  0 /  -»  /C, and  a  paym ent rule,

ti : 0 [ x . . .  x 0 /  -» R, for each agent i.

In a  Groves m echanism  agent t reports type 9{ — Si(9i), which may not be its tru e  type. 

Given reported  types 9 =  ( 9 i , . . .  ,9[), the  choice rule in a  Groves mechanism com putes:

k ’ (9) =  a rg m a x ^ V j(A :,0 i)  (I)
i

Choice k * is the  selection th a t maximizes the  to ta l repo rted  value over all agents.
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T he paym ent rule in  a  Groves m echanism  is defined as:

ti(0 )= h i(L i) - £ v j (km,0j) (2.1)

where hi : 0 _, —> R is an  a rb itra ry  function on the  reported  types o f every agent except 

i. This freedom in selecting hi(-) leads to the description of a  “fam ily” of mechanisms. 

Different choices make different tradeoffs across budget-balance and  individual-rationality.

2.4.2 Analysis

Groves mechanisms are efficient and  strategy-proof:

T h e o r e m  2 .4  (Groves m echanisms). Groves mechanisms are allocatively-efficient and 

strategy-proof fo r  agents with quasi-linear preferences.

P r o o f .

We prove th a t Groves mechanisms are strategy-proof, such th a t tru th-revelation  is 

a dom inant s trategy  for each agent, from which allocative efficiency follows im m ediately 

because the choice rule k '(9 )  com putes the  efficient allocation (1).

T he utility  to agent i  from stra tegy  0* is:

ui {9i) = v i ( k ' ( 8 ) A ) - t l (8)

= Vi(km(§),8 i) + ^ v j ( r ( § ) ,§ j ) - h i (6 -i)

Ignoring the final term , because /ij(0_j) is independent of an agent i's  reported  type, 

we prove th a t tru th-revelation  0 ; =  0 ; solves:

m ax

= max
dieQi

Vi(k * (St, S - M ) +  £  Vj(k*(Sit 0 -i) ,0 j)

V i(x,8 i) +  ^ U j ( x , 0 j ) (2 )
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where x  =  k m(9 i,9 -i)  is the outcom e selected by th e  mechanism. T he only effect of the 

agen t’s announced type is on x , and  th e  agent can maximize (2 ) by announcing 0; =  9{ 

because then  the  m echanism  com putes &*(0i,0_i) to  explicitly solve:

m a x v i(k ,9 i)  +

T ruth-revelation  is the  dom inant strategy of agent i, w hatever the reported  types 0_i if 

the  o ther agents. T he effect of paym ent t*(0) =  (•) — *s t0  “internalize the

ex ternality” placed on the  o ther agents in  the system  by the reported  preferences of agent 

i. T his aligns the agents’ incentives w ith the system -wide goal of an efficient allocation, 

an agent wants the m echanism  to select the best system -wide solution given the reports of 

o ther agents and  its own true preferences. |

T he first term  in the  paym ent rule, /ij(0_j), can be used to  achieve (weak) budget- 

balance a n d /o r  individual rationality. I t  is not possible to sim ply to ta l up the paym ents 

m ade to each agent in the  Groves scheme and  divide equally across agents, because the 

to tal paym ents depend on the outcom e, and therefore the reported  type of each agent. 

T his would break the strategy-proofness of the  mechanism.

2.4.3 The Vickrey Auction

T he special case of C larke m echanism  for the  allocation of a  single item  is th e  familiar 

second-price sealed-bid auction, or Vickrey [Vic61] auction.

In this case, w ith bids bi and  62 to indicate the  first- and second- highest bids, the item  

is sold to  the item  w ith the highest bid (agent 1), for a  price com puted as:

61 — (6 [ -  6 2 ) =  62

i.e. the second-highest bid.

One can get some in tu ition  for the  strategy-proofness of the  Groves mechanisms in this 

special case. T ruth-revelation  is a  dom inant s tra teg y  in the  Vickrey auction  because an  

agen t’s bid determ ines the range of prices th a t it will accept, bu t not the ac tua l price it 

pays. T he price th a t it pays is com pletely independent of its bid price, and  even if an agent 

knows the second-highest bid it can still bid its tru e  value, because it only pay ju s t  enough 

to ou t-b id  the o ther agent. In  addition , notice th a t  weak budget-balance holds, because
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the second-highest bid price is non-negative, and  individual-rationality holds because the 

second-highest bid price is no greater th an  the  highest bid price, which is equal to the 

w inner agent’s value in equilibrium .

2.4.4 The Pivotal Mechanism

T he P ivotal, or Clarke, m echanism  [Cla7l] is a  Groves m echanism  in which th e  first tim e 

in the paym ent rule, h i(9 -i) , is carefully set to  achieve individual-rationality , while also 

m aximizing the  paym ents m ade by the  agents to the mechanism. T he P ivotal mechanism 

also achieves weak budget-balance whenever th a t is possible in an  efficient and  strategy- 

proof mechanism [KP98].

T he Clarke mechanism [Cla71] com putes the additional transfer term  as:

(2 .2 )

where k ’_ l is the optimal collective choice for w ith agent i  taken out of the system :

i(0-O  =  arg

This is a valid additional transfer term  because the reported  value of the  second-best 

allocation w ithout agent i is independent of the  report from agent i. T he strategy-proofness 

and efficiency of the Groves mechanisms are left unchanged.

T he Clarke mechanism is a  useful special-case because it is also individual rational in 

quite general settings, which means th a t agents will choose to partic ipa te  in the  mechanism 

(see section 2 .2 .2 ).

To keep things simple, let us assum e th a t agent i ’s expected u tility  from not partici­

pating  in the mechanism is Uj(0j) =  0. T he Clarke m echanism  is individual rational when 

the following two conditions hold on agent preferences:

D e f in it io n  2.24 [choice set m onotonicity] T he feasible choice set available to the  mech­

anism  K  (weakly) increases as additional agents are introduced into th e  system .

D e f in it io n  2.25 [no negative externalities] Agent i  has non-negative value, i.e. 

vl(k'_i ,9i) > 0 , for any optim al solution choice, fclj(0 _j) w ithout agent i, for all i  and all 

0i-
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In o ther words, w ith choice set m onotonicity  an  agent canno t “block” a  selection, and 

w ith  no negative externalities, then  any choice not involving an  agent has a  neu tra l (or 

positive) effect on th a t agent.

For exam ple, the conditions of choice-set m onotonicity and  no negative externalities 

hold in the following settings:

• In a private goods m arket environm ent: in troducing a  new agent cannot make existing 

trades infeasible (in fact it can only increase th e  range of possible trades); and w ith 

only private goods no agent has a  negative value for the trades executed between 

o ther agents (relative to no trades).

•  In a public project choice problem: introducing a  new agent cannot change the range 

of public projects th a t can be im plem ented; and  no agent has negative value for any 

public project (relative to  the project not going ahead).

P r o p o s it io n  2 .2  (C larke m echanism). The Pivotal (or Clarke) m echanism  is fex 

postal individual-rational, efficient, and strategy-proof when conditions choice-set m ono­

tonicity and no negative externalities hold and with quasi-linear agent preferences.

P r o o f . To show indiv idual-rationality  (actual ex post ind iv idual-rationality ), we show 

th a t the u tility  to agent i in the equilibrium  outcom e o f the  m echanism  is always non­

negative.

ui^e-i) = viik'ieidi) -  I - 52vi(km{8),ej)
\ j &

=  5 > ( * * ( 0 M i )  -  5 > ( f c  (3)
«

Expression (3) is non-negative because the value o f the  best solution w ithout agent i,

cannot be g reater th an  the value o f th e  best solution w ith  agent i,

52, Vi{k’ (0),9 i). Any choice w ith agents j  ^  i is also feasible w ith  all agents (m onotonicity), 
and  has ju s t as much to ta l value (no negative externalities). |

T he Clarke m echanism  also achieves weak budget-balance in special-cases. A sufficient 

condition is the  no single-agent effect:
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D e f in it io n  2.26 [no single-agent effect] For any collective choice k! th a t is optim al in 

some scenario w ith all agents, i.e. k! =  m a\k e ic ^ 2 ivi{k ,0 i) , for some 0  6  0 , then  for all 

i there m ust exist ano ther choice k - i  th a t  is feasible w ithout i  and  has as much value to 

the  rem aining agents j  ^  i.

In words, the no single-agent effect condition states th a t any one agent can be removed 

from an  optim al system -wide solution w ithout having a  negative effect on the best choice 

available to  the rem aining agents. T his condition holds in the following settings:

• In an auction w ith only buyers (i.e. the  auctioneer holds all the  item s for sale), so 

long as all buyers have “free disposal” , such th a t they have a t least as much value 

for more item s than  less items.

•  In a  public project choice, because the set of choices available is static , however many 

agents are in the system .

P r o p o s it io n  2.3 (Clarke weak budget-balance). The Pivotal (or Clarke) mechanism  

is (ex post) individual-rational, weak budget-balanced, efficient and strategy-proof when con­

ditions choice-set m onotonicity, no negative externalities hold, and no single-agent effect 

hold, and with quasi-linear agent preferences.

P r o o f . Weak budget-balance requires th a t the to ta l transfers are non-negative, such 

th a t the m echanism  does not require a  subsidy:

£ > ( 0 )  >o
i

for all 0 6  0 .  S ubstitu ting  the expression for agent transfers, we have:

E ( - E ^ 0
« \ j &  /

T his is satisfied in Clarke because the transfer is non-negative for every agent i, i.e.:

^ Ui(fcV(0_i),0J) > E > # * ( 0 ) , 0 ; ) ,  V*

T his condition holds by a  sim ple feasibility argum ent w ith the no single-agent effect, 

because any solution to the system  w ith  all agents rem ains feasible and  has positive value 

w ithout any one agent. |
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As soon as there are buyers and  sellers in a  m arket we very quickly lose even weak 

budget-balance w ith  Groves-Clarke mechanisms. T he budget-balance problem  in a  combi­

natorial exchange is addressed in  Parkes, K alagnanam  & Eso [PKE01], where we propose 

a  num ber of m ethods to trade-off strategy-proofness and  allocative efficiency for budget- 

balance.

2.4.5 The Generalized Vickrey Auction

The Generalized Vickrey A uction is an  application of the P ivotal m echanism  to the combi­

natorial allocation problem . T he com binatorial allocation problem  (CAP) was introduced 

in section 1.2. T here are a  set Q o f items to allocation to  I  agents. T h e  set of choices 

K  — { (S i , . . .  , S i)  : Si n  S j =  0 ,Si C Q} where Si is an  allocation of a  bundle of items 

to agent i. Given preferences (or type) 0,, each agent i has a  quasi-linear u tility  function, 

U i(S ,p i,0 i) = Vi(S,6i) - p i ,  for bundle S  and paym ent pi. For no tational sim plicity we will 

drop the "type” notation  in this section, and simply w rite U j(S,0j) =  Vi(S).

T he efficient allocation com putes an allocation to maxim ize the  to ta l value:

S* =  arg max V i i i tS i )
a=(Si,...,S/)

s.t. Si D S j  =  0, for all Sj, S j

T he Pivotal mechanism applied to this problem  is a  sealed-bid com binatorial auction, 

often called the Generalized Vickrey Auction  (GVA). T he special case for a  single item  is 

the Vickrey auction. In  the GVA each agent bids a  value for all possible sets of items, and 

the m echanism  com putes an allocation and paym ents.

T he GVA has the following useful properties:

T h e o r e m  2 .5  (Generalized Vickrey Auction). The GVA is efficient, strategy-proof, 

individual-rational, and weak budget-balanced fo r  agents with quasi-linear preferences in 

the combinatorial allocation problem.
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D e s c r ip t io n

Each agent i 6  I  subm its a  (possibly un tru th fu l) valuation function, u ,(5 ), to the  auc­

tioneer. T he outcom e rule in the P ivotal m echanism  com putes k '(0 ) ,  the  allocation th a t 

maximizes reported  value over all agents. In  the  GVA this is equivalent to  the auctioneer 

solving a  “w inner-determ ination” problem , solving C A P w ith the reported  values and  com­

puting  allocation S* =  (S ’ , . . .  ,S } )  to  m axim ize reported  value. Let V* denote the to ta l 

value of this allocation. A llocation S* is the  allocation im plem ented by the auctioneer.

T he paym ent rule in the  Pivotal m echanism  also requires th a t the auctioneer solves a  

sm aller CAP, w ith each agent i taken ou t in tu rn , to  com pute the best allocation

w ithout agent i. Let (S _ i)’ denote this second-best allocation, and  (V_,)’ denote its value.

Finally, from the Groves-Clarke paym ent rule tj(0), see (2.1) and (2.2), the auctioneer 

com putes agent i ’s paym ent as:

PvickW =  (v _ i) * - ^ t ) J (5 ;)
llti

In words, an agent pays the m arginal negative effect th a t its partic ipation  has on the 

(reported) value of the o ther agents. Equivalently, the Vickrey paym ent can be form ulated 

as a discount A vjck(i) from its bid price, t)i(5*), i.e. pVick(i) =  Vi{S*) — A VjCk(i), for Vickrey 

discount:

Avick(i) = V -  (V - iY

A n a ly s is

Efficiency and  strategy-proofness follow im m ediately from the properties of the Groves 

m echanism. Weak budget-balance holds in  this special-case. It is sim ple to  show th a t each 

agent pays a  non-negative am ount to  th e  auctioneer, by a  sim ple feasibility argum ent. 

Similarly, individual-rationality  holds and  agents pay no more th an  their value for the  

bundle they receive. It is sim ple to  show th a t discounts are always non-negative, again 

by a  sim ple feasibility argum ent. A lternatively, one can verify th a t conditions choice-set 

m onotonicity, no negative externalities, and  no single-agent effect hold for the  CAP.
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Name Preferences Solution
concept

Im possible Environm ent

G ibSat general dom inant N on-dictatorial general
(incl. P are to  O ptim al)

Hurwicz quasi-linear dom inant Eff& BB simple-exchange
M yerSat quasi-linear Bayesian-Nash Eff& BB & IR sim ple-exchange
GrLaff quasi-linear coalition-proof Eff sim ple-exchange

Table 2.1: Mechanism Design Impossibility Results. E ff is ex post allocative efficiency, BB  is ex 
post (and strong) budget-balance, and IR  is interim  individual rationality.

2.5 Impossibility Results

T he revelation principle allows the  derivation of a  num ber of im possibility theorem s th a t 

outline the com binations of properties th a t  no m echanism  can achieve (w ith fully rational 

agents) in particu lar types of environm ents. T he basic approach to  show im possibility is 

to assum e direct-revelation and  incentive-com patibility, express as a set of m athem atical 

conditions the desired properties o f an  outcom e rule (including conditions for incentive- 

com patibility), and  then  show a  conflict across the conditions.

Table 2.1 describes the  m ain im possibility results. R esults are delineated by conditions 

on agent preferences, the  equilibrium solution concept, and  the assum ptions abou t the 

environment. T h e  “Im possible” colum n lists the com binations of desirable m echanism  

properties th a t cannot be achieved in each case.

As discussed in section 2.2.2, ex post refers to conditions tested  a t the outcom e of 

the m echanism, while in terim  refers to  a  condition tested  afte r agent i knows its own 

preferences bu t w ith only d istribu tional inform ation ab o u t the preferences of o th er agents.

Im possibility for restric ted  preferences in an exchange is more severe th an  for general 

preferences and  general environm ents, because general conditions include these as special 

cases. In addition , im possibility for weak solution concepts such as Bayesian-Nash is 

more restrictive th an  im possibility for strong  solution concepts like dom inant strategy  

im plem entation.

D e f in it io n  2 .2 7  [ d ic ta to r ia l ]  A m e c h a n is m  is dictatorial i f  o n e  ( o r  m o re )  a g e n ts  a lw a y s  

re c e iv e s  o n e  o f  i t s  m o s t - p r e f e r r e d  a l t e r n a t iv e s .

D e f in it io n  2 .2 8  [general preferences] Preferences 0* are general when they provide a 

com plete and  transitive preference ordering >- on outcom es. A n ordering is complete if for
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all 01,02  6  O, we have oi >- 02 or 02 >- 01 (or bo th ). An ordering is transitive if for all

° i ! 02tO3 S O, if £>1 >- 02 and  02 y  03 then  o\ >- 03 .

D e f in it io n  2 .2 9  [c o a l i t io n -p ro o f ]  A m e c h a n is m  M  is  coalition-proof i f  t r u t h  r e v e la t io n  

is a  d o m i n a n t  s t r a t e g y  fo r  a n y  c o a l i t io n  o f  a g e n ts .

D e f in i t i o n  2 .3 0  [g e n e ra l e n v ir o n m e n t]  A general e n v i r o n m e n t  is o n e  in  w h ic h  th e r e  is 

a  d i s c r e te  s e t  of p o s s ib le  o u tc o m e s  O a n d  a g e n ts  h a v e  g e n e r a l  p re f e re n c e s .

D e f in it io n  2 .31  [s im p le  e x c h a n g e ]  A n  simple exchange e n v i r o n m e n t  is o n e  in  w h ic h

th e r e  a r e  b u y e r s  a n d  s e l le rs , s e l l in g  s in g le  u n i t s  o f  t h e  s a m e  g o o d .

T he G ibbard  [Gib73] and S atterthw aite  [Sat75] im possibility theorem  shows th a t for 

a  sufficiently rich class of agent preferences it is im possible to  im plem ent a “satisfactory” 

social choice function in dom inant strategies. A related  im possibility result, due to Green 

and  Laffont [GJJ77] and Hurwicz [Hur75], dem onstrates the  im possibility of efficient and 

budget-balanced outcom es w ith dom inant strategies, even in quasi-linear environm ents.

More recently, the M yerson-Satterthw aite im possibility theorem  [Mye83] extends this 

im possibility to include Bayesian-Nash im plem entation, if in terim  individual-rationality  is 

also required. W illiams [Wil99] and K rishna & Perry  [KP98] provide alternative deriva­

tions of this general im possibility theorem , using properties abou t the Groves family of 

mechanisms.

Green & Laffont [GL79] dem onstrate  th a t no allocatively-efficient and  strategy-proof 

m echanism  can also be safe from m anipulation  by coalitions, even in quasi-linear environ­

ments.

2.5.1 Gibbard-Satterthwaite Impossibility Theorem

A negative result due to G ibbard  [Gib73] and  S atterthw aite  [Sat75] states th a t it is im­

possible, in a  sufficiently rich environm ent, to  im plem ent a  non-dictatorial social-choice 

function in dom inant s trategy  equilibrium .

T h e o r e m  2 .6  (G ibbard-Satterthw aite Im possibility Theorem ). I f  agents can have ar­

bitrary individual preferences, and there are at least two agents, and at least three different 

optimal outcomes over the set o f all agent preferences, then a social-choice function  is 

dominant-strategy implementable i f  and only i f  it is dictatorial.
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Clearly all d ictatorial social-choice functions m ust be strategy-proof. This is sim ple to 

show because the outcom e th a t is selected is th e  most preferred, or m axim al outcom e, for 

the reported  preferences of one (or more) of the  agents—  so an  agent should report its 

true preferences. For a  proof in  the  o ther direction, th a t tiny strategy-proof social-choice 

function m ust be d ictatorial, I refer the reader to  M asColell [MCWG95].

Im possibility results such as G ibbard-S atterthw aite  m ust be in terpreted  w ith great care. 

In particu lar the results do not necessarily continue to  hold in restricted environments. For 

example, although no d ictato rial social choice function can be P are to  op tim al or efficient, 

this im possibility result does not apply directly  to  m arkets. T he m arket environm ent n a tu ­

rally imposes additional s tru c tu re  on preferences. In  particu lar, the  G ibbard-S atte rthw aite  

im possibility theorem  may not hold if one of the  following conditions are relaxed:

-  additional constraints on agent preferences (e.g. quasi-linear)

-  weaker im plem entation concepts, e.g. Bayesian-Nash im plem entation

In fact a  m arket environm ent has been shown to make im plem entation easier. In the 

next section on Possibility results, we introduce a  num ber of non-dictatorial strategy-proof 

mechanisms in restricted environm ents, e.g. McAfee [McA92] for quasi-linear preferences 

in a  double-auction, and B arbera  & Jackson [BJ95] for quasi-concave preferences in a 

classic exchange economy.

2.5.2 Hurwicz Impossibility Theorem

A related im possibility theorem  is known for sim ple exchange economies, for agents w ith 

quasi-linear preferences. In fact it is im possible to ob ta in  b o th  strategy-proofness and  effi­

ciency and budget-balance in m arket settings, even w ithout requiring ind iv idual-rationality  

and w ith additional restric tions on agent valuation functions.1

Hurwicz [Hur72] first showed a  conflict between efficiency and  strategy-proofness in a 

simple two agent model. T he general im possibility result follows from Green & Laffont 

[GJJ77] and  Hurwicz [Hur75], and  m ore recently Hurwicz and  W alker [HW90]. Green & 

Laffont and Hurwicz established th a t no m em ber of the Groves family o f mechanisms has

‘Schummer [Sch97] has recently shown tha t even for the case of two agents with linear preferences it is 
not possible to achieve strategy-proofness and efficiency.
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budget-balance, and  th a t the  Groves family is th e  unique set of strategy-proof implemen­

ta tio n  rules in a  sim ple exchange economy. I find it useful to  refer to  th is result as the 

Hurwicz im possibility theorem .

T h e o r e m  2 .7  (Hurwicz Im possibility T heorem ). I t is impossible to im plem ent an ef­

ficient, budget-balanced, and strategy-proof mechanism  in  a simple exchange economy with 

quasi-linear preferences.

T his result is qu ite  negative, and  suggests th a t if allocative efficiency and budget- 

balance are required in a  simple exchange economy, then  looking for dom inant strategy 

solutions is not useful.

2.5.3 M yerson-Satterthwaite Impossibility Theorem

T he M yerson-Satterthw aite im possibility theorem  [Mye83] streng thens the Hurwicz impos­

sibility resu lt to include Bayesian-Nash im plem entation, if in terim  individual-rationality  

is also required.

T h e o r e m  2 .8  (M yerson-Satterthw aite). It is impossible to achieve allocative efficiency, 

budget-balance and  (interim ) individual-rationality in  a Bayesian-Nash incentive-compatible 

mechanism, even with quasi-linear utility functions.

M yerson & S atterthw aite  dem onstrate this im possibility in a  two-agent one-good ex­

am ple, for th e  case th a t trade  is possible bu t not certain  (e.g. the  buyer and seller have 

overlapping valuation ranges). W illiams [Wil99] and  K rishna & Perry  [KP98] provide al­

ternative derivations o f th is general im possibility result, using properties of the Groves 

family o f mechanisms.

An im m ediate consequence of this result is th a t we can only hope to achieve at most 

two of Eff, IR  and BB in an  m arket w ith quasi-linear agent preferences, even if we look 

for Bayesian-Nash im plem entation. T he interested reader can consult Laffont & Maskin 

[LM82] for a  technical discussion of various approaches to  achieve these properties pair­

wise.
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Name Pref Solution Possible Environment
Groves quasi-linear dominant Eff Sc (IR or WBB) exchange VCG

dAGVA quasi-linear Bayesian-Nash Eff Sc BB exchange [dG79, Arr79]
Clarke quasi-linear dominant Eff Sc IR exchange [Cla71]
GVA quasi-linear dominant Eff, IR Sc WBB comb auction VCG
MDP classic iterative Pareto exchange [DdlVP71, Mal72

local-Nash Rob79]
BJ95 classic dominant BB Sc non-dictatorial exchange [BJ95]

Quadratic classic Nash Pareto Sc IR exchange [GL77b]

T able 2.2: Mechanism Design Possibility Results. E ff is ex post allocative efficiency, BB  is ex post 
strong budget-balance, WBB is ex post weak budget-balance, IR is interim  individual-rationality, 
Pareto is ex post Pareto-optimality.

In the next section we introduce th e  dAGVA m echanism  [Arr79, dG79], th a t is able 

to  achieve efficiency and  budget-balance, b u t loses individual-rationality . T he dAGVA 

m echanism  is an “expected Groves m echanism .”

2.6 Possibility Results

T h e central positive result is the family of Vickrey-Clarke-Groves (VCG) mechanisms, 

which are allocatively-efficient (bu t not budget-balanced) strategy-proof mechanisms in 

quasi-linear dom ains. VCG mechanisms clearly dem onstrate  th a t it is possible to im­

plem ent non-dictatorial social choice functions in m ore restric ted  dom ains o f preferences. 

However, as expected from the im possibility results of Green Sc Laffont [GJJ77] and  H ur­

wicz [Hur75], they are not efficient and strong budget-balanced.

Table 2.2 sum m arizes the  most im portan t possibility results. A quick check confirms 

th a t  these possibility results are all consistent w ith  the  im possibility results of Table 2.1! 

By the  revelation principle we effectively get “incentive-com patibility” for free in direct- 

revelation mechanisms, and  these are all incentive-com patible except the itera tive M DP 

procedure. O f course the  Groves mechanisms are strategy-proof.

T he Possibility results axe delineated by agent preferences, the  equilibrium solution 

concept and the environm ent or problem  dom ain.

D e f i n i t i o n  2 . 3 2  [classic preferences] Classic preferences are s tric tly  quasi-concave, con­

tinuous and increasing u tility  functions.

D e f i n i t i o n  2 . 3 3  [exchange environm ent] Exchange sim ply refers to  a  b ilatera l trad ing  

situation , w ith agents th a t have general valuation functions (including bundle values).
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C ontrary  to im possibility results, for possibility results a  strong  im plem entation con­

cept is more useful th an  a  weak im plem entation, e.g. dom inant is preferred to  Bayesian- 

Nash, and  a  general environm ent such as an  exchange is preferred to  a  more restricted 

environm ent such as a  com binatorial auction  (which can  be viewed as a  one-sided ex­

change) .

T he Groves, Clarke (Pivotal), and  GVA mechanisms have already been described in sec­

tion 2.4. Groves mechanisms are consistent w ith  the G ibbard-S atte rthw aite  im possibility 

theorem  because agent preferences are not general, bu t quasi-linear.2 Groves mechanisms 

are also consistent w ith the H urw icz/M yerson-Satterthw aite im possibility theorem s be­

cause it is not the  case th a t the sum  transfers from agents is zero. Groves mechanisms are 

not strong budget-balanced. Note th a t this failure of strong  budget-balance is acceptable in 

some dom ains; e.g., in one-sided auctions (com binatorial or otherw ise) w ith a  single seller 

and  m ultiple buyers it may be acceptable to  achieve weak budget-balance and transfer net 

paym ents to the seller.

2.6.1 Efficiency and Strong Budget-Balance: dAGVA

An interesting extension of the Groves m echanism, the dA G V A  (or “expected Groves” ) 

m echanism, due to  Arrow [Arr79] and  d ’Asprem ont Sc G erard-V aret [dG79], dem onstrates 

th a t it is possible to achieve efficiency and  budget-balance in a  Bayesian-Nash equilibrium , 

even though this is im possible in dom inant-strategy equilibrium  (Hurwicz). However, the 

dAGVA m echanism  is not individual-rational, which we should expect by the  Myerson- 

S atterthw aite  im possibility theorem .

T h e o r e m  2 .9  (dAGVA m e c h a n is m ) .  The dAG VA mechanism  is e x  a n te  individual- 

rational, Bayesian-Nash incentive-compatible, efficient and (strong)  budget-balanced with 

quasi-linear agent preferences.

T he dAGVA m echanism  is a  direct-revelation m echanism  in which each agent an­

nounces a  type di 6  0 , ,  th a t need not be its tru e  type. T h e  m echanism  is an  “expected- 

form” Groves m echanism  [Rob87, KP98].

2MasColell also notes that there are no dictatorial outcomes in this environment.
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T he allocation rule is the sam e as for th e  Groves m echanism:

k '{d ) = m a x j ^  V i(k,6i)
I

T he s tru c tu re  of the paym ent rule is also qu ite  sim ilar to  th a t in the  Groves mechanism:

U(9) = hi (6-i )  -  Eg

where as before h(-) is an  a rb itra ry  function on agents’ types. T he second term  is the 

expected to ta l value for agents j  ^  i  when agent i announces type 0* and  agents j  ^  i 

tell the tru th . It is a  function of only agent i ’s announcem ent, not of the  actual strategies 

of agents j  ^  i, m aking it a  little  different from the form ulation of agent transfers in 

the Groves mechanism. In effect, agent i  receives a  transfer due to th is term  equal to the 

expected externality  of a change in its own reported  type on the  o ther agents in the  system .

T he Bayesian-Nash incentive-com patibility w ith  th is transfer follows from a  sim ilar 

line of reasoning as the strategy-proofness of the  Groves mechanisms. A proof is in the 

appendix  to this chapter.

T he interesting thing about the dAGVA m echanism  is th a t  it is possible to choose the 

hi(-) functions to satisfy budget-balance, such th a t ^  £*(0) =  0 for all Q €  ©i- Define the 

"expected social welfare (or value)” of agents j  ■£ i when agent i  announces its type 0; as

SW _i(0i) =  Eg_,

and note th a t this is not depend on announced types of agents j  £  i. T he additional term  

in the paym ent rule is defined, for agent i, as:

which is the “averaged” expected social welfare to  every o th er agent given the announced 

types of agents j  ^  i. This gives budget-balance because each agent also pays an  equal 

1 / ( /  -  1) share of the to tal paym ents m ade to  th e  o th er agents, none of which depend on 

its own announced type. See the  appendix  of th is chap ter for a  proof.
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D isc u ss io n

T he incentive properties and  properties of full optim ality, i.e. efficiency and  budget- 

balance, make the dAGVA procedure very attractive . However, the  dAGVA mechanism 

has a  num ber of problem s:

(1) it may not satisfy  the individual ra tionality  constra in t (even ex ante)

(2) the Bayesian-Nash im plem entation concept is much weaker th an  dom inant-strategy 

im plem entation

(3) it places high dem ands on agent inform ation-revelation

R oberts [Rob87] provides a very interesting discussion of the  conditions required for an 

iterative m ethod to  im plem ent the dAGVA m echanism  w ith  less inform ation from agents. 

In fact, he claims th a t it is impossible to  find a  successful iterative procedure because 

an  agen t’s announcem ent in earlier periods m ust also affect its paym ents in subsequent 

periods, breaking incentive-com patibility.

2.6.2 Dom inant-strategy Budget-balance but Inefficiency

A num ber of m echanisms have been proposed to  achieve budget-balance (perhaps weak 

budget-balance) in dom inant s tra tegy  mechanisms, for some loss in allocative efficiency. 

McAfee [McA92] presents a  m echanism  for a  double auction  (w ith m ultip le buyers and  sell­

ers) th a t is strategy-proof and  satisfies weak budget-balance, b u t for some loss in allocative 

efficiency.

B arbera & Jackson [BJ95] characterize the set of stra tegy-proof social-choice functions 

th a t can be im plem ented w ith budget-balance in an  exchange economy w ith  classic prefer­

ences. It is possible to  im plem ent non-dictatorial social choice functions in  th is restricted 

set of preferences (even though preferences are not quasi-linear). In  fact the authors 

show th a t it is necessary and  sufficient to im plem ent “fixed-proportion trad in g  rules” , in 

which (loosely speaking) agents trad e  in pre-specified proportions, to achieve “non-bossy” 

and  “anonym ous” outcom es (which are sufficient conditions for non-d icta toria l outcom es). 

Given Hurw icz’s im possibility theorem , it is not surprising th a t the  trad in g  rules are not 

fully allocatively-efficient. 3

3 Barbera & Jackson also note th a t efficiency does not tend to 100% as the economy gets large, and 
compare to the analysis of Roberts ic Postlewaite [RP76], who show th a t standard  clearing rules become 
approximately incentive-compatible as the economy gets large.
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2.6.3 Alternative implementation Concepts

O ne m ethod to  extend the range of social-choice functions th a t  can be im plem ented is 

to consider a lternative equilibrium  solution concepts. In  the  context of direct-revelation 

m echanism s (i.e. s ta tic  games of incom plete inform ation) we have already observed th a t 

Bayesian-N ash im plem entation can help (e.g. in  th e  dAGVA mechanism). One difficulty 

in troduced in Bayesian-Nash is th a t it requires m ore inform ation and  ra tionality  assum p­

tions of agents. Similarly, we might expect th a t  m oving to  a  Nash im plem entation concept 

can help again.

Groves & Ledyard [GL77] inspired much o f th e  lite ra tu re  on Nash im plem entation. 

T h e  Quadratic mechanism  is Pareto efficient in  the  exchange environm ent w ith classic 

preferences, in th a t all Nash equilibria are P are to  efficient. In  this sense, it is dem on­

s tra ted  th a t it is possible to  im plement budget-balanced and  efficient outcom es with Nash 

im plem entation, while (M yerson-Satterthw aite) th is is not possible w ith Bayesian-Nash.

However, the Nash im plem entation concept is qu ite  problem atic. An agent’s Nash 

s tra tegy  depends on the strategies of o ther agents, and  on com plete inform ation abou t 

the  (private) types of each agent. Clearly, it is qu ite  unreasonable to expect agents to 

select N ash strategies in a  one-shot d irect-revelation m echanism . T he solution concepts 

only make sense if placed w ithin an iterative procedure, where agents can ad just towards 

N ash strategies across rounds [Gro79].

Moore & Rupullo [MR88] consider subgam e-perfect Nash im plem entation in dynam ic 

games, and  show th a t this expands the set o f social-choice functions th a t can be im­

plem ented in strategy-proof mechanisms. O f course, in troducing a  new solution concept 

requires a  new justification of the m erits of the  subgam e-perfect refinement to Nash equi­

librium  in a  dynam ic game. A fascinating recent idea, due to  Kalai & Ledyard [KL98] 

considers “repeated  im plem entation” , in  which th e  au tho rs consider the im plem entable 

social-choice functions in a  repeated game, w ith  stro n g  results ab o u t the effect on imple­

m entation.

A lthough the m echanism  design is alm ost exclusively focused on direct-revelation mech­

anism s, and  ignores the costs of inform ation revelation and  centralized com putation, one 

exception is the  M D P  p lanning procedure, proposed by Dreze & de la Vallee Poussin 

[DdlVP71] and  M alinvaud [Mal72]. M D P m echanism  is an  iterative procedure, in which
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in each round each agent announces “grad ien t” inform ation ab o u t its  preferences for dif­

ferent outcomes. T he center ad justs  the  outcom e tow ards a  P are to  optim al solution in 

an  exchange environm ent w ith  classic agent preferences. If th e  agents repo rt tru th fu l 

inform ation the M D P procedure is P are to  optim al (i.e. fully efficient).

Dreze & de la Vallee Poussin  [DdlVP71] also consider the  incentives to  agents for 

reporting  tru th fu l inform ation in  each round, and showed th a t tru th fu l revelation is a 

local m axim in stra tegy  (i.e. m aximizes the  u tility  of an  agent given th a t o ther agents 

follow a  worst-case strategy). T ru th  revelation is also a  Nash equilibrium  a t term ination.

In addition, R oberts [Rob79] proved th a t if agents play a  local N ash equilibrium  at 

each stage in the procedure, to  m axim ize the  im m ediate increase in u tility  of the project, 

then  the m echanism  will still converge to  a  Pareto  optim um  even though the agents do 

not report tru th fu l inform ation. R oberts retains a  myopic assum ption, and  stud ied  only a 

local game in which agents did no t also consider the effect of inform ation on fu ture rounds.

C ham psaur Sc Laroque [CL82] departed  from this assum ption of myopic behavior, and 

assum ed th a t every agent considers the  Nash equilibrium  over a  period  of T  periods. The 

agents forecast the strategies of o ther agents over T  periods, and  play a  Nash equilibrium . 

The M DP procedure is still P are to  optim al, b u t the m ain difference is th a t the center has 

much less control over the  final outcom e (it is less useful as a  policy tool). T he outcome 

for large T  approaches the  com petitive equilibrium .

M odeling agents w ith  a  N ash equilibrium , even in the  local gam e, still makes the 

(very) unreasonable assum ption  th a t agents have com plete inform ation abou t each o thers’ 

preferences, for exam ple to  com pute the equilibrium  strategies. R oberts [Rob79] discusses 

iterative procedures in which tru th fu l revelation locally dom inant a t each stage. O f course, 

one m ust expect some loss of efficiency if strategy-proofness is the  goal.

iBundle [Par99, PUOOa] is an  efficient ascending-price auction for th e  com binatorial al­

location problem , w ith myopic best-response agent strategies. T h e  auction  is weak budget- 

balanced, and  individual-rational. A lthough myopic best-response is no t a  ra tional sequen­

tial strategy  for an  agent, it is certain ly  a  m ore reasonable im plem entation concept them 

a  local Nash strategy, requiring only price inform ation and  inform ation abou t an  agent’s 

own preferences. As discussed in chap ter 7, an  extended auction, tB undle Extend& A djust, 

provably com putes VCG paym ents in m any problem s. C om puting the  outcom e o f a  Groves
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m echanism  w ith  myopic best-response strategies makes myopic best-response a  Bayesian- 

Nash equilibrium  o f the iterative auction.

2.7 Optimal Auction Design

In a  sem inal paper, Myerson [Mye81] adopted a  constructive approach to  mechanism design 

for private-values auction, in which an  agent’s value is independent o f th a t of o ther agents. 

M yerson takes considers the problem  of revenue m axim ization, instead of the focus on 

efficiency th a t has been a  common thread  through m ost of the  m echanism  design literature. 

M yerson form ulates the mechanism design problem  as an  op tim ization  problem, where the 

goal is to  design an  outcom e function for a  d irect-revelation  m echanism  th a t maximizes 

the expected paym ent by agents subject to  constra in ts on: (a) feasibility (no item  can be 

allocated  more th an  once); (b) individual-rationality  (the  expected utility  for partic ipation 

is non-negative); and  (c) incentive-com patibility.

Focusing on direct-revelation mechanisms (following the revelation principle), Myerson 

derives conditions on the allocation rule k  : 0  —> K. an d  the  paym ent rules t{ : 0  -» R 

for an  auction to  be optim al. W ithout solving for explicit functional forms k(-) and  tj(-) 

M yerson is able to derive the revenue equivalence theorem, which essentially states th a t any 

auction  which im plem ents a  particu lar allocation ru le k(-) m ust have the same expected 

paym ents.

In general the  goals of revenue-m axim ization and  efficiency are in conflict. Myerson 

constructs an  optim al (revenue-maximizing) auction in the  sim ple single-item case, and 

dem onstrates th a t the seller should use d istribu tional inform ation abou t the values of 

agents to  im plem ent an  inefficient allocation-rule to m axim ize its revenue. T he seller 

announces a  non-zero reservation price, which increases its revenue in some cases, bu t also 

introduces a  slight risk th a t the seller will miss a  profitable trad e  (m aking it inefficient).

However, am ongst the  class of efficient an d  dom inan t-strategy  mechanisms, K rishna & 

Perry  [KP98] develop a generalized revenue-equivalence principle:

T h e o r e m  2.10 (generalized revenue-equivalence). In  quasi-linear environm ents, all 

Bayesian-Nash incentive-compatible mechanisms with the sam e choice rule k(-) are expected 

revenue equivalent up to an additive constant.
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T his is essentially a  s ta tem en t th a t  all m echanisms to  im plem ent a  particu la r allocation 

rule are essentially equivalent in their transfer rules. We have already seen a  sim ilar result,

i.e. th a t the Groves m echanism s are unique am ong efficient & strategy-proof mechanisms 

[GL87],

K rishna Sc Perry also show th a t  the  GVA maximizes revenue over all efficient and 

Bayesian-Nash incentive-com patible m echanisms:

T h e o r e m  2 .11 (Revenue-optim ality of GVA). The G VA mechanism m axim izes the 

expected payments o f each agent amongst all efficient, (Bayesian-Nash) incentive- 

compatible, and individual-rational mechanisms.

It is interesting th a t the  GVA m echanism , although strategy-proof, m aximizes rev­

enue over all Bayesian-Nash incentive-com patible and  efficient mechanisms. T he revenue- 

m axim ization property  of the  GVA, along w ith  the  uniqueness of the GVA am ongst effi­

cient and  incentive-com patible m echanism s, provides an  alternative proof of the  Myerson 

Sc S atterthw aite  [Mye83] im possibility result.

Ausubel Sc C ram ton [AC98] make a  sim pler argum ent for efficient mechanisms in the 

presence of after-m arkets. Intuitively, in th e  presence of an  after-m arket th a t will allow 

agents to  achieve an efficient allocation  outside of the  auction, the auctioneer maximizes 

profits by providing agents w ith  an  allocation th a t they find m ost desirable and  ex tracting  

their surplus. A sim ilar argum ent can be m ade in the  presence of a lternate  m arkets. If 

the auctioneer does not com pute efficient allocations then  agents will go elsewhere.

Appendix

Proof of dAGVA properties

T he in tu ition  behind the Bayesian-N ash incentive-com patibility of the dAGVA m echanism  

follows a  sim ilar line o f reasoning to  th a t  for the  strategy-proofness of Groves. Suppose th a t 

the o ther agents announce th e ir tru e  types, th e  expected u tility  to agent i  for announcing 

its tru e  type (given correct inform ation ab o u t th e  d istribu tion  over the types of o ther
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agents) is:

=Eg_i

and th is is g reater th an

3 = 1

Eg_i
3=1

for all 8i 6  0 ,  because by reporting  its true type the agent explicitly  in structs  the mech­

anism  to com pute an  allocation th a t maximizes th e  inner-term  of the expectation  for all 

possible realizations of the  types of the o ther agents.

Finally, we show th a t the dAGVA mechanism is budget-balanced:

E ‘‘(e) =  ( t z i )  E E s w - i i #i )  -
i '  '  i j f r  i

=  ( j z t )  -  D S W - i ^ i )  -  E  s w - « ( 0 i )
'  '  i i

= o

Intuitively, each agent i receives a  paym ent equal to SW _,(0;) for its announced type, 

which is the  expected social welfare effect on the  o ther agents. To balance th e  budget each 

agent also pays an  equal 1 / { I  -  1) share of the  to ta l paym ents m ade to the  o ther agents, 

none of which depend on its own announced type.
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Chapter 3 

Computational Mechanism Design

T h e classic mechanism design literatu re largely ignores com putational considerations. It 

is com m on to assum e th a t agents can reveal their com plete preferences over all possible 

outcom es (the revelation principle), and  th a t the m echanism  can solve an optim ization 

problem  to select the best outcom e (e.g. the Groves mechanisms).

It is useful to take a  “m arkets as com putation” view of com putational mechanism 

design. O ur goal is to use a  m arket-based m ethod, or in particu lar an  economic mechanism, 

to com pute a  social-welfare maxim izing outcom e to a  d istribu ted  problem. T his m arkets 

as com putation view has received a tten tio n  in com puter science for a  num ber of years, and 

in particu lar w ithin artificial intelligence. Influential early work is the M arket Oriented 

Programming (M OP) paradigm  of W ellm an [Wel93], which adopted economic equilibrium  

concepts as a  technique to com pute solutions to d istribu ted  optim ization problems. O ther 

classic early work includes th a t of H uberm an & C learw ater [HC95] on a  m arket-based 

system  for air-conditioning control, Sandholm  [San93] on economic-based mechanisms for 

decentralized task-allocation am ongst self-interested agents.

Early m otivation for the m arket-based approach recognized th a t m arkets can provide 

quite  efficient m ethods to solve d istribu ted  problem s, prices for exam ple can sum m arize 

relevant inform ation abou t agents’ local problem s [Wel96]. T he gam e-theoretic considera­

tions of m echanism  design were secondary to  com putational considerations. In  recent years 

there has been increasing focus on gam e-theoretic issues, a t first w ithout much concern 

to com putational trac tab ility  [RZ94], b u t la ter w ith  a ttem p ts  to  integrate gam e-theoretic 

concerns and  com putational concerns [SL96, PUOOb, ParOl].

T he tensions between classic gam e-theoretic solutions and  tractab le  com putational so­

lutions soon become evident as one considers the  application o f mechanisms to difficult
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d istribu ted  optim ization  problem s, such as supply-chain procurem ent o r bandw id th  allo­

cation.

Here is an  ou tline o f this chapter. Section 3.1 considers the different com putational 

concerns in an  im plem ented m echanism, looking a t com putation  b o th  a t  th e  agent and  the 

m echanism  in frastructu re  level. I consider the consequences o f the revelation principle for 

com putational m echanism  design. Section 3.2 focuses on the  G eneralized Vickrey Auction, 

and introduces m ethods to address b o th  the cost of w inner de term ination , the cost of 

com plete inform ation revelation, and  to reduce com m unication costs. E ach is addressed in 

tu rn , th rough sections 3.3 -  3.5. Section 3.5 also reviews work in the  economics literatu re 

on m echanism  design w ith  lim ited com m unication structures.

3.1 Computational Goals vs. Game Theoretic Goals

Much of classic m echanism  design is driven by the revelation principle 2.3, which states 

inform ally th a t we only ever need to  consider direct-revelation m echanism s. In a  direct- 

revelation m echanism  agents are restric ted  to  sending a single message (th e  agen t’s prefer­

ences) to the mechanism, where th a t message makes a claim  abou t th e  preferences of the 

agent over possible outcomes.

T he revelation principle provides a  very im portan t theoretical tool, bu t is not useful 

in a constructive sense in  difficult dom ains. T he transform ation  assum ed in the  revelation 

principle from indirect mechanisms (e.g. an iterative auction) to  direct-revelation  mech­

anism s (e.g. a  sealed-bid auction) assumes unlim ited com putational resources, b o th  for 

agents in subm itting  valuation functions, and  for the auctioneer in com puting  the outcom e 

of a  m echanism  [Led89]. In particu lar, the revelation principle assum es:

-  agents can com pute and  com m unicate their com plete preferences

-  the m echanism  can  com pute the correct outcom e w ith com plete inform ation about 

all relevant decentralized inform ation in the system .

It can soon become im practical for an  agent to  com pute and  com m unicate its com plete 

preferences to the m echanism, and  for the  m echanism  to com pute a  so lu tion  to  the  central­

ized optim ization problem . D irect-revelation mechanisms convert decentralized problem s 

into centralized problem s.

Yet, the  revelation principle does have a  v ital role in th e  design o f all mechanisms,
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b o th  direct and  indirect, sealed-bid and  iterative. T h e  revelation principle provides focus 

to  the  design of iterative mechanisms. Taken along w ith the  uniqueness of the  Groves 

m echanism s am ongst all efficient and  stra tegy -p roo f m echanism s (section 2.4), then  any 

efficient and  strategy-proof iterative m echanism  m ust com pute the  outcom e o f a  Groves 

m echanism  for th e  underlying preferences of agents. T h is  is to  avoid the  existence of an  

equivalent direct-revelation mechanism for the  m echanism  th a t is outside o f the  class of 

Groves, which would be impossible.

I t is useful to characterize the com putation  in  a  m echanism  w ithin  two d istinct levels:

1. At the  agent level:

(a) Valuation complexity. How m uch com putation  is required to  provide preference 

inform ation w ith in  a  mechanism?

(b) Strategic complexity. M ust agents m odel o th er agents and  solve gam e-theoretic 

problem s to  com pute an  optim al strategy?

2. At the infrastructure level:

(a) W inner-determ ination complexity. How much com putation  is expected of the 

m echanism  infrastructure, for exam ple to  com pute an outcom e given inform ation 

provided by agents?

(b) C om m unication complexity. How much com m unication is required, between 

agents and  the m echanism, to  com pute an  outcom e?

D om inant s tra tegy  mechanisms, such as th e  Groves m echanism s, are efficient and 

s tra tegy -p roo f mechanisms, giving them  excellent s trateg ic  complexity. An agent can com­

p u te  a  dom inant-strategy  w ithout m odeling the o th er agents an d  w ithout gam e-theoretic 

reasoning. However, the d irect-revelation p roperty  of Groves mechanisms provides very 

b ad  (in fact worst-case) agent valuation complexity. An optim al b idding s tra tegy  requires 

th a t an  agent determ ines its com plete preferences over all possible outcom es. Com plete 

inform ation is required in all instances, even though  it is often possible to  solve a  p ar­

ticu lar instance w ith incom plete inform ation, w ith  an  in teractive solution such as th a t 

provided in equilibrium  solutions. T h e  w inner-determ ination com plexity of Groves mech­

anism s in com binatorial dom ains also lim its th e ir applicab ility  as problem s get large; e.g. 

w inner-determ ination in the com binatorial allocation  problem  is N P-hard.
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Approaches to  resolve th is tension betw een gam e-theoretic and  com putational proper­

ties include:

• D ynamic mechanisms. Instead  of requiring single-shot direct-revelation, allow agents 

to provide increm ental inform ation ab o u t th e ir preferences for different outcom es and 

solve easy problem  instances w ithout com plete inform ation revelation.

•  Distributed computation. Move away from a centralized m odel o f m echanism  imple­

m entation towards m odels of decentralized com putation to com pute the  outcom e of 

a  m echanism, based on inform ation abou t agent preferences.

•  Compact preference representation languages. Provide agents w ith expressive and 

com pact m ethods to  express their preferences, th a t avoid unnecessary details, make 

s truc tu re  explicit, perhaps introduce approxim ations, and m ake the  problem  of com­

puting optim al outcom es more tractab le.

• Approxim ation methods. C om pute approxim ate outcom es based on agent strategies, 

and make connections between the  accuracy of approxim ation and gam e-theoretic 

properties of the mechanism.

•  Special cases. Identify trac tab le special cases of more general problem s, and  restric t 

the im plem entation space to those trac tab le  special cases.

T he challenge is to  make mechanisms com putationally  feasible w ithout sacrificing useful 

gam e-theoretic properties, such as efficiency and  strategy-proofness.

3.2 Computation and the Generalized Vickrey Auction

T he Generalized Vickrey A uction (GVA) is a  classic m echanism  w ith  m any im portan t 

applications in d istrib u ted  com putational system s ([NR01, W W W M M 01]). As described 

in section 2.4, the GVA is a  strategy-proof and  efficient m echanism  for the  com binatorial 

allocation problem , in which there are a  set of items, Q, and  a  set of agents, I ,  and the 

goal is to com pute a  feasible allocation o f item s to  maximize the  to ta l value across all 

agents. Agents report values i i{ S )  for each bundle 5  C Q, and  the  GVA com putes an  

optim al allocation based on reported  values an d  also solves one add itional problem  with 

each agent taken out of the  system  to  com pute paym ents.
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From a  com putational perspective the  GVA presents a  num ber of challenges:

•  W inner determ ination is NP-hard. W inner determ ination  in the  GVA is N P-hard, 

equivalent to  th e  m axim um  weighted set packing problem . T h e  auctioneer must 

solve the w inner-determ ination  problem  once w ith all agents, and  then once more 

w ith  each agent removed from the system  to com pute paym ents.

• Agents m ust c o m p u te  values fo r  an exponential number o f bundles o f items. The 

GVA requires com plete inform ation revelation from each agent. T h e  valuation prob­

lem for a  single bundle can be hard  [MilOOa], and  in com binatorial dom ains there are 

an exponential num ber of bundles to consider.

•  Agents m ust c o m m u n ic a te  values fo r  an exponential number o f bundles o f items. 

Once an  agent has determ ined its preferences for all possible outcom es it m ust com­

m unicate th a t inform ation to  the auctioneer. In addition  to the  network resource 

cost, this m ight be undesirable from a  privacy perspective.

A num ber of proposals exist to address each of these problem s, surveyed below. The 

first problem , concerning the  com putational complexity of the  auctioneer’s w inner de­

term ination  problem , has received m ost atten tion . In  com parison, the  second problem, 

concerning the com plexity on partic ipants to  determ ine their preferences has received 

considerably less a tten tion . Exceptions include the brief discussion o f bidding programs 

in Nisan [NisOO], and  the  recent progress th a t has been m ade on dynam ic mechanisms 

[WWOO, P ar99, PUOOb].

This dynam ic approach includes my iBundle m echanism, and  recent extensions to 

com pute Groves paym ents. iBundle is an  iterative com binatorial auction m echanism, able 

to com pute efficient allocations w ithout com plete inform ation revelation from agents. The 

inform ation savings follow from an  equilibrium-based interactive solution concept, in which 

the efficient allocation is com puted based on an  equilibrium  across inform ation announced 

by the auctioneer (allocation, prices) and  inform ation announced by agents (best-response 

bids). In addition to  term inating  w ithout com plete inform ation revelation in  realistic 

problem  instances, agents i iBundle can com pute optim al strategies w ithout solving their 

com plete local valuation problem s.
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3.2.1 W inner-Determination: Approximations and Distributed M eth­
ods

Possible ideas to address the complexity of w inner-determ ination in the GVA include intro­

ducing approxim ation, identifying and  restric ting  to  special-cases, and d is trib u ted  m ethods 

th a t seek to involve decentralized agents in the m echanism ’s com putational problem.

In each case, as new m ethods are used to com pute the outcom e of a  Groves m echanism, 

it is im portan t to consider any effects on the strategy-proofness of the mechanism. T here 

are two reasons to be concerned abou t the loss of strategy-proofness w ith an  approxim ate 

Groves mechanism:

-  agents can now benefit from gam e-theoretic reasoning, which makes their strateg ic  

b idding problem  more difficult

-  the effect of agents m isrepresenting their preferences m ight, contrary  to their de­

sires, make the outcom e worse th an  if they had sim ply reported  their private inform ation 

truthfully.

Approximations

Sim ply replacing the optim al algorithm  in the GVA w ith an approxim ation algorithm  does 

not preserve strategy-proofness. Recall th a t the u tility  to agent i in the GVA for reported  

preferences 9i, is:

tH(0i) =  -  h i ( L t)

where /i;(-) is an arb itra ry  function over the reported  preferences <?_, =  ( # i , . . .

. . .  , 9[) of the o ther agents.

Agent i chooses to announce preferences 9{ to  make k '(9 i,  #_;) solve:

m ax Vi{k,6i) + '* T v j (k ,d j ) (*)

In the GVA because fc*(0,,0_;) solves this problem  w ith 9i = 9i, then  tru th -revelation  

is the agent’s dom inant strategy.

W ith  an  approxim ate w inner-determ ination  algorithm  the  auctioneer selects outcom e 

k{9i ,9- i ) ,  which might not equal T h e  agent’s optim al s tra tegy  is not to  an­

nounce a  type to try  to  make the  approxim ation algorithm  solve (*):
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* ( 0 i ,0 _ i )  =  *•(«<, 0_ i)

In  o ther words, the  agent would like to make the approxim ation  algorithm  select the 

best possible outcom e, given its true preferences and  the  announced preferences of the  other 

agents, and  th is m ight perhaps be achieved by manipulating  its inpu ts to  the  algorithm  to 

“fix” the  approxim ation in the  algorithm . T ruth-revelation is a  dom inant s tra tegy  w ithin 

a  Groves m echanism  if and  only if an agent cannot improve on the  outcom e com puted 

by the m echanism ’s algorithm  by m isrepresenting its own preferences. T h is observation 

leads to useful characterizations of necessary properties for an  approxim ation  algorithm  to 

re ta in  strategy-proofness w ith in  a  Groves mechanism.

Tennenholtz et al. [TKDMOO] introduce a  set of sufficient (b u t not necessary) axioms 

for an approxim ation algorithm  to re ta in  strategy-proofness. T h e  most im p o rtan t axiom, 

Axiom 2, essentially introduces the following requirem ent (which the  au tho rs also refer to 

as “1-efficiency” ):

vdk:(M-O,0O + > vi(k[ei,d . i),ei) + £« ,■(*& ,f l - M ) ,

for all §i ±  9i, 0 _,, 6 {.

In words, an agent cannot improve the solution w ith  respect to  a  particu la r set of inputs 

(#i,0_i) by unilaterally  m isrepresenting its own input 8 {. S trategy-proofness follows quite 

natura lly  from this condition, given th a t a  ra tional agent will only m isrepresent its prefer­

ences to improve the quality  o f the solution (for reported  preferences from o ther agents and 

the agent’s tru e  preferences) com puted by the m echanism. An in teresting  open question 

is the degree to which these axioms restric t the efficiency o f an  approxim ation  algorithm , 

for a  particu la r class of algorithm s (e.g. constant factor worst-case approxim ations, etc.).

Nisan & Ronen [NROO] take a  different approach and  define conditions on the range 

of an approxim ation algorithm , and  require the  algorithm  to  be optim al in its range—  a 

condition they refer to as m axim al in  its range, for tru th -revela tion  in a  Groves mechanism 

w ith approxim ate w inner-determ ination algorithm s. T he conditions are necessary and 

sufficient. In essence, the  m axim al in range condition sta tes  th a t  if K.' C K. is the range 

of outcom es selected by the  algorithm  (i.e. k  6  1C' implies there is some set of agent 

preferences for which th e  approxim ation algorithm  k(9) =  fc), th en  the  approxim ation
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algorithm  m ust com pute the best outcom e in th is restric ted  range for all inputs.

space of outcom es Kf.  An agent cannot im prove the  outcom e of the allocation rule by 

subm itting  a  corrupted input because there is no reachable outcom e of b e tte r quality. Nisan 

& Ronen partia lly  characterize the necessary inefficiency due to the dual requirem ents 

of approxim ation and strategy-proofness, and  claim  th a t all tru th fu l mechanisms w ith 

approxim ate algorithm s have “unreasonable” behavior for an  appropriate  definition of 

unreasonableness.

Lehm ann et al. [LOS99] consider strategy-proof and  approxim ate im plem entations for 

a special case of the com binatorial allocation p rob lem - w ith  single-minded  bidders th a t 

care only abou t one bundle of items. Perhaps surprisingly, w inner-determ ination remains 

N P-hard  even in this very restric ted  problem  by reduction  from weighted set packing. 

Lehm ann et al. allows the paym ent rules to  change from those in a  Groves scheme, and 

propose a  set of sufficient axioms for strategy-proofness in their problem . T he axioms 

apply  to properties of the allocation rule and  the paym ent rule. T he m ost im portan t 

condition for strategy-proofness is the “critical” condition, which sta tes th a t an  agent’s 

paym ent m ust be independent of its bid and  “m inim al” , closely following the  in tu ition  

behind  the incentive-com patibility o f the Vickrey-Clarke-Groves scheme. Lehm ann et al. 

propose a  greedy allocation rule and a paym ent scheme th a t satisfies their axioms, which 

together com prise a  strategy-proof m echanism. E x tending  to  “double-m inded” agents, the 

au tho rs prove th a t there are no strategy-proof paym ent rules com patible w ith their greedy 

allocation m ethod.

Nisan & Ronen [NR01] present an  in teresting  algorithm ic study  of m echanism  design 

for a  task allocation problem , w ith a  non efficiency-maximizing objective (and therefore 

outside of the application of Groves m echanism s). T h e  objective in the task  allocation 

problem  is to allocate tasks to  m inim ize the makespan, i.e. the  tim e to com plete the final 

task. Individually, each agent wants to  m inim ize the  tim e th a t it spends perform ing tasks. 

N isan & Ronen present sufficient conditions for the  strategy-proofness of a  m echanism, 

and  consider the class of approxim ation algorithm s th a t  satisfy those conditions. The

k(8 ) =  m ax 
keK '

for all 0 €  0 ,  and  for some fixed K ' C 1C. Intuitively, strategy-proofness follows because 

th e  Groves mechanism w ith this rule im plem ents a  Groves m echanism  in the  reduced
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im portan t axioms are independence, i.e. the paym ent to  agent i does not depend on its 

own bid, and maxim ization, i.e. th e  m echanism  m ust com pute an  outcom e th a t maximizes 

the benefit when each agent reports its tru e  ability  to  perform  tasks. For a  particu lar class 

of constant-factor approxim ation algorithm s, the  au thors com pute a  lower-bound on the 

degree-of-approxim ation for which strategy-proofness is possible. N isan & Ronen continue 

to show th a t a randomized  m echanism  can improve this best-case approxim ation factor.

Distributed Methods

Nisan Sc Ronen [NROO] propose an  innovative “second chance” m echanism , which aims 

to combine d istribu ted  challenges by agents w ith an approxim ate w inner-determ ination 

algorithm . The second-chance m echanism  builds on the in tu ition  th a t agents will m anip­

ulate an Groves m echanism  built around an approxim ation algorithm  if they can improve 

the solution by m isrepresenting their own preferences, given the  announcem ents of o ther 

agents.

T he second-chance m echanism  provides a  m ethod to allow agents to  improve the  ou t­

come of the algorithm  th a t does not also risk agents m aking the solution worse, for ex­

am ple if they either make bad predictions abou t the algorithm  or abou t the announce­

ments from o ther agents. Agents subm it a  claim  0* ab o u t th e ir preferences, as in the 

standard  Groves m echanism, and  also an appeal function, which can be viewed as an  

additional heuristic algorithm  for the w inner-determ ination problem . T he appeal func­

tion provides an  alternative set of inputs for the auctioneer’s existing algorithm , i.e.

I : 0 i  x . . .  x 0 /  —► 0 | X . . . x 0 / ,  such th a t 1(9) provides a  new set of preferences 

for each agent. Given reported  types 9, the mechanism solves the  op tim ization  problem  

w ith its approxim ation algorithm  once w ith the inputs 9, and  once w ith  each appeal set 

of inputs, e.g. lt (9) for the  appeal function of agent i, evaluating the outcomes in  term s o f 

the reported types 9.

Intuitively, providing an appeal function provides each agent w ith  a  m echanism  to try  

to fix the  approxim ate natu re  of th e  auctioneer’s w inner-determ ination algorithm  w ithout 

needing to  ad just its reported  preferences away from its tru e  preferences. Each agent will 

try  to subm it an appeal function to  improve the  system -w ide (reported) value of the chosen 

solution. “Feasible tru thfu lness” o f the second-chance m echanism  is dem onstrated , for a 

su itable restriction on the ra tionality  o f agents (see below).
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T he appeal functions are very complex and  require a  high degree of insight on the part 

of agents. N isan & Ronen note th a t the  agents them selves could be required to com pute 

the  results of their appeal function. T h e  m echanism  therefore can be viewed as a  m ethod 

to  use decentralized com putation  to  improve th e  perform ance of an  approxim ate winner- 

determ ination  algorithm . It is also suggested th a t  agents be given the  chance to learn the 

characteristics of the approxim ation algorithm , to enable them  to  generate good appeal 

functions. A nother idea is to in tegrate successful appeals progressively into the heuristic, 

to improve its base performance.

R othkopf et al. [RPH98] had earlier proposed decentralized com putation  approaches, 

w ith “challenges” issued to agents to  improve the quality  of the  auctioneer’s solution. 

Brewer [Bre99] also proposes a  m arket m echanism  to decentralize com putation  to agents.

R eturn ing  to the concept of feasible tru thfu lness, there is one one sense in which 

bounded-rationality  can help in m echanism  design. Perhaps we can design mechanisms 

th a t cannot be m anipulated  unless an  agent can solve an  N P -hard  com putational prob­

lem.

Nisan & Ronen [NROO] provide some in itial suggestions in  this direction. T he au thors 

in troduce the concept of a  feasible best-response an d  a  feasible dom inant action. A feasible 

best-response is an  agen t’s utility-m axim izing action  across a  restric ted  set of all possible 

actions, known as the agent's knowledge set. T he knowledge set is a  m apping from the 

actions of o ther agents to  a subset of an  agent’s own possible actions. An action is then  fea­

sible dom inant if it is the best-response in an  agen t’s knowledge set for ail possible actions 

of o ther agents. T his is a  very sim ilar concept to  the  m axim al-in-range idea introduced as 

an  axiom  for strategy-proofness w ith approxim ate w inner-determ ination algorithm s.

Given th is concept o f feasible dom inance, one m ight design mechanisms in which the 

strategies th a t perform  b e tte r th an  tru th-revelation  are in sm all m easure com pared to  all 

possible strategies, to  make an  agent require a  lot of “knowledge” to  have a  non tru th - 

revealing dom inant strategy, or perform  a  lot of com putation.

One could also in terp ret the m yopic best-response strategy, adopted  in my own work 

[Par99, PUOOa], from the perspective of a  bounded-rational agent. C ertain ly  the assum p­

tion of m yopia considerably simplifies an agen t’s problem , as it does not need to reason 

abou t the effect of its bids in the current round on fu ture prices or on the  strategies of 

o ther agents.
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Special-Cases and Structure

Finally, let us consider the  role of trac tab le  special-cases o f w inner-determ ination. R othkopf 

et al. [RPH98], N isan [NisOO] and  de Vries & V ohra [dWOO] characterize trac tab le  special- 

cases, identifying restric tions on th e  types o f bundles th a t can receive bids a n d /o r  the  

types of valuation functions agents can express over bundles. T h e  approach  is to restric t 

an  agent’s bidding language to  induce only trac tab le  w inner-determ ination problem s.

Ideally the restric ted  b idding language supports trac tab le  w inner-determ ination  w ith­

out preventing agents reporting  their tru e  valuation functions. In this case the GVA 

m echanism  can be applied w ithout any loss in e ither strategy-proofness or efficiency. How­

ever, as soon as one imposes a  restric tion  on agents’ bids there is a  risk th a t efficiency and  

strategy-proofness will be com prom ised. If an  agent cannot represent its tru e  valuation 

function w ith the restric ted  bidding language, then it will try  to  report an  approxim ate 

value th a t leads to the  best outcom e for its tru e  preferences, i.e. to  force the m echanism  

to select the best solution from the set reachable from the restric ted  range o f inputs. T his 

ability  to improve the  outcom e th rough  non-tru th fu l bidding leads to a  loss in strategy- 

proofness, for exam ple because the agent will now need to  predict the  strategies of o ther 

agents. T he tradeoff betw een approxim ate bidding languages, incentive-com patibility, and  

efficiency appears to have received little  atten tion .

G raphical tree representations, such as the Expected U tility  Networks [MS99], allow 

an agent to cap ture independence s tru c tu re  w ithin its preferences in much th e  sam e way as 

Bayes-Nets provide com pact representations o f conditional probabilities in su itable prob­

lems. In addition  to providing quite  com pact and  n a tu ra l representations for partic ipants, 

these stru c tu red  approaches may allow trac tab le  w inner-determ ination and  paym ent rules, 

th a t exploit the s tru c tu re  to  solve problem s w ithout explicitly com puting  values for indi­

vidual bundles.

3.2.2 Valuation Complexity: Bidding Programs and Dynam ic M ethods

T he Groves mechanisms are d irect-revelation mechanisms, requiring th a t every agent re­

ports its com plete preferences over all possible outcom es. In  application  to  large com bina­

torial problem s Groves mechanisms can fail because of the bounded-rationality o f agents, 

and  the complexity o f local valuation problems. T he valuation problem  for a  single bundle 

can be hard, and  in com binatorial dom ains there are an  exponential num ber of different
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bundles to  consider.

Consider an  applica tion  to a  d istribu ted  package delivery problem , w ith agents com­

peting for the  delivery jobs. Agents represent delivery com panies, and  may need solve 

hard  local op tim ization problem s to  com pute their costs to  perform  different bundles of 

jobs; each bundle may require th a t the agent com putes an  op tim al schedule for its fleet of 

vehicles.

In these types of com binatorial problems a  m echanism  m ust no t require an  agent to 

report its com plete valuation function. In addition, an  agent m ust be able to com pute its 

optim al s tra tegy  w ithout com puting its com plete valuation function. It is not helpful to 

require less inform ation if the agents m ust still com pute values for all bundles to  provide 

th a t inform ation. In C h ap ter 8 I in troduce a  bounded-rational compatible characterization 

of auctions. T he theory of bounded-rational com patibility  precisely cap tu res the concept of 

allowing an agent to partic ipa te  in an auction w ithout perform ing an  unnecessary am ount 

of valuation work. In a  bounded-rational com patible auction an  agent can com pute its 

equilibrium  stra tegy  w ith an  approxim ate valuation function, and  least in some problem 

instances.

Two interesting approaches to reduce inform ation revelation in m echanism s for combi­

natorial allocation problem s are:

(1) R etain  the  direct-revelation structu re , bu t provide a  high-level bidding language (or 

"bidding program ” ) to allow an agent to  “represent and  define” its local problem  w ithout 

explicitly solving its local problem  in all possible scenarios.

(2) Im plem ent a  dynam ic mechanism , which requests inform ation increm entally from 

agents and com putes the  optim al allocation and Vickrey paym ents w ithou t com plete in­

form ation revelation.

T he first m ethod m ay be helpful if specification is easier th an  valuation, i.e. it is 

easier for an  agent to  define how it determ ines its value for a  bundle o f item s th an  it is to 

explicitly com pute its value for all possible bundles. T h e  second m ethod  may be helpful if 

the iterative procedure term inates w ithout com plete inform ation revelation by agents, and 

if an agent can provide incremented inform ation w ithou t com puting its com plete valuation 

function. Let us consider each in turn .
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Bidding Programs and High Level Bidding Languages

In choosing a  bidding language for a  m echanism  there is a  tradeoff betw een the ease w ith 

which an  agent can represent its local preferences, and  the ease w ith which the m echanism  

can com pute the outcom e of the  mechanism. N isan [NisOO] describes the  expressiveness of 

a  language, which is a  measure of th e  size of a  message for a  particu la r family of valuation 

functions, and the sim plicity  of a  language, which is a  m easure of the com plexity involved 

in in terpreting  a language and com puting values for different outcomes.

A natu ra l s ta rtin g  point in com binatorial auctions is the X O R bidding language, 

( 5 i , p i )  XOR (S'2 ,P 2 ),  which essentially allows an  agent to  enum erate its value for all possi­

ble sets of items. This bidding language is sim ple to  in terp re t, in fact given a  bid b in the 

XOR language, the auctioneer can com pute the value 6(5) for any bundle in polynom ial 

tim e [NisOO]. However, this bidding language is not very expressive. A n obvious exam ple is 

provided w ith a linear valuation function, v( S)  =  Y lx e s  v (x )- XOR bids for th is valuation 

function are exponential in size (explicitly enum erating  the value for all possible bundles) 

[Par99]. In comparison, an O R  bidding language (5 t ,p i )  OR (5 2 , P2 ),  which sta tes th a t the 

agent wants 5 i or S 2  or both, has a  linear-space representation  of th is valuation function.

Nisan observes th a t other com binations, such as XOR-of-OR languages and  OR-of- 

XOR languages, allow compact representations of certain  preference stru c tu res and  make 

tradeoffs across expressiveness and  com pactness. N isan proposes an  OR* bidding language, 

which is expressive enough to be able to represent a rb itra ry  preferences over discrete items, 

and as com pact a  representation as b o th  OR-of-XOR and  XOR-of-OR representations. 

However, Nisan provides an  exam ple w ith no polynom ial-size representation even w ith  the 

OR* language.

T he expressiveness of a  bidding language, or the  com pactness of representations th a t it 

perm its, becomes even more im portan t when one considers th e  agent’s underlying valuation 

problem .

Suppose th a t an agent m ust solve an  N P -hard  constrained optim ization problem  [P] 

to com pute its value for a set of item s, w ith  objective function g and  constra in ts C.  In the 

XOR representation the agent m ust solve this problem  [P] once for every possible input 

5  C Q, i.e. requiring an exponential num ber o f solutions to  an  N P -hard  problem . Now 

consider an alternative bidding language, th a t allows the  agent to  send the specification of 

its optim ization problem, i.e. [P] =  (g , C)  d irectly  to  the  auctioneer. S trategy-proofness
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is not affected (assum ing th e  agent can tru s t the m echanism  to in terp re t th is bidding 

language faithfully), bu t the  agent saves a lot of value com putation .

In general, we m ight consider a  language in which the agent can send a  “bidding 

program ” to  the  auctioneer, which the  auctioneer will then  execute as necessary to  com pute 

an  agent’s value for different subsets of item s [NisOO]. T his is really ju s t the  extrem e limit 

of the revelation principle: ra th e r th an  requiring an  agent to  solve its local problem  and 

com pute its value for all possible outcom es, sim ply allow th e  agent to send the local 

problem  specification directly  to the auctioneer.

From the  perspective o f th e  bidding agent this approach simplifies its valuation problem  

whenever the specification o f its local problem  is sim pler th an  ac tua lly  com puting  its value 

for all possible outcom es. A bidding program  allows an agent to  feed th a t specification 

directly to the  auctioneer.

From the perspective of the auctioneer, this is an  even m ore centralized solution than  

providing a  com plete valuation function, and has worse-still privacy im plications. The 

bidding program  approach shifts the valuation com putational burden  from agents to the 

auctioneer. Notice for exam ple th a t if the bidding program  provides only “black box” 

functionality, e.g. 6 : 2^ —► R, the mechanism m ust com pute 6(5) for all 5  C Q (unless 

o ther consistency rules such as free disposal apply to an agen ts’ values) to  com pute the 

efficient solution. In th is case the auctioneer needs to perform  ju s t as m uch com puta­

tion as would be required by an  agent w ithin the  XOR b idd ing  language. However, if 

the bidding program , or language, provides a  richer functionality— for exam ple allowing 

efficient pruning  “the value b(S' )  on all bundles S ' ■< 5  is less th an  6 (5 )” ; or com puting 

approxim ate values “the  value of 6(5) is between [a, 6]” ; or best-response “th e  bundle th a t 

maximizes 6(5) — p (5 ) a t those prices is 5 1” — then  the to ta l valuation  work perform ed by 

the auctioneer can be less th an  th a t required by agents w ith  the  XOR bidding  language. 

Savings of this kind can be realized w ithin an  algorithm  th a t  makes explicit use of these 

types of query structures.

Let me outline some serious lim itations o f the  bidding program  m odel in som e domains:

•  T he specification problem  can be as difficult as the valuation  problem  in some do­

mains. In particu lar, the  assum ption above is th a t a  single specification allows an  

agent to com pute its value for all bundles. In  m any problem s the  agent m ight need 

to  collect add itional inform ation, consult hum an experts etc., to  form a  m odel w ith
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which to  determ ine the  value of each bundle. As a  concrete example, consider the 

FC C  spec trum  auction. For any particu la r set of licenses a  b idder m ight need to 

construct a  new business model, to  determ ine its value, and  this can require costly 

and  tim e-consum ing inform ation gathering, conference calls, and m odeling efforts 

[MilOOa].

• Local valuation problem s might not be well formed, the  agent might not be able to 

provide a  clear description of the m ethod w ith  which the  value of each alternative is 

determ ined. This is a  particu lar concern in system s in which hum an experts m ust 

be consulted to determ ine values.

•  T he size of the specification of a  problem  might be too large to transm it to the 

mechanism. Perhaps com puting the  value for a  bundle requires access to  a large 

d atabase  of inform ation?

•  Value and  sensitivity of inform ation. In a  supply-chain example, will IBM  really 

be happy to release the m ethods th a t it uses to take procurem ent decisions? T his 

inform ation has considerable value to  a  com petitor.

•  T rust. C an the  agent tru s t the  auctioneer to  faithfully execute its bidding program ? 

T here m ight be a  role for verification mechanism s to  enable an  agent to  verify the 

value com putation  perform ed by a  m echanism. Harkavy et a/.[HTK98] and  Naor et 

al. [NPS99] provide an  in troduction to  some ideas from secure d istribu ted  com puta­

tion th a t can be used in auction environm ents.

Dynamic Methods.

An alternative  approach is to  “open up” the  algorithm  for com puting the outcom e of the 

GVA, and  involve agents dynam ically in the  com putational process. It is easy to  construct 

examples in which it is not necessary to have com plete inform ation abou t agents’ valuation 

problem s to com pute and  verify the outcom e of the auction. A few sim ple examples are 

described a t the end of this section. A well s tru c tu red  dynam ic m ethod m ight ask agents 

for ju s t enough inform ation to enable the  m echanism  to com pute and  verify the  outcome.

A dynam ic m echanism  may elicit the following types of approxim ate inform ation from 

agents:
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-  ordinal inform ation, i.e. “which bundle has highest value ou t o f S i, S 2  and  S 3?”

-  approximate inform ation, i.e. “is your value for bundle S i g reater th an  100?”

-  best-response inform ation, i.e. “which bundle do you want a t prices p (S )?”

-  equivalence-set inform ation, i.e. “is there an  item  th a t is su b s titu tab le  for A T '

In addition to solving realistic problem  instances w ithout com plete inform ation reve­

lation, it is also im portan t th a t dynam ic m ethods allow an agent to  respond to  requests 

for inform ation w ith an  approxim ate solution to its own valuation function. Notice th a t 

in each of the preceding exam ples an  agent can respond w ithout first com puting its exact 

value for all bundles.

E x a m p le s :  C o m p le te  I n f o r m a t io n  is N o t  N e c e s s a ry

Exam ples 1-3 are sim ple problem s instances in which the optim al allocation  and  the Vick­

rey paym ents can be com puted w ithou t com plete inform ation from agents. A lthough there 

is no consideration of agent incentives a t this stage, a  well s tru c tu red  itera tive auction can 

com pute optim al outcom es w ithou t com plete inform ation from agents and  provide incen­

tives for agents to reveal tru th fu l inform ation.

E x a m p le  1. Single-item  auction  w ith  3 agents, and values ui =  16, «2 =  10, V3  =  4. The 

Vickrey outcom e is to sell the item  to agent 1 for agent 2’s value, i.e. for 10. Instead of 

inform ation it is sufficient to  know {ui >  10 , V2  =  10 , U3 <  10} to  com pute this

outcome.

E x a m p le  2. Consider a  com binatorial auction problem  in which we ask every agent for 

the bundle th a t maximizes their value. If the response from each agent is non-overlapping, 

as illustra ted  in Figure 3.1 then  we cam  im m ediately com pute the  outcom e of the  GVA. 

T he efficient allocation is to  give each agent its favorite bundle, every agent gets its value- 

maxim izing bundle so there can be no b e tte r solution. T he Vickrey paym ents in this 

exam ple are zero, intuitively because there is no com petition betw een agents. We do not 

need any inform ation abou t the  value of an  agent for any o ther bundles, and  we do not 

need even need an  agen t’s value for its favorite bundle.

E x a m p le  3. C onsider the sim ple com binatorial allocation problem  instance in Table 3.1, 

w ith items A, B  and  agents 1, 2, 3. T he values of agent 1 for item  B  an d  bundle A B  are 

s ta ted  as a < b  and  b < 15, b u t otherw ise left undefined. Consider th e  following cases:
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Figure 3.1: A sim ple com binatorial allocation problem . Each disc represents an item , and 
the selected bundles represent the  bundles w ith m axim um  value for agents 1, 2, 3 and 4. 
In this exam ple this is sufficient inform ation from agents to  com pute the efficient solution 
(and the Vickrey paym ents).

[a <  5] In this case the GVA assigns bundle A B  to agent 3, w ith V '  =  15, { V - j) ' = 

m ax[10+a,6], so th a t the paym ent for agent 3 i s pvick(3) =  15 — (1 5 -m ax [1 0 + a ,6 ]) =  

max[lO +  a, 6]. I t is sufficient to  know {a <  5 ,6  <  15, max[lO +  a, 6]} to  com pute the 

outcom e.

[a >  5] In this case the GVA assigns item  B  to agent 1 and  item  A  to  agent 2, w ith 

V '  =  10 +  a, (V_i)* =  15, and  (V_2)* =  15. T he paym ent for agent 1 is pVick( 1) =  

a - ( 1 0 + a - 1 5 )  =  5 and  the paym ent for agent 2 is Pvick(2) =  10—(1 0 + a -1 5 )  =  1 5 -a . 

It is sufficient to know {a, 6 <  15} to com pute the outcom e.

Note th a t it is not necessary to  com pute the  value of the  op tim al allocation S ';  we only 

need to com pute the  allocation to  each agent. Consider Exam ple 1. We can com pute the 

optim al allocation (give the  item  to agent 1) w ith inform ation ui >  {u2 ,U3}, and  w ithout 

knowing the exact value of U[.

Also, it is not even necessary to com pute V ’ and  (V .,)* to  com pute Vickrey paym ents 

because com m on term s cancel. In  Exam ple 1 , it is enough to  know the  value of v2  to 

com pute agent l ’s Vickrey paym ent because the  value of v \ cancels: pVick(l) =  u i — 

A v i c k ( l )  =  vi -  (vi -  v2) = v2.
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A  B  A B
Agent 1 0 a  6
Agent 2 10 0 10
Agent 3 0 0 15

Table 3.1: Agent values in Example 3.

Useful Properties of Iterative Auctions

Iterative price directed auctions, such as ascending-price auctions, present an  im portan t 

class of dynam ic mechanisms. In each round of th e  auction the auctioneer announces prices 

on the item s, or bundles of items, an d  a  provisional allocation (which agent is currently  

receiving which items). A reasonable bidding s tra teg y  for an  agent is m yopic best-response, 

which is sim ply to bid for the item s th a t m axim ize its u tility  a t  the  prices. A lthough myopic 

best-response is in general not the  op tim al sequential strategy for an  agent, it can be m ade 

a Bayesian-Nash equilibrium  of an  iterative auc tion  by com puting Vickrey paym ents a t 

the  end of the auction (see chapter 7).

Useful properties of iterative auctions include:

•  Iterative auctions can solve realistic problem s w ithout com plete inform ation from 

agents. Consider an  ascending-price auction  for a  single item . It is sufficient th a t the 

two agents w ith the highest value bid in each round, the  o ther agents do not need 

to bid and can sit back and  w atch th e  price rise, w ithout providing any inform ation. 

Im plicit inform ation is provided by not responding to prices.

•  Agents can follow myopic best-response w ithout com puting exact values for all bun­

dles. For example, an  agent can follow a  best-response bidding stra teg y  in a  price- 

d irected iterative auction w ith  lower and  upper bounds on its values for bundles. 

Myopic best-response only requires th a t an  agent bids for the  bundle(s) w ith m axi­

mum utility  (value - price) in each round. T his utility-m axim izing set o f bundles can 

be com puted by refining the  values on individual bundles un til the  u tility  of one or 

more bundles dom inates all o th er bundles.

•  T he inform ation requested dynam ically  in  each round of an  auction (im plicitly, via 

the new prices and the  b idding rules o f th e  auction) is qu ite  n a tu ra l for agents (and 

people) to provide. T he auction  does not ask agents to  make m ysterious com parisons
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across different bundles, bu t ra th e r lets agents consider their best-response (local 

utility-m axim izing strategy) given the  new prices.

xBundle [Par99, PUOOa], introduced in chapter 4, is an  ascending-price com binatorial 

auction. Agents can ad just their bids in  response to  bids placed by o ther agents, and the 

auction  eventually term inates in com petitive equilibrium . iBundle solves the  problem  in 

F igure 3.1 in one round w ith myopic best-response agent strategies, because every agent 

will bid for its value-m axim izing bundle in response to  zero prices and  every agent will 

receive a bundle in the  provisional allocation. In fact, iBundle is provably efficient w ith 

myopic best-response agent strategies, and  an extended auction, iBundle Extend& A djust, 

inherits m any of the  useful gam e-theoretic properties from the  G eneralized Vickrey Auc­

tion.

3.2.3 Addressing Communication Costs: Distributed M ethods

Shoham  & Tennenholtz [ST01] explore the com m unication com plexity o f com puting simple 

functions w ithin an  auction-based algorithm  (i.e., w ith  self-interested agents w ith private 

inform ation). Essentially, the au thors propose a  m ethod to  com pute solutions to  simple 

functions w ith m inim al com m unication complexity. C om m unication from the auctioneer 

to  the  agents is free in their model, while com m unication from agents to  the  auctioneer is 

costly. Given th is, Shoham  & Tennenholtz essentially provide incentive schemes so th a t 

each agent i announces its value Vi by sending a single b it to  the m echanism  whenever the 

price in an  auction  is equal to  this value. M ax and  m in  functions can be com puted w ith a 

single bit from agents, and  any function over n  agents can be com puted in n  bits, which 

is the lower inform ation-theoretic bound.

Feigenbaum  et al. [FPSOO] investigate cost-sharing algorithm s for m ulticast transm is­

sion, in which a  population  of consumers sit on the  nodes of a  m ulticast tree. Each user 

has a  value to receive a  shared inform ation stream , such as a  film, and  each arc in the 

m ulticast tree has an  associated cost. T he m echanism  design problem  is to  im plem ent the 

m ulticast solution th a t maximizes to ta l user value m inus to ta l network cost, and shares 

the cost across end-users. Noting th a t budget-balance, efficiency, and  strategy-proofhess 

are im possibility in com bination the au thors com pare the  com putational properties of a 

Vickrey-Clarke-Groves marginal cost (MC) m echanism  (efficient and  strategy-proof) and 

a  Shapley value (SH) m echanism  (budget-balanced an d  coalitional strategy-proof).
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A d is trib u ted  algorithm  is developed for M C, in  which in term ediate nodes in the tree 

receive messages, perform  some com putation , an d  send messages to  their neighbors. The 

m ethod, a  bo ttom -up followed by a  top-down traversal of the tree, com putes the solution 

to MC w ith  m inim al com m unication complexity, w ith  exactly  two messages sent per link. 

In com parison, there is no m ethod for the  SH m echanism  w ith efficient com m unication 

complexity. All solutions are maximal, and  require as m any messages p er link as in a naive 

centralized approach. Hence, com m unication com plexity considerations lead to a  strong 

preference for the MC mechanism, which is not budget-balanced. T h e  study  leaves many 

in teresting  open questions; e.g. are all budget-balanced solutions m axim al, and  w hat are 

the  gam e-theoretic properties of alternative strategy-proof m inim al mechanisms?

T h e economic literature  contains a  few notab le models of the effect of lim ited commu­

nication and  agent bounded-rationality  in m echanism  design, and  in system s of d istribu ted  

decision m aking and inform ation processing. T h is work is relevant here, given the focus 

in my dissertation  on com putational m echanism  design and  in particu lar on the costs of 

com plete inform ation revelation.

In the theory of team s [MR72], R adner and  M arschak provide a  com putational account 

of the organization of m anagem ent structu res an d  team s, considering in particu lar the ef­

ficient use of inform ation w ithin a  decentralized organization. T he goal is to com pare the 

efficiency (decision quality) of different inform ation structu res under the  assum ption th a t 

each s tru c tu re  will be used optim ally. T he theory  of team s proposes a  two-step m ethod 

to m easure the effectiveness of a  particu la r organizational structu re: ( 1) find the  optim al 

m ode of functioning given a  s tru c tu re  and  com pute the  efficiency; (2 ) su b trac t the  costs of 

operation . T he second step in th is m ethodology has not been done because there has tra ­

d itionally  been no good way to assess the  cost o f com m unication. O ne m ethod suggested 

to side-step this problem  is to  com pare the perform ance o f different com m unication struc­

tu res for a  fixed num ber of messages. T h e  work of Feigenbaum et al. [FPSOO] certainly 

s ta r ts  to  integrate com m unication com plexity analysis into m echanism  design.

One im portan t assum ption m ade in the theory  of team s is th a t all agents share a 

com m on goal (e.g. profit), and  no a tten tio n  is given to  the  incentives of agents. Radner 

[Rad87] com pares the efficiency of four classic m odels of resource allocation, and  asks which 

is the m inim al sufficient s tru c tu re  to com pute efficient solutions. Extensions to  consider 

agent incentives are also discussed.
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Recently, R adner [Rad92, Rad93] has considered a  decision-theoretic m odel of a  firm, 

in which m anagers are modeled as bounded-rational decision makers, able to  perform  

some inform ation processing and  com m unicate. T h e  m odel considers d is trib u ted  decision 

problem s in which agents m ust perform  local com putation  w ith  local inform ation because 

of bounded-rationality  and  lim ited com putation. One useful concept proposed by Radner 

is th a t of a  “m inim ally efficient” network, which is the m inim al com m unication network 

(e.g. in term s of the  num ber of links) th a t does not in troduce delay the  decentralized 

decision m aking of agents.

Green k  Laffont [GL87] consider the im pact of lim ited com m unication on the perfor­

m ance of incentive-com patible mechanisms. S ta rtin g  w ith d irect-revelation  mechanisms, 

which assum e th a t agents can transm it inform ation messages th a t are sufficiently detailed 

to describe fully all th e ir private inform ation, G reen & Laffont consider the  effect of reduc­

ing the  “dim ensionality” of an  agent’s message space. In th e ir ab strac t m odel the decision 

problem  is to select an  x  G Rn , an  agent’s preferences are 8  €  Rm , and  the  com m unication 

space is R  6  Rf. T he au thors characterize the  effect of reducing the  message dim ension I, 

while try ing  to m ain tain  incentive-com patibility and  decision optim ality.

T here is a well developed theory on the m inim al com m unication com plexity required 

to im plem ent efficient allocations [Hur72, MR74, Rei74]. M ount & R eiter com pare the 

com m unication requirem ents a t the equilibrium  o f different m arket structu res, in which 

com m unication cost is m easured in term s of the size of the  message space th a t is used in 

a  m echanism. However, most models com pare the  costs in equilibrium , w ithout consider 

com m unication costs along the ad justm ent process, and  w ithout any a tten tio n  to the 

com putation  cost on agents and  on the m echanism  in frastructu re  [Mar87]. A central 

question in the  lite ra tu re  is: w hat is the m inim al equilibrium  message size required to 

im plem ent a  particu la r social choice function? Classic results argue th a t the  “com petitive 

m echanism ” , which im plem ents allocations in equilibrium  (th e  m echanism  announces a 

set of prices and  agents self-select which bundles they will consum e), is inform ationally 

efficient. T h e  theory o f m inim al message spaces provides a  good theoretical background to 

the a tten tio n  to equilibrium  solutions to d istribu ted  com binatorial optim ization  problems 

in this d issertation .
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Chapter 4 

Linear Programming and Auction Design

M echanism  design proposes the Vickrey-Clarke-Groves m echanism  as a  solution for the 

com binatorial allocation problem . In  fact, th is m echanism  is essentially the  only mechanism 

w ith the critical properties of strategy-proofness and  allocative-efficiency. However, we 

have identified a  num ber of inherent com putational problem s w ith Groves mechanisms:

•  Every agent m ust provide its value for every bundle to  the  auctioneer.

• T he auctioneer m ust solve m ultiple N P -hard  problem s to com pute the outcom e of 

the auction.

T he Groves mechanisms are centralized solutions to  a  decentralized com putational prob­

lem. T hey address the incentive issues in system s w ith d is trib u ted  agents w ith private 

inform ation bu t fail to  address im portan t com putational issues.

Naive approaches to address the  auctioneer’s com putational problem  will often break 

the strategy-proofness of the mechanism, in add ition  to  reducing the allocative-efficiency of 

the solution. O ne m ethod discussed in C h ap ter 3 suggests com puting  an  approxim ate solu­

tion to the  w inner-determ ination problem , and  the  w inner-determ ination  problem  w ithout 

each agent, and  com puting Vickrey paym ents w ith  the  approxim ate solutions. S trategy- 

proofness is lost as soon as the m echanism  does not com pute the  efficient allocation, the 

allocation th a t maximizes the reported  values of agents. In stead  an  agent should try  to 

m isrepresent its valuation function in ju s t the right way to  m ake the  auctioneer com pute 

the optim al w inner-determ ination solution despite its approx im ate algorithm . In o ther 

words agents should try  to com pensate for the  approxim ation  w ith in  the  mechanism.

Similarly, while it is possible to  restric t a  bidding language such th a t the  m echanism ’s 

w inner-determ ination  problem  is trac tab le  (see Table 4.4). However as soon as the re­

stric ted  expressiveness o f the  language forces th e  agent to  subm it an  approxim ate report
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of its valuation function, th e  agent m ust reason abou t which approximation  will lead to 

the auctioneer com puting a  solution to  th e  w inner-determ ination problem  th a t is optim al 

for the agent’s tru e  valuation function.

T he m otivation for iterative com binatorial auctions is to  address the first com putational 

problem, th a t of agent valuation work, and re ta in  the  useful gam e-theoretic properties of 

strategy-proofness and efficiency. In many problem s it is qu ite  unrealistic to  assum e that 

an agent can com pute its value for all possible com binations of item s, as is required in 

the single-shot VCG m echanism. Iterative com binatorial auctions provide interactive  so­

lutions, hopefully requesting ju s t enough inform ation from agents to  com pute the  efficient 

allocation and  the Vickrey paym ents. T he uniqueness of Groves mechanisms (amongst 

direct-revelation mechanisms) implies via the revelation principle th a t any iterative solu­

tion to the com binatorial allocation problem  w ith these desirable gam e-theoretic properties 

m ust com pute the paym ents in the  Vickrey-Clarke-Groves m echanism.

My approach is to  first assume a  sim ple bidding stra tegy  for agents in each round of 

an iterative auction. T he strategy, myopic best-response, need not be gam e-theoretically 

rational for an  agent. However, this assum ption allows a  strong  connection between linear 

program m ing theory, in particu la r prim al-dual algorithm s, and  iterative auction design. 

C hapters 3 and  4 in troduce prim al-dual algorithm  C o m b A u c t io n , and  its auction equiv­

alent iBundle, which com pute efficient allocations w ith myopic best-response agent s tra te ­

gies. T he prices com puted in the dual solution have an  economic in terp re ta tion , as the com­

petitive equilibrium  prices. Later, in C hapters 5 and  6 , I present an  extended prim al-dual 

m ethod, V ic k A u c t io n , and an  experim ental auction  design, iBundle Extend& A djust, to 

com pute Vickrey paym ents and  the efficient allocation w ith  myopic best-response agent 

strategies. Vickrey paym ents make myopic best-response a  sequentially rational strategy 

for an agent in equilibrium  w ith myopic best-response from o th er agents—  justify ing  my 

earlier assum ption. T his “LP -I- Myopic Best-Response -t- Vickrey” approach appears 

to provide a  com pelling m ethodology for the design of itera tive mechanisms w ith useful 

gam e-theoretic properties.

Bertsekas [Ber87] had earlier proposed a prim al-dual algorithm  A u c t io n  for the assign­

m ent problem, which is a special case o f the com binatorial a llocation  problem. AUCTION 

has a natural interpretation as an  ascending-price auction, but does not com pute Vickrey 

paym ents and  does not have any useful incentive-com patibility properties. As discussed
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in section 4.7, au tho rs such as Demange et al. [DGS8 6 ] and  A usubel [Aus97, AusOO], have 

proposed a lternative iterative auction designs. These auctions are able to  com pute bo th  

the efficient allocation and  Vickrey paym ents, and  have recently been given prim al-dual in­

terp reta tions by B ikchandani et al. [BdVSVOl] and  others, bu t only for special cases of the 

com binatorial allocation problem  (CA P). I adopt Bertsekas’ methodology to  design primal- 

dual algorithm  C o m bA u c t io n , and an  efficient iterative com binatorial auction, iBundle, 

w ithout placing any restrictions on agent preferences. iBundle im plements a  prim al-dual 

algorithm  w ith myopic best-response agent strategies for linear program  formulations of 

the CA P introduced in Bikchandani & O stroy [B099].

T he extended auction, iBundle Extend& A djust, im plem ents a prim al-dual algorithm , 

V ic kA u c t io n  for a  new linear program  form ulation o f th e  Vickrey paym ents. V ickA uc- 

TION provably com putes the efficient allocation and  Vickrey paym ents w ith best-response 

inform ation from agents. C om putational results in C h ap ter 7 dem onstrate th a t the experi­

m ental auction, iBundle Extend& A djust, which is an in terp re tation  of prim al-dual m ethod 

VICK A u c t io n , com putes Vickrey paym ents over a suite of problem  instances. A full proof 

of the extended auction awaits a  proof of term ination  o f its final phase (see C hap ter 7).

T he outline of th is chapter is as follows. Section 4.1 presents a  brief description of 

iBundle. Section 4.2 provides background on linear program m ing theory and  prim al-dual 

algorithm s. Section 4.3 relates prim al-dual m ethods w ith  allocation problem s, and consid­

ers price-adjustm ent m ethods and com petitive equilibrium . T he English auction provides 

a sim ple prim al-dual example. Section 4.4 provides a  hierarchy of linear program m ing for­

m ulations for the com binatorial allocation problem . Section 4.5 also outlines the  trac tab le 

special-cases of the  com binatorial allocation problem , and  to provide practical in terpre ta­

tions as much as possible. This falls natu ra lly  w ithin th is chapter because the  trac tab le  

special cases can all be understood w ithin linear program m ing theory.

Section 4.6 describes C o m bA u c t io n , a  prim al-dual algorithm  for the com binatorial 

allocation problem . iBundle, introduced in the next chapter, is a  straightforw ard auction 

in terp re ta tion  o f C o m bA u c t io n . Finally, section 4.7 com pares the characteristics and 

properties of C o m b A u c t io n  and iBundle w ith earlier iterative auction mechanisms.
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4.1 Overview: The zBundle Auction

iB undle [Par99, PUOOa] is an  ascending-price com binatorial auction, in  which prices are 

m ain tained  on bundles o f item s and  agents can b id  for bundles o f item s directly. In  this 

section I give only a  high-level descrip tion o f th e  auction. Full details are presented in the 

next chapter. T he description here is included to  give some context to  th e  prim al-dual 

m ethod, C o m b A u c t io n , introduced to  solve th e  CAP.

Allowing bids on bundles o f item s allows an  agent to  express a  “I only want A if I 

also get B” type of constrain t, th a t is observed to  be im portan t in many applications (see 

C h ap ter 1). iBundle term inates w ith an  efficient allocation and  term inates in com petitive 

equilibrium  for agents th a t follow myopic best-response bidding strategies, i.e. bid for 

all bundles th a t maximize u tility  in each round given the prices. T he extended auction, 

iBundle Extend& A djust, rem ains open for a  second phase and  com putes discounts from 

the  bid price of each agent to im plem ent Vickrey paym ents.

iBundle m aintains an  ask price, Pi{S)  >  0 for every bundle S  C Q and  every agent 

i 6  X.  This is the m inim al price th a t an  agent m ust bid for th a t bundle in the current 

round of the auction. T he prices may be non-linear, Pi{S) ^  5Zj6sP»0’)i anc* may be non' 

anonym ous, pi{S)  ^  Pj{S).  In practice it is not necessary to  explicitly price every bundle, 

prices are explicitly m aintained on a  subset of bundles (those which receive unsuccessful 

bids) and  can be com puted on any bundle as necessary. T he auction also m aintains a 

provisional allocation, S  =  ( S i , . . .  , S [ )  in each round. T his is ad justed  across rounds in 

response to  agents’ bids until the  auction term inates, when it is im plem ented as the final 

allocation.

T he key com ponents of the auction are the  b idding language, the w inner-determ ination 

rules, the price-update rules, and  the  term ination  conditions. Agents place exclusive-or 

bids for bundles, e.g. S i XOR S2 , to  indicate th an  an agent wants e ith er all item s in 

Si or all item s in So b u t not b o th  S i and  S2 . Each bid is associated w ith  a  bid price, 

which m ust be at least the  ask price for th e  bundle. T he auctioneer collects bids and 

com putes a provisional allocation to  m axim ize revenue given the  bids. If  every agent th a t 

placed a bid receives a  bundle the  auction  term inates. Prices are initially anonym ous, w ith 

Pask,i(S) =  Paskj (S) =  p (S ). T he price on a  bundle is increased to  e > 0 above the  highest 

bid price for the  bundle from any unsuccessful agent in the  curren t round (an  agent not in 

the  provisional allocation). A sim ple rule in troduces price d iscrim ination dynam ically, as
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necessary to  term inate  w ith  com petitive equilibrium  prices an d  an  efficient allocation.

4.2 Linear Programming Theory

First, I provide a brief review of basic results in linear program m ing. See P apadim itriou 

& Steiglitz [PS82] for a  tex t book in troduction, an d  C h an d ru ’s excellent survey papers 

[CR99b, CR99a] for a  m odern review of the lite ra tu re  on linear program m ing and integer 

program m ing.

Consider the linear program :

max cT x  [P]

s.t. A x  < b 

x  >  0

where A  is a  m  x n  integer m atrix , x  €  R n is a  n-vector, and  c and  b are n — and 

m -vectors o f integers, vectors are column-vectors, and  no ta tion  cT indicates the transpose 

of vector c, sim ilarly for m atrices. T he primed problem  is to  com pute a  feasible solution

for x  th a t m aximizes the  value of the  objective function.

T he dual program  is constructed  as:

min bTy  [D]

s.t. A Ty > c 

V > 0

where y  €  R m is a  m -vector. T h e  dual problem  is to  com pute a  feasible solution for y  

th a t minimizes the value o f the objective function.

Let Vl p (x ) =  c^x , the value o f feasible prim al solution ®, an d  Vd l p (!/)  =  bT y, the 

value of feasible dual solution y.

T he weak duality theorem  o f linear program m ing s ta tes th a t th e  value o f the dual always 

dom inates the  value of the  prim al:

T h e o r e m  4.1 (w eak-duality). Given a feasible prim al solution x  with value V lp(x) 

and a feasible dual solution y  with value Vdlp(!/)> then  Vl p (x ) <  Vdlp(2/)-
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P r o o f . Solution x  is feasible, so A x  < b. Solution y  is feasible, so A T y > c. 
Therefore, x  < A T b and  y  > Ac, and  cT x  < <?*AT b = bT A C  < bT y, and P  < D . \

T h e strong duality theorem  of linear program m ing sta tes  th a t prim al and  dual solutions 

are optim al if and only if the value o f the  prim al equals th e  value of the dual:

T h e o r e m  4 .2  ( s t r o n g - d u a l i t y ) .  P rim al solution x '  and dual solution y ’ are a pair o f 

optimal solutions fo r  the prim al and dual respectively, i f  and only i f  x ’ and y* are feasible 

(satisfy respective constraints) a n d  V lp (i* ) =  V dlp(2/*)-

T h e  strong-duality  theorem  of linear program m ing can be resta ted  in term s of 

complementary-slackness conditions (CS for sho rt). Com plem entary-slackness conditions 

expresses logical relationships between the  values of prim al and  dual solutions th a t are 

necessary and  sufficient for optim ality.

D e f in it io n  4 .1  [complementary-slackness] Com plem entary-slackness conditions con­

stra in  pairs of prim al and dual solutions. Prim al CS conditions s ta te  x T {AT y  — c) =  0, or 

in logical form:

Xj > 0 =>■ AJy =  Cj (P-CS)

where A J denotes the j t h  colum n o f A  (w ritten  as a  row vector to avoid the use of 

transpose). Dual CS conditions s ta te  yT {A x — b) =  0, or in  logical form:

yj >  0 => AiX  =  bi (D-CS)

where A* denotes the i th  row of A.

T h e strong-duality  theorem  can be resta ted  as the  complementary-slackness theorem :

T h e o r e m  4 .3  ( c o m p le m e n ta ry - s la c k n e s s ) .  A  pair o f feasible primal, x , and dual solu­

tions, y , are prim al and dual optimal i f  and only i f  they satisfy the complementary-slackness

conditions.
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P r o o f .  P-C S iff x T {AT y —c) =  0 ,  and D-CS iff  yT { Ax  — b) =  0 .  E quating , and  observ­

ing th a t x T A T y = y T A x ,  we have P-CS and  D-CS iff x Tc = y T b, or cT x  = bT y. T he LHS 

is the value of the prim al, Vl p ( x ) ,  and  the RHS is the value of the  dual, VdlpCi/)- By the

strong duality  theorem , Vi p(x)  =  VbLp(y) is a  necessary and  sufficient condition for the so­
lutions to be optim al. |

4.2.1 Primal-Dual Algorithms

Prim al-dual is an  algorithm -design paradigm  th a t is often used to  solve com binatorial 

optim ization problem s. A problem  is first formulated bo th  as a  p rim al and  a  dual linear 

program . A prim al-dual algorithm  searches for feasible prim al and  dual solutions th a t 

satisfy com plem entary-slackness conditions, instead of searching for an  op tim al prim al (or 

dual) solution directly. P rim al-dual can present a useful algorithm -design paradigm  for 

com binatorial op tim ization problem s. Instead of solving a  single h ard  prim al solution, or 

a  single hard  dual solution, a  prim al-dual approach solves a  sequence o f restric ted  prim al 

problems. Each restric ted  prim al problem  is often much sim pler to solve th an  the full 

prim al (or dual) problem  [PS82].

P rim al-dual theory  also provides a  useful conceptual fram ework for the design of it­

erative com binatorial auctions. Prices represent a feasible dual solution, and  bids from 

agents allow a  search for a  prim al solution th a t satisfies com plem entary-slackness con­

ditions. If the curren t solution is suboptim al there is enough inform ation available to 

adjust dual prices in the right direction. Com plem entary-slackness conditions provide the 

key to understand ing  how it is possible to  com pute and  verify op tim al solutions w ith­

out com plete inform ation: it is sufficient to  ju s t verify th a t a  feasible solution satisfies 

CS conditions. P rim al-dual algorithm s cire consistent w ith the decentralized inform ation 

inherent in d is trib u ted  agent-based systems. O ptim ality  reduces to  a  test of feasibility 

and com plem entary-slackness, which is available from agent bids, ra th e r th an  the direct 

solution of a  prim al problem , which requires inform ation ab o u t agent valuation functions.

A s tan d ard  prim al-dual form ulation m aintains a feasible dual solution, y, and  com putes 

a solution to a  restricted prim al problem , given the dual solution. T h e  restric ted  prim al is 

form ulated to  com pute a  prim al solution th a t is bo th  feasible and  satisfies CS conditions 

w ith the dual solution. In  general this is not possible (until the  dual solution is optim al),
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an d  a  relaxed solution is com puted. T he restric ted  prim al problem  is typically form ulated 

to  com pute this relaxed solution in  one o f two ways:

1. C om pute a feasible prim al solution x '  th a t m inim izes the  “violation” of com plem entary- 

slackness conditions w ith dual solution y.

2. C om pute a  prim al solution x '  th a t satisfies com plem entary slackness conditions w ith 

dual solution y, and minimizes the  “v iolation” of feasibility constraints.

M ethod (2) is more useful in the context o f  iterative auction  design because it m ain­

tains a  feasible prim al solution, which becomes the provisional allocation in the auction, 

i.e. a  ten tative allocation th a t will be im plem ented only when the auction  term inates. 

T h e  restric ted  prim al problem  can be solved as a  w inner-determ ination problem. I show 

th a t the feasible allocation th a t maximizes revenue given agent bids (solution to  winner- 

determ ination) achieves one set of CS conditions in iB undle and  the o ther set of CS condi­

tions for all agents in the provisional allocation. Prices in each round of an auction define 

the  feasible dual solution, and agent best-response bids provide enough inform ation to test 

for com plem entary-slackness and ad just solutions towards optim ality.

As discussed earlier, we will assum e for now myopic best-response, and  later handle 

agent strategies by com puting Vickrey paym ents, in add ition  to the efficient allocation.

I in troduce a  linear program  form ulation for Vickrey paym ents, and  characterize its so­

lu tion w ith in  a  prim al-dual framework. Vickrey paym ents make myopic best-response a  

sequentially-rational s trategy  for an  agent, in equilibrium  w ith o ther myopic best-response 

agents. F u rther discussion of th is m ethod to  use linear program m ing, assum e myopic 

best-response, and  handle agent strategies is delayed un til C hap ter 6 .

A prim al-dual based auction m ethod has th e  following form (see Figure 4.1):

1. M aintain  a feasible dual solution ( “prices” ).

2. C om pute a  feasible prim al solution ( “provisional allocation” ) to  minimize violations 

w ith com plem entary-slackness conditions given agents’ bids.

3. T erm inate if all CS conditions are satisfied ( “are we in com petitive equilibrium ?” )

4. A djust the dual solution towards an  op tim al solution, based on CS conditions and 

the  curren t prim al solution ( “increase prices based on agent bids” )
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Figure 4.1: A Primal-Dual Interpretation of an Auction algorithm.

4.3 Allocation Problems

Let us consider the p articu la r form of an  allocation problem , in which there are a set of 

discrete item s to allocate to  agents, and the goal is to  m axim ize value. T he prim al and 

dual allocation problem s can be s ta ted  as follows:

D e f i n i t i o n  4.2 [allocation problem: primal] T he prim al allocation  problem  is to  al­

locate item s to agents to  m axim ize the sum  value over all agents, such th a t no item  is 

allocated to more th a n  one agent.

D e f i n i t i o n  4.3 [allocation problem : dual] T he dual allocation problem  is to assign 

prices to  items, or bundles of item s, to m inimize the sum  o f (i) each agents’ m axim um  

u tility  given the prices, over all possible allocations; and (ii) the m axim um  revenue over 

all possible allocations given the prices.

Clearly, w ithout inform ation on agents’ values the auctioneer cannot com pute an  op­

tim al prim al or an  op tim al dual (because of term  (i) in th e  dual). However, under a 

reasonable assum ption  ab o u t agents’ bidding strategies (myopic best-response, see below) 

the auctioneer can verify com plem entary-slackness conditions betw een prim al and  dual 

solutions, and ad just prices and  the  allocation towards op tim al solutions.

An auction  in te rp re ta tio n  of the com plem entary-slackness conditions can  be s ta ted  as 

follows:

D e f i n i t i o n  4.4 [allocation problem : CS conditions] T h e  CS betw een a  feasible prim al
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solution to  an  allocation problem , x , and  a  feasible dual solution, prices p, are:

(C S-1) Agent i  receives bundles S{ in the  provisional allocation if and  only if the bundle 

m axim izes its u tility  given the prices, and  has non-negative utility.

(CS-2) T h e  provisional allocation S  =  ( S i , . . .  ,S / )  is the  revenue-maxim izing allocation 

given the  prices.

Left deliberately  vague a t this stage is the exact structure  of the prices. In a  combi­

natoria l allocation problem  these m ight need to  be non-linear and  non-anonymous prices 

to su p p o rt the  optim al allocation. Similarly, the  revenue-m axim ization concept m ust be 

defined w ith respect to a  particu lar linear program  form ulation. Note also th a t CS-2 is 

not autom atically  satisfied w ith a  provisional allocation com puted to maximize revenue 

given agen ts’ bids. CS-2 makes a  stronger claim , th a t th e  provisional allocation m ust 

maximize revenue over all possible allocations given the curren t ask prices, not ju s t over 

all allocations consistent w ith bids.

P rim al-dual auction  analysis requires the following assum ption  abou t agent strategies:

D e f in it io n  4 .5  [m y o p ic  b e s t - r e s p o n s e ]  A m y o p ic  b e s t - r e s p o n s e  b id d in g  s t r a t e g y  is to  

b id  fo r  a l l  i t e m s  o r  b u n d le s  o f  i te m s  t h a t  m a x im iz e  u t i l i t y  a t  th e  c u r r e n t  p r ic e s .

Best-response bids provide enough inform ation to  test CS-1, because the best-response 

of an agent is precisely those bundles th a t m axim ize an  ag en t’s u tility  given the current 

prices. For any feasible prim al solution, the  auctioneer can  test CS-2 because th a t only 

requires price inform ation.

T he restric ted  prim al has a  n a tu ra l auction in terpretation :

D e f in it io n  4 .6  [auction restricted-prim al problem] Given best response bids from each 

agent allocate bundles to maximize revenue, breaking ties in  favor of including more agents 

in the provisional allocation.

Note well th a t a  bundle is only allocated to an  agent in th e  restric ted  prim al prob­

lem if the agent bids for th a t bundle. This restric tion  ensures th a t CS-1 is satisfied for 

th a t agent, given the  definition of myopic best-response. CS-2 is satisfied w ith careful 

price-adjustm ent rules, such th a t prices are increased “slowly enough” th a t the revenue- 

m axim izing allocation can always be com puted from agent bids.
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Given myopic best-response, the term ination  condition, which tests for com plem entary- 

slackness between the provisional allocation and  the prices, m ust check th a t CS-1 holds 

for every agent. T his is achieved when every agent to subm it a  b id  receives a  bundle in 

the provisional allocation, i.e. in com petitive equilibrium .

O ur interest is in solving the  CAP, which is most im m ediately form ulated as an  integer 

program  (see section 4.4). In  order to  apply  prim al-dual m ethods it is essential th a t we 

have a  linear program  form ulation of th e  CAP. We m ust be careful enough to use a  strong 

enough formulation, such th a t the op tim al solution is integral (0-1) and  not fractional. T he 

ideal situation  is illustra ted  in Figure 4.2. T he auction im plements a  prim al-dual algorithm  

for a  linear program  th a t is strong  enough to com pute the optim al integer solution.

Complementary-
slackness conditions 
satisfied.

u3
a
>

ytintegrai)

Auction Round

Figure 4.2: Auction-based Primal-Dual Algorithm in which the Linear program model of the 
optimization problem is strong enough to preclude all fractional solutions.

In comparison, consider Figures 4.3 (a) and  (b), which illu stra te  a  p rim al-dual algo­

rithm  and iterative auction m ethod for a  linear program  th a t is not strong  enough, and 

adm its optim al fractional solutions. T he prim al-dual algorithm  algorithm  term inates w ith 

a  fractional prim al solution and  value g reater th an  the value of the  best possible inte­

ger solution. The auction always m aintains an  integral prim al solution (solving winner- 

determ ination to com pute the  provisional allocation), bu t can term inate  w ith  a  prim al 

solution th a t does not satisfy com plem entary-slackness conditions. A lthough the  primed 

solution is perhaps optim al, its op tim ality  cannot be assessed w ithout CS inform ation.

4.3.1 Price Adjustment

Left undefined a t the  m om ent, and  the  challenging p art of prim al-dual auction  design, are 

the precise rules used to define price updates. T he goal is to  use inform ation from  agents’
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Figure 4.3: Primal-dual algorithm (a) and Primal-dual auction method (b) in which the linear 
program relaxation is too weak, and ^lpr > V p -

bids, and  the curren t provisional allocation, to  ad ju st prices towards an  optim al dual 

so lu tion - th a t will support an optim al prim al solution. P rim al-dual m ethods traditionally  

use the dual of the restric ted  prim al to ad just th e  dual solution across iterations. A simpler 

m ethod in allocation  problem s is to increase prices on over-demanded items, or bundles o f 

items. T he m ethod can be explained b o th  in term s of its effect on complementary-slackness 

conditions and  in term s of its effect on the value of the  dual solution.

T he idea is to increase prices to: (a) m ain tain  CS-2 in the  next round and  (b) move 

towards satisfying CS-1 for all agents.

P r o p o s it io n  4 .1  (p r o g re s s ) .  Progress is made towards satisfying CS-1 and CS-2 with 

the provisional allocation and the ask prices if: (1) the auctioneer increases prices on one 

or more bundles that receive bids in each round; and (2) the auctioneer increases prices 

by a sm all enough increm ent that best-response bids from  agents continue to maxim ize  

revenue in the next round.

CS-1 holds whenever every agent th a t bids receives a  bundle in the provisional alloca­

tion. T his is trivially  achieved for high enough prices because no agent will bid, bu t we 

need to achieve this condition in com bination w ith  CS-2. T he trick is to increase prices 

to  achieve convergence, b u t increase them  ju s t enough to  m ain tain  revenue-m axim ization 

f ro m  bids CS-2 across all rounds. This is achieved by ensuring th a t agents continue to bid 

fo r  bundles a t the new prices, i.e. increasing price on over-dem anded bundles.

An a lternative in terp re ta tion  is th a t increasing prices on over-dem anded item s will
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reduce the value o f the dual, m aking progress towards the op tim al solution, see Figure 4.4. 

Recall th a t the  value of the  dual is th e  sum  of th e  auctioneer’s m axim al revenue and  each 

agen t’s m axim al u tility  a t  the  curren t prices. A price increase will decrease the value of 

the dual if the  increase in m axim al revenue from th e  price increase is less th a n  the  decrease 

in to ta l m axim al u tility  sum m ed across agents.

T he auctioneer can achieve this effect of increasing revenue by less th an  the  decrease in 

agent u tility  by selecting over-dem anded items, or bundles of item s, on which to  increase 

the price. Suppose th a t two agents bid for bundle S i, and  th a t b o th  agents have a t least 

e >  0 more u tility  for th a t bundle th an  any o ther bundle a t the curren t prices. Increasing 

the price on bundle S i by e will decrease the m axim al u tility  of both agents by e, for a 

decrease in dual value of 2e. However, increasing the  price on this one bundle by e can 

increase the auctioneer’s m axim al revenue by a t m ost e. T he result is th a t the  net change 

in u tility  m ust a  decrease of a t least e.

Complementary- 
slackness holds

U
3
3
>

Auction Round

Figure 4.4: Primal-Dual Interpretation of an Ascending-Price Auction.

4.3.2 Com petitive Equilibrium

T he optim al prim al and  dual solutions in an  allocation problem  correspond to  a  classic 

s ta tem en t of competitive equilibrium.

D e f in it io n  4 .7  [competitive equilibrium ] A llocation S  and  prices p  are in  com petitive 

equilibrium  when:

(a) every agent receives a  bundle in its best-response (u tility  m axim izing) set.

(b) the allocation maximizes the revenue for the  auctioneer a t the prices.
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T he allocation in com petitive equilibrium  is efficient, by equivalence between com pet­

itive equilibrium  and  prim al-dual optim ality:

T h e o r e m  4 .4  ( c o m p e t i t i v e  e q u i l ib r iu m  e ff ic ie n c y ) . A n  allocation S  is efficient i f  and 

only i f  there exists competitive equilibrium prices p, fo r  an appropriate type o f prices (e.g. 

linear, bundle, non-anonym ous).

In the context of the com binatorial allocation problem  B ikchandani & O stroy [B099] 

have characterized the s tru c tu re  on prices required for the  existence of com petitive equi­

librium  (and equivalently for integral solutions to linear program  form ulations of CAP). 

These form ulations are introduced in section 4.4 and  discussed a t length.

In some problem s it is necessary th a t prices are b o th  non-linear (bundle prices) and 

non-anonym ous (different prices for the sam e bundle to different agents) to support a 

com petitive equilibrium  solution.

W urm an & W ellman [W W99, WWOO] propose an  a lternative definition of com petitive 

equilibrium , which is essentially com plem entary slackness condition CS-1 w ithout CS-2 . 

T his relaxed condition is sufficient for the  existence of equilibrium  prices even w ithout 

non-anonym ous prices, bu t too weak to  be able to claim  th a t equilibrium  prices imply an 

efficient allocation.

4.3.3 Example: The English Auction

T he s tan d ard  English auction  illustrates the  prim al-dual framework for auction design. The 

English auction  is an  ascending-price auction for single item s, where the  price increases as 

long as more th an  one agent bids a t the current price.

Let V{ denote agent Vs value for the item . The single-unit resource allocation problem

is:

max > ViXi [IPsingle]

S .t.

X{ G {0, 1}
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where i ,  =  1 if and  only if agent i is allocated  the  item , i.e. the  goal is to  allocate the 

item  to the agent w ith the highest value. T h is can  be solved as a  linear program , [LPSjng[e], 

relaxing the integral constraint

m ax V i X i  [LPSing|e]
i

S.t. <  1
i

X i > 0

and VL*p =  VJp, i.e. there is always an  integral op tim al solution to  the  relaxed problem .

T h e  dual form ulation, [DLPSjngie], is

m in 7T [DLPsingie]

S.t. 7T >  V i ,  Vi 

7T >  0

T he com plem entary-slackness conditions are

^ i i  > 0 => n  = Vi, Vi

7T >  0 =*► X{  =  1

T he English auction m aintains price p  on the item , initially p  =  0. Agent i bids 

whenever p < vi, and the provisional allocation sets x j  =  1 for one o f the  agents th a t  bids 

in each round, and increases the price p  whenever m ore th an  one agent bids.

Let the provisional allocation define a  feasible prim al solution, and  the price define 

dual solution ^  =-YLi raaxtO, V{ — p} +  p. T h is  is feasible, ir > max{0, u, — p} +  p  >  V{ for 

all agents i.

Assum e th a t agents follow a  myopic best-response b idding strategy, bidding for the  item  

a t the ask price whenever the price is below their value. T he op tim ality  of the English 

auction can be understood in two different ways:

•  T he English auction term inates w ith  p rim al and  dual solutions th a t satisfy CS-1 and 

CS-2.
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Clearly, CS-2 is satisfied throughout the auction because th e  item  is always allocated 

to  one of the  agents. CS-1 is satisfied when the  auc tion  term inates. Let j  indicate 

the only agent th a t bids a t price p. Therefore v, — p  <  0 for all agents i  j  and 

Vj — p > 0  for agent j  (because agents follow best-response bidding strategies), and 

7f = J2i m ax{0 , Vi -  p} + p  =  m ax{0 , Vj -  p} + p = Vj.

•  T h e  value of the dual stric tly  decreases in each round  o f the  auction. Let m  >  1 

equal the num ber o f agents th a t bid in each round of the  auction  except the  final 

round. For price increm ent e, the sum  m axim al u tility  to  the agents decreases by me 

and  the m axim al revenue to  the auctioneer increases by e, for a  net change in 7r of 

— (m — l)e.

In fact, the English auction is a  incentive-com patible, individual-rationed and  allocatively- 

efficient m echanism  for the  single-item  allocation problem  because th e  final price is equal 

to the  Vickrey paym ent (to w ith in  £).

T he outcom e (allocation and  price) in a  single-item  auction  is in com petitive equilib­

rium  when:

(i) the item  is sold to an  agent, th a t agent bids for the  item  a t th e  price, and  no other 

agent bids for the item  a t the price.

or (ii) the  item  is sold to  no agent, the  price is zero, and  no agent bids for th e  item.

In b o th  these cases the allocation is efficient. In (i) th e  agent w ith  the highest value 

receives the item. In (ii) no agent has a  positive value for the  item .

4.4 Linear Program Formulations for the Combinatorial Al­

location Problem

Prim al-dual based auction  m ethods require linear program m ing form ulations of allocation 

problem s. B ikchandani & O stroy [B099] have form ulated a  hierarchy o f linear program s for 

the problem , in troducing  add itional constraints to remove fractional solutions. Although 

it is always possible to  add  enough constrain ts to  a  linear program  relaxation  to  make the 

optim al solution integral [Wol81a, Wol81b, TW 81], the p articu la r form ulations proposed by 

B ikchandani & O stroy are interesting because the constra in ts have n a tu ra l in terpretations 

as prices in the dual.
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T he hierarchy of linear program  form ulations, [LPi], [LP2], and [LP3], all re ta in  the 

set of integer allocations bu t prune additional fractional solutions. Each form ulation in­

troduces new constrain ts into the prim al, w ith  the  dual problem s [DLPi], [DLP2], and 

[DLP3] contain ing richer price structures. For exam ple, in [DLPi] the prices on a  bundle 

are linear in the price of items, i.e. p(S)  =  where p(j )  is the price of item  j

in bundle S.  Moving to  [DLP2], the price on a  bundle can be non-linear in the price on 

item s, and  in [DLP3] the price on a  bundle can be different to  different agents. Bikchan­

dani & O stroy prove th a t L P3 solves all CAP instances, and  dem onstrate the existence of 

com petitive equilibrium  prices, even though they m ust som etim es be b o th  non-linear and 

non-anonym ous.

Solving the CAP w ith the high-level linear program  form ulations is likely to be less 

efficient com putationally  than  direct search-based m ethods applied to the integer program  

form ulation. Form ulations [LP2] and [LP3] in troduce an  exponential num ber of additional 

prim al constrain ts, and  dual variables, effectively enum erating  all possible solutions to the 

CAP. In com parison, search m ethods, such as branch-and-bound w ith LP-based heuristics, 

solve the problem  with im plicit enum eration and  pruning.

However the form ulations are very useful in the  context o f mechanism design and decen­

tralized C A P problem s. In section 4.6 I present C o m bA u c t io n , a prim al-dual algorithm  

for the  CAP, which

(a) com putes optim al prim al and  dual solutions without com plete inform ation about 

agent valuation functions.

(b) com putes optim al prim al and  dual solutions without com plete enum eration of all 

prim al constra in ts an d /o r  dual variables.

In fact most o f the com putation w ithin  C o m b A u c t io n  occurs in winner determ ination, 

which solves the restricted primal problem in each round, and winner-determ ination itself  

is solved w ith  a branch-and-bound search m ethod.

4.4.1 Integer Program Formulation

In troducing Xi(S)  to indicate th a t agent i receives bundle S  the straightforw ard integer 

program , [IP], form ulation of the com binatorial allocation problem  is:

m ax
x,(S)

[IP]
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s .t. £ x , { S ) < l ,  Vi (IP-1)
s

£ I > ( S ) < 1 ,  Vj (IP-2 )
5 3 j i

xt{ S ) € { 0 , l } ,  Vi, 5

where 5  9  j  indicates a  bundle S  th a t contains item  j .  T he objective is to  com pute the

allocation th a t maximizes value over all agents, w ithout allocating more th an  one bundle

to any agent (IP-1) and  w ithout allocating a  single item  m ultiple tim es (IP-2). Let 

denote the value of the optim al allocation.

4.4.2 First-order LP Formulation

L Pi is a direct linear relaxation, which replaces the integral constrain ts x*(S) 6  {0,1} with 

non-negativity constraints, Xj(S) >  0.

m ax Y  y  x,(5)u,(S) 
r,(5) s  i

s.t. ^ P x ,(S )  <  1, Vi
s

yyxis)<i,  vj
S3j i

x t{ S ) >  0, Vi, 5

p(o.pO) y  y

s.t. p(i) +  y , p { j )  > vt{S ), Vi, 5  
je5

p ( i) .p ( i)  >  0, V i,i

Prices p ( j ) on item s j  G 5  define a  feasible dual solution, w ith th e  su b stitu tio n  p(i) =  

m axs  |t» i(5 ) -  E jg sP W )} -

P r o p o s it io n  4 .2  ( f i r s t - o r d e r  d u c il) . The value o f the first-order dual is the sum  o f the 

m axim al u tility  to each agent plus the total price over all item s (this is the auctioneer’s 

m axim al revenue).
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A B AB
Agent 1 
Agent 2 
Agent 3

0 0 
2 *  0 
0  2 *

3
2
2

Table 4.1: Problem 1.

T h e  dual variables define linear prices, the price for bundle S  C Q is p(S )  =  ]CjS .sP(i)- 

T he optim al dual solution defines com petitive equilibrium  prices if and  only if a  partition  

of item s a t exists a t the prices th a t allocates each agent a  bundle in its utility-m axim izing 

set and  allocates every item  w ith positive price exactly once.

Problem  1 in Table 4.1 can be solved w ith [LPi ]; v lv , =  Pip =  4. T he optim al 

allocation is xn{A) =  1 and x$(B)  =  1, indicated by *. To see th a t Vlp, <  4, notice that 

dual prices p(A)  =  p(B )  = 1.6 gives a  dual solution w ith value VdlPi =  0 + 0 .4 4 -0 .4 + 3 .2  =  

4. R em em ber th a t VL*Pi <  VdlPi f°r ad  dual solutions by the  w eak-duality theorem  of 

linear program m ing.

However, in general the value VZp , >  V?P and  the optim al prim al solution makes frac­

tional assignm ents to  agents. Kelso & Crawford [KC82] prove th a t gross-substitutes (GS) 

preferences are a sufficient condition for the existence o f linear com petitive equilibrium  

prices, i.e. V'L*Pi =  Vjp. Recently, G ul & S tacchetti [GS99] show th a t GS is the largest 

set of preferences th a t contain unit-dem and for which the  existence of linear com petitive 

equilibrium  prices can be shown.

Let Di(p)  define the dem and set of agent i  a t prices p, i.e. the set o f bundles that 

maximize its u tility  (value - price).

D e f in it io n  4.8 [gross-substitutes (GS)] For all price vectors p ,p ' such th a t p' > p, and

all S  6  Di(p),  there exists T  €  A ( ? 0  such th a t { j  6  S  : pj  =  p ' } C T .

C ondition GS states th a t if the prices were increased from p  to  p ' then  the  agent would 

continue to  dem and any item  whose price d id  not increase. G ul & S tacchetti [GS99] show 

th a t under reasonable m onotonicity conditions is v(-) satisfies GS then  u(-) is subm odular. 

In tu rn , GS implies subadditive valuation functions, such th a t the value for any bundle is

no g reater th an  the  m inim al sum  o f values for a  p a rtitio n  o f th e  bundle.

D e f in it io n  4.9 [subm odular preferences] V aluation function  V((S) is subm odular if for
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A B C AB BC AC ABC
Agent 1 60 50 50 200* 100 110 250
Agent 2 50 60 50 110 200 100 255
Agent 3 50 50 75* 100 125 200 250

Table 4.2: Problem 2.

all S , T C g ,

Vi(S) +  vi (T)  >  Vi(S  U T )  +  Vi{S fl T )

T he equivalence of subm odularity  and  decreasing re tu rns is well-known in the lite ra tu re  

[GS99],

D e f i n i t i o n  4 . 1 0  [decreasing returns] V aluation function Vi(S)  has decreasing m arginal 

re tu rns if for all S  C T  C G and all j  6  G,

V i ( T ) - V i ( T \ { j } )  < V i { S ) - v ( S \ { j } )

As an  exam ple of when [LPi] fails, consider P roblem  2 in Table 4.2.

In th is problem  VL*Pi =  300 >  =  275. T he prim al allocates fractional solution

x \ { A B )  =  0 .5 ,X2{BC)  =  0.5 and  2:3(AC)  =  0.5, which satisfies constrain ts (L Pi-1) be­

cause S  3 j  52iXi (S)  < 1 for all item s j  €  G■ Prices p(A)  = p{B)  = p(C)  =  100 solve 

the  dual problem  D L P i.

T he rest of this section introduces two alte rn a tiv e  linear program  form ulations of CAP, 

[LP2] and  [LP3], due to  B ikchandani & O stroy [B099].

4.4.3 Second-order LP Formulation

In troducing  new constraints to the  first-order linear program  relaxation [LPi] o f [IP] gives 

a  second-order linear program  [LP2] w ith dual [DLP2]. T he corresponding dual variables 

to the new prim al constrain ts are in terp re ted  as bundle prices w ithin an  auction-based 

prim al-dual algorithm .
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m ax Y Y x £ S M S )
* is ) .v W  $  i

s.t. ^ x , ( S )  <  1, Vi
s

5 > < s )  < Y , y W ,  v s
i k3S

5 > ( * ) < i
*

x f S ) , y ( k ) >  0, Vi, 5 , A:

min > p(i) -t- n
p(i),p(S),»^-

s.t. p ( t ) + p ( S )  >  v,{S), Vi, 5

7 r - ] P p ( S ) > 0 ,  V&
s e k

p( i ) ,p(S) ,  7 r> 0 ,  Vi, 5

where A: 6  K  is a  partition  of item s in set K ,  and  A: B S  indicates th a t bundle S  is repre­

sented in partitio n  k. A partition  is a  feasible “bundling” o f item s, e.g. [A, B , C ] or [AB,  C], 

etc., and  K  is the set of all possible partitions, e.g. K  =  {[A, B ,  C], [AB,  C],  [A, B C ] , . . .  , 

[ABC]}  in Problem  2 (Table 4.2).

C onstrain ts (L P2-2 ) and  (LP2-3 ) replace constrain ts (L P i-1), and  ensure th a t no more 

than  one un it of every item  is allocated. T he dual [DLP2] has variables p (i), p(S)  and  n,  

which correspond to constrain ts (L P2-I) , (L P 2-2 ) and (L P 2-3 ), and  constra in ts (D L P i-l) 

and (D L P 2-2 ) correspond to prim al variables x,(S) and  y[k).

Dual variables p{S)  can be in terpreted  as bundle prices, an d  w ith  su b stitu tio n  p(i) =  

max {v, {S)  -  p (S )} , i.e. the m axim al u tility  to  agent i a t prices p (S ), and  

7r =  maxfee/c *-e- m axim al revenue to the auctioneer a t prices p (5 ).

P r o p o s it io n  4 .3  ( s e c o n d -o rd e r  d u a l ) .  The value o f the dual is the sum  o f the maximal 

utility to each agent with bundle prices p(S)  p lu s  the auctioneer’s m axim al revenue over 

all feasible (and non-fractional) allocations at the prices.
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A B AB
Agent 1 0 0 3*
Agent 2 2 2 2

Table 4.3: Problem 3.

T h e  dual variables correspond to bundle prices, p{S) ,  and  the  optim al dual solution 

defines com petitive equilibrium  prices if there is an  allocation th a t gives each agent a 

bundle in its utility-m axim izing set a t the  prices, and  maximizes revenue to the auctioneer 

over all possible allocations.

W ith  the add itional constrain ts [LP2] solves P roblem  2. A llocation x \ ( A B )  =  x z ( B C )  =  

£3(.4C) =  0.5 is not  feasible in [LP2] because it is not possible to allocate y{ki)  =  

y ( k 2 ) =  y( k 3 ) =  0.5 for fci =  [ A B , C] , k 2  =  [AC, B] and  £3 =  [AB,  C] w ithout vio­

lating constra in t (LP2-3 ) and  w ithout th is we violate constrain ts (LP2-2 ). [LP2] solves

Problem  2, w ith V£pt = v i? =  275. An optim al dual solution is given by bundle prices 

p  =  (50 ,60 ,75 ,190 ,200 ,200 ,255), w ith to ta l agent m axim al u tility  10-1-0 +  0 and  m axim al 

auctioneer revenue 75 +  190 =  265, i.e. t'DLPj =  275.

However, Problem  3 is an  exam ple th a t [LP2] does not solve. T he value of the optim al 

prim al solution is VL*p3 =  3.5, which is g reater th an  the value of the optim al feasible 

allocation, Vip =  3- T he primed allocates fractional bundles x i ( A B )  =  0.5 and  xo{A)  =  

x i { B )  — 0.5, which satisfies constrain ts (L P 2-2 ) and  (LP2-3 ) w ith y{k\)  =  y(ko)  =  0.5 for 

p artitions ki  =  [AB,%] and  kz = [A ,B \. Prices p{A)  =  1.5,p[B)  =  1 .5 ,p (A 0) =  3 solves 

the dual problem  DLP2 .

4.4.4 Third-order LP Formulation

In troducing  new constraints to  the second-order linear program  relaxation [LP2 ] of [IP] 

gives a  th ird -order linear program  [LP3 ] w ith dual [DLP3 ]. T he corresponding dual vari­

ables to  the  new prim al constrain ts are in terpreted  as non-anonym ous, or discrim inatory  

bundle prices, w ith  different prices for the  sam e bundle to  different agents.
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max 52 52  x£s)v4.s) [LP3]

s.t. 5 2 i , ( S ) < 1 ,  Vi (L P3-I)
s

xis) < 52  yW' Vi’5 (Lp3-2)
k3{i,S]

^ y ( k ) < i  ( lp 3-3)
k

x ^ S ) , y ( k )  > 0, V i,5 , k

...“ in  5 2 p W  +  >t [d l p 3]
P(»).P.(5),)r "

s.t. p (i) +Pi(S) > i/t(S), Vi, 5  (DLP3-I)

* " 5 2  P»(5 ) ^ 0 - Vfc (D L P3-2 )
[i,5]€fc

p(i),Pi(5),Jr >  0, Vi, S

where A: 9  [i,S] indicates th a t agent-partition k  £  K 1 contains bundle S  designated 

for agent i. Variable y(k)  in [LP3] corresponds to an  agent-partition k , where the set 

of agen t-partitions in Problem  3 is K ' =  {[(1. A ), (2, B)},  [(1, B) ,  (2, A)], [(1, A B ) ,  (2,0)], 

[(1,0), (2, AB)}.  I t is im portan t to  note th a t each agent can receive a t  m ost one bundle in 

a  particu la r agent-partition .

T he dual variables P i { S )  th a t correspond to  prim al constra in ts (L P 3-2 ) are interpreted

as non-anonym ous bundle prices, price P i { S )  is th e  price to  agent i for bundle S .  As before,

substitu tions p(i) =  m ax{t/,(S ) — p i ( S ) } ,  i.e. the  m axim al u tility  to  agent i a t individual 

prices P i ( 5 ) ,  and  tt =  m aXk€K'  23[i,s]€fcP»(‘̂ )> *,e‘ t îe m axim al revenue to the  auctioneer 

a t prices P i { S )  given th a t it can allocate a t m ost one bundle a t prices P i ( S )  to each agent 

i.

P r o p o s i t i o n  4 .4  (th ird-order dual). The value o f the dual to [LP zj is the sum  of 

the m axim al u tility  to each agent with bundle prices Pi(5) plus the auctioneer’s maximal 

revenue over all feasible allocations at the prices. In this case an allocation is feasible i f  it 

allocates no more than one bundle to each agent.
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T h e dual variables correspond to  non-anonym ous bundle prices, Pi(S), and  the optim al 

dual solution defines com petitive equilibrium  prices if there  is an allocation o f item s th a t 

sim ultaneously gives each agent a  bundle in its u tility-m axim izing set and  maximizes the 

auctioneer’s revenue, over all possible allocations sell a t most one bundle to  each agent.

B ikchandani & O stroy [B099] prove this im portan t theorem :

T h e o r e m  4 .5  ( in te g r a lity ) . The optimal solution to linear program [LP3]  is always 

integral, and therefore an optimal solution to CAP, with =  ^DLP3 =  tfc -

Therefore, there are always com petitive equilibrium  bundles prices for CAP, although 

these prices m ust be non-anonym ous in some problem s.

C onsider P roblem  3. A llocation x i ( A B )  =  0.5 and  1 2 (A)  =  1 3 (B) =  0.5 is not  feasible 

in [LP3] because y(A:t ) =  y(k2) = y ( k3) = 0.5 for ki  =  [(1, A B ) ,  (2,0)], k 2  =  [(1, A),  (2, B)] 

and fc3 =  [(1, B ), (2, A)] violates constra in t (L P 3-3), bu t w ithout this constrain ts (L P3- 

2) are violated. In th is problem  ^LP, =  Vjp =  3. To see this, consider bundle prices 

pi =  (0 ,0 ,2 .5 ) and  p2 =  (2 ,2 ,2 ), for which the value of the  dual is 0.5 +  0 +  2.5 =  3. This 

proves th a t  Vlp3 <  3 by the weak-duality theorem  of linear program m ing.

4.5 Tractable Combinatorial Allocation Problems

T he C A P is equivalent to the set packing problem  (S P P ), a  well-studied problem  in the 

operations research literature . In  S P P  there are a  set of items, and  a  set of subsets 

each w ith  non-negative weights, and  the  goal is to pack as sets to m axim ize to tal value, 

w ithout using any item  more th an  once. C A P can be reduced to S P P  by introducing an 

add itional “dum m y item ” for the X O R  bids from each agent, de Vries & Vohra [dWOO] 

also note th a t two closely related problem s, the  set partition ing  problem  (SPA), in which 

the goal is to select a  set of subsets w ith  m inim al cost th a t include all item s a t  m ost once, 

and the  set covering problem  (SC P), in which the  goal is to  select a  set of subsets w ith 

m inim al cost th a t include all item s a t  least once. Set covering problem s find applications in 

railway crew-scheduling and airline scheduling, where item s are fligh ts/tra ins, and  bundles 

represent possibility sets for individual workers.
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A classic technique in com binatorial op tim ization  theory is to  relax an  integer program  

to a  linear one. M any trac tab le  special cases follow by considering th e  conditions on the 

na tu ra l relaxation of th e  integer program  th a t provide integer solutions. For example, one 

sufficient condition is th a t the linear program  is integral, such th a t all ex trem al feasible 

points are integral, i.e. 0-1. In th is case the integrality  requirem ent can be dropped  and  the 

problem  solved as a  linear program  in linear tim e. R estrictions on the constra in t m atrix , 

corresponding to restric tions on the kinds of subsets perm itted  in CAP, can provide this 

integrality property  [dVVOO].

A dditional restrictions, for exam ple on the size of bids, or on the valuation s tru c tu re  of 

bids, can also lead to trac tab le  special cases. Given the connection w ith linear program m ing 

relaxations this is a  good place to review known tractab le special-cases in the  literature . 

T he results here are draw n from R othkopf et al. [RPH98], de Vries & Vohra [dVVOO], 

Nisan [NisOO], and earlier work due to  Kelso & Crawford [KC82].

Restrictions on Structure of Bundles

Table 4.4 presents trac tab le  instances of CAP th a t follow from restrictions on the types 

of bundles on which agents can subm it bids, de Vries & Vohra note th a t the linear- 

ordering (or consecutive ones) condition implies th a t the constrain t m atrix  satisfies total 

unimodularity , l and  th a t the nested-hierarchical s tru c tu re  implies th a t th e  constrain t m a­

trix  is balanced. 2 N isan [NisOO] provides a  proof-by-induction th a t the linear program  has 

integral solutions in these cases. Nisan [NisOO] also describes a  m ethod to  com bine two bid 

structu res w ith the integral property  into a  single s truc tu re  th a t retains the  property.

Restrictions on Values on Bundles

Table 4.5 presents trac tab le  instances of CAP th a t follow from restrictions on the value

s tru c tu re  of agents bids, de Vries & Vohra [dVVOO] note th a t  the non-decreasing and  su-

perm odular preferences condition again  provides the linear program  relaxation  of the C A P

w ith integral solutions. G ross-substitu tes were defined earlier in Definition 4.8 and have

an intuitive in terp re ta tion  as decreasing-returns, and  also im ply subm odular preferences.

l A matrix satisfies total unimodularity if the determinant of every square subm atrix is 0, 1, or -1.
2 A 0-1 matrix is balanced if it has no square subm atrix of odd order with exactly two l ’s in each row 

and column.
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linear-order

circular ones 
nested-hierarchical

or-singletons 
single-item bids 
bids for pairs of items 
multi-unit, decreasing returns

ordering G = {gl ,g2, . . .  ,gn)
every bid is for a contiguous sequence
also allow bids of form gn9 i 9 i > etc.
for every two subsets of items S i, So
that appear as part of any bid they are either
disjoint or one contains the other
bids for single-items
one item
cardinality constraint on size of bids
identical items, each agent has decreasing value for
each additional item

[RPH98]

[RPH98]
[RPH98]

[RPH98]
[NisOO]

Table 4.4: Tractable structure on bids

non-decreasing and supermodular
two-types of agents
gross-substitutes
unit-demand
linear-additive

increasing returns [dVVOO]

"decreasing-returns” [KC82]
agents only want one item [Kuh55]
agents have Unear values across items [CK81]

Table 4.5: Constraints on valuation functions

D e f in it io n  4 .11  [superm odular preferences] Bid function bi(S)  is superm odular if for 

all S , T  C Q,

b i ( S ) + b i ( T )  < V i { S U T ) + V i ( S n T )

T he equivalence of superm odularity  and  increasing re tu rns is well-known in th e  litera­

tu re  [GS99].

D e f in it io n  4 .1 2  [increasing returns] Bid function bi(S)  has increasing m arginal returns 

if for all S  C T  C Q and  all j  6  Q,

bi { T ) - v i { T \ { j } ) > b i{ S ) - v ( S \ { j } )

Note carefully th a t we can have any num ber of different types o f subm odular valua­

tion functions, one from each agent, bu t only a t most two different types of superm odular 

functions if the  C A P problem  is to be trac tab le. It is easier to  solve a  m axim ization prob­

lem, such as the  CAP, w ith  subm odular (convex) objective functions th an  superm odular 

(convex) objective functions.
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Exact Solutions

R othkopf et a i  [RPH98] also suggest a  dynam ic program m ing algorithm  for CAP, which 

has run-tim e com plexity independent of th e  num ber of bids actually  placed, b u t quickly 

becomes in tractab le for large num bers of item s, w ith  seeding property  0 (3m) in the  num ber 

of item s m.  B ranch-and-bound search m ethods, e ither w ith  A l-based heuristics [San99, 

FLBS99], or w ith linear-program  based heuristics [ATYOO] have also been stud ied  for 

general CA P instances.

Approximate Solutions

T h e C A P is difficult to approxim ate, a t least w ithin a  worst-case m ultiplicative factor. 

T here is no polynom ial tim e algorithm  w ith a  reasonable worst-case guarantee [Has99].

Approxim ate algorithm s in the lite ra tu re  include a  local-search approach [HBOO], a  sim­

ple “relax and round” m ethod [NisOO], and  itera tive m ethods [FLBS99]. COMB AUCTION, 

and  IBundle, can itself be viewed as an  approxim ate algorithm  for CAP. iBundle provides 

a worst-case bound on the  difference between th e  value of its solution and  the value of the 

optim al solution. T he error-term  increases linearly w ith the m inim al bid increm ent, which 

defines the rate a t which prices are increased across rounds, while the num ber of rounds in 

the  auction  is inversely-proportional to  the  m inim al bid increm ent. A larger bid increm ent 

reduces the num ber of rounds in th e  auction, reducing the num ber of w inner-determ ination 

problem s the auction m ust solve, in re tu rn  for a  loss in worst-case efficiency.

4 . 6  C o m b A u c t i o n : A Primal-Dual Method for CAP

C o m b A u c t io n  is a  prim al-dual algorithm  for the  linear program  models of C A P intro­

duced above. T he algorithm  term inates w ith optim al prim al and dual solutions to  one of 

the  linear-program  form ulations, selecting prices dynam ically during th e  algorithm  w ith a  

rich enough s tru c tu re  to  support the  optim al allocation in equilibrium  . In  the  next chap­

te r we describe the iBundle auction  in  detail, which is a  an  auction-based im plem entation 

of C o m bA u c t io n  for agents th a t follow myopic best-response bidding strategies.

In C o m b A u c t io n  the prices are linear and anonym ous in special cases, non-linear 

and anonym ous (bundle prices) in m any problem s, and non-linear and non-anonym ous 

w hen that is necessary to strengthen the dual form ulation o f the CAP. T he decision about
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C o m bA u c t io n

input: a g e n t v a lu e s  Uj(-)
s to p  = f a l s e ;  5  =  0 ; p ( - ) = 0 ;  anon =  I ;
w h ile  (! s to p )  {

com pute b e s t - r e s p o n s e  s e t  BR*(pj) f o r  e v e ry  a g e n t  i;  
com pute p a r t i t i o n  o f  ite m s  5  =  ( 5 i , . . .  ,5 / )  t o  m axim ize re v e n u e , 

s u b je c t  t o  Si 6  B R ,(P t ) . ; 
i f  ( (B R j(p i) =  0) o r  {Si ^  0) ) f o r  e v e ry  i 

s to p  = t r u e ;  
e l s e  {

f o r  ev e ry  j  w ith  ( (B R j(p j)  ^  0) and  (5 j =  0 ) )  { 
i f  ( ( s a /e (B R j(p j) ) )  and ( j  €  anon) )  

p  = a n o n _ u p d a te (B R j,p ) ; 
e l s e  {

Pj  = nonanon-updateC B R j, p ) ; 
anon = anon  \  {j } ;

}
}

}
}
output: f i n a l  a l l o c a t i o n  5 ,  f i n a l  p r i c e s  Pi(Sj).

Figure 4.5: The C o m b A u c t io n  Algorithm. Special cases: C o m b A u c t io n (2 )  sets sa/e(BRj(p; )) 
true in every iteration; C o m b A u c t io n (3 ) sets sa/e(BR_,(pj)) false in every iteration.

anonym ous vs. non-anonym ous pricing is m ade dynam ically during  the  algorithm , while 

non-linear prices are introduced whenever an  agent bids for a  bundle o f item s instead of 

individual items.

4.6.1 Description

Let p (5 ) >  0 define anonym ous ask prices on bundles S  C  Q. Set the  in itia l ask prices to 

zero, and  use only anonym ous prices a t the s ta r t of the auction . T he prices represent a 

feasible dual solution  in each round of the algorithm .

Figure 4.5 describes C o m b A u c t io n . T h e basic variation, also known as C om b A u c-  

t i o n ( d ), introduces non-anonym ous prices whenever agent bids are no t “safe” . Two o ther 

im portan t variations include C o m b A u c t io n (2 ) , in which th e  safe condition is always as­

sum ed t r u e ,  and  C o m b A u c t io n (3 ) ,  in which the safe condition is always assum ed f a l s e .  

Labels (D), (2), and  (3) correspond to  “dynam ic” non-anonym ous pricing, second-order 

pricing (i.e. non-linear), and  th ird-order pricing (i.e. non-linear and  non-anonym ous).
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Prices are initially zero on all bundles, and  identical across all agents such th a t pi{S) =  

P j { S )  for all i, j  and all S.  At the  s ta r t  of each itera tion  every agent reports its best- 

response set B R (p ,), which are all bundles th a t m axim ize utility  to w ith in  e >  0 a t the 

current prices:

BRi(Pi) =  {S | Vi(S) -  pi(S) +  e >  m ax(u*(pi),0) }

where u*(pi) =  m axsU i(S) - p i ( S ) ,  i.e. the m axim al u tility  over all bundles a t the current 

prices. C onstan t e >  0 is the m inim al bid increm ent, and  controls the ra te  a t which prices 

are increased across rounds.

T he provisional allocation S =  ( S i , . . .  , S i) ,  is com puted from agents’ bids to maximize 

revenue a t the curren t ask prices:

m ax /~ 'p i(S j)  (W D problem)
(5t 5,)7ir
s.t. Si 6  BRj(pi)

C o m b A u c t io n  term inates when the following is true:

Vi BRj(pi) £  0 => Sj #  0

i.e., when every agent w ith a  non-em pty best-response set receives a bundle in the provi­

sional allocation.

Prices are increased based on bids from agents not in the  curren t provisional allocation. 

T he price-update step  depends on w hether an  agen t’s bids are safe w ith  respect to the 

provisional allocation. T he safe condition is defined on a  set of bundles S  as follows:

safe(S)  =  - idisjo in t{S)  or ( |S | =  1 )

where disjo in t(S )  is true if there is at least one pair o f bundles 5 ,T  6  5  that are 

non-overlapping, such that S  fl T  =  0.

In itially  anon =  X. In any round anon C X is the set o f agents facing anonymous 

prices. As soon as an  agent is unsuccessful w ith its bids and  its bids fail safety the agent 

is removed from the anonym ous set. Failed bids from  any agent in anon increase prices in 

fu ture rounds on all agents in anon. T he prices on agents th a t face individual prices are 

only increased in future rounds by their own unsuccessful bids.

112

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



If the bids from an  unsuccessful agent in  anon  are safe th en  the  a n o n .u p d a te  is called, 

which increases anonym ous prices p (S ) by e >  0 on all bundles S  €  B R j(p). A lternatively, 

for an unsuccessful agent th a t is e ither in anon or subm its unsafe bids, the  n o n an o n .u p d ate  

price-update rule is called. Separate ask prices are initialized for the  agent if necessary, 

equal to the current anonym ous prices. Prices to  th a t agent are then  increased by e >  0 on 

all bundles in the  agen t’s best-response bid set. C onstant e is the  m inim al bid increment.

C o m bA u c t io n (2) is the special-case of COMBAUCTION for which the safety condi­

tion is assum ed true in all rounds and all agent remain in the anonym ous set. CoM- 

b A u c t io n ( d ) is the regular version o f C o m bA u c t io n , described above, in which non- 

anonym ous prices are introduced dynam ically. C o m b A u c t io n ( 3) is a  variation in which 

the safety condition is assum ed false in all rounds and all agents face individual prices in 

every round.

4.6.2 Optimality Result

We can first sta te  an optim ality result for the variations on C o m b A u c t io n  w ith non- 

anonym ous prices.

T h e o r e m  4 .6  (C o m b A u c t io n  optim ality). (O ptim ality) C o m b A u c t io n (d )  and 

C o m b A u c t io n (3 )  compute an allocation with value within  3 m in { |£ |, \ I \ )e o f  optimal.

for \Q\ item s, \X\ agents, and e bid increment.

C o r o lla ry  4 .1  C o m b A u c t io n (d )  and  C o m b A u c t io n (3 )  compute the efficient allo­

cation and competitive equilibrium prices fo r  a small enough bid increm ent e.

Clearly as e gets sm aller th an  the  sm allest finite difference in agents’ values for bundles 

this converges to  the optim al solution. Table 4.6 provides a  sketched proof, while a  full 

proof is provided below.

Recall th a t w ithin C o m b A u c t i o n  it is assum ed th a t agents provide best-response 

inform ation in response to  prices in each iteration. C orresponding sta tem ents of the effi­

ciency of iBundle, the auction  in terp re ta tion  of C o m b A u c t i o n , m ake assum ptions about 

agent behavior explicit (see C hap ter 5).
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(C S la) Agents maximize utility :
S '  ^  0 => S '  =  argm axuj(St) -P i(S i)

Si
true in  every round because o f best-response

(C S lb) Agents not in allocation happy:
S* =  0 => m ax Vi(Si) -  pi{Si) < 0

Si
true in final round because o f term ination condition

(CS2) A uctioneer maximizes revenue:
5 * = a r g  m ax V p i(5 i )

(S i,... ,S /)
true in every round because o f price-update

Table 4.6: Proof outline for C om bA uction

We can also s ta te  a restric ted  theorem , for the  C o m b A u c t io n  algorithm  w ithout the 

safety check, i.e. w ith only anonym ous prices.

T h e o r e m  4 .7  ( a n o n y m o u s  o p t i m a l i t y ) .  C o m b A u c t io n (2 )  is an optimal primal-dual 

algorithm fo r  C A P  with anonym ous prices in the following special-cases:

(a) agents have additive or superadditive values, i.e. v (S  U S ') > v(S)  + v(S' )  fo r  non­

conflicting bundles S  and S '

(b) agents demand bundles from  the same partition o f item s, e.g. all bids are fo r  pairs o f 

m atching shoes, or single item s

(c) the dem and set o f bundles fo r  agent i, the bundles it bids fo r  over the auction, is 

disjo int from  the demand set o f agent j ,  fo r  all agents i ^  j .

(d) bids from  each agent are always overlapping

(e) bids from  each agent are always fo r  a single bundle

A proof of conditions (a-c) follow quite  easily from the proof of the optim ality  of 

C o m b A u c t io n ( d ). W hen these conditions hold the  auctioneer is sure to maximize revenue 

from bids in the next round of the auction w ithout in troducing non-anonymous prices, even 

in the case th a t bids from agents break the  “safety” condition .3 In  case (b) the  auction 

reduces to  a  sim ultaneous ascending-price auc tion  on bundles in a  fixed p artition  of items.

3 For example, in the case of superadditive values whenever an agent bids for a compatible pair of bundles 
S  and S ' tha t violate the safety condition it must be the case th a t p(SuS') >  p(S) +  P(S'). This condition 
is sufficient to show tha t the auctioneer can continue to m aintain (CS2) and maximize revenue from agent 
bids in the next round.
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T he assignm ent problem , in which agents have unit-dem and for item s, is a  special case of

(b).

Conditions (d-e) follow triv ially  from th e  m ain result, because th e  safety condition 

holds in all rounds under these conditions. Single-m inded bidders [LOS99] satisfy (e). 

Bidders th a t dem and a  core set of item s w ith  a  selection from  an  add itional set of items 

satisfy (d); consider for exam ple a  b idder in the  FCC spec trum  auction  th a t needs New 

York, and  then would like as m any of the geographically neighboring licenses as possible.

4 .6 .3  P r o o f :  C o m b A u c t i o n (2)

T he optim ality proof o f  C o m b A u c t io n  is inspired by a proof due to Bertsekas [Ber87] 

for A u c t io n , an iterative prim al-dual algorithm  with an auction interpretation for the 

assignm ent problem.

I first prove optim ality for C o m b A u c t io n ( 2 ) , in the special-case that the best-response  

bid sets are safe in ail rounds o f  the auction. T h e proof o f optim ality  for C o m bA u c t io n ( d ) 

and C o m bA u c t io n ( 3) follows from an equivalence between C o m b A u c t io n (2) w ith a 

dum m y item  introduced for each agent and appended to its bids, and C o m bA u c t io n (3 ).

In outline, I show that C om bA uction  implements a primal-dual algorithm for [LPo] 

and  [DLP2}, and  computes integral solutions to [LP2] when agents follow myopic best- 

response bidding strategies and bids are safe.

First, I show th a t the  allocation  and  prices in each round of the auc tion  correspond to 

feasible prim al and  dual solutions. T hen, I show th a t the prim al and  dual solutions satisfy 

com plem entary-slackness conditions when the  auction term inates.

Let Si denote the provisional allocation to  agent i, and Pask(S) denote the ask price for 

bundle S .

F e a s ib le  p r im a l .  To construc t a  feasible prim al solution assign x ,(S ,) =  1 and 

Xi(S') =  0 for all S ' £  S i. P a rtitio n  y(A:*) =  1 for k * =  [ S i , . . .  ,S |x |], and  y(k)  =  0 

otherwise.

F e a s ib le  d u a l .  To construc t a  feasible dual solution assign p(S ) =  Pask(S). C onstrain ts
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(DLP-1) and  (DLP-2) are satisfied w ith assignm ents:

p(i) =  m ax jo, m§g{uj(S) -  p (S )}  j (4.1)

7r =  max 
keK

(4.2)

T he value p(i) can be in terpreted  as agent i ’s m axim um  u tility  a t the prices, and n  

can be in terpreted  as the m axim um  revenue th a t the  auctioneer can achieve a t the prices 

(irrespective of the bids placed by agents).

allocation and  prices in the auction satisfy com plem entary-slackness conditions w ith these 

assignm ents when the auction term inates, based on the  bids placed by agents. T his is ju s t 

as well, because the values v t (S)  rem ain private inform ation to  agents during the auction.

C o m p le m e n ta ry -s la c k n e s s  c o n d it io n s . T he first prim al CS condition, CS-1 is:

Given (4.1) it sta tes th a t all agents m ust only receive bundles th a t maximize utility  at 

the curren t prices. CS-1 is m aintained throughout the  auction because bundles are only 

allocated according to bids from agents, and agents place best-response bids.

Formally, for any bundle S  bid by agent i : (i) p ^ S )  — e <  Pbid,iS) < PasilS); (ii) 

u ;(S )-pb id ,l S ) + e  > m ax5/{ui(5 ' ) —P b id ,i(5 ')}  because agents bid for bundles th a t maximize 

u tility  w ith in  e; (iii) ut (S) — Pbid,i(5) >  0 , because agents only bid for bundles w ith positive 

utility. Since x t (S t) =  1 implies agent i bid for bundle Si,  I have:

T he auctioneer does not explicitly com pute the value of p(i),  ra th e r I prove th a t the

x ,{S) >0 =► p(i)  -I- p(S)  =  u,(5), Vi, S (CS-1)

Xi ( S )  >  0 => Vi (S)  -  Paa\lS) +  2e >

m ax | 0 , m a x e s ' )  — Paskt-S")} 

S u b stitu tin g  for p(i) and  Pas^S) =  p(S) ,  we prove e-CS-1:

X{(S) > 0 => p (i) +  p(S)  < Vi(S)  +  2e, Vi, S (e-CS-1)

T he second prim al CS condition, CS-2, is:

Vfc (CS-2)
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Given (4.2) it s ta tes th a t  the allocation m ust m axim ize the  auctioneer’s revenue a t 

prices p(S) ,  over all possible allocations and  irrespective of b ids received from agents.

We prove C S-2 is m aintained in all rounds because it is no t binding th a t the  auction­

eer m ust allocate bundles according to  agents’ bids. T hrough  the  price-update rules the 

auctioneer is able to maxim ize revenue given prices in every round.

Formally:

(i) all bundles w ith s tric t positive prices4 receive bids in every round. Agent t w ith one 

of the highest losing bid for bundle S  in round t will continue to  bid for bundle S  in rounds 

t +  1. Let u -(5 ) denote agent i ’s u tility  for bundle S  in round t. T hen, u |+ 1(5 ) =  u \(S ) — e 

because the ask price for S  increases by e. Also, u\ (S)  > u\ (S' )  for all bundles S '  the agent 

d id  not bid in round t. Hence, w ith u ‘(S ') >  u ‘+l(S ') because the  price of S '  can only 

increase in round t +  1, I have u ‘+l(S) >  u |+ 1(5 ')  — e and  a  b id  for S ' can never exclude 

a  bid for S  from agent i ’s best-response bids in round t -F 1. A sim ilar argum ent can be

m ade for the u tility  of bundles th a t the  agent did b id  in round t.

(ii) all bundles in revenue-maxim izing allocations receive bids from different agents, 

because bids are safe. No single agent causes the  price to  increase to  its cu rren t level on a 

pair of com patible bundles. This follows because price updates are due to safe bids from 

agents .5

Therefore, for partition  k * such th a t y(Ar‘ ) =  1, Y ,s ,ek -  Pask^i) >  ^2 s l^km Pbid,i(St), 

because p ^ S )  > Pbid,i(S), and  E s.g fc -P b id i^ i) >  m ax*^* E s . e t P b i d i ^ )  because of (i) 

and  (ii), i.e. the constrain ts to  allocate to  agents’ bids are not binding. Finally, w ith (4.2) 

we have m axkeK  E s .e itP b id i^ i)  >  T r-m in { |£ 7 |,|I |} e  because p b id iS ) > p ^ S )  - e  and an 

allocation can include no more bundles th an  there are agents or item s. VVe prove e-CS-2:

y{k) > 0 => ir — ^ p ( S )  <  m in { |£ |, |2]}e, V& (e-CS-2)
S€fc

T he first dual CS condition, (CS-3), is:

4 An ask price pu k(5) is strictly positive if the price is greater than the ask price for every bundle 
contained in S, i.e. pUk(5) >  pMk(S') for all S ' C S.

5It is clear tha t this cannot happen in a  single round. Furthermore, it can be shown by induction across 
rounds th a t an agent with a myopic best-response bidding strategy cannot increase the price of compatible 
bundles over a sequence of rounds without subm itting unsafe bids in a  single round.
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p(i)  >  0 =*• x£S)  =  1, Vi (CS-3)
SCO

Given (4.1) it s ta tes  th a t every agent w ith positive u tility  for som e bundle a t the  current 

prices m ust receive a  bundle in the  allocation. (CS-3) is only satisfied during  the  auction

for agents that receive bundles in the provisional allocation, but we prove (CS-3) for all 

agents when C om bA uction  terminates.

In term ination  case [T2] every agent th a t bids receives a  bundle, so we im m ediately 

have (CS-3) w ith  myopic best-response agents. In  case [Tl] som e agents may bid and 

receive no bundles. However, these agents must bid  a t e below th e  ask price and  have 

values ju s t below ask prices, otherw ise prices would increase and  their bids would change.

Finally, the  last pair of dual CS conditions, (CS-4) and  (CS-5), are:

keK

T he assignm ent y ( k m) =  1 for the p artitio n  k* =  [ S i . . .  S |j|] triv ially  satisfies the RHS 

of b o th  conditions.

T e r m in a t io n .  By contradiction, assum e the  auction  never term inates. Informally, 

[Tl] implies th a t  agents m ust subm it different bids in successive rounds, b u t w ith  myopic 

best-response bidding this implies th a t  prices m ust increase, and  agents m ust eventually 

bid above their values for bundles. We prove a contrad iction  w ith  myopic best-response 

bidding strategies.

P u t t i n g  i t  a l l  to g e th e r .

Finally, we prove the worst-case error term  in T heorem  4.6 w hen the  auction  term inates. 

Sum m ing e-CS-1 over all agents in the final allocation, and  w ith  p(i) =  0 for agents not in 

the allocation by (CS-3),

(CS-4)

(CS-5)

< 5 > ( $ )  - $ > ( £ )  + 2min{|S|,|Z|}e
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because an  allocation can include no m ore bundles th an  there are  item s or agents. 

In troducing e-CS-2, because y(k*) =  1 for the  bundle-set th a t corresponds to  the  final 

allocation  Si,  then  it < H i e l P ( S i )  + min{|<7|, |I |} e .

Finally, adding these two equations, we have

*  +  5 ^ P ( 0  <  + 3 m in { |£ |, |I |} e
isx  «er

T he LHS is the value of the final dual solution, Vd l p , and the first-term  on the  RHS is 

the value of the final prim al solution, Vl p . We know <  Vd l p . where VL*P is the  value 

of the optim al prim al solution by the weak duality  property  of linear program s. Thus, 

because Vdlp <  Vlp +  3m in{|£/|, |X|}e, it follows th a t

Vl p  >  VL’P -  3 m in{ |£ |, |X|}e

Finally, because the prim al solution is integral (by construction  during  C o m b A u c t io n , 

it is a  feasible and optim al solution to the com binatorial resource allocation problem  [ip]. |

4 .6 .4  P r o o f :  C o m b A u c t i o n ( d ) a n d  C o m b A u c t i o n (3)

A sim ple transform ation o f agents’ bids reduces any problem in C o m b A u c t io n (d ) or 

C o m bA u c t io n (3) to a  safe problem in C o m b A u c t io n ( 2 ) . Bertsekas [Bet92] proposes a  

sim ilar transform ation m ethod to derive an AUCTION m ethod for com binatorial optim iza­

tion problem s such as max-flow and the transportation problem, reducing problem s to the  

Assignm ent problem.

In C o m b A u c t io n  a  sim ple transform ation o f agents’ bids allows C o m b A u c t io n (3 )  

to  be im plem ented w ithin  C o m b A u c t io n ( 2) w ithout price-discrim ination, and ensures 

th a t agents’ bids remain safe throughout the auction.

W henever bids from agent i are not safe in C o m b A u c t io n (2 ) we can sim ulate the 

price-update rule by introducing a  new dum m y item  th a t is specific to  th a t agent, call it 

i , .  T his item  is concatenated  by the auctioneer to  all bids from agent i in this round  and 

all fu ture rounds. It has the  following effects:

1. T h e  outcom e o f w inner-determ ination, or the  allocative efficiency of the auction, is 

unchanged because no o ther agent b ids for item  X{.
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2. Agent i ’s bids are always safe because every bid includes item  x*, and  no pair of bids 

is com patible.

3. T he price increases due to  bids from agent i are isolated to th a t  agent in all future 

rounds because all price increases are for bundles th a t include item  x\.

T he optim ality  of C o m b A u ct io n (3 )  follows im m ediately from th e  optim ality  of COM- 

b A u c t io n (2 )  w ithout price discrim ination.

4.7 Earlier Primal-Dual Auction Methods

Table 4.7 relates the  progress in itera tive auction design over the past two decades. Each 

contribution relaxes assum ptions on agent preferences a n d /o r  s treng thens the equilibrium  

analysis of the auction. Myopic best-response agent strategies is a  uniform  assum ption 

across all auction designs.

Bidding languages differ in term s of w hether agents can bid on item s or bundles, 

w hether agents can subm it single or m ultiple bids, and the logic used to  combine mul­

tiple bids. Prices differ in term s o f w hether individual item s or bundles are priced, and 

w hether prices are anonym ous or non-anonymous.

All auctions term inate  w ith efficient allocations, and  achieve different levels of 

robustness-to-m anipulation. In  basic term s, Vickrey provides m ore robustness than  min­

imal com petitive equilibrium  (m in CE) prices, th an  com petitive equilibrium  (CE) prices.

Term ination w ith Vickrey paym ents makes myopic best-response a  Nash equilibrium  

of the auction  [GSOO]. Term ination w ith com petitive equilibrium  prices provides some 

incentive-com patibility, a t least in th e  last round of the auction. M inim al C E prices often 

coincide w ith  Vickrey paym ents, b u t otherw ise might be im agined to  provide “interm edi­

a te” incentive-com patibility properties between th a t of any C E outcom e and  the Vickrey 

outcome. This connection between final prices and  incentive-com patibility is discussed in 

detail in C hapters 6 and  7.

P rio r to {Bundle there was no m ethod to  term inate in even com petitive equilibrium  in 

the general problem . C om puting ad justed  prices after term ination , (A djust) in the table, 

achieves m inim al CE prices, which support Vickrey paym ents in all cases for which an  iter­

ative Vickrey auction  was previously known. I believe th a t th e  extended auction, {Bundle
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Name Assumptions Price
structure

Bid
structure

Update
method

outcome

CK81 linear-additive items OR-items greedy CE
KC82 GS items one bundle greedy CE

Ber79-87 unit-demand items one item greedy CE
DGS86 unit-demand items XOR-items minimal Vickrey
Aus97 homog sub-additive one price one bundle clinch Vickrey
AusOO GS items one bundle clinch & unclinch 

n + 1 auctions
Vickrey

GSOO GS items XOR-bundle minimal min CE
WurOO monotone bundles XOR-bundle minimal -

iBundle(2) safe bundles XOR-bundle greedy CE
iBundle(d) monotone bundles XOR-bundle greedy CE

Adjust monotone
non-anonymous

bundles XOR-bundle greedy min CE

Extend&Adjust monotone
non-anonymous

bundles
non-anonymous

XOR-bundle greedy (Vickrey)

Table 4.7: Primal-Dual Auction Methods.

E xtend& A djust, is significantly more powerful. Label (Vickrey) indicates a  conjecture (see 

C hap ter 7) th a t  the auction is an iterative Vickrey auction  for all com binatorial allocation 

problem  instances.

T he m ethods of Bertsekas [Ber79, Ber81, Ber8 8 ] and  Dem ange et al. [DGS86 ] assume 

unit-dem and  preferences, in which each agent dem ands a t m ost one item:

D e f in it io n  4 .13  [unit-demand] Agent i ’s valuation

Vi { S)  =  m a x v i ( j )  
j € S

T he allocation problem  for unit-dem and preferences is known as the assignment prob­

lem , w ith  the  goal to  assign a  single item  to each agent to  m axim ize value.

Craw ford & K noer [CK81] assume linear-additive agent preferences.

D e f in it io n  4 .14  [linear-additive] Agent i ’s  valuation

v i (s ) =
j e s

Kelso & Crawford [KC82], G ul & S tacchetti [GSOO], an d  A usubel [AusOO] assume 

th a t agents have gross-substitutes (GS) preferences. G ross-substitu tes s ta tes th a t if the

121

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



prices were increased from p  to  p ' then  th e  agent would continue to  dem and any item 

whose price did not increase (see definition 4.8). U nit-dem and preferences and  linear- 

additive preferences are special cases of GS. Each auction makes stronger claim s abou t the 

properties of final prices, i.e. C E  prices, then  m in CE prices, th en  Vickrey prices.

A usubel’s [Aus97] ascending-price auction  for m ultiple identical (homogeneous) items 

and sub-additive preferences.

D e f i n i t i o n  4 . 1 5  [sub-additive] Valuation function Vi : N - 4  R +  is subadditive if the 

m arginal value for each additional item  is (weakly) decreasing, i.e. if (u i(n + 2 )-i> i(n -l-l)) > 

(u i(n +  1) -  Vi(n)) for integer n  >  0 , w ith Uj(0 ) =  0 .

Finally, in iBundle, and  in A kB A  [WW00], the only restric tion  on agent preferences is 

th a t they are monotone:

D e f i n i t i o n  4 . 1 6  [monotone] Valuation function Vi : N -> R +  is m onotone if Ui(Si) >  

Vj(So) for all S i D So.

Bertsekas appears to  be the first to make an explicit connection between prim al-dual 

algorithm s and  auction  mechanisms [Ber79, Ber81, Ber88 ]. AUCTION is a  prim al-dual based 

m ethod to solve the assignm ent problem . A u c t io n  algorithm  has a  n a tu ra l in terpre tation  

as an auction, w ith agents bidding for their favorite item  in each round, bu t there is no 

consideration of agent incentives in Bertsekas’ work. His m otivation was to  develop new 

algorithm s to solve problem s in parallel environm ents, a lthough  experim ental analysis 

showed good perform ance on single processors.

T he work of Demange et al. [DGS8 6 ] is im portan t, as it is the  first to  consider agent 

incentives and dem onstrate  an  iterative procedure to com pute Vickrey paym ents. The 

procedure was derived in the  context of a  linear program  form ulation for Vickrey paym ents 

in the assignm ent problem  due to  Leonard [Leo83]. Sankaran [San94] appears to  be the first 

to make a  connection between DGS and  a  prim al-dual m ethod for th e  assignm ent problem. 

Recently, B ikchandani et al. [BdVSVOl] give a  com plete prim al-dual in te rp re ta tio n  of the 

DGS [DGS86 ] auction  mechanism, for a  new form ulation of [LP3] [B099] th a t uses fewer 

variables.

Recent advances in linear program m ing models for the  com binatorial allocation  prob­

lem. and new prim al dual approaches to  com binatorial auction design (such as my iBundle 

approach) have led to  new prim al-dual analysis of earlier auctions. A lthough primal- 

dual analysis is not explicit in the  work o f [CK81, KC82, DGS8 6 , Aus97, AusOO, GSOO]
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a prim al-dual explanation  can be provided for an  ap p ro p ria te  linear program m ing model 

[BdVSVOl].

T he m ain structural differences across auctions are in th e  bidding-languages, the prices, 

and  the  p rice-update rules. Beyond th a t, w ith  the exception o f A usubel [Aus97, AusOO], 

the  auctions share the  following essential steps:

(a) announce prices and  a  provisional allocation

(b) receive best-response bids from agents

(c) look for a  provisional allocation th a t satisfies every agent

(d) increase prices on over-demanded items (or bundles) if no equilibrium  solution is found. 

T he auctions differ in the m ethod used to  ad just prices across rounds, i.e. the choice of

overdem anded set. Price update  m ethods are either greedy or m inim al. In a greedy update 

rule the price is increased on all over-dem anded item s (or bundles). In  a  minim al update 

rule the price is increased on the sm allest set of over-dem anded item s (or bundles). P rior 

to the E xtend& A djust m ethod in iBundle (see C hap ters 5 and  6 ), th e  usual approach to 

com pute Vickrey paym ents was to  im plement m inim al price-updates in each round [DGS8 6 , 

GSOO] of the auction. M inimal price updates are designed to  ad ju st towards m inim al CE 

prices, which are equivalent to Vickrey paym ents in m any problem s [GS99]. T he dual 

solution th a t maximizes agent utility and minimizes auctioneer revenue corresponds to the 

m inim al com petitive equilibrium  solution.

A usubel’s auctions [Aus97, AusOO] are qu ite  innovative. In A usubel [Aus97] the auction 

m aintains one explicit price, bu t is able to com pute m ultiple prices, one for each agent, 

th a t equal the Vickrey paym ents. Ausubel describes a  “clinching" process, whereby the 

price for item s is locked-in during the course of the auction . B ikchandani & O stroy [BOOO] 

give a  prim al-dual algorithm  and  linear program  for A usubel’s [Aus97] homogeneous good 

auction. B ikchandani et al. [BdVSVOl] have proposed an  alternative  derivation based on 

a  network p a th  planning formulation. T he clinching rule is re in terp reted  as a  discount 

from a  final clearing price in the auction.

Recently A usubel [AusOO] proposes a  complex auc tion  procedure to  com pute Vickrey 

paym ents w ith GS agent preferences. A usubel m ain tains one price for each item, but 

actually  m ust run  I  +  1 auctions (a m ain auction, an d  one w ithou t each agent in tu rn ) to 

com pute Vickrey paym ents. T he auction’s theoretical con tribu tion  is significant because 

it has been observed [GSOO] th a t  no single set of linear com petitive equilibrium  prices can
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su p p o rt Vickrey paym ents w ith GS agent preferences. Note however th a t there is a set of 

non-linear (and perhaps non-anonym ous) com petitive equilibrium  prices th a t  support the 

Vickrey paym ents w ith GS preferences [BdVSVOl].

Gul & Stacchetti [GSOO] s ta te  th a t no dynam ic m echanism  can reveal sufficient infor­

m ation to im plement the Vickrey m echanism  w ith  GS preferences. A usubel’s m ethod is 

outside the spirit of their negative result because o f its reliance on m ultiple auctions. Simi­

larly, my work on iBundle dodges this negative result w ith non-linear and  non-anonymous 

prices on items. The final price ad just step  might also be outside of the sp irit of their focus 

on “m onotonic” price ad justm ent.

W urm an’s Ascending fc-Bundle A uction (AkBA) [WWOO] family o f iterative combina­

torial auctions also m aintain explicit prices on bundles of item s, and  were designed w ith 

a  generalization of the DGS auction  in m ind. In  each round of AkBA W urm an uses a 

linear program  to increase (and som etimes decrease) prices. A1BA, thought to be the 

most prom ising of the family, com pute prices to  solve a  m inim al restric ted  dual problem 

in each round.

Bertsekas has proposed variants o f his AUCTION algorithm  for o ther com binatorial opti­

m ization problems, including the transportation problem  [BC89], a variation of assignment 

w ith m ultiple identical item s, the m inim al cost flow problem  [Ber86 ]. Bertsekas [Bet92] 

has recently provided a unified framework of th is large body of work, transform ing each 

optim ization  problem into the assignm ent problem . Bertsekas [Ber87] provides a  text book 

in troduction to the AUCTION algorithm , while [Ber90] provides a  tu to ria l.
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Chapter 5 

zBundle: An Iterative Combinatorial 

Auction

In th is chapter I in troduce the  iBundle ascending-price com binatorial auction, which fol­

lows quite  d irectly  from the prim al-dual solution m ethod  for the  com binatorial allocation 

problem  described earlier. T he best-response inform ation provided by agents in C o m ­

b A u c t io n  has a  n a tu ra l in terpretation  as a  utility-m axim izing b idding strategy  for a 

myopic agent, i.e. an  agent th a t takes the curren t prices as fixed and  does not look beyond 

the curren t round.

Even w ithout the added incentive properties th a t are inherited  from  the  Vickrey-Clarke- 

Groves m echanism  via Extend& A djust (see chapter 7) th e  con tribu tion  of iBundle is sig­

nificant. I t is the  first iterative auction to provably te rm in ate  w ith  an  efficient allocation 

for a reasonable agent b idding strategy, w ithout any restric tions on agents’ valuation func­

tions. We m ake no assum ptions about agent valuation functions, o th er th an  m onotonicity 

(or free-disposal). T he m ain design decisions in iBundle are:

•  Exclusive-or bids over bundles of items.

•  A sim ple price-update rule w ith m inim al consistency requirem ents on prices across 

different bundles.

•  A dynam ic m ethod to  determ ine when non-anonym ous prices are required to price 

the efficient allocation in com petitive equilibrium .

Myopic best-response need not be an agent’s op tim al sequential s tra teg y  in  B und le , 

and the  basic auction design is not s trategy-proof like the  GVA. T his is addressed in 

C hap ter 7 w ith  E xtend& A djust, a  m ethod to  keep iB undle open  for a  second phase and
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com pute Vickrey paym ents.

T h e  basic auction procedure is described for an  exclusive-or b idding language over 

item s. However, as described in section 5.6, there are n a tu ra l extensions to  more expressive 

languages for particu lar dom ains

Experim ental results confirm the efficiency of iBundle across a  set of com binatorial 

allocation problem s from the literature . T he auction  com putes efficient solutions, even 

w ith qu ite  large bid increm ents. Results also dem onstra te  th a t non-anonym ous prices 

are only im portan t above 99% allocative efficiency. Inform ation revelation in iBundle 

is m easured for a simple m etric, th a t considers the  degree to which agents reveal their 

com plete valuation function via their bids during  the  auction. iBundle is shown to have 

scalable perform ance, only requiring agents to  reveal a  sm all am ount of inform ation in easy 

problem s.

T he auctioneer in iBundle solves one w inner-determ ination problem  in each round, 

com pared to  one for each agent in the final allocation in the  GVA. A lthough the problem  

of com puting a  provisional allocation in each round rem ains N P -hard  the  problem  instances 

in iBundle are much sm aller th an  in the  GVA because the agents only bid for a  sm all subset 

of bundles in each round. In addition, a  num ber o f tricks allow speed-ups:

(a) we can use cached solutions across rounds to  speed-up solving a sequence of related 

w inner-determ ination  problems;

(b) we can make trade-offs between allocative efficiency and  w inner-determ ination time 

through the speed w ith which prices are increased in the auction;

(c) we can introduce approxim ation algorithm s w ith a  sim ple bid m onotonicity property, 

th a t still m aintains incentives for the sam e myopic bidding strategy.

C om putational results dem onstrate  an  order-of-m agnitude speed-up over the VCG 

m echanism  a t 99% allocative efficiency, w ith  the  sam e com binatorial optim ization al­

gorithm  to solve w inner-determ ination problem s in b o th  mechanisms. An approxim ate 

w inner-determ ination algorithm  also proves useful; iB undle can often achieve g reater than  

90% efficiency w ith negligible com putation  using a  sim ple greedy algorithm  in each round.

T he outline of this chapter is as follows. T h e  first section gives a  full description of 

iBundle, including the bidding language, price u p d a te  rules, and  w inner-determ ination 

rules. Section 5.2 sta tes the  m ain theoretical results, which follow from the  optim ality
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proofs for C o m b A u c t io n . Section 5.3 introduces the  experim ental m ethods: agent m od­

els, problem  sets, w inner-determ ination  algorithm , etc. T h e  experim ental results are split 

over two sections. Section 5.4 is concerned w ith the efficiency and  inform ation revelation 

properties of iBundle, and  based around Parkes [Par99]. Section 5.5 is concerned w ith the 

w inner-determ ination com plexity and  com m unication properties, an d  based around Parkes 

& Ungar [PUOOa], Section 5.6 outlines special cases of iB undle for restric ted  bidding lan­

guages. Finally, section 5.7 com pares iBundle w ith earlier iterative com binatorial auction 

designs.

5.1 Auction Description

iBundle has th ree vaxiations, iB undle(2), iBundle(d) and  iB undle(3), which differ in their 

price update  ru les . 1 T he iB undle(d) variation introduces price d iscrim ination  dynamically, 

only as required to  su p p o rt the  efficient allocation in com petitive equilibrium . It has prov­

able allocative efficiency for myopic best-response strategies. Each variation im plements 

the associated C o m b A u c t io n  variation w ith best-response agent strategies. T he rules 

make iBundle as robust as possible against non-myopic agent strateg ies. For exam ple, one 

rule sta tes th a t an  agent m ust repeat its bid (at the sam e or g rea ter price) in the next 

round for any bundle it receives in  the provisional allocation. T h is ru le only restric ts non- 

myopic strategies because an  agent w ith a  myopic best-response stra teg y  would always 

want to repeat its bid for a  bundle th a t does not increase in price, because the prices only 

increase on o ther bundles an d  never decrease.

Recall th a t Q denotes the  set o f item s to  be auctioned, I  denote th e  set of agents, and 

S  C Q denote a  bundle of item s. T he auction proceeds in rounds, indexed t >  1. We 

describe the types of bids th a t agents can place, and  th e  allocations and  price updates 

com puted by the  auctioneer.

B id s . Agents can place exclusive-or bids for bundles, e.g. S \  XOR S 2 , to  indicate 

than  an  agent w ants e ither all item s in S 1 or all item s in S 2  b u t no t b o th  S t and S 2 - 

Agent i  associates a  bid price p(,jd ; (5 ) w ith a bid for bundle 5  in ro u n d  t, non-negative by 

definition. T he price m ust e ither be w ithin e of, or g reater th an , the  ask price announced 

by the auctioneer (see below). P aram eter e >  0 defines the  m inim a l bid increm ent, the

l I m il sometimes use {Bundle both to refer to the family of auctions in general, and tBundle(d) in 
particular.
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m inim al price increase in the auction. Agents m ust repeat bids for bundles in the current 

allocation, bu t can bid a t the sam e price if th e  ask price has increased since the previous 

round. A n agent can also bid e below the  ask price for any bundle in any round— but 

then it cannot bid a  higher price for th a t bundle in the fu ture . This allows an agent to bid 

for a  bundle priced slightly above its value.

W in n e r - d e te r m in a t io n .  T he auctioneer solves a  w inner-determ ination problem  in 

each round, com puting an allocation of bundles to  agents th a t maximizes revenue. The 

auctioneer m ust respect agents’ XOR bid constrain ts, and  cannot allocate any item to 

more th an  one agent. T he provisional allocation becomes the final allocation when the 

auction term inates. Ties are broken in favor of assigning bundles to more agents, and then 

a t random , except when the sam e bids are received in two successive rounds when the 

auctioneer selects the sam e allocation (and the  auction  term inates).

P r ic e s .  T he price-update rule generalizes the rule in the  English auction, which is 

an ascending-price auction for a  single item . In the English auction  the price is increased 

whenever two or more agents bid for the item  a t the curren t price. In iBundle the price on 

a  bundle is increased when one or more agents th a t do not receive a  bundle in the current 

allocation bid a t (or above) the current ask price for a  bundle. T he price is increased to e 

(the m inim al bid increment) above the greatest failed bid price. T he initial ask prices are 

zero.

T he auctioneer announces a  new ask price, p ^ k(S) in round t, for all bundles S  th a t 

increase in price. O ther bundles are im plicitly priced a t  least as high as the greatest 

price o f any bundle they contain, i.e. PaaifS') >  Paai^S) for S '  D S. These ask prices are 

anonym ous, the same for all agents.

P r i c e  d is c r im in a t io n .  In some problem s the auctioneer introduces price discrim i­

nation based on agents’ bids, w ith different ask prices to  different agents, when this is 

necessary to achieve an  optim al allocation. A sim ple ru le dynam ically introduces price- 

d iscrim ination (or non-anonymous prices) on an  agent-by-agent basis, when an  agent sub­

m its bids th a t are n o t  safe:

D e f in it io n  5 .1  [safe bids] An agent’s bids are s a f e  if the agent is allocated a  bundle 

in the curren t allocation, or it does not bid a t or above the ask price for any pair of 

c o m p a t i b l e  bundles S i, S 2 , such th a t S i  D 52  =  0 .
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Suppose agent i bids unsuccessfully for com patible bundles S i an d  S? in round t. I t is 

still possible th a t bids for bundles S\  and S 2 from two different agents can  be successful 

a t the prices, while the  X O R bid constrain t prevents the auctioneer accepting b o th  bids 

from agent i.

W hen an agent’s bids are not safe the agent receives individual ask prices, Pask,t{5), in 

future rounds. Individual prices are  initialized to  the curren t general prices, p ^ ^ S )  — 

p ^ k(5 ), and  increased to e above th e  agent’s bids in fu ture rounds th a t  the  agent receives 

no bundle in the  provisional allocation.

T e r m in a tio n .  T he auction term inates when: [Tl] all agents subm it the sam e bids in 

two consecutive rounds, or [T2] all agents th a t bid receive a  bundle.

5.1.1 A Myopic Best-Response Bidding Strategy

iBundle com putes an optim al allocation w ith myopically rational agents th a t play a  best 

(utility-m axim izing) response to  th e  current ask prices and  allocation  in  th e  auction. T he 

agents are myopic in the  sense th a t they only consider the  curren t round  of the auction.

Let Vi(S)  denote agent i ’s value for bundle S,  and assum e u,(0) =  0 and free disposal 

of items, so th a t Vi(S') >  Vi(S)  for all S'  2  S . Consider a  risk-neutral agent, w ith a 

quasilinear u tility  function u*(S) =  Vi(S) — p(S)  for bundle S  a t price p(S) .  Further, 

assum e th a t agents are indifferent to  w ithin a  u tility  of ±e, th e  m inim al bid increm ent. 

T his is reasonable as e —► 0.

By definition, a  myopic agent bids to  maximize u tility  a t the  cu rren t ask prices (taking 

an e discount when repeating a  bid for a  bundle in the provisional allocation  or bidding for 

a  bundle priced ju s t above its value). T he myopic best-response s tra teg y  is to  subm it an 

XOR bid for all bundles 5  th a t m axim ize (to w ithin e) u tility  u,-(5) a t  the  current prices. 

This maximizes the probability  of a  successful bid for bid-m onotonic W D  algorithm s.

5.1.2 Discussion

Unlike earlier auction designs for the  com binatorial allocation problem , iBundle perm its 

b o th  non-linear prices (i.e. prices on  bundles not equal to  th e  sum  of prices on items) and 

non-anonymous prices (i.e. different price for the sam e bundle to different agents). Given 

th a t com petitive equilibrium  is a  central solution concept in  efficient auc tion  design, and 

th a t bo th  non-linear and  non-anonym ous prices are required for com petitive equilibrium
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in some C A P problem  instances, th is appears essential to the  efficiency of iBundle. W ur­

m an & W ellm an [WWOO] propose an  iterative com binatorial auc tion  w ith non-linear bu t 

anonym ous prices, bu t are unable to design a  price u p d a te  rule w ith  general efficiency 

across all problem  instances. iBundle is the  first iterative auction  to  term inate  w ith the 

efficient allocation, and  in com petitive equilibrium , in the general C A P problem  w ith any 

reasonable agent b idding strategy—  in this case myopic best-response (see T able 4.7).

T he o th er m ain feature of the price-update rules in iB undle is th a t only weak con­

sistency is enforced across prices. Prices may be subadditive or superadditive, the only 

requirem ent is th a t they satisfy a  simple m onotonicity requirem ent:

Pi{Si) >Pi{S-2) , if 5 l D 5 2

for bundles S i and  S2. A dditional consistency rules fail to characterize com petitive equi­

librium  prices in some C A P problem  instances.

Allowing agents to bid for bundles of item s avoids the  exposure problem  identified 

in [BCLOO] for auctions th a t do not allow com binatorial bids, for exam ple sim ultaneous 

ascending-price auctions. T he exposure problem  occurs when an  agent loses its bid on 

one-or-m ore item s in a bundle and is left w ith an  incom plete bundle. Bundle bids allow 

agents to make explicit sta tem ents abou t contingencies, for exam ple a bid on bundle A B  

s ta tes "I only want A if I also get B " .

Exclusive-or bids are not com pact representations of an  agen t’s dem and in some prob­

lems, for exam ple when an agent has a  linear-additive valuation function. We can derive 

price-update rules for o ther bid languages [Par99]. For exam ple, the auctioneer can convert 

O R  bids into equivalent XOR bids by creating a  new "dum m y” agent to subm it an  XOR 

bid for each bundle th a t receives an  O R  bid from an  agent (see section 5.6).

Non-linear prices can require enforcement, for exam ple to  prevent the possibility of 

arb itrage in which a  th ird -party  profits from subadditive prices on bundles (p(Si U S2) <  

p ( S i) +  p (S 2)) by purchasing bundles to be “disassem bled” and  sold for profit. Similarly, 

w ith subadditive prices a  bidding cartel can form to take advantage of bundle discounts, 

and  this can also d isto rt the efficiency of the mechanism. A single agent might try  to 

avoid superadditive prices, w ith p ( S i U S2) >  p (S i) -t-p(S2), by entering  the auction under 

m ultiple pseudonym s and  purchasing sm aller bundles for “assem bly” after purchase.

In addition, the variations of iBundle w ith  d iscrim inatory  prices, e.g. p i { S )  P j { S )  for 

agents i, j , may require an  auctioneer to prevent agents entering under m ultiple pseudonym s
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M ethods of enforcement include: (1) prevent the transfer of item s between agents (e.g. the 

airline industry); (2 ) prevent agents from entering an  auction under m ultiple pseudonyms, 

for exam ple through cryptographic message au then tica tion  and  signature techniques; (3 ) 

reduce opportunities for afterm arkets.

5.1.3 Example Auction Scenarios

Figure 5.1 shows four different auction  scenarios th a t illustrate w inner-determ ination and 

price-updates. In each scenario bundles A B C , C D , D  and  A B  each receive a  bid from 

some agent, bu t the scenarios differ in the agents th a t subm it the bids. T he 'boxes’ 

indicate XOR bids from the  sam e agent, and  the  ‘circles’ indicate the allocation selected 

by the auctioneer to m aximize revenue. P rice increases are indicated  w ith an  ‘arrow ’. The 

minim al bid increm ent e =  5. Notice th a t the  bid prices for bundles are consistent, such 

th a t p (A B C ) > p (A B ) and  p (C D )  >  p (D ). T his m ust be m aintained in tBundle.

The auctioneer selects the  sam e revenue-maxim izing allocation in scenarios (a), (b) 

and  (d), allocating bundles A B C  and  D  to  two different agents. In  (c) th e  sam e agent 

bids for bundle A B C  and  D  and  the  auctioneer m ust select ano ther allocation, because 

it m ust respect the XOR bid constra in t. A llocation D  and  A B  is chosen in preference to 

A B C  because it includes m ore agents.

In (a) the auction term inates because the  revenue-m axim izing allocation includes a  bid 

from every agent th a t bids. In  (b) the  auction does not term inate  because th e  agent th a t
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bids {A B , $5) is not happy. T he ask price for A B  is increased to  5 +  e, the m inim al bid 

increm ent, in the  next round. Scenario (c) is sim ilar, except th a t the  provisional allocation 

is different, and the price is increased on C D  in the next round. In  (d) the bids from the 

agent th a t receives no bundle in the provisional allocation are  not safe  because bundle C D  

and  A B  are com patible. T he auctioneer introduces price-discrim ination  in the next round. 

T he ask price rem ains unchanged for the 2 agents in the  provisional allocation, while the 

ask price to the th ird  agent is increased to  5 4- e for b o th  bundles C D  and  A B .

5.1.4 Worked Examples

Table 5.3 illustrates the ask prices, allocation, and  bids from agents in each round of 

iBundle(2) for Problem  4. Agent 1 wants either A  o r B , and  has value 2 for each. Agent 

2 wants only .4 and B ,  and has value 3 for A B .  T he bid  increm ent is e =  0.5. Notice 

th a t agent 1 bids e below the ask price in round 4 because it repeats  a  bid for a  bundle 

in the curren t allocation, and agent 2 takes a  discount in round 11 because the ask prices 

are g reater th an  its values. T he allocation selected in each round (indicated  *) maximizes 

revenue to the auctioneer. T he auction term inates in round 11 because it receives the same 

bids as in round 10, w ith the optim al allocation [1, AB] and  subadd itive prices for bundle 

A B .  T here are no prices on item s (w ith the price o f bundle A B  equal to the sum  of the 

price of .4 and  B )  th a t su pport this allocation.

A B  A B
Agent 1 0 0 3*
Agent 2 2 2 2

Table 5.1: Problem 4

A B  A B
Agent 1 0 0 3*
Agent 2 2 * 0  2
Agent 3 0 2 ’ 2

Table 5.2: Problem 5

N on-linear prices are required to support the  o p tim al allocation  in Problem  4, e.g. 

p {A B )  =  p(.4) =  p{B ) =  2.1, while linear prices are sufficient to  su p p o rt the optim al 

allocation in Problem  5, e.g. p {A B )  =  p{A) 4- p{B )  =  1.6 4-1.6 =  3.2. T he price-update
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Round Prices Bids Allocation Revenue
A B AB Agent 1 Agent 2

1 0 0 0 (AB, 0)- (A, 0) (B, 0) (AB, 0) [1, AB] 0
2 0.5 0.5 0.5 (AB, 0) (A, 0.5)’ (B, 0.5) (AB, 0.5) [2, A] 0.5
3 0.5 0.5 0.5 (AB, 0.5)* (A, 0.5) (B, 0.5) (AB, 0.5) [2, A] 0.5
4 1 1 1 (AB, 0.5) (A, 1) (B, 1)* (AB, 1) [2, B] 1
5 1 1 1 (AB, 1) (A, 1) (B, 1)* (AB, 1) [2, B] 1
6 1 1 1.5 (AB, 1.5)’ (A, 1) (B, 1) (AB, 1.5) [1, AB] 1.5
7 1.5 1.5 2 (AB, 1.5) (A, 1.5) (B, 1.5) (AB, 2)* [2, AB] 2
8 1.5 1.5 2 (AB, 2)* (A, 1.5) (B, 1.5) (AB, 2) [1, AB] 2
9 2 2 2.5 (AB, 2) (A, 2)* (B, 2 ) (AB, 2) (2, A] 2
10 2 2 2.5 (AB, 2.5)* (A, 2) (B ,2) (AB, 2) [1, AB] 2.5
11 2.5 2.5 2.5 (AB, 2.5)’ (A, 2 ) (B, 2 ) (AB, 2) te rm in a te s .

Table 5.3: iBundle('2) on Problem 4, Bid incr. e =  0.5. Provisional allocations indicated *.

rules generate appropriate  prices in b o th  problem s.

T he auction generates subadditive prices for bundle A B .  Indeed, as e -* 0, the final 

ask prices approach p(A ) = p{B ) =  2. A successful bid for A B  does not need to be 

g reater th an  the sum  of bids for A  an d  B  because the sam e agent bids for b o th  A  and 

B ,  and  the auctioneer cannot sell b o th  A  and  B  for the bid price w ithout violating the 

b id - c o n s i s t e n t  constrain t. A nother agent needs to  bid the m axim um  price of A  and  B  

to be successful. The ask price for A B  is only increased when an  agent th a t bids for A B  a t 

the  curren t ask price is unsuccessful, explaining why the  ask price for A B  rem ains w ithin 

e of the ask price for A  and  B  th roughout the  auc tion— and subadditive w ith respect to 

the  price of A and  B .

Table 5.4 shows iBundle(2) for P roblem  5. T h e  final prices in this case are approxi­

m ately linear, and as c 0, the ask prices approach p(A ) = p {B ) = 1.5 and  p {A B )  =  3. 

In this case a  successful bid for A B  m ust be a t least the sum  o f the  bid prices for A  and  

B , because different agents— agents 2 and  3 — bid  for A  and  B .  T h is explains why the  

ask price for A B  rem ains w ith in  e o f the  sum  o f th e  ask prices for A  and  B  throughout 

the  auction.

5.2 Theoretical Results

We can make an  im m ediate claim  ab o u t the efficiency o f iBundle w ith agents th a t fol­

low myopic best-response strategies, based on the  analysis of the  prim al-dual algorithm  

C o m b A u c t i o n  in the previous chapter.
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Round Prices Bids Allocation Revenue
A B AB Agent 1 Agent 2 Agent 3

1 0 0 0 (AB, 0) (A, or (AB, 0) (B, 0 )' (AB, 0) [2, A], [3, B] 0
2 0 0 0.5 (AB, 0.5)* (A, 0 ) (AB, 0.5) (B, 0) (AB, 0.5) [1, AB] 0.5
3 0.5 0.5 1 (AB, 0.5) (A, 0.5)* (AB, 1) (B, 0.5)* (AB, 1) [2, A], [3, B] 1
4 0.5 0.5 1 (AB, 1) (A, 0.5)* (AB, 1) (B, 0.5)* (AB, 1) (2, A], [3, B] 1
5 0.5 0.5 1.5 (AB, 1.5)* (A, 0.5) (B, 0.5) [1, AB] 1.5
6 1 1 1.5 (AB, 1.5) (A, D* (AB, 1.5) (B, 1 )• (AB, 1.5) [2, A], [3, B] 2
7 1 1 2 (AB, 2) (A, D* (B, 1 )• [2, A], [3, B] 2
8 1 1 2.5 (AB, 2.5)* (A, 1) (B, 1) [1, AB] 2.5
9 1.5 1.5 2.5 (AB, 2.5) (A, 1-5)- (AB, 2) (B, 1.5)- (AB, 2) [2, A], [3, B] 3
10 1.5 1.5 3 (AB, 3) (A, 1-5)- (B, 1.5)* [2, A], [3, B] 3
11 1.5 1.5 3.5 (AB, 3) (A, 1-5)- (B, 1.5)* te rm in a te s .

Table 5.4: tBundle(2 ) on Problem 5, Bid incr. e = 0.5. Provisional allocations indicated *.

Recall th a t |G | is the  num ber of items, | / |  is the num ber of agents, and  e is the minimal 

bid increm ent.

T heorem  5.1 (o p t im a l i t y ) .  iB undle term inates with an allocation that is within 

3 m in{|G |, |/ |} e  o f the optimal solution, fo r  best-response agent bidding strategies.

T he auction  is optimal as the bid increm ent approaches zero because the error-term  

goes to zero.

As described earlier, the optim ality  follows from a  prim al-dual analysis: the provisional 

allocation is always a  feasible prim al solution, the prices a feasible dual solution, and 

com plem entary-slackness conditions hold on term ination .

In a  sim pler variation, iBund!e(2), the auctioneer never tests for bid-safety and  never 

introduces price discrim ination.

T heorem  5 .2 (anonym ous optim ality), iB undle(2) term inates with an allocation that 

is w ithin  3 m in{|G |, |/ |} e  o f the optimal solution when bids are safe, fo r  best-response agent 

bidding strategies.

As noted in the context o f  C om b  AUCTION (Theorem  4.7), special cases on agent pref­

erences for which iBundle(2) remains efficient, include the following:

(1) Every agent dem ands different bundles
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(2) Agents have additive or superadditive values, i.e. v (S  U S ') > v (S )  +  v (S ')  for non­

conflicting bundles 5  and  S '

(3) T he bundles th a t receive bids throughout th e  auction  are from a  single partitio n  of 

item s, e.g. bids are for pairs of m atching shoes or individual item s.

5.3 Experimental Methods

E xperim ental results support the theoretical claim s abou t the  allocative efficiency of 

iBundle. Results also dem onstrate th a t iBundle continues to  perform  well w ith quite large 

bid increm ents, and w ithout price discrim ination. T he perform ance of iBundle is tested  on 

random ly generated problem s sets and w ith myopic best-response agent bidding strategies.

5.3.1 Metrics

Given allocation S  =  ( S i , . . .  , Si )  we com pute the  following metrics:

[E fficiency] Allocative efficiency, ef f {S) ,  is m easured as the ra tio  of the value of the

final allocation 5  to the value V * of the op tim al allocation th a t maximizes to tal value

across the agents: ef f (S)  =  52 vi (Si ) /  where Vi(Si) is agent i ’s value for bundle Si.
i

[C o rre c tn e s s ]  Correctness, corr(S) ,  is m easured as the  average num ber of times th a t 

an auction  finds the optim al allocation. Correctness can provide a  more sensitive m easure 

of perform ance th an  efficiency.

[R ev en u e] Revenue, rev(S),  is m easured as auctioneer’s fincil revenue, as a  ra tio  of 

the value of the optim al solution: rev(S) =  52 P » ($ ) /  V* where Pi{Si) is the final paym ent
i

m ade by agent i for bundle S*.

A sim ple m etric is used to assess inform ation revelation in the  auction.

[ In fo rm a tio n  R e v e la tio n ]  Inform ation revelation, i n f ( i ) ,  for agent i is m easured as

the sum  of the final price bid by the agent for all bundles in its valuation function, as a

fraction of the sum  of the true  value of each bundle:

E Pinax(5) 
i nf ( i )  =  -------------

I ( )  E Vi{S)
S€val_fun,

where p-nax(5) is the m axim um  bid from agent i for bundle S  during the auction; bidt 

is the set of bundles th a t receive bids from agent i; and  val-funt is the  set of bundles w ith 

positive value in agent i ’s valuation function.
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T he overall inform ation revelation, i n f , is com puted as the  average inform ation reve­

lation over all agents. A sym ptotically, if the  auction  term inates a fte r th e  first round, as 

is would in the exam ple in F igure 3.1 in chapter 3, in f  =  0%, while if th e  auction  term i­

nates only after every agent has revealed its com plete value for all bundles in its valuation 

function, in f  =  100%. T he inform ation revelation in the GVA is clearly 100%.

In addition to reducing inform ation revelation, we would also like an  agent to be able 

to follow a  myopic best-response stra tegy  in an iterative auction w ithou t com puting its 

exact value for all bundles. C h ap ter 8 considers the complexity of an  ag en t’s best-response 

bidding problem . In sim ple term s, best-response is possible w ithout exact values on all 

bundles because an agent m ust only determ ine the bundle w ith  a u tility  (value - price) th a t 

dominates the utility  of the  o ther bundles a t the  current prices. T h is can be determ ined 

w ith appropriate  upper- and  lower- bounds on the value of each bundle. In this chapter I 

take inform ation revelation as a  proxy for agent valuation. T his is reasonable in the limit, 

com plete inform ation revelation certain ly  requires th a t an  agent com putes exact values for 

all bundles.

[C o m m u n ic a tio n  C o s t]  T h e  com m unication cost is a  m easure of the  num ber and 

size of messages sent between agents and  the auctioneer during an  auction . A bundle is 

defined w ith |G | bits, an item  w ith log2 |G | bits, and  a  value w ith log2 Vmax, where Vmax is 

the largest possible value (for integer values). In iBundle each bid from an  agent and each 

price increase announced by the auctioneer requires |G | bits, because agents follow myopic 

best-response and the bid price an d  new ask price inform ation is im plicit. As a  fraction of 

the com m unication cost in the GVA, we m easure the to tal cost to  an  agent in  iBundle as:

 _  IC Ifobid +  ftp rice)
00771771* —  i » » i i » f »|V,||G|log2 Vmax

where there are nbid bids, n prjce increases, and  |Vi| bundles w ith non-zero value in the 

agent’s valuation function. In some im plem entations the price messages may be broadcast, 

in which case this com m unication cost is atom ized across all agents.

5.3.2 Problem Sets

iBundle is tested on several problem  sets from the literature . T he problem  set charac­

teristics are sum m arized in Table 5.5. T he CalTech problem  set [LPR97] is designed to 

represent a hard spatia l fitting  problem , and  has been used to  tes t th e  AUSM and RAD
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bundle auctions [DKLP98]. Problem  sets PS1 an d  PS2 are resource allocation problems 

th a t have been used to test the  perform ance of a  sequential auc tion  m echanism  (SEQ) 

w ith adap tive  agent bidding strategies [BGS99].

P roblem  sets 4-8 are designed to represent different levels of subadd itiv ity  and  super­

add itiv ity  over item s. I refer to  these problem  sets as k-comp(g). Agents have subadditive 

values for com binations of item s when fc <  1, and  superadditive values when k  >  1. T he 

param eter g indicates how m any items are covered by bundles w ith  positive value in each 

agen t’s valuation function.

Problem  sets 9-16 are generated from bid d istribu tions used to test a  new w inner deter­

m ination algorithm  for bundle auctions [San99|. Agent valuation functions are generated 

by partition ing  the bid d istributions across the agents. In  problem  sets 9-12 we give agents 

XOR values over the bundles, in problem  sets 13-16 agents have O R  values. In the  "decay” 

bid d is trib u tio n  we choose param eter a  =  0.55.

Larger problem  sets than  those in Table 5.5 are constructed  from Sandholm ’s decay, 

random , uniform , and  weighted-random  d istribu tions, increasing the num ber of agents 

a n d /o r  the num ber of items. In Parkes & U ngar [PUOOa] we consider problem s Decay, 

Weighted-random  (W R), Random  and Uniform  from Sandholm  [San99]. Each problem  de­

fines a  d is trib u tio n  over agents’ values for bundles of item s, w ith  X O R  valuation functions, 

such th a t agents want a t m ost one bundle. In our m ain experim ents the num ber of items, 

|G | =  50, and  we scale the problems by increasing the num ber of agents from 5 to  40, w ith 

values for 10 bundles per agent. I set Sandholm ’s p aram eter a  =  0.85 in Decay, and  select 

bundles of size 10 in Uniform.

Table 5.5 sta tes the num ber of item s |G | in each problem  set, the  num ber of agents | / | ,  

the average num ber of bundles w ith positive value for each agent, and  w hether the agents 

have O R  or X O R values over bundles. Table 5.5 also records the  average percentage of 

agents in the optim al allocation. All o ther things being equal, we would expect a  greater 

p roportion  of agents to receive bundles as the num ber of item s increases, the  num ber of 

agents decreases, and  the level of superadditiv ity  decreases. For exam ple, the  num ber of 

agents in the optim al solution falls as k  increases in the  k-comp  problem  sets (4-8). I 

also com puted the perform ance of a  naive centred algorithm  n a iv e  for each problem  set, to 

provide a  baseline for the perform ance of the  auction-based solutions. T he naive algorithm  

repeated ly  selects an  agent a t random  (w ithout replacem ent) an d  tries to  allocate bundles
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Problem \G\ \I\ Number 
bundles 

per agent

(X)or
/

(O)r

Num 
agents in 
sol (%)

Naive
eff
(%)

Naive
COTT

(%)

Num
trials# Name

1 CalTech 6 5 5 X 40.0 63.2 2 50
•2 PS1 12 4 3.97 X 89.0 82.1 20 50
3 PS2 12 5 4.07 X 58.4 79.3 20 50
4 0-comp(4) 5 5 15 X 85.6 61.2 0 50
5 0.5-comp(4) 5 5 15 X 80.8 63.2 0 50
6 l-comp(4) 5 5 15 X 71.2 63.0 0 50
7 2-comp(4) 5 5 15 X 49.2 65.3 4 50
8 4-comp(4) 5 5 15 X 43.6 63.5 6 50
9 random 10 5 10 X 84.8 64.9 8 25
10 w-random 10 5 10 X 38.4 82.8 20 25
11 uniform 20 5 10 X 60.0 73.0 8 25
12 decay 20 5 10 X 96.0 80.2 12 25
13 random-or 10 5 10 0 74.4 55.3 0 25
14 w-random-or 10 5 10 0 39.2 82.4 20 25
15 uniform-or 20 5 10 0 48.8 69.6 4 25
16 decay-or 20 5 10 0 92.8 72.5 0 25

Table 5.5: Problem characteristics.

to  the agent until it is happy, choosing bundles in order o f decreasing value.

5.3.3 Comparison Auction Mechanisms

I com pared the perform ance of iBundle w ith reported  results for o th er auctions. AUSM 

and RAD are iterative auctions th a t allow agents to  bid for bundles [LPR97, DKLP98], 

and SEQ is a sequential auction for item s w ith agents th a t have adap tive b idding strategies 

[BGS99].

I also im plem ented a  sim ple sim ultaneous ascending price auction, w ith and  w ithout 

bid w ithdraw al (SAA-w and SAA). In SAA-w agents can w ithdraw  a  bid in any round. 

W hen an  agent w ithdraw s a  bid 6 the ask price is set to  the price of the  bid. If the 

item  rem ains unsold the agent m ust pay its bid price, b u t otherw ise there is no penalty. 

T h is approxim ates the  rule used in  th e  FCC  spectrum  auction  [Plo97]. T he best-response 

bidding strategy  in SAA is to  b id  for item s th a t maxim ize utility, assum ing they will 

win every bid. W ithou t budget constra in ts agents write-off incom plete bundles w ith this 

strategy, in a  phenom ena described by Bykowsky et al. as m utually destructive bidding 

[BCLOO].

T he best-response stra tegy  in SAA-w is sim ilar, except th a t agents assum e th a t they 

can decom m it for free. Once an  agent has w ithdraw n a  bid, the penalty  represents a sunk
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cost. T here  is continued debate abou t th e  effect of bid w ithdraw al on auction perform ance 

[BCLOO, Por99].

5.3.4 Experimental Platform

iBundle is coded in C + + , w ith  a branch-and-bound depth-first search used to  solve the 

auctioneer’s w inner determ ination  problem  in each round [San99]. M odules to  generate 

random  problem  sets, and  sim ulate agent bidding strategies were also coded in C + + . I 

have also experim ented w ith  the G A M S/C PL EX  platform  as a  m ethod  to  solve winner- 

determ ination  in each round of the auction.

A variation on Sandholm ’s depth-first branch-and-bound search algorithm  [San99] 

solves w inner-determ ination (VVD) in each round, and  com putes the  allocation and  prices 

in the GVA. A new heuristic is introduced to make search m ore efficient for XOR bids. 

T he heuristic com putes an  overestim ate of the possible value of a  p a rtia l allocation based 

on allocating a t most one bundle to each rem aining agent w ithout a  bundle.

5.3.5 Normalized Bid Increment

In some tests it is useful to  norm alize the  minim al bid increm ent across problem  distribu­

tions, to give some consistency in com parisons of allocative efficiency, etc. T h e  minim al bid 

increm ent e is ad justed  to  norm alize for th e  num ber of bundles in an  average solution and 

the average value of an  optim al solution; i.e. an increm ent of x%  represents an  actual bid 

increm ent e =  iV * /(1 0 0 W ')  where W* is the average num ber o f bundles in the optim al 

allocation and  V * is the  average value of the optim al allocation.

5.4 Results I: Efficiency and Information Revelation

Table 5.6 com pares the  perform ance of iBundle(2) w ith reported  results for AUSM and 

RAD [DKLP98, LPR97] on problem  set 1 in Table 5.5. T h e  experim ents reported  in 

DeM artini et al. [DKLP98] are w ith  hum an partic ipants, and  it is possible th a t software 

agents could perform  b e tte r  (or worse). T his aside, iBundle(2) achieves a  higher efficiency 

than  RAD and  AUSM, and  is com petitive in revenue. I also com pared the  perform ance of 

iBundle w ith SEQ [BGS99] on problem  sets 2 and  3. iBundle(2) generates alm ost perfect 

allocations, significantly outperform ing SEQ (results on c o t t  and  rev are no t available for
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Problem Perform ance
measure

SEQ RAD AUSM tBundle(2)
e ( %)

20 5
# Name

1 CalTech eff 90.4 94 96.4 99.7
COTT 80 36 80
rev 79 71 70.6 77.7

2 PS1 eff 87 92.4 99.4
3 PS2 eff 80 92.8 99.7

Table 5.6: Performance comparison with SEQ, RAD and AUSM on problems 1, 2 and 3. Bid 
increment e (%); Efficiency e f f  (%); Correctness c o t t  (%); Revenue r e v  (% ).

SEQ). T he em pirical results reported  for SEQ are w ith  agents th a t follow sophisticated 

bidding strategies, learned over many repeated tria ls of th e  sam e problem  instance. In 

com parison, iBundle agents follow simple best-response bidding  strategies.

10010OH

o

■e-e-
16

Problem Set Problem Set

(a) (b)

Figure 5.2: Performance of SAA-w ‘x \  iBundle(2) *+’, and a  naive central resource allocation 
algorithm ‘o’. Bid increment e =  5%. (a) Efficiency, (b) Correctness.

F igure 5.2 plots the efficiency (a) and  correctness (b) o f iBundle(2) and  SAA-w (w ith 

e =  5%) for each problem  set, together w ith the n a iv e  perform ance as a  baseline. T he 

SAA auction  fails in many problem  sets (1, 3, 8 , 10-16), in the sense th a t agents lose 

u tility  th rough partic ipation  when the best-response bidding strategy  leaves them  w ith 

incom plete bundles. T he efficiency of SAA is som ew hat misleading in these problems 

because it indicates a  significant problem  w ith  myopic best-response as an  agent bidding 

strategy. SAA-w allows bid w ithdraw al, and  m itigates th e  exposure problem  in problem  

sets 12 and 13.
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Problem Perf
measure

tBundle(2) iBundle(d) iBundle(3)
# Name
1 CalTech £ 5 2 1 0.5 5 2 1 0.5 5 2 1 0.5

eff 100 100 100 100 100 100 100 100 100 100 100 100
corr 94 96 98 100 94 98 100 100 94 98 100 100
in f 87.6 89.8 90.4 91 87.6 89.8 90.4 91 87.6 89.8 90.4 91

2 PS1 e 5 2 1 0.5 5 2 1 0.5 5 2 1 0.5
eff 98.3 99.7 99.9 99.8 98.3 99.8 100 100 98.3 99.8 100 100

corr 65.8 91.1 98.7 97.5 65.8 92.4 100 100 65.8 92.4 100 100
in f 49.2 42.4 40.8 39.9 49.2 43.5 41.7 40.9 49.2 43.6 41.9 41.1

Table 5.7: Achieving Optimal Solutions with iBundle; Problems 1 and 2. Bid increment e; Effi­
ciency eff (%); Correctness corr (%); Information revelation in f (%).

It is useful to consider average perform ance across till problem  sets. For the  sake of 

analysis I su b stitu te  the  efficiency and correctness of n a iv e , and  the  revenue from the 

Generalized Vickrey A uction (GVA), in problem  sets where SAA and  SAA-w fail. T he 

naive central algorithm  provides a  useful lower bound on efficiency and  correctness, but 

revenue is undefined. T he GVA provides a  lower bound on revenue, for agents th a t follow 

rational bidding strategies in an  auction th a t generates efficient solutions.

iBundle(2) (w ith e =  5%) achieves an efficiency of 99%, com pared to  83.3% efficiency for 

SAA-w, 81.6% for SAA, and 70.1% for n a iv e . SAA-w perform s well in problem  set 2 (where 

there is little  com petition  for resources), and sets 4, 5 and 6 , where agents have subadditive, 

linear-additive or slightly superadditive values on bundles. Average correctness is 67.2% 

for jBundle(2), 23.9% for SAA-w, and  7.8% for n a iv e . Finally, iBundle(2) generates 75.6% 

revenue, com pared to 70.8% for SAA-w and  62.9% for the  GVA.

5.4.1 Effect of Price Discrimination

Figure 5.3 (i) com pares the efficiency and correctness w ith  each auc tion  variation for prob­

lem set 0.5-comp(3), which is a  problem  w ith  5 agents, 5 item s, and  7 bund les/agen t. Al­

though price discrim ination is required for 100% correctness in th is problem , the  efficiency 

improvement is negligible. T he increase in efficiency w ith iB undle(d) and  iBundle(3), 

com pared to iBundle(2) is m arginal. W ith  e =  5%, iBundle(3) achieves 99.1% efficiency, 

com pared to 99% efficiency for iBundle(2). Table 5.7 presents sim ilar results for Problem s 

1 and 2 .

Price discrim ination only makes a difference for very sm all b id  increm ents, when the

141

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



100

Correct

to'2
Bid Increment

80

Bid Increment

120 6000

100 5000

& 400080

2000

20 1000

—i 
10*1 0 ' J 10 '2

Bid increment Bid increment

Figure 5.3: Performance of iBundle as the bid increment e decreases. ‘4-’ iBundle(2); •*’ iBun- 
dle(d); ‘A ’ iBundle(3). Problem 0.5-comp(3).

com m unication cost begins to increase rapidly. For bid increm ent e >  0.5% the perfor­

m ance is alm ost identical. The relationship between average num ber of rounds to term i­

nation and  bid increm ent is approxim ately linear, w ith e =  5%, 0.5%, 0.05% corresponding 

to 6 , 49, and  480 rounds respectively. An auctioneer may choose not to operate below 

0.5% because of high com m unication costs, com putation  costs, and indirect costs due to 

elapsed time.

Figure 5.3 (ii) plots the inform ation revelation; (iii) the  auctioneer’s com putation cost; 

and (iv) the  agen t’s com m unication cost. T he com putation  cost in th is experim ent is as­

sum ed to scale exponentially w ith the worst-case size of th e  w inner-determ ination problem  

solved in iBundle, and  w ith the size of the w inner-determ ination problem  w ith all agents 

in the GVA. Size is m easured as the product of the num ber of bids received (or bundles 

w ith values in the GVA) and the num ber of item s. Finally, the cost is normalized on a 

log-scale, w ith the  cost of the GVA equaling 100%. We m ight expect the worst-case run­

tim e in iBundle to be dom inated by the tim e on the  largest problem  in any round because 

w inner-determ ination is N P-hard. Similarly, the  cost of solving WD for all agents should
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dom inate in the GVA.

T he results show th a t iB undle can  tradeoff perform ance for com m unication, com pu­

tation , and inform ation revelation costs. tBundle(2) achieves allocations th a t average 

91.7% efficiency across all problem  sets and  term inates after 5.7 rounds w ith  bid incre­

m ent e =  20%, down from 99% efficiency after 18 rounds w ith bid increm ent e =  5%. 

Price discrim ination only helps for bid increm ents less than  around e =  0.5, a t which point 

the com m unication cost begins to  increase rapidly. It is likely th a t an  auctioneer would 

choose not to operate in this region anyway. T he perform ance of all auction variations 

is approxim ately identical in the region w ith reasonable com m unication cost. As the bid 

increm ent decreases we can achieve a  continuous tradeoff between perform ance (efficiency 

and correctness), inform ation revelation, and  com m unication cost. Notice also th a t the 

dynam ic and th ird-order iBundle  auctions require more inform ation revelation and  auc­

tioneer com putation  than  the  second-order iBundle  auction in this problem  dom ain, but 

have less com m unication cost.

5.4.2 Information Revelation

i'Bundle(2) requires an average of 57.5% inform ation revelation a t e =  20% (when the  allo­

cations are 91.7% efficient), and  an  average of 71% inform ation revelation a t e =  5% (when 

the allocations are 99% efficient). T he (sealed-bid) GVA requires 100% inform ation reve­

lation from agents to achieve 100% efficiency. I would expect inform ation revelation to be 

sm aller in real-world problems. T he agents in the problem  sets have sparse valuation func­

tions, which lim its the size o f the worst-case inform ation revelation, i.e. the denom inator in 

the inform ation-revelation m etric. In  addition, inform ation revelation would be sm aller in 

“easier” problem s, for exam ple w ith significant over-dem and or significant under-dem and. 

In the former only a  few agents need to  drive the price adjustm ent, while in the la tte r we 

would expect tBundle to term inate  quickly.

One of the m ain claims for iterative auctions vs. sealed bid auctions is th a t they provide 

m ajor com putational advantages in easy problem  instances, term inating  quickly w ith little  

inform ation revelation and  com putation. To test this claim I stud ied  the Decay problem  

set, w ith the num ber of agents increased from 2 to  50. Table 5.8 sum m arizes the statistics 

for the problem s. T he problem  is relatively “easy” w ith a  few agents, bu t as the  num ber of 

agents increases the level of com petition  increases and  it is more difficult to  com pute the
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Problem \G\ Num ber 
bundles 

p er agent

(X)or
/

(O )r

Num  
agents in 
sol (%)

Naive
e ff
(%)

Naive
corr
(%)

Num
trials# Name

17 decay (2) 20 2 25 X 100 93.0 64 25
18 decay (10) 20 10 5 X 77.2 75.5 4 25
19 decay (25) 20 25 2 X 37.4 61.2 0 25
20 decay (50) 20 50 1 X 20.6 62.8 0 25

Table 5.8: Problems for the easy-hard scalable performance test.

op tim al solution. For example, all agents are in the optim al allocation w ith a  few agents, 

and  the efficiency and  correctness of the  naive algorithm  is high.

Figure 5.4 illustra tes the perform ance of iBundle as the “difficulty” o f the  com binatorial 

allocation problem  is increased. In  each tria l I select a  bid increm ent to  make iBundle 

com pute a  solution w ith the  sam e quality, i.e. w ith a  sim ilar efficiency and  correctness, 

see Figure 5.4 (i).

As the instances get more difficult the  auctioneer’s com putational cost steadily in­

creases, see Figure 5.4 (iii). As described above, this is a  m easure of th e  size of the largest 

w inner-determ ination problem  the  auctioneer m ust solve, m easured as a  fraction of the 

size of the problem  in the  GVA (w ith full valuation functions from each agent). In easy 

problem s the largest w inner-determ ination problem s in iB undle are ab o u t half the size of 

the problem s in the  GVA, which could be significant for an  N P-hard  problem .

C om m unication cost in iBund!e(2) and  iB undle(d) is a  linear function of the num ber 

of agents, essentially because a  cost is accounted to  send price updates to  all agents. This 

is not a  very accurate  m easure, as sim ple m ethods th a t allow agents to  drop out of the 

auction will give sim ilar com m unication costs across tBundle(2), (d) and  (3). Essentially, 

the com m unication scaling properties are strongly  sub-linear in the  num ber o f agents, 

because m any agents quickly drop out as prices get too high.

T he m ost in teresting  effect on inform ation revelation can be observed between 0 and 

10 agents. For less th an  10 agents the  problem  is solved w ith  very little  inform ation from 

agents. T he peak inform ation revelation occurs for problem s of in term ediate size, when 

every agent in the system  m ust report qu ite  accurate and  com plete inform ation. As the 

num ber of agents increase the  average inform ation revelation falls because inform ation 

from some agents becomes irrelevant.
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Figure 5.4: Performance of iBundle as the problem difficulty is increased. ‘+ ’ iBundle(2); V  
iBundle(d); ‘A ’ iBundle(3). Decay problem set, for 2, 10, 25, and 50 agents.

5.5 Results II: Winner Determination and Communication 

Cost

T he auctioneer m ust solve one WD problem  in each round, and  a naive worst-case analysis 

gives 0 ( 5 V max/e) rounds to  converge, for a  to ta l of B  bundles w ith positive value over all 

agents, m axim um  value Vmax for any bundle, an d  m inim al bid increm ent e. In the  worst- 

case the price of a  single bundle m ust increase by a t least e in each round the  auction 

rem ains open, and  prices are bounded by the m axim um  value over all agents. T he num ber 

of rounds to  term ination  is inversely proportional to  th e  m inim al bid increm ent. The 

auctioneer can solve less WD problem s by increasing the m inim al bid increm ent, for some 

loss in economic efficiency.

T he w inner-determ ination (W D) problem  th a t  the  auctioneer solves in each round of 

iBundle is ATP-hard, itself a sm all instance of th e  C A P problem . Each problem  is sm aller 

th an  the problem s in the GVA, because the w inner-determ ination  problem  is revenue- 

m axim ization given agents’ best-response bids, while in  the  GVA the problem  is to  com pute
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an  efficient allocation from valuation functions. However, the  problem  instances m ight 

also be hard  instances because all agents bid a t sim ilar prices for bundles (A ndersson et 

al. [ATYOO]), which can  restric t the  ability  of search-based m ethods to  p rune  the search 

space.

A num ber of m ethods are available w ith in  iBundle to  speed-up com putation . F irst, 

the provisional allocation from the previous round provides a  good in itia l solution to  the 

WD problem , because agents m ust re-bid bundles received in the  previous round. This 

allows pruning of the search for a  revenue-maxim izing allocation. An add itional saving in 

com putation tim e is achieved by lim iting search to  an  allocation a t least e b e tte r  th an  the 

value of the allocation in the previous round.

T he auctioneer announces only price increases in each round, and  does not m aintain  

explicit prices for all possible bundles. Instead, bid prices are verified dynam ically  in each 

round, to check th a t bids are a t least as large as the ask price of all contained bundles. 

T he to tal work in checking each bid is linear in the num ber P  o f bundles th a t  have explicit 

ask prices, w ith  a  naive linked-list d a ta  structure . Similarly, price m onotonicity can be 

m aintained in linear tim e in P  for each new price increase. In addition , P  < B ,  w ith 

agents th a t have values for B  bundles, because only bundles th a t receive bids can receive 

explicit ask prices.

5.5.1 Minimal Bid Increment Approximations

One m ethod to  in troduce approxim ations is via the m inim al bid  increm ent. F igure 5.5 

plots the to ta l auctioneer w inner-determ ination and  price-update tim e2 in iB undle in the 

Decay problem  set. Perform ance is m easured for different bid increm ents, w ith the bid 

increm ent selected to give allocative efficiency of 80%, 85%, 95% and  99% (±1% ). Figure 

5.5 also plots perform ance for the GVA, and  for a  sealed-bid auction  in which agents are 

assum ed to bid truthfully . T he GVA proved in tractab le for 30 and  40 agents. In those 

problem s the run  tim e is estim ated  as the tim e to com pute the op tim al so lu tion  in a  single 

WD problem  m ultiplied by the num ber of agents in the op tim al allocation. R esults are 

averaged over 10 trials. F irst, note th a t the curves axe sublinear on the  logarithm ic value 

axis as the num ber of agents increases, indicating polynom ial com pu tation  tim e in the

2Time is measured as user time in seconds on a  450 MHz Pentium Pro with 1024 MRAM, with iBundle 
coded in C + + .
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Figure 5.5: Total computation time in iBundle(2), the GVA, and a sealed-bid auction with truthful 
agents, in problem set Decay. The performance of iBundle is plotted with different bid increments 
e, selected to give allocative efficiency of 80%, 85%, 95% and 99%.

num ber of agents.

T he perform ance improvement of (Bundle over GVA is striking, achieving a t least one 

order of m agnitude improvement w ith 99% allocative efficiency and  three orders of mag­

nitude w ith 85% allocative efficiency. For up to  95% efficiency I essentially get the myopic 

tru th-revelation  properties of iBundle for free, because (B undle’s run-tim e is approxim ately 

the sam e as for the sealed-bid auction w ith tru th fu l agents.

Table 5.9 com pares (Bundle w ith the GVA for all Sandholm ’s problem s, for problems 

w ith 30 agents. These W R  and Uniform problem  instances are quite easy because the 

optim al allocation sells large bundles to a  few agents, which allows considerable pruning 

during search. In com parison, T he R andom  and, in particu lar, Decay problems tend to 

be harder because the optim al allocation requires coordination across a  num ber of agents, 

see also Sandholm  [San99] and  Andersson ef al. [ATY00]. In  all problem s (Bundle has less 

WD tim e a t 95% allocative efficiency th an  the GVA.

Note th a t the price-update step is relatively expensive in the  otherw ise easy weighted- 

random  (W R) problem , because bid prices for large bundles m ust be checked for price 

consistency against the  price of all included bundles.
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Problem GVA
~  90%

iBundle 
~  95% ~  99%

Approx-
Bundle

Decay Eff (%) 100 91.5 94.9 98.3 85.1
67.3%d W D -tim e“ (s) 41700 831 2400 5650 0

13.4e P r-tim e6 (s) - 26 34.5 44 39.2
Com m c (kBit) 18.8 221 306 394 377

W R Eff (%) 100 90.7 94.9 99.2 79.4
71.5% W D -tim e (s) 3 0.6 1.7 6 0

1 P r-tim e (s) - 5.4 11.5 40.9 12.2
Com m  (kBit) 18.1 20.5 52.1 144 53.1

R and Eff (%) 100 89.3 97 99 95.8
37.8% W D -tim e (s) 68 4.4 7.4 11 0

11.2 Pr-tim e (s) - 6.5 9.7 12.1 12.9
Com m  (kBit) 18.7 49.5 66.4 82.6 85.6

Unif Eff (%) 100 - 95.6 99.1 76.2
58% W D -tim e (s) 25 - 6.6 18.7 0

3 P r-tim e (s) - - 14.7 42.0 46
Comm (kBit) 18.2 - 56.5 120 124

Table 5.9: Performance in the Decay, WR, random, and uniform problems. “ Auctioneer WD 
time. 6 Price-update time. c Communication cost. d Alloc, eff. of a sealed-bid auction with a 
greedy WD algorithm and truthful agents. e Average number of agents in the optimal solution.

5.5.2 Approximate W inner-Determination

A nother m ethod to  introduce approxim ation is via a  greedy w inner-determ ination algo­

rithm  in each round of the auction.

T he auctioneer can m ain tain  the sam e incentives for myopic agents to  follow the same 

bidding strategy  for any approxim ation algorithm  w ith the bid-m onotonicity  property:

D e f in it io n  5 .2  [bid-monotonicity] An algorithm  for w inner-determ ination satisfies bid- 

m onotonicity if whenever an  agent i is allocated a  bundle w ith  bids 5,-, it is also allocated 

a  bundle w ith bids Bi U B  th a t include a  bid for an  additional bundle B .

It is straightforw ard to  prove th a t optimal w inner-determ ination algorithm s are bid- 

m onotonic. One sim ple algorithm  w ith the bid-m onotonicity  p roperty  is due to Lehm ann 

et al. [LOS99], which allocates bundles in order of decreasing value-per-item .

Table 5.9 presents the  efficiency in iBundle w ith  this approxim ation algorithm  for 

w inner-determ ination. T he auction  solves each problem  w ith  negligible com putation, and 

achieves a  high allocative efficiency. For exam ple, iBundle perform s well in  the  hard  Decay 

problem  set, w ith allocative efficiency 85.1%, giving a t least a  1000-fold reduction in WD
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Problem
0

W D T im e 
1 T T!

% Cache 
C orrect

Decay 50/15/150° 415 371 355 291 0 28 47 59
W R 50/50/1000 253 243 231 163 0 11 57 57

R and 50/30/600 1823 1616 1491 864* 0 6 30 78
U nif 50/40/800 343 337 336 110 0 14 29 49

Table 5.10: Winner-determination time with caches of size 0, 1 (last round), and T  (all previous 
rounds). In cache T! revenue maximizing cached solutions from previous rounds me assumed 
optimal. Eff > 99% in all problems except *, where E ff =  96.8%. ° |G| /  |/ |  /  #  bundle values.

time. I believe th a t o ther, slightly less greedy, approxim ate algorithm s will give even 

fu rther perform ance im provements.

5.5.3 M ethods to Speed-up Sequential W inner-Determ ination

T he sequential natu re  of w inner-determ ination in tBundie suggests th a t  cache-based m eth­

ods can speed-up w inner-determ ination. I experim ented w ith a  cache of all provisional 

allocations com puted in previous rounds. T he auctioneer first checks the  cache when new 

bids are subm itted , which provides an  in itial solution for w inner-determ ination and is used 

to p rune search. A sim ple linear program  is used to  select the  best allocation from the 

cache, and requires negligible com putation. In our m ain tria ls I use a  cache size of 1, i.e. 

take the solution from the previous round  as an  in itial solution to  the  W D problem .

Table 5.10 com pares the W D tim e in each problem  w ith and  w ithout caching of previous 

allocations. A lthough a  full cache can provide an add itional speed-up over using no cached 

solutions, or ju s t  the allocation from the  previous round, the  effect is not very dram atic. 

T he reason is th a t it rem ains expensive to  verify  th a t  a  cached solution is optim al. For 

exam ple, a lthough an  extended cache in the  Decay problem  provides the  correct allocation 

in 47% of problem s, the speed-up is lim ited to around  14%.

In an a ttem p t to leverage the correct solutions from  the  cache, I tested  the perform ance 

of iB undle under an  add itional assum ption th a t  if a  cached so lu tion  from before round 

t — 1 generates more revenue th an  the  solution from round t — 1 , th is is adopted  as the 

new provisional allocation w ithout fu rth er com putation . T he rule is designed to  capture 

■flip-flop” com petition  between a  num ber of good allocations d u ring  an  auction.

Labeled T l, the rule proves useful in  Decay, W R  and  Uniform, reducing com putation 

by 30%, 36% and  6 8 % from the tim e w ith  no cache for a  negligible drop in allocative
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efficiency. However, one m ust be careful: a lthough we also see a  speed-up in Random , the 

allocative efficiency falls from 99% to 96.8%. F urther analysis shows th a t cached solutions 

prove optim al in 54%, 97% and  49% of rounds in Decay, W R  and  Uniform, b u t only 

optim al 34% of rounds in R andom .

Further optim izations should be possible, for exam ple using cached solutions once a 

large enough cache is constructed , and  solving W D when an auction is abou t to  term inate  

w ith cached solutions. A nother useful approach is e-scaling, th a t ad justs the bid increm ent 

during an  auction  [Ber90|.

5.5.4 Communication cost

C om m unication cost is com puted using the m etric specified in Section 5.3.1, w ith 10 bits 

to specify a  value in the GVA. Cost is m easured as |G|ribids for each agent plus |G|npriCes- 
The com m unication cost in these experim ents is m easured for broadcast of prices to  agents, 

and therefore the com m unication cost of price transm ission is independent of the num ber 

of agents. T he situation  w ith non-anonym ous prices is even sim pler. Price changes in 

fBundle(3) are implicit in the provisioned allocation, because the prices increase to  e above 

an agen t’s bid price whenever an agen t’s bids are unsuccessful.

T here is a com m unication cost penalty  in using iBundle com pared w ith the GVA in 

these problem s (Table 5.9) because of repeated bids across a  num ber of rounds. T his would 

change in problem s w ith agents th a t have values for m any bundles because all values m ust 

be reported  in the GVA, or in easier problem s because iBundle will term inate  quickly w ith 

less bids.

5.6 Special Cases for Expressive Bid Languages

It is possible to  derive fast special cases of iBundle for restric tions on agent bidding lan­

guages, which solve the com binatorial allocation problem  for assum ptions abou t agent 

preferences. T he advantage o f identifying special cases is th a t the  w inner-determ ination 

problem  is trac tab le  for particu la r s tructu res on bundles and  price functions over bundles

(see section 4.5).
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5.6.1 Unit-Dem and Preferences (Assignment Problem)

In problem s where agents have single-unit dem ands (the s tan d a rd  assignm ent problem) we 

can restric t iBundle in two ways (leading to  two different auction  m echanisms):

• R estrict agents to placing O R  bids on items. In this case iBundle(2) reduces to a  si­

m ultaneous ascending-price auction, th a t was shown to  be optim al for the  assignm ent 

problem  by Crawford & K noer [CK81].

• R estrict agents to placing XOR bids on items. In th is case the w inner-determ ination 

problem  in iBundle(2) can be form ulated as a max-flow problem , and solved effi- 

ciently.The auction only generates prices on items, and  is a  variant on the auction 

proposed by Demange et al. [DGS86 ].

5.6.2 Linear-Additive Preferences

In problem s where agents have linear-additive dem ands on item s we can restric t agents 

to OR bids on items. T he auction reduces to  a  sim ultaneous ascending-price auction, 

equivalent to Crawford Sc K noer’s [CK81] auction for the problem .

5.6.3 Gross Substitutes Preferences

Gross substitu tes (GS) preferences implies th a t an agent th a t  dem ands bundle S  in round 

t will continue to dem and item s in S  th a t do not increase in price as the  price of o ther 

item s increases [KC82]. L inear-additive and  unit-dem and preferences are special-cases of 

gross substitu tes. Kelso Sc Crawford prove GS are a  sufficient condition for the existence 

of linear com petitive equilibrium  prices. Again, we can restric t agents to  O R  bids in this 

special case:

• R estrict agents to placing O R  bids on item s. Agents bid for all the  item s in the single 

bundle th a t maximizes their u tility  in each round. Gross su b stitu tes  implies th a t an 

agent will continue to dem and any subset of the item s as the  price o f o ther items 

increases, and be happy to  continue to bid for item s it receives in a  p artia l allocation. 

In this case iBundle(2) reduces to  a  sim ultaneous ascending-price auction, th a t was 

shown to be optim al for GS by Kelso Sc Crawford [KC82].
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5.6.4 M ultiple Homogeneous Goods

In th is problem  we define a  bundle as the num ber o f goods dem anded, because all goods 

are homogeneous. We assum e th a t every equivalent bundle m ust be priced identically in 

the final allocation, and  m ain tain  one price for each bundle o f size n . Essentially, a single 

bid for a  bundle o f size n  represents a  set of X O R  bids for all sets of item s of size n . 

An unsuccessful bid for size n  increases the  price on bundles of size n  in the next round. 

Again, the iB undle auction would increase the  price on all bundles in the exclusive-or set.

5.7 Earlier Iterative Combinatorial Auctions

R assenti et al. [RSB82] propose a  sim pler sealed-bid bundle auction  for the problem  of 

allocating a irp o rt slots, where airlines value take-off and  landing slots in pairs. Agents 

subm it sealed X O R  bids for bundles of take-off and  landing slots. T he auction com putes 

linear prices th a t  approxim ately clear the m arket, given agent bids. Finally, agents can 

place bids and  asks for individual slots in a  secondary m arket, to  cleanup their final allo­

cation. A lthough the auction  design is fairly ad-hoc, em pirical results w ith hum an bidders 

suggest th a t the  m arket can achieve high efficiency w ith experienced bidders.

T h e  recent FC C  spectrum  auction generated  a  lot of debate  am ong economists about 

com binatorial auction  mechanisms. Spectrum  licenses have non-additive value in bundles 

because of network synergies from spatially-coherent geographical regions. T he final FCC 

auction  design was a  variant on a  sim ultaneous ascending-price auction th a t allowed agents 

lim ited decom m itm ent rights, and placed partic ipa tion  constra in ts on agents to enable 

inform ation exchange via prices during the auction  [MM96]. T h e  goal was to allow agents 

to find a good “fit” between their dem and sets and  the  dem and sets of o ther bidders, and 

win coherent bundles of spectrum  licenses.

Bykowsky et al. [BCLOO] dem onstrate the  exposure and  existence problem  w ith linear 

prices for the  com binatorial allocation problem , and  s tu d y  th e  AUSM auction [BLP89] 

as an  exam ple o f a  bundle auction  to  address th e  problem . AUSM allows agents to bid 

for a rb itra ry  bundles of item s, and m aintains a  revenue-m axim izing allocation. There 

are no pricing rules, and  agents m ust coordinate their own bids. Theoretical analysis 

is difficult because of the flexible auction rules, b u t see M ilgrom  [MilOOb]. AUSM has 

reasonable perform ance empirically, see Ledyard et al. [LPR97]. Bykowsky et al. identify
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the  “threshold problem ” for bundle auctions, where sm aller b idders m ust coord inate bids 

to  outb id  a  larger bidder. A lthough iB undle solves this problem  for agents th a t  follow 

best-response bidding strategies, th e  effect of a lternate  agent b idding stra teg ies on the 

threshold (or coordination) problem  is unknown.

Recently, D eM artini et al. [DKLP98] proposed RAD, an  auction  th a t allows agents to 

place XOR bids on bundles b u t generates prices on items. A lthough prom ising em pirical 

results have been presented, there are no theoretical results on its allocative efficiency. 

RAD also borrows from the  FCC auction  design, agents m ust re-subm it w inning bids, 

and  there are activ ity  rules to  encourage inform ation revelation early  in the  auction  and 

encourage coordinate bidding.

Appendix: Worked Price Discrimination Example

Problem  6 in Table 5.11 illustra tes the  im portance of iB undle(d) and  tB undle(3). T he value 

of agent 2 for bundle B C , V2  {B C ) can  take integer values between 5 and  10. T he values for 

bundles not explicitly listed are consistent w ith free disposal of item s, i.e. v (S ')  > v{S) for 

all S ' D S . T he optim al allocation is ([1, AC], [2, B \) for all valid V2 {B C ). T h e  problem  is 

a  hard coordination problem  because: agent 1 values B  more highly th an  agent 2, bu t the 

optim al solution allocates B  to  agent 2; and  bo th  agents value B C  more th an  any o ther 

bundle bu t receive ano ther bundle in th e  optim al allocation.

A B A C B C
Agent 1 2 9 8 * 10
Agent 2 2 5* 3 v2{BC )

Table 5.11: Problem 6 . Agent values, with 5 < v-±{BC) < 10. Efficient allocation indicated *.

In this problem  first- and  second-order CE prices exist for V2 (B C ) < 7, bu t only third- 

order CE prices exist for V2 {B C ) > 7. For example, when V2 {B C )  =  6 and  V2 {B C ) =  7, 

then  p {A ) =  2 ,p {B )  =  5, and  p (C )  =  2 are CE prices. However, w hen V2 (B C )  =  8 , 

no first- or second-order CE prices exist, and v (L P i)  =  v (L P 2 ) =  13.5 >  v ( IP )  =  13. 

It is not possible to  price B C  high enough (so th a t agent 2 dem ands B  b u t not B C )  

w ithout m aking the auctioneer’s revenue from selling A  and  B C  together g rea ter th an  its 

revenue from selling B  and  A C  together. T hird-order CE prices for V2 {B C )  =  8 include 

Pi =  (2 ,9 ,8 ,10 ) and  p 2  =  (0 ,3 ,1 ,6 ) for bundles A , B , A C  and  B C , w ith  o th er prices set
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high enough to  satisfy p i(S ') > Pi(5) for all S ' D 5.

A lthough tBundle(2) solves th e  problem  when v i(B C )  =  6 , the  auction fa ils  when 

vo (B C ) > 7, term inating  w ith allocation ([1 ,B C ], [2, A]). A uction iB undle(d), w ith  price 

discrim ination, solves the  problem . T h e  auction switches to  price discrim ination, and 

separates the effect of agent l ’s bids from ask prices to  agent 2. Agent 2 continues to bid 

for B  and  the auction  term inates w ith the optim al allocation ([1, AC], [2, B]).

Table 5.12 (a) shows iBundle(2) for P roblem  6 in Table 5.11, for V2 (B C )  =  7. The 

auction  fails even though second-order C E prices exist. P rice-updates are not safe, for 

exam ple in rounds i -I- 1 and i -I- 3, so we might expect the  auction  to  term inate  w ith a 

suboptim al allocation. Agents 1 and  2 com pete on bids for B C , and  agent 1 also drives up 

the price on B  and  A C  and prevents agent 2 from bidding for B  because v \{B C )  — v i(B ) < 

vo{BC ) — vo(B ). T he auction term inates w ith the suboptim al allocation ([1, B C], [2, .4]), 

because agent 2 bids for item  A  bu t not B .

Table 5.12 (b) shows the auction for Problem  6 w ith  V2 (B C ) =  6 . In  this case the 

auction solves the problem. Agent 2 can bid B  in all rounds of the auction because 

V2 (B C ) — V2 {B) < v i(B C )  — v \(B ) ,  and  the revenue to  the auctioneer from allocation 

([1 , AC], [2 , B]) eventually exceeds the revenue from ([1 ,B C ]) or ([2, B C ]). T he auction 

term inates w ith optim al allocation ([1,A C ], [2, B]).

Table 5.13 shows the  perform ance of iBundle(d) in P roblem  6 (Table 5.11) for t/2 (B C ) =  

7. I use t0  indicate the prices for each agent. T h e  effect of price discrim ination is to 

separate the price increases caused by bids from agent 1 from the price increases to  agent 

2. In particu lar, agent l ’s bids for B  do not increase the  price o f B  to  agent 2, and  agent 2 

can continue to  bid for B (unlike in  iBundle(2) on th is problem ). T h e  auction term inates 

w ith the optim al allocation ([1,AC],[2, B j).

It is in teresting  to  exam ine the  final prices in the  auction, to  check how well the  auction 

minimizes CE prices. In Problem  6 , when t/2 {B C ) =  7, the  auction  term inates w ith ask 

prices are p\ =  (0 ,3 ,2 ,4 ) and p2 =  (0 ,2 ,0 ,4 ) for bundles A ,B ,A C  and  A B .  Agent 

values are u i (2 ,9 ,8 ,10) and  t/2 =  (2 ,5 ,3 ,7 ) . T hese are m inim al C E  prices because any 

lower prices th a t m ain tain  best-response changes the  revenue-maxim izing allocation from 

([1, AC], [2, B]) to an allocation of B C  to one of the agents. In  fact, the auction increases 

prices to agents while the allocation B C  is revenue-m axim izing (see Table 5.13).
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Round Prices Bids Revenue
A B AC BC Agent 1 Agent 2

i -  1 (BC, 4.4)‘ 4.4
t 0 3.4 2.4 4.4 (B, 3.4) (AC, 2.4) (BC, 4.4)* (BC, 4.4) 4.4

i + 1 0 3.4 2.4 4.6 (B, 3.4) (AC, 2.4) (BC, 4.4) (BC, 4.6)’ 4.6
t +• 2 0 3.6 2.6 4.6 (B, 3.6) (AC, 2.6) (BC, 4.6)* (BC, 4.6) 4.6
i + 3 0 3.6 2.6 4.8 (B, 3.6) (AC, 2.6) (BC, 4.6) (A, 0) (BC, 4.8)* 4.8
i +  4 0 3.8 2.8 4.8 (B, 3.8) (AC, 2.8) (BC, 4.8)* (A, 0)* (BC, 4.8) 4.8

(a) Vi(BC) =  7. «Bundie(2) fails.

Round Prices Bids Revenue
A B AC BC Agent 1 Agent 2

i -  1 (BC, 2.4)* 2.4
i 0 1.4 0.4 2.4 (B, 1.4) (AC, 0.4) (BC, 2.4)* (B, 1.4) (BC, 2.4) 2.4

i +  1 0 1.6 0.4 2.6 (B, 1.6 ) (AC, 0.4) (BC, 2.4) (B, 1.6) (BC, 2.6)* 2.6
i + 2 0 1.8 0.6 2.6 (B, 1.8 ) (AC, 0.6) (BC, 2 .6 )* (B, 1.8) (BC, 2.6) 2.6
i +  3 0 2.0 0.6 2.8 (AC, 0.6) (BC, 2.6) (B, 2.0) (BC, 2.8)* 2.8
i +  4 0 2.0 0.8 2.8 (B, 2) (AC, 0.8)’ (BC, 2.8) (B, 2)* (BC, 2.8) 2.8

(b) vo(BC) = 6 . «Bundle(2) works.

Table 5.12: iBundle(2) on Problem 6 . Bid incr. e =  0.2. Provisional allocations indicated *.

Round Prices Bids Rev
A B AC BC Agent 1 Agent 2

i -  1 (BC, 1.8)’ 1.8
i 0 0.8 0 1.8 (B, 0) (AC, 0.8) (BC, 1.8)* (BC, 1.8) 1.8

i +  1 0 0.8 0 2.0 (B, 0) (AC, 0.8) (BC, 1.8) (BC, 2.0)’ 2.0
i +  2 0 / 0 1.0 /  0.8 0.2 /  0 2.0 /  2.0 (B, 1.0) (BC, 2.0)- (BC, 2.0) 2.0
i +  3 0 / 0 1.0 /  0.8 0.2 /  0 2.0 /  2.2 (B, 1.0) (BC, 2.0) (BC, 2.2)’ 2.2

j - 1 (BC, 3.6)’ 3.6
j 0 / 0 2.6 /  1.6 1.6 /  0 3.6 /  3.6 (B, 2.6) (AC, 1.6) (BC, 3.6)* (B, 1.6) (BC, 3.6) 3.6

j  + 1 0 / 0 2.6 /  1.8 1.6 /  0 3.6 /  3.8 (B, 2.6) (AC, 1.6) (BC, 3.6) (B, 1.8) (BC, 3.8)- 3.8
; +  2 0 / 0 2.8 /  1.8 1.8 /  0 3.8 /  3.8 (B, 2.8) (AC, 1.8) (BC, 3.8)’ (B, 1.8) (BC, 3.8) 3.8
j +  3 0 / 0 2.8 /  2.0 1.8 /  0 3.8 /  4.0 (B, 2.8) (AC, 1.8) (BC, 3.8) (B, 2.0) (BC, 4.0)* 4.0
j  + 4 0 / 0 3.0 /  2.0 2.0 /  0 4.0 /  4.0 (B, 3.0) (AC, 2.0)' (BC, 4.0) (B, 2.0)* (AC, 0) (BC, 4.0) 4.0

Table 5.13: t'Bundle(d) on Problem 6 , with vo(BC) =  7. Bid incr. e =  0.2. Provisional allocations 
indicated *.
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Chapter 6 

Linear Programming and Vickrey 

Payments

We have assum ed up to this point th a t agents follow myopic best-response bidding s tra te­

gies. T his assum ption  proved useful, as it allowed the  construction  of a  prim al-dual based 

auction  for the  C om binatorial Allocation Problem  (C A P). iB undle is the  first auction to 

com pute efficient allocations in general C A P problem  instances, even under an  assum ption 

of myopic agent rationality.

In this chap ter we relax th is assum ption. I re ta in  myopic best-response, b u t develop a  

prim al-dual based m ethod to com pute Vickrey paym ents a t the  end o f the  auction. W hen 

successful th is makes myopic best-response a  sequentially ra tio n a l stra tegy  for an  agent, 

given th a t every o th er agent also follows myopic best-response. Myopic best-response be­

comes a  sequential Bayesian Nash equilibrium  o f the auction, for all priors over agent pref­

erences. C onnecting prim al-dual theory back to the Groves m echanism s, and in particular 

in th is case to the  Generalized Vickrey auction, allows us to  inherit powerful incentive- 

com patib ility  and  robustness-to-m anipulation.

T his approach o f “Vickrey -I- P rim al-D ual” appears to  be a  provide a  powerful con­

structive  tool for useful iterative mechanism  design. Indeed, B ikchandani et al. [BdVSVOl] 

have recently dem onstrated  th a t m any of the  successful itera tive Vickrey auctions known 

in the  literatu re , such as Demange et al. [DGS86 ] for un it-dem and and  A usubel [Aus97] 

for m ulti-item  decreasing re tu rns have in terp re ta tions as prim al-dual algorithm s for ap­

p ropria te  linear program  form ulations of the top-level allocation problem .

T his chapter develops a  prim al-dual algorithm , VlCKAuCTION, to  com pute Vickrey 

paym ents. C h ap ter 7 then  in terprets the  algorithm  as E xtend& A djust, which introduces 

a  second phase a t the  end of the  auction.
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Earlier iterative Vickrey auctions, w ith  the  exception of A usubel’s designs [Aus97, 

AusOO] com pute Vickrey paym ents th rough careful price ad justm ent (see Table 4.7). Prices 

are increased on the m inim al overdemanded set of bundles in each round, in order to 

te rm in ate  in m inim al com petitive equilibrium  prices, which are Vickrey paym ents in many 

problem s.

T he m ain innovations in my extended tB undle approach are:

• Prices are ad justed  after  the  auction term inates towards Vickrey paym ents. T his 

relaxes the requirem ent of “m inim al” price increases during the  auction, because it 

is not necessary to term inate  in the m inim al com petitive equilibrium  solution.

• T he ad justed  prices need not be in com petitive equilibrium , which allows Vickrey 

paym ents to be com puted even when there  is no com petitive equilibrium  solution 

th a t supports all Vickrey paym ents sim ultaneously.

Conceptually, it is useful to  consider two d istinc t phases in VlCKAuCTION, and in the 

extended tBundle auction presented in chapter 7. T he purpose of Phase I is to  com pute the 

efficient allocation from myopic best-response bids. T he purpose of Phase II is to com pute 

Vickrey paym ents from myopic best-response bids. T he transition  from Phase I to  Phase 

II is designed to be hidden from bidders. Prices continue to  increase m onotonically across 

the  two phases, and  the auction  rules are unchanged. T h e  provisional allocation continues 

to change from round-to-round in Phase II, a lthough the  final allocation is th a t com puted 

a t the end of Phase I.

• Phase I is »Bundle(3), the auction  variation  w ith separate  prices for each m aintained 

explicitly from the  first round. T h e  allocation  a t the  end of Phase I becomes the 

final allocation.

• Phase II continues from the  prices a t the  end o f Phase I, b u t injects add itional com­

petition  into the  system  in the  form o f “dum m y” agents sim ulated  by the  auctioneer 

to  mimic continued bidding from real agents as they drop-out. Phase II term inates 

as soon as enough add itional inform ation has been collected from agents to com pute 

Vickrey paym ents.

T h e  bids from an  agent in P hase II  do not change the allocation or the  price th a t it 

finally pays. T he only effect o f bids is to decrease the final price paid  by o ther agents
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in the efficient allocation. O ne possible weakness of th is experim ental auction design is 

the separation  of concerns between Phase I and  Phase II. In  o ther auction designs the 

allocation design is m ade sim ultaneously w ith the  paym ent decision. In  section 7.8 in 

the next chapter I discuss w hether this decom position of the  problem  across Phase I and 

Phase II m ight make collusion and  o ther well-known vulnerabilities of Vickrey solutions 

more likely.

T he outline of this chap ter is as follows. F irst I present a  linear program  form ulation of 

the Vickrey outcom e, based on the th ird-order dual linear program  for the C A P introduced 

in section 4.4 of chapter 5. T he optim al dual solution th a t minimizes revenue to  the 

auctioneer will com pute Vickrey paym ents to  all agents in some problem s. In addition, I 

show th a t the m inim al price to each agent over all optim al dual solutions com putes the 

Vickrey paym ent in all problem s. T he linear program  form ulation leads to  prim al-dual 

m ethod, ADJUST, to  com pute m inim al CE prices from a  su itab le  set of C E  prices, which 

is introduced in section 6.2. I prove th a t the prices com puted a t  the  end of iBundle are 

sufficient to com pute m inim al CE prices w ith  ADJUST.

Section 6.3 introduces prim al-dual m ethod ADJUST*, which extends ADJUST, to com­

pute Vickrey paym ents from a  suitable set of CE prices. ADJUST* is useful in an  auction 

context because it com putes Vickrey paym ents w ithout explicit inform ation about agent 

valuation functions. I characterize necessary and  sufficient conditions for ADJUST* to 

com pute Vickrey paym ents.

Finally, section 6.4 presents prim al-dual algorithm , VlCKAuCTION, which com putes 

Vickrey paym ents and  the  efficient allocation from only best-response agent inform ation. 

V ic k  A u c t i o n  extends C o m b A u c t i o n  w ith a  second phase, P h a s e I I ,  th a t is designed 

to collect enough add itional inform ation from agents to ad just prices to  Vickrey paym ents 

after term ination . In  the  next chapter I introduce iBundle Extend& A djust, which is an 

extension of iBundle, designed to  im plement VlCKAuCTION as an  auction. T he m ain 

difficulty is m aking sure th a t an  agent cannot detect the transition  from iBundle into the 

extended phase. Bids in the  second phase affect only the  prices paid  by o ther agents, and 

an  agent th a t knows it is in this b idding phase would choose to  drop ou t, or perhaps even 

act collusively w ith o ther agents.
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6.1 Minimal Competitive Equilibrium Prices

In chap ter 4 we introduced a  hierarchy of linear program  form ulations for CAP. T h e  th ird- 

order dual problem, D LP3 , characterizes all non-linear an d  non-anonym ous com petitive 

equilibrium  prices.

T his form ulation is repeated below, w ith X i(S)  =  {0,1} to  denote w hether bundle 

S  C Q is allocated to agent i, and  u ,(5 ) >  0 denote agent i ’s value for bundle 5 . As 

before, k  6  K  denotes a  possible allocation, allocating a particu lar bundle to a  particu la r 

agent and  w ithout giving any agent more th an  one bundle or allocating any item  more 

th an  once. T he variable y(k) 6  {0,1} indicates which solution is im plem ented.

.^ E E ^ s )* 5) iLp3]
s.t. 5 Z x ,< 5 ) < 1 ,  Vi (L P3-1)

s

* I S ) <  £  y (k ) , V i ,S  (L P3-2 )
Jfc3[«,S]

£ > ( * ) <  1 (LPa-3)
k

x £ S ) ,y { k )  > 0, Vi, S, k

min 5Zp(*)+7t

s.t. p { i ) +Pi {S)  > v t(S) ,  Vi, 5

* ~ S  Pi^  -  ° ’
[i,S\ek

p(i),Pi(5),7r >  0, Vi, 5

T he dual variable p(i) associated w ith  constra in t £ 5 Xj(S) <  1 can som etim es be 

in terpreted  as agent i ’s marginal product [BdVSVOl].

D e f in it io n  6.1 [marginal product] T h e  m arginal p roduct of agent i, M P(i) is the 

d if fe re n c e  in  to tal value of the op tim al allocation w ith and  w ithout agent i.

M P (i) =  V '  -  { V . i Y
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where V'* is the  value of the op tim al allocation, and  (VI,-)* is the  value o f the optim al 

allocation w ith  agent z taken ou t o f the  problem.

This in te rp re ta tio n  of p(z) as the  margined product follows from considering the effect 

of reducing the  righ t-hand  side on  the  constrain t for agent i  to  zero. T h e  du al price conveys 

inform ation abou t an  the effect of an  increm ental change in th e  righ t-hand  side value on 

the value of the op tim al prim al solution. In problem s for which the  price rem ains valid for 

a reduction from one to zero, p(z) =  MP(z).

T his provides a  tie-in  w ith  Vickrey paym ents, because an  ag en t’s m arginal p roduct is 

precisely its u tility  in the  dom inant strategy  equilibrium  of the  GVA.

Ui{Vi ,  U -i) =  Vi(Si ) — PvickM

= v i ( s : ) - ( ( V - iy - v : i )

=  MP(z)

where V'^  denotes the value V* m inus the value of the op tim al so lu tion  w ith  all agents in 

the problem  to agent z, and  S ’ is the  bundle allocated to agent i in the efficient allocation.

Thus, when p{i) =  MP(z) then  P i( S ’ ) =  p vick(*) because du al variable p ,(S*) is inter­

preted  as the price to agent z for bundle S,*. In  general the op tim al d u a l solution to [DLP3] 

is not unique. T he value o f the  dual is com puted as the sum  of the  u tility  over all agents 

£ ,p ( z )  and  the auctioneer’s revenue n. This provides some flexibility in prices P i(S )  on 

bundles in the  dual solution.

B ikchandani & O stroy [B099] show th a t the dual solu tion  com putes Vickrey paym ents 

to every agent when:

(a) the solution is a  m inim al com petitive equilibrium , and

(b) agent valuation functions satisfy the agents-are-substitu tes condition.

M inimal com petitive equilibrium  (CE) prices are defined as:

D e f in it io n  6 .2  [minimal C E prices] T he m inim al C E prices are com puted  in the opti­

mal dual solution th a t m inim izes  the  revenue to  the auctioneer, zr, or alternatively  m axi­

mizes the m arginal p roduct (or u tility ) of the agents, 5I i P ( l )•

T he equivalence betw een m inim al C E prices an d  the  Vickrey paym ent is easy to under­

stan d  for a  single item  Vickrey auction. For a  single item  the  price to  th e  w inning agent 

m ust be g reater th an  the  m axim um  price th a t any o ther agent is p repared  to  pay, i.e. the
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value of the  second-highest bid, if the  solution is to  be in com petitive equilibrium . The 

English auction selects th is price by increasing prices by a  m inim al am ount across rounds.

T he ayents-are-substitutes condition is s ta ted  in term s of agent m arginal products:

D e f i n i t i o n  6 . 3  [agents-are-substitutes] Vickrey paym ents are com puted a t the minim al 

com petitive equilibrium  prices if and  only if

V ( I ) - V ( K ) >  Y ,  [ V { I ) - V { I \ j ) \  V i f C I
je z \K

where V ( K )  denotes the value of the optim al solution to CAP w ith  agents K  C l

Intuitively, the m arginal product of a  group of agents is required to be greater than  

the sum  m arginal product of each agent in isolation. One can imagine factory workers, 

where each additional worker a t the m argin has a sm all effect on the  productiv ity  of the 

factory bu t the cum ulative effect of having many people not tu rn  up for work (a strike) is 

significant.

T he m inim al CE prices can be com puted as a  restric ted  dual problem , denoted [minCE], 

which selects the optim al dual solution th a t minimizes the auctioneer’s revenue 7r:

m in 7r [minCE]

s.t. p(i) +p i ( S )  > v t{S ), V i,5  (minCE-1)

7r -  Y  Pi(S ) ^  °> VA: (minCE-2)
Mlefc

*  +  Y  P W  = V W  (minCE-3)
I

p{i),P i{S ),ir  >  0, V i,S

T he restric ted  dual is different from the  regular dual problem  in th a t the objective

function is min7r instead of min7r +  ^ , p ( i )  and  constra in t (m inCE-3) is new. C onstrain t

(m inCE-3) ensures th a t the value o f the  dual solution p (i),7 r,p j(S ) com puted by [minCE]

is equal to the value of the optim al prim al, and  therefore an  op tim al dual solution. A

sim ilar approach was earlier proposed by Leonard [Leo83] for the assignm ent problem.
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6.1.1 A Primal-Dual Formulation

At this stage my approach departs from th a t in Bikchandani & O stroy [B099] and  Bikchan- 

dani et al. [BdVSVOl]. B ikchandani & O stroy close th e ir paper w ith  a  note th a t the 

existence of a  linear program  form ulation for Vickrey paym ents m ight lead to  an  iterative 

Vickrey auction for CAP. B ikchandani et al. [BdVSVOl] provide prim al-dual auction  in­

terp retations of the  Demange et al. [DGS86] and  Gul & S tacchetti [GSOO] auctions, noting 

th a t the price updates ad just prices on a  “m inim al overdem anded set” of items, which 

selects the  optim al dual solution w ith m inim al auctioneer revenue. C onstructive m eth­

ods to com pute m inim al dual solutions w ith prim al-dual m ethods are also dem onstrated  

for A usubel [Aus97] and A usubel [AusOO]. However, the au thors make no constructive 

progress towards an iterative Vickrey m echanism  for the general CAP.

I develop a  prim al-dual based form ulation of [minCE] th a t does not require the value of 

V{I) .  T his value is not available in the com petitive equilibrium  a t the end of an  iterative 

auction. Similarly, the form ulation should not require explicit inform ation ab o u t agents’ 

values Vi{S) for bundles, beyond th a t which is available from best-response bids.

Given prim al solution X{(S) and  y{k)  and  dual solution p(i), n , and  P i(S ), the comple­

m entary slackness conditions are:

x,{S) >  0 => p(i) +  P i(5) =  v ,{S) (CS-1)

y{k) > 0  => 7r -  ^ 2  Pi(S ) =  0 
[i,s\€k

(CS-2)

p{i) >  0 => x,{S) =  1 
s e e

(CS-3)

Pi(S) >  0 => ^ x t<S) =  ] P  y{k)  
iex ifceK\[i,s]efc

(CS-4)

7r >  o => ^ 2  y(k)  =  i
k€K

(CS-5)

I form ulate an  alternative to  restric ted  dual problem  [minCE], which replaces constrain t 

(m inCE-3) w ith com plem entary-slackness conditions w ith the  efficient allocation. It is safe 

to  ignore conditions (CS-3), (CS-4) and  (CS-5) because these are all triv ially  satisfied.
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nun 7r
P(0.P«(5),ir

s.t. p(i) + p i ( S )  > v t{S) ,  Vi, S  

*  -  ^ 2  Pi(S) > 0, Vfc

(D l)

(D2)

p(i) + P i ( 5 *) =  u,(S*)Vi €  /sol 

7 r - 5 > ( S - ) = 0

(C S1)

(CS2)

p(i),Pi(S),  7r > 0 , Vi, 5

Shorthand  5* is used to denoted the bundle allocated to  agent i, i.e. the bundle 

corresponding w ith i i ( 5 )  =  1, and  / so| C X  is the subset o f agents w ith a  non-em pty 

bundle, such th a t i 6  / soi =  ^  ^  *s straightforw ard to  see th a t constraints

(C S l) and  (CS2 ) enforce com plem entary slackness w ith th e  op tim al prim al solution, while 

the o th er constrain ts are the stan d ard  constrain ts for dual feasibility.

C om bining (C S l) and (D l), we require:

W ith  this the restric ted  dual [minCE] can be reform ulated in term s o f com plem entary- 

slackness conditions as [minCE-CS]:

p{i) =  Vi{S-) -  pi {S-)  > max(vi (S)  ~P i { S ) )

Com bining (CS2) and  (D2), we require:

[minCE-CS]

s.t. vi{S-)  - P i { S - )  > max(vj (S)  - p i ( S ) ) (BR)

(REV)

Pi{S) >  0, Vi, 5

163

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Unlike [minCE], form ulation [minCE-CS] will com pute m inim al C E prices w ithout 

explicit inform ation ab o u t the  value o f the  efficient allocation. Given C E prices, the first 

condition (BR) can be achieved by reducing the  price to an  agent i  on bundle S* by at 

least as much as the  reduction  in the price it faces on all o ther bundles. T he second 

condition (REV) only requires inform ation ab o u t the prices, which is readily  available to 

the auctioneer.

In sum m ary, we m ight s ta te  the following result:

L e m m a  6 .1  Linear program [m inC E-C S] will compute the Vickrey paym ent to each 

agent, as Pi { S * )  when the agents-are-substitutes condition holds. The prices m inim ize  

revenue such that: (BR)  every agent in  the optimal allocation continues to dem and bundle 

S ’ ; and (R E V ) the revenue from  the optimal allocation continues to dominate the best 

possible revenue to the auctioneer over all possible allocations.

In the next section I derive an adjustm ent procedure to com pute m inim al com petitive  

equilibrium  prices, and Vickrey paym ents in the agents-are-substitutes case, at the end o f  

the prim al-dual algorithm  C o m b A u c t io n (3 ).

6.2 A d j u s t : Discounts for Minimal CE Prices

In this section I propose a  concrete algorithm  ADJUST to  solve [minCE-CS] implicitly, 

w ithout enum erating all (REV) constraints.

It is useful to introduce the concept o f prices that are a negative translation  o f an 

agent’s valuation function, w ritten pi ( - )  =  i>j(-) © C .

D efinition  6 .4  [negative translation] Vector x  is a  negative transla tion  of y  b y  C  > 0,  

w ritten  x  =  y  © C  if Xj =  m ax (0 , y j  — C ) for all j i n { l , . . .  ,d im (i)} .

Given th a t the objective in [minCE-CS] is to  minimize ]C ,Pi(S’ ), while constra in t 

(REV) requires this sum  to  be g reater th an  the  m axim al revenue over all allocations, the 

problem  can be solved by se tting  values on Pt(S’ ) and com puting  values for the  o ther 

prices th a t are as sm all as possible w ithout violating (BR).

For an agent i in the final allocation, w ith  price Pi(S’ ) on bundle S ’ , the sm allest price 

on bundle Si ^  S ’ th a t also satisfies (BR) is:
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Pi(Si) =  m ax(0M S )  ~  v ^ )  +  P i(S - )), for all 5  C Q

For an agent i not in the final allocation we require

Pi(S) =  Vi{S), for all S  C Q

Prices that are negative translations o f agent valuation functions, i.e. pi =  u, -  C, for 

C  =  Vi ( S ’ ) - p i ( S i ) ,  satisfy these conditions. T h e restricted dual can now be restated  

w ith  only as m any decision variables, C l, . . .  , C /, as there are agents:

m ax Y  Ci
(Ci C ,) * - ?

s.t. pi(S)  =  Vi{S) © C, Vi, S  

C i =  0 Vi £  / so,

P i ( 5 * ) - C i > 0  Vi (*)

J ^ p , ( S * ) > n u «  ^  P i(5 )
* [*,S]6fc

Ci >  0, Vi

T he final adjusted prices Pi(S*) — Ci are non-negative by constraint (*). T he negative 

translation, Pi(S) =  Vi(S) ©  Cu can be expressed w ith the following additional constraints:

P i(5 ’ ) <  Vi(S-) -  Ci Vi 6  / soi 

Pi(5 ) >  «,-(5) -  Ci V(i, 5 )  s.t. Xi{S) =  0 

P i(5 ) >  0 Vi, 5

D ropping inform ation about agent valuation functions, we can rewrite this in terms o f 

prices p j ( S )  that denote prices to agent i  that are both  com petitive equilibrium  prices, i.e. 

that satisfy (BR) and (R E V ), and negative translations o f agent i ’s valuation function.

Linear program [minCE-Adjust] com putes m inim al CE prices, as pJ{ S )  — A*, to each 

agent.

165

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



_^max^ [minCE-Adjust]

s.t. Pi(S) = p j ( S )  Q A t  Vi, 5  (BR)

A, =  0 Vi g  / S0|

p f ( S - ) - A i > 0

$ > ( S * ) >  m ax  £  P d S ) (REV)
« fc€K M e *

Ai >  0, Vi

Form ulation [minCE-Adjust] is useful because the  prices com puted a t  the end of C om -

bAuction(3), and equivalently a t the end of iBundle(3) w ith myopic best-response agent

strategies, are CE prices and negative translations of an agent valuation functions.

6.2.1 An Efficient Implementation

T he following lemma allows a  solution to  be com puted w ithout enum erating all k  e  K  and 

checking the (REV) constrain ts explicitly.

Given discounts A =  ( A i , . . .  , A /) ,  i.e. such th a t Pi{S) =  p f  (5 )© A j, let denote the 

value of the revenue-maxim izing allocation, and  (P ^ .-t)*  denote the value of the revenue- 

maxim izing allocation w ithout agent i.

L e m m a  6 .2  The maxim al discount, A * ,  to agent i without breaking (R E V ) is A i =  

n n n ( p f ( S * ) - A ,  ( P ^ - ( P A,_*)*)).

P r o o f . A simple feasibility argum ent shows th a t the only allocations th a t m ight pro­

vide more revenue to  the  auctioneer as prices are decreased on bundles to  agent i  are alloca­

tions th a t do not assign a  bundle to  agent i. Any allocation th a t still contains agent i would 

have also provided more revenue before prices axe reduced. Therefore, prices can be reduced 

until the  ad justed  revenue from allocation 5* equals the best alternative, i.e. P £  -  Aj =

( P x - i ) m- I

T his suggests the following algorithm :

A d j u s t  com putes agent discounts, taking each agent in  5* in  tu rn . Price reductions to 

each agent in the allocation are considered increm entally and  not independently; discounts
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A d j u s t : in p u t p J{ - ) , S n , o u tp u t A
P = P* ;
f o r  ea ch  i E /*  {

A; = min{P -  (PA _i)*,pf(S*)}; 
P = P -  Aj;

}S }

Figure 6.1: T he A d ju s t  algorithm

already allocated to agents i < j  are considered when com puting a discount for agent j .  

T his is relaxed in ADJUST*, introduced in the next section.

A lthough the optim ization problem  in each round, to com pute the revenue m axim iz­

ing allocation given current discount, (P A,-i)* , is N P-hard  (equivalent to the C A P), and 

therefore worst-case exponential, search-based algorithm s have been dem onstrated  to per­

form well on average [San99, FLBS99, ATYOO]. T he advantage of A d ju s t  over a  direct 

linear program  im plem entation of [minCE-Adjust] is th a t it is no t necessary to  explicitly 

enum erate all constrain ts (REV ). Essentially, A d ju st  com putes a  solution to  the linear 

program  [m inCE-Adjust] th rough im plicit enum eration, p runing m any possible allocations 

from consideration.

A fast approxim ate m ethod to com pute the solution to  ADJUST w ithou t solving the 

revenue-m axim ization problem  (P x - i ) ’ *s suggested in the next section. T he A d j- P ivot  

m ethod uses com putation  perform ed during the auction to com pute the m inim al CE prices.

L e m m a  6.3 Procedure ADJUST computes m inim al CE prices from  CE prices pT that 

are negative translations o f agent valuation functions.

Com bining w ith the agents-are-substitu tes condition, we have the  following theorem .

T h e o r e m  6.1 (Vickrey paym ents). Procedure A d ju s t  computes Vickrey paym ents 

when the agents-are-substitutes condition holds and prices pT {-) are CE prices and negative 

translations o f agent valuation functions.

T he condition in the lem m a on prices is sufficient bu t not necessary. A weaker necessary 

and sufficient condition, e-CS 1-tightness is:
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D e f i n i t i o n  6.5 [CSl-tightness] (i) For every agent j  in  the  optim al allocation, all 

bundles it receives in any second best a llocation are in its best-response set a t prices pr ( ); 

(ii) For every agent j  not in the op tim al allocation, its price m ust be w ith in  e if its value 

for any bundle it receives in a  second-best allocation.

T he e-C Sl-tightness condition implies th a t  it is no t possible to  reduce the price on any 

bundle th a t is in a  binding second-best revenue-m axim izing solution w ithout violating the 

best-response com plem entary slackness condition, C S l.

L e m m a  6 . 4  Procedure ADJUST computes m in im al competitive equilibrium prices from  

CE prices pT {-) i f  and only i f  agent best-response bids satisfy e-CS1-tightness, as bid in ­

crem ent £ - I  0 .

6.2.2 A Primal-Dual Algorithm to Compute Minimal CE Prices

Recall that C o m b A u c t io n (3 )  refers to  the  variant of the prim al-dual algorithm  for the 

third-order linear program  form ulations, [LP3] and  [DLP3], in which separate  prices P i { S )  

are m aintained for each agent in every itera tion . Also, the final prices satisfy (BR) and 

(REV ), and  satisfy the price-indifference p roperty  because of agent best-response bidding 

strategies and the price-update rules.

From Lem m a 6.3 we can s ta te  the  following result:

T h e o r e m  6.2 (m in C E). C0M BAUCTI0N(3) followed by ADJUST computes m inim al 

CE prices and the efficient allocation, as the bid increm ent e —> 0.

From Theorem  6.1 we can also make a  claim  ab o u t the  ability  to  com pute Vickrey 

paym ents w ith  C0MBAUCTI0N(3) followed by ADJUST:

T h e o r e m  6.3 (vickrey). C o m bA u c t io n (3 ) followed by ADJUST computes Vickrey 

paym ents and the efficient allocation when the agents-are-substitutes condition holds, as 

the bid increm ent e —> 0 .
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6.2.3 Speeding-Up: P ivot Allocations

Procedure A d j u s t  is N P -hard  because it com putes the value of the  revenue-maxim izing 

allocation once w ith all agents, and  then  for the system  w ith  each agent removed.

In Parkes &c U ngar [PUOOb] we propose a  fast approxim ate m ethod, A d j- P iv o t  to 

com pute m inim al com petitive equilibrium  prices. T he algorithm  uses com putation  already 

perform ed during  earlier rounds of the  auction to  approxim ate the  value of second-best 

allocations. Section 7.7 in the  next chapter dem onstrates th a t  th e  m ethod is very accurate 

and very fast. T he experim ental success of the m ethod provides useful insight into the 

natu re  of m inim al com petitive equilibrium  prices.

To com pute the revenue-m axim izing allocation (P a ,- i)*  w ithout agent i , A d j - P iv o t  

com putes the value o f the best allocation over all pivotal allocations.

D e f i n i t i o n  6 .6  [pivotal allocations] The pivotal allocations are the set o f  partitions 

that have formed provisional allocations in one or more iterations o f C o m b A u c t io n .

It is perhaps reasonable th a t these pivot allocations are  the  allocations likely to  repre­

sent allocations w ith high value a t the  final prices.

T he approxim ate m ethod to com pute m inim al CE prices from pivotal allocations is 

form ulated and  solved as a  linear program:

max Aj [minCE-Pivot]
(a 1,...,a / ) Y

s.t. P i  (S) =  p j (5) © Aj Vi, S

A , = 0  Vi £  7S0|

p f ( S * ) - A i > 0

5 3 p « ( S D  ^  r. 7 1* *  P ‘ ( 5 ) ( * )

A , >  0, Vi

where the righ t-hand  side o f (*) com putes the best allocation consistent w ith  the  set Pivot 

of pivot allocations.

W hen m atching against the  pivot set in A d j- P iv o t  it is useful to  allow m atches against 

perm utations  of pivot allocations, where the particu lar set of agents th a t  receive bundles

in a  p artitio n  can be different from th a t in an  in term ediate round  o f the auction.
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E xperim ental results in the next chapter show th a t A d j - P i v o t  is very fast, and  appears 

as accurate as A d j u s t  for sm all bid increments.

T he experim ental success of A d j - P i v o t  provides an  intuitive understanding  of m inimal 

CE prices:

P r o p o s i t i o n  6 .1  M inim al competitive equilibrium prices, and often Vickrey payments, 

are approximately the smallest prices that the agents in  the fina l “winning coalition” had 

to bid with hindsight to beat the best provisional allocation that dropped at least one agent 

in the coalition and included at least one outside agent.

Essentially the price ad just m ethod A d j - P i v o t  allows agents th a t  are in the winning 

allocation and im portan t provisional allocations to pay less th an  an  agent th a t is very 

dependent on the winning coalition to receive a bundle.

6.3 A d j u s t * :  Discounts for Vickrey Payments

T he key to V ic k  A u c t io n  is to recognize th a t although there are problem s for which the 

agents-are-substitu tes condition does not hold, the  Vickrey paym ent for any agent can 

always be com puted as the minim al price for its bundle over all com petitive equilibrium  

prices. Recall th a t the m inim al CE prices are prices in the op tim al dual solution th a t 

m inim ize the revenue to the auctioneer, or equivalently maxim ize th e  sum  m arginal product 

over all agents.

L e m m a  6.5 I f  the agents-are-substitutes condition holds there is a unique set o f m inim al 

CE prices (in term s o f the prices fo r  bundles in  the allocation), and those prices equal 

Vickrey payments.

L e m m a  6 .6  I f  the agents-are-substitutes condition does not hold there are multiple m in ­

imal CE prices (in terms o f the prices fo r  bundles in the allocation), and the Vickrey pay­

m ent fo r  any agent i is computed as the m inim al price on its bundle 5* over all m inim al 

CE prices.
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Consider the following linear program , [VDLP(i)], which m axim izes the  utility, p (i), to 

agent i (or alternatively  minimizes the  price agent i  pays for its op tim al bundle S*). This 

linear program  is the  restricted Vickrey dual for agent i.

.m a x . P(i) [VDLP(z)]
P(0.P i(S ),ir

s.t. p{i) +Pi {S)  > v t{S),  Vi, S  (VDLP-1)

7T -  J ]  pi{S)  > 0, Vfc (VDLP-2)
[i,S]ek

7T +  5 2 p ( i )  =  V{I )  (VDLP-3)
I

P( i ) , Pi {S) , n  > 0, V i,S

I prove th a t [VDLP(i)] com putes agent i ’s m arginal product, p (i) =  V ( I )  — V { I \ i ) ,  

and  sets P i ( S - )  =  p Vick (* ) :

T h e o r e m  6 . 4  (vickrey dual problem ). The solution to [V D LP (i)J computes p , (5 “) =  

P v ic k fa )  fo r  all agent preferences.

In o ther words, the Vickrey paym ent pVick(i) for agent i is com puted  in the optim al 

dual solution th a t minimizes the dual price Pi(5*) on the  bundle agent i receives in the

efficient allocation.
P r o o f .

The proof is constructive, based on Corollary 6.3 and  an  inspection of the ADJUST 

procedure.

Corollary 6.3 sta tes th a t ADJUST com putes m inim al com petitive equilibrium  prices for 

input prices pr ( ) th a t (a) are negative translations of agent valuation  functions; and  (b) 

satisfy (BR), such th a t agent i ’s optim al allocation is in its best-response set; and  (c) 

satisfy (REV), such th a t the auctioneer maximizes revenue a t the  prices w ith th e  value- 

m aximizing allocation.

Consider prices pi{S)  =  Vi(S)  for all agents i  6 1 , and  all bundles S  C Q .  C learly these 

prices satisfy conditions (a), (b) an d  (c). To com plete the  proof notices th a t agents can 

be selected in any order in A d j u s t ,  and we will still com pute a  valid set of m inim al CE
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prices. W ith o u t loss of generality, suppose agent i  is selected first. T h e  discount A , to 

agent i is com puted as:

A i =  m in { P - ( P X - i ) \ p f ( S : ) }

=  m in fV '- -  

= V m-  (V. i ) '

and agent i ’s ad justed  price, the price for its bundle in this op tim al dual solution, is:

P i = P i { S i )  -  Ai 

= V i ( S ! ) - { V - ( V - i r )

=  Pv  ick(*)

which is agent i 's  Vickrey paym ent. Therefore, because any agent can be selected first, and 

because there is always a  set of m inim al CE prices consistent w ith  the  ad justed  price com­

puted  for the in itial agent, the Vickrey paym ent to  any agent i  can  be com puted as the mini­
mal price over all CE prices. |

T he significance of th is result is th a t it is always possible to com pute Vickrey paym ents 

to  each agent w ith “enough” prim al dual inform ation, solving | / |  restric ted  Vickrey dual 

p rob lem s- one to m axim ize the m arginal p roduct for each agent.

We can s ta te  the following corollary:

C o r o l l a r y  6 .1  The Vickrey paym ent fo r  agent i can be computed as the m inim al price 

fo r  bundle S* in the efficient allocation over all m inim al CE prices, i.e. over all optimal 

dual solutions that m inim ize the auctioneer’s revenue.

T he obvious next s tep  is to  propose the following slightly m odified price-adjustm ent 

procedure, A d j u s t *, to  solve the restric ted  Vickrey dual [VDLP(t')] for all agents.

A d j u s t * com putes the  discount to  each agent separately, an d  independently  of the dis­

counts assigned to o th er agents. W henever pj(-) =  Uj(-) we com pute the  Vickrey discount 

for each agent. In o th er cases, the discounted price rem ains a  com petitive equilibrium  

price in som e dual solution, and is no less th an  the  agen t’s Vickrey paym ent.

T he next lem m a follows im m ediately from C orollary 6.3.
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A d j u s t * :  in p u t  p f ( - ) , S * ,  o u tp u t  A
P  = P '  ;
f o r  e a ch  i  €  I '  {

A i =  m in{P  -  (P _ i)* ,p f  (5 /)} ;

}; }

Figure 6.2: Procedure ADJUST*.

Lemma 6.7 ADJUST* computes a discounted price p f  ( S ' )  — A* to agent i that is no less 

than its Vickrey paym ent fo r  prices pT (-) that are negative translations o f agen ts’ valuation  

functions, and also satisfy (B R ) and (R E V ).

We also have the following result, from Theorem  6.4.

Lemma 6.8 A d j u s t * computes a discounted price equal to agent i ’s Vickrey paym ent 

fo r  prices that are negative translations o f agents’ valuation functions, sa tisfy (BR)  and 

(REV) ,  as the prices approach agents’ valuation functions.

It is interesting to consider the following question:

what conditions are required on prices to be able to compute Vickrey paym ents; i.e. how 

fa r  away can we be from  complete inform ation revelation but still compute the outcome o f 

the GVA?.

Rem em ber, we want to  com pute Vickrey paym ents w ithout com plete inform ation abou t 

agent valuation functions.

As before, consider in itial prices pj ( - )  th a t  cire negative translations of agent valuation 

functions, and  satisfy (BR) and  (REV) a t the optim al allocation S*.  L inear program  

[VDLP-CS(i)] is a  com plem entary slackness form ulation of the  restric ted  Vickrey dual 

[VDLP(i)] th a t does not require explicit inform ation about V( I )  and  «;(•).
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m ax A,
(Ai A,)

s.t. pi (S)  =  p f  (S)  9  Aj Vi, S  

Ai =  0 Vi 0  /soi 

p f ( 5 * ) - A i  > 0

[VDLP-CS(i)]

(BR)

£  Pi (S)
‘ [i,S]6fc

(REV)

Ai >  0, Vi

Procedure A d j u s t * solves this linear program . Let us consider th e  necessary and suf­

ficient conditions on in itia l prices p f(-) for [VDLP-CS(i)] to com pute the Vickrey payment 

to agent i.

Prices p j (•) are negative translations of agents’ valuation functions, i.e. p f (S )  =  

Vi(S) © Ct , for some Ci  >  0. In  proving Theorem  6.4 we showed th a t  Ci = 0  for all agents 

i is a  sufficient condition. Necessary and sufficient conditions on C  — ( C l , . . .  ,C[)  for 

Pi ( S ’ ) -  A i =  Pvick(i), are:

(a) For agents j  £  ho i• We already have Cj  <  0 by myopic best-response and  (CS-1). 

If agent j  receives a  bundle in the second-best allocation w ithou t agent i we need 

Cj  =  0 , or the discounted price for agent i is a lready zero, i.e. P ’ — (P - i ) m >  p j  ( S ’ ).

(b) For agents j  €  ha\- We already have Cj > 0 by myopic best-response and  (CS-1). If 

agent j  does not receive a  bundle in the second-best allocation  w ithout agent i we 

need Cj =  0 , or the discounted price for agent i  is a lready  zero, i.e. P* — (P - i) ’ >

p U s n -

T he second clause on the discounted price for agent i  relaxes the  requirem ent of Cj =  0 

for an  agent j  ^  i if agent i already has enough discount to set its ad ju sted  price to zero.

P u ttin g  th is all together, and  ignoring this add itional clause, we can s ta te  jo in t suffi­

cient conditions on prices p j ( S )  for procedure ADJUST* to  com pute Vickrey paym ents to 

every agent.

T heorem 6.5 (A d j u s t * optim ality). Procedure ADJUST* com putes Vickrey payments 

from  CE prices p f  (•) that are (a) negative translations from  agent valuation functions; and
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(b) equal to value vt (-) fo r  every agent i  in  the optimal allocation but not in  a second-best 

allocation fo r  some agent j  i, j  6  Is0i.

where the second-best allocation w ithou t agent i is the allocation th a t maximizes 

revenue w ithout agent i  a t the prices, i.e. the  value of (P -i)*- C ondition (b) extends w hat 

was required in Lemma 6.3 for procedure ADJUST to  com pute m inim al CE prices.

It is useful to  define the dependents of an  agent, the active agents, and  a  needy agent. 

T his allows a simple restatem ent of Theorem  6.5.

Let P* denote the value of the revenue m axim izing allocation a t current prices, w ith 

W '  C X  the  set of agents in th a t allocation. Also, let (P -i)*  denote the value of the revenue 

m axim izing allocation w ithout agent i a t the  curren t prices, the second-best allocation, and 

(IK-,)* denote the agents in th a t allocation.

T he dependents o f agent i are used to check whether A d j u s t * com putes Vickrey 

paym ents at current prices.

D e f i n i t i o n  6.7 [dependent agents] T he dependents a(i )  o f  agent i are:

Q(i) =  W \ {  (W _:)’ LU ), if i 6  W  

a ( i)  =  0 , otherwise.

T he dependents of agent i are agents th a t  receive a  bundle in allocation S* bu t do not 

receive a  bundle in the second-best allocation w ithout agent i a t the curren t prices.

I also define an active agent, which is an  agent still requesting bundles a t the  current

prices.

D e f i n i t i o n  6 .S  [active agents] Agent i  is active a t prices p j ( - )  if its best-response set 

of bundles (those bundles th a t m aximize its utility) is non-empty, i.e. the agent continues 

to dem and one or more bundles.

Finally, we define a  needy agent as an  agent in the efficient allocation th a t still has a 

non-zero ad justed  price in the algorithm .

D e f i n i t i o n  6.9 [needy] An agent i  is needy if its ad justed  price is non-zero.

W ith  this, I resta te the sufficient conditions in Theorem  6.5 for Vickrey paym ents as

the Vickrey test:

D e f i n i t i o n  6.10 [Vickrey test] CE prices satisfy the Vickrey test condition when they 

are negative translations of agents’ valuation functions, and  no needy agent i in the efficient
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allocation has any active dependent agents.

P rocedure ADJUST* com putes Vickrey paym ents from C E prices whenever the  prices 

satisfy the Vickrey test. Note th a t  the auctioneer can com pute the  needy, active and 

dependent agents from best-response bids.

Finally, we can define necessary and sufficient conditions, in term s o f the  e-CSl- 

tightness condition in troduced in section 6 .2 :

P r o p o s i t i o n  6 .2  Procedure ADJUST* com putes Vickrey paym ents from  CE prices pj[-)  

i f  and only i f  best-response bids satisfy e-C Sl-tightness; and  no needy agent i in  the efficient 

allocation has any  active dependent agents.

6 .3 .1  E x a m p le

Consider Problem  7 in  Table 6.1. T h e  optim al allocation is S* =  (A, 5 ,0 ) ,  i.e. w ith  items 

are allocated to agents 1 and  2. T h e  Vickrey prices are pvick,i =  30 -  (70 — 40) =  0 and 

Pvick.2 =  40 -  (70 -  50) =  20.

A B A B
Agent 1 30* 0 30
Agent 2 0 40* 40
Agent 3 0 20 40

Table 6.1: Problem 7. Optimal allocation indicated *. Vickrey payments: pVick(l) =  30 — (70 — 
40) =  0, pvick(2) =  40 -  (70 -  50) =  20.

F irst, let us check the  “agents as su b stitu tes” condition, to  determ ine w hether Vickrey 

paym ents are su pported  in com petitive equilibrium . T h e  m arginal p roducts are M P(1) =  

V ( I )  -  V { I  \  1) =  70 -  40 =  30, M P(2) =  70 -  50 =  20, and  M P(3) =  70 -  70 =  0. We 

m ust check:

V ( I ) - V ( K ) >  ] T  [ V ( / ) - V ( / \ i ) ] ,  V f f C I  
<s(z\a:)

This condition does not hold, because for K  =  {3 } , we have V(123) — V (3) <  M P(1) +  

M P(2), because 70 — 40 <  30 +  20. Therefore th e  Vickrey paym ents are no t supported  in 

com petitive equilibrium . Indeed we m ight suspect th is b ecau sepvick(l)+Pvick(2) <  vz ( AB) .

C onsider using A d j u s t  and  ADJUST* in two scenarios. Prices are in com petitive 

equilibrium  in b o th  cases, and  are negative invariants o f agent valuation functions. By
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C orollary 6.3 we expect to  com pute m inim al CE prices w ith  ADJUST in b o th  scenarios. 

Vickrey paym ents will depend on the conditions of T heorem  6.5, i.e. on the  prices and  

second-best allocations of agents 1 and  2 .

•  Scenario 1. Prices are p f  =  {2 5 ,0 ,2 5 } , p*  =  {0 ,2 5 ,2 5 }  and p j  =  {0 ,2 0 ,4 0 } .  

A d j u s t  com putes discounts A i =  50 -  40 =  10 and A 2  =  40 -  40 =  0, or 

A ’2 =  50 -  45 =  5 and A i =  45 — 40 =  5, depending on which agent is selected  

first. T he adjusted, minim al CE prices are p i =  { 1 5 ,0 ,1 5 }  and P2  =  {0 ,2 5 ,2 5 } ,  

or pi =  {2 0 ,0 ,2 0 }  and P2  =  {0 ,2 0 ,2 0 } , w ith  pz =  {0 ,2 0 ,4 0 }  in both  cases. AD­

JUST* com putes A i =  50 -  40 =  10 and A 2  =  50 — 45 =  5, for final adjusted prices 

Pi (A) =  15 and p i{B )  =  20. Agent 2 gets its Vickrey payment because agent 1 is 

in the second-best allocation w ithout agent 2. However, agent 1 does not gets its 

Vickrey paym ent because agent 2 is not in the second-best allocation w ithout agent 

1, and does not bid its full value for B.

• S c e n a r io  2. Prices a r e p f  =  {25,0,25} as before, b u t now p2 =  {0,40,40}, i.e. equal 

to  its valuation function. We know im m ediately th a t  A d j u s t *  now com putes the 

Vickrey paym ents (even though agent 1 does not reveal com plete inform ation about 

its valuation function). ADJUST now com putes either A  =  (25,0 ,0) or A  =  (5 ,20 ,0 ), 

b o th  discount sets give m inim al CE prices b u t not Vickrey paym ents to every agent.

T his exam ple indicates how it is possible to com pute (and verify) Vickrey paym ents 

from CE prices, even when Vickrey paym ents are not su pported  in any single set of prices.

6.4 V ick Auction: A Primal-Dual Vickrey Algorithm

In this section I present a  prim al dual algorithm , VlCKAuCTION, th a t provably com putes 

Vickrey paym ents and  the efficient allocation w ith best-response agent bids. In  the next 

chapter I develop an extended iBundle auction, iBundle Extend& A djust, which is designed 

to im plem ent VlCKAUCTION as an ascending-price auction.

V ickA uction is a  sequential com position of C ombAuction(3), as described in chap­

ter 4. w ith a  new algorithm  PHASElI:

V ickAuction =  CombAuction(3) • P haseII 
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VICkA u c t io n  has a  natural interpretation as an ascending-price com binatorial auction  

because it has the following features:

(1) the only interaction w ith  agents is v ia myopic best-response requests;

(2) prices are ascending throughout the algorithm;

(3) there is always a feasible a llocation , the provisional allocation in an auction. 

C o m b A u c t io n (3 )  term inates w ith  the efficient allocation S* and com petitive equilib­

rium prices p j (S ) that Eire negative translations o f  agent valuation functions.

cT

CSl

P(2)

CSl price(1)p(l)

Figure 6.3: P haseII: Collecting Additional Primal-Dual Information to Compute Vickrey Pay­
ments

Figure 6.3 illustra tes the  role o f P h a seII. T he Figure plots the  com plem entary-slackness 

constraints w ith the efficient allocation in a  simple problem  w ith  only two agents in the

efficient allocation. On the  x-axis is the price on the bundle th a t agent 1 receives in the

efficient allocation. On the  y-axis is the  price on the bundle th a t agent 2 receives in the

efficient allocation. To the  left of vertical line C S l the prices satisfy C S l for agent 1 (i.e.

it is less th an  its value). Below line horizontal line C S l the  prices satisfy  C S l for agent 2 

(i.e. it is less th an  its value). To the  up-right side of diagonal line CS2 the  prices satisfy 

CS2 (i.e. the efficient a llocation continues to  maximize revenue for th e  auctioneer). Inside 

the triangle are all optim al dual (or com petitive equilibrium ) prices on the  bundles. The 

m inim al price to agent 2, ind icated  p(2) is its Vickrey paym ent. T h e  m inim al price to
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P h a se II
Input: p r i c e s  pJ{ S )  and a l l o c a t i o n  S '  from  C o m b A u c t io n  
a c t i v e  = a c tiv e (B R (p r ) ) ;
com pute d e p e n d e n ts ( i )  ■ W ' - ( W - i ) ' - i  f o r  a l l  i ;
A init = A d  j u s t *  (p f , 5*);
n e e d y ( i )  = t r u e  i f  A \nit (i) < p J ( S ' ) , f a l s e  o th e rw is e ;
Aj =  Ajnit(i ); P i ( - ) =  p j (•);
w h ile  ( 3i : n e e d y ( i)  ft (d e p e n d e n ts ( i )  fl a c t i v e  # 0 ) )  { 

f o r  i  6  a c t i v e
i f  (3 j  : n e e d y ( j)  ft i 6  d e p e n d e n ts ! j )  )

P i (  ) = n o n a n o n -u p d a te (B R j,p j) ; 
com pute b e s t - r e s p o n s e  s e t  B R j(pj) f o r  e v e ry  a g e n t i ;  
a c t i v e  = a c t iv e (B R (p ) ) ;
A, =  Ai +  |d ep en d en ts(i)  fl a c t iv e | e; 
i f  (Ai  >  p j  {S ' ) )  

n e e d y ( i)  = f a l s e ;  
e l s e  {

com pute (W -,) ’ ;
com pute d e p e n d e n ts ( i )  * W ' — ( W - i ) ' — i;

};
}
output: a d ju s te d  p r i c e s  m a x (0 ,p f ( S ' )  — A ;) t o  ea ch  a g e n t.

Figure 6.4: The P haseII algorithm.

agent 1, indicated p( 1) is its Vickrey paym ent.

At the end of C o m bA u c t io n (3 ) , of Phase I, the prim al-dual algorithm  might be in 

the s ta te  indicated by the first solid circle, closest to the  origin. At this point ADJUST* 

will ad just prices to  the points shown, b u t there is not enough inform ation to  com pute 

m inim al prices over the simplex of optim al dual prices. T h e  purpose of P h a s e I I  is to get 

enough additional inform ation to  move to  a  point like the  second solid circle, from which 

A d j u s t * drops down to the two extrem al values and  com putes Vickrey paym ents. In this 

problem  agents 1 and  2 bo th  needed to  reveal their com plete value for their bundle in the 

efficient allocation, bu t this is not the case in  general. T h e  p a th  from  I to II on the plot 

represents the “valuation (or inform ation) cost of achieving incentive-com patibility” .

M odule P h a s e I I  continues to  increase prices and  request best-response inform ation 

from agents until the  prices satisfy the Vickrey test conditions. As soon as this condition 

holds there is enough prim al-dual inform ation to ad just prices to  Vickrey paym ents.
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T he com bined algorithm , C o m b A u c t io n (3 )  • P h a seII, which we call VICKAUCTION, 

is optim al.

T h e o r e m  6 .6  ( V ic k A u c t io n  o p t i m a l i t y ) .  V ic k A u c t io n  is a prim al-dual algorithm  

to compute the efficient allocation and the Vickrey paym ents fo r  the combinatorial alloca­

tion problem.

P r o o f . C o m b A u c t io n (3 )  com putes com petitive equilibrium  prices p ’ (-) that are 

negative translations o f agent valuation functions and the efficient a llocation  S ' .  By 

Lem m a 6.9 the revenue-m axim izing allocation in every round o f P h a s e I I  remains allo­

cation S '  com puted at the end o f C o m b A u c t io n (3 ) .  Prices remain negative translations 

o f agent valuation functions, and CE prices, because the prices continue to be increased 

on the basis o f best-response bids from agents. P h a s e I I  term inates w ith the Vickrey 

test conditions (definition 6.10) because there are no needy agents that also have active 

dependents.

Instead o f com puting the adjusted price w ith  A d ju s t*  explicitly, the discount A( i )  is 

initialized explicitly  w ith A d j u s t *  at the start o f  P h a s e I I  and them  m aintained across 

rounds. T he difference between P '  and ( P- i ) '  for agent i increases in each round by the 

number o f active dependents o f agent t , m ultiplied by the m inim al bid increm ent, plus an 

additional e if the agent’s own prices also increase; the effect is to increase the discount to 

agent i by |d e p e n d e n ts ( i)  fl a c t iv e |  e w ith  respect to its price at the start o f  P h a s e I I .

The final adjusted price m a x (0 ,p f  (S ' )  — A (i) )  for every agent i is equal to its Vickrey 

paym ent as e —► 0. |

The proof uses the following lem m a.

L em m a  6 .9  The revenue-m axim izing allocation S '  does not change as prices are in ­

creased in  P h a s e I I . The value o f the revenue-m axim izing allocation therefore increases by 

e every tim e the price is increased to one o f the agents in S ' .

P r o o f . T he prices are not increased to any agent not in S ' .  No solu tion  w ith agents 

W '  (agents in S ')  can have more value because the price on bundles S '  increases by 

at least as much as the price on  all other bundles (including bundles currently w ith
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zero price). T h is is because o f myopic best-response an d  the  price up d ate  rule. A 

sim ple feasibility argum ent shows th a t no solution th a t combines different bundles to 

agents in W m w ith  some bundles to  agents outside of W * can  become value-maximizing 

w ithout the sam e allocation having more value th an  solution S * a t  the original prices. |

6.4.1 Speeding-up: Pivot Allocations

Ju st as A d j - P iv o t  is a  fast b u t accurate m ethod to  com pute m inim al C E  prices a t the end 

of C o m b A u c t io n , a  sim ilar technique A d j - P iv o t * can be used to speed-up A d ju s t * 

an d  V ic k  A u c t io n .

T h e  inner-loop  o f ADJUST*, called from  I n i t i a l A d j u s t ,  co m p u tes  th e  value o f the  

second-best a llo ca tio n  (P - iY  a t  th e  prices. A d j - P iv o t*  co m p u tes  th is  w ith  th e  following 

ap p rox im ation :

{ W - i Y *  m ax Pi{S)
[i,S]ePivoP '

w here Pivot is the set of provisional allocations com puted during  C o m b A u c t io n . T he 

idea is to  restric t a tten tio n  to allocations th a t have proved to be interesting during the 

au c tio n , an d  avoid having to solve a  large com binatorial op tim ization  problem.

T he sam e m e th o d  can  b e  used to ap p ro x im a te  th e  c o m p u ta tio n  o f du rin g

th e  execu tion  o f P h a s e I I , ag a in  co m pu ting  th e  a p p ro x im a tio n  b ased  on  p ivot a llocations 

co m p u ted  d u rin g  th e  C o m b A u c t io n  p h ase  o f  th e  V ic k  A u c t io n  a lg o rith m .
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Chapter 7 

zBundle Extend & Adjust

Much of my dissertation  addresses a  fundam ental problem  w ith the  GVA, which is th a t 

it requires agents to com pute and  reveal their values for all com binations of items. T his 

can be very difficult for bounded-rational agents w ith lim ited or costly com putation. T he 

com plete inform ation requirem ent arises because of th e  single-shot n a tu re  of the  auction: 

every agent subm its a  sealed-bid to  the auctioneer from which the allocation is com puted. 

W ithout an  option to  ask an  agent for more inform ation a  m echanism  can only com pute 

the efficient allocation in every problem  instance w ith com plete inform ation up-front abou t 

agents’ valuation functions.

In com parison, an  iterative  GVA can term inate  w ith the sam e outcom e (allocation and 

paym ents) bu t w ith less inform ation revelation. An itera tive auction can  elicit inform ation 

from agents dynamically, as required to  determ ine the efficient allocation. Term inating  

with the  Vickrey outcom e provides an  iterative procedure w ith  much of the  sam e strategy- 

proofness as the sealed-bid GVA. T h e  design o f an iterative GVA is s ta ted  as an im portan t 

open problem  in the auction design lite ra tu re  [B099, MilOOb]. However, iterative Vickrey 

auctions are only known for special cases [KC82, DGS8 6 , GSOO, AusOO] w ith  restrictions 

on agent valuation functions (a t least prior to  th is d issertation). See T able 4.7 for a  survey 

of known results.

Previous a ttem p ts  to design iterative auctions have (im plicitly a t  least) relied on in­

creasing prices across rounds to  com pute m inim al com petitive equilibrium  prices, which 

equal Vickrey paym ents in special cases (see Table 4.7). T his approach m ust fail in general 

problems because there are often no single set of m inim al C E  prices th a t com pute Vickrey 

paym ents to every agent. In  addition , th is approach requires careful price-ad justm ent, on 

the "m inim al overdem anded set o f bundles” .
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My approach in V ic k A u c t io n , and the extended iB undle auction , iBundle Extend&  

A djust, is to re ta in  the  greedy price-updates of iBundle and  ad ju s t th e  prices after the 

auction term inates  to  com pute m inim al com petitive equilibrium  prices. W ith  th is approach 

the ad justm ent process does not need to term inate  w ith  m inim al C E  prices. T h e  m ethod 

also extends to  problem s in which a  single set of m inim al C E  prices th a t com pute Vickrey 

paym ents fail to exist, because we can com pute the Vickrey paym ent to an  agent as the 

m inim al price on its bundle over all m inim al C E prices.

iBundle E xtend& A djust is a sim ple in terpretation  of VICKAUCTION, in troduced in 

chapter 6 . T he ex tended  iB undle auction collects add itional inform ation from agents in 

order to ad just prices to  Vickrey paym ents. T he goal is to im plem ent the  Vickrey outcom e 

with best-response agent strategies. T he first phase is identical to  iB undle(3), and  the 

allocation im plem ented a t the  end of the extended auction is th a t  com puted  a t  the  end of 

the first phase, which is the  efficient allocation when agents follow myopic best-response 

strategies. T he purpose of the second phase is to  com pute Vickrey paym ents.

T he iterative auction  has b e tte r  inform ation properties th an  th e  sealed-bid GVA. In 

each round agents m ust only bid for the set of bundles th a t  m axim ize  their u tility  given 

current ask prices, which does not require agents to com pute th e ir exact values for every 

bundle. F urther discussion o f agent com putation is provided in chap te r 8 .

As far as I know, tB undle Extend& A djust is the first auc tion  w ith  the  following prop­

erty:

T heorem  7 .1 (m in  C E). iBundle with Extend& Adjust term inates with Vickrey pay­

m ents whenever Vickrey paym ents are supported in  competitive equilibrium, fo r  myopic 

best-response agent strategies as the m inim al bid increm ent e —> 0 .

T his result is proved in section 7.6. Special cases of th is theorem  cap tu re  all known 

iterative Vickrey auctions, including linear-additive, un it-dem and, an d  gross-substitu tes 

preferences (see Table 4.7). In  all of these cases the agen ts-are-substitu tes condition 

holds (Definition 6.3), an d  Vickrey paym ents can be com puted  as m inim al C E  prices. 

B ikchandani et al. [BdVSVOl] show th a t gross-substitutes is sufficient for the  agents-are- 

substitu tes condition.

I also make the  following conjecture:
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C o n jec tu r e  7.1 (iterative generalized Vickrey auction). iBundle Extend& Adjust is 

an iterative Generalized Vickrey Auction, term inating with Vickrey paym ents and the ef­

fic ien t allocation fo r  myopic best-response agent strategies as the m inim al bid increm ent 

£ - > 0 .

W hile a full proof has yet to be com pleted, experim ental results presented in section 7.7 

provide very strong support for the conjecture. I have a  p roof (see section 7.6) th a t i f  the 

extended auction term inates the ad justed  prices are Vickrey paym ents. T h is follows quite 

d irectly  from the properties of V ic k A u c t io n . W hat is left to  prove is th a t the m ethod 

for quiescence detection and the in troduction  of dum m y agents in the second phase of the 

auction is sufficient to push the final phase of the  auction to  a  s ta te  in which the Vickrey 

test (Definition 6.10) holds.

7.1 Overview

T he extended auction has two d istinct phases. T he first phase is used to  determ ine the 

efficient (value-maximizing) allocation, while the  second-phase is used to determ ine Vick­

rey paym ents. This transition  from Phase I to  Phase II is designed to  be hidden from 

partic ipants. T he basic auction rules across b o th  phases are as in iBundle, and prices 

increase m onotonically between Phase I and  Phase II. T he novelties in the auction design 

are as follows:

• A gents’ paym ents are adjusted after the  auction term inates, and  agents do not pay 

their fined bid prices. T his allows the  im plem entation o f non-equilibrium  solutions, 

which is im portan t because the  GVA outcom e cannot always be supported  in equi­

librium .

•  A dditional com petition is introduced during  the second phase of the auction, to make 

the winning agents continue to bid and  reveal more inform ation, enabling final prices 

to be ad justed  to Vickrey paym ents.

Best-response bids from agents provide inform ation abou t the  com plem entary-slackness 

conditions in a prim al-dual form ulation, and  can be used to  ad just tow ards an  optim al 

solution.
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T he extended iBundle auction  im plem ents the second phase of VICKAUCTION w ith the 

in troduction of dum m y agents to provide continued com petition  for agents in the  efficient 

allocation. T he dum m y agents are designed to make agents in the  efficient allocation con­

tinue to bid higher prices un til there is enough inform ation to com pute Vickrey payments. 

T he m ethod to  in troduce dum m y agents, although experim ental a t this stage, does seem 

to succeed in forcing th e  auction to  the  Vickrey s ta te  (Definition 6.10).

T his dum m y agent m ethod is adop ted  instead of the straightforw ard price-update rules 

in the second phase of V ic k A u c t io n  because it is im portan t th a t bidders cannot not detect 

the transition  from P hasel to  P hasell. An agent’s bids in P h ase ll decrease th e  final price 

paid by o ther agents, bu t have no o th er effect on the outcom e of the auction. Thus, if 

an  agent knows it is in P h ase ll it m ight decide to drop out of the auction  because of 

partic ipation  costs from continued bidding. A nother possibility is th a t an  agent might 

a ttem p t collusive m anipulation w ith ano ther agent. This is discussed below in section 

7.8.1.

Phase II is designed to force active agents to bid higher prices for bundles received in 

the optim al allocation. W ith  myopic best-response agent strategies the  ask prices to  all 

agents rem ain valid com petitive equilibrium  prices during Phase II. Phase II term inates 

precisely when there are no active agents, or a t least no active agents still b idding in the 

auction (which indicates th a t the ask price to those agents cannot be any higher). The 

tricky part of the proof is to  show th a t the  com petition from the dum m y agents is sufficient 

to make Phase II term inate, i.e. to push  the bid prices for all active agents high enough 

to satisfy conditions to  com pute Vickrey paym ents. T his rem ains a  conjecture.

At the end of the chap ter I discuss a  num ber of refinements th a t may boost com puta­

tional perform ance w ith  little  loss in incentive and efficiency properties.

7.2 Manipulation of iBundle

Up to this point I have assum ed th a t  agents follow myopic best-response strategies, tru th ­

fully revealing their dem and in response to ask prices in each round  of iBundle. T he as­

sum ption allowed a  connection between agent bids, com plem entary-slackness conditions, 

and prim al-dual optim ality.

However, iBundle leaves open the possibility of agent m anipulation. iBundle term inates
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A B AB
Agent 1 0 a  6
Agent 2 10 0 10
Agent 3 0 0 15

Table 7.1: Problem 8 .

w ith com petitive equilibrium  (CE) prices, often m inim al CE prices, b u t th is is not always 

enough to prevent successful m anipulation. A lternative strategies available to  agents in­

clude: placing ju m p  bids, signaling false intentions, or w aiting to  bid, all of which can 

reduce economic efficiency and  require qu ite  complex gam e-theoretic reasoning by agents. 

Let us consider P roblem  8 in Table 7.1, w ith a — b =  10. Suppose th a t agents 2 and 3 

follow a  myopic best-response stra tegy  and consider the options available to  agent 1.

T he efficient allocation is S* =  (B ,A ,0 ), for value V * =  20. Let (p i , p 2 ,Pz ) =  

( p i ( B) , p 2 ( A ) , p 3 {AB)) .  In com petitive equilibrium , the prices m ust satisfy: p l <  10, 

P 2 < 10, P 3 > 15, and  p i +  P 2 >  P z -  One set of com petitive equilibrium  prices are: 

P i  =  8 , P 2  =  8 , p 3 =  15.

Agent 1 m ight choose to follow myopic best-response. In this case iBundle term inates 

with one agent paying 7 and  the o ther paying 8 , and agent 3 unwilling to pay 16 for bundle 

A B .

Agent 1 can do b e tte r by waiting while agent 2 bids against agent 3, and  then  bidding 

for B  to stop agent 3 w inning A B  when agent 2 has bid 10 for A  an d  can bid no higher. 

This “slow straightforw ard” b idding  stra tegy  [MilOOa] allows agent 1 to  reduce the  price 

th a t it pays from 7 to  5, while agent 2 pays 10. Agent 1 is said to  free-ride  off th e  bids of 

agent 2 and  ends up sharing  less o f the  cost of out-bidding the th ird  agent.

T he Vickrey paym ents in this problem  are $5 for each agent, i.e. p Vick,i =  { B ) - { V '  -

(V_!)-) =  10—(20—15) =  5, andpvick .2 =  v 2 { A ) - ( V - { V - 2) ' )  =  1 0 - ( 2 0 -1 5 )  =  5. These 

prices are precisely w hat agents 1 and  2 m ight hope to  achieve w ith  a  slow straightforw ard 

bidding stra tegy  if the o ther agent follows its myopic best-response strategy.

C om puting Vickrey paym ents a t  the end of the auction for every agent when agents 

follow myopic best-response strategies, then each agent does as well as it could hope to 

do w ith any stra tegy  given th a t th e  o ther agents follow myopic best-response strategies. 

Myopic best-response becomes a Bayesian-Nash equilibrium o f the iterative auction.

Milgrom [MilOOa] has earlier observed th a t in cases in which th e  m inim al C E  prices
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are no t unique an  agent’s optim al s tra tegy  is th is “slow straightforw ard” bidding. A slow 

straightforw ard  strategy  subm its a  bid only w hen the  auc tion  will term inate  otherwise, 

and  the agent is not curren tly  receiving a  bundle in the  provisional allocation. T he cases 

w ithout unique m inim al CE prices are precisely those in  which Vickrey paym ents are not 

supported  in CE.

7.3 zBundle Extend &: Adjust

iBundle E xtend& A djust has two d istinc t phases: Phase I, in which the final allocation 

is determ ined, followed by Phase II, in which final paym ents are determ ined. Phase I is 

identical to iBundle(3), the variation of iBundle th a t m ain tains separate  ask prices for 

each agent th roughout the  auction. Phase I ends when iB undle term inates, a t which point 

the auctioneer stores the  provisional allocation. T h is allocation is im plem ented a t the end 

of the auction.

T he purpose of Phase II is to  collect enough add itional inform ation to  be able to 

com pute Vickrey paym ents. At the end of P hase II paym ents to  agents are com puted as 

the bid prices at the end of Phase I minus a  discount, which is com puted during Phase II. 

Both phases follow the price update  rules, bidding rules, an d  w inner-determ ination rules 

of zBundle. T he term ination  condition in Phase II, and  add itional steps perform ed during 

each round in Phase II to  com pute discounted prices equal to  Vickrey paym ents Eire new.

Let S* =  ( S r , . . .  , 5 }) denote the  allocation a t the end  o f Phase I, P* denote the 

auctioneer’s revenue, W * C I  denote the  set of agents th a t receive a  bundle in S ',  (P_j)* 

denote the value o f the revenue m axim izing allocation w ithou t agent i a t  th e  current ask 

prices, and  (W -i)* denote the  agents in this second-best allocation. Also, let p[ idi (S)  

denote agent i ’s bid price for bundle S  a t the  end  of phase I.

As in C h ap ter 6 , I will refer to  the dependents of agent i as the agents th a t receive a 

bundle in allocation S* b u t not in the second-best allocation w ithou t agent i  a t the current 

ask prices. A needy agent is an  agent th a t  is in allocation S* an d  has a  non-zero ad justed  

price for its bundle. Finally, an  active agent is an  agent th a t is still b idding a t the current 

prices.
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P h a s e  I: tB u n d le (3 )

P hase I is iBundle(3), w ith  term ination  under th e  sam e conditions and  unique prices for 

each agent in every round o f the auction. T he allocation a t the end  of P hase I is stored, 

and  finally im plem ented a t the end of P hase II.

P h a s e  I I :  Extend

P hase II of iBundle E xtend& A djust shares m any features w ith PHA SElI of th e  prim al- 

dual algorithm  V ic k A u c t io n  to  com pute Vickrey paym ents w ith  best-response agent

bids. T he purpose of P hase II is to  com pute th e  discount from agent prices a t the  end of

Phase I to ad just to Vickrey paym ents.

T he final price for agent i a t the  end o f Phase II is discounted from its final bid price 

a t the end of Phase I by the  sum  of its initial discount A jnit(i), com puted a t the  s ta r t  of 

P hase II, and an  additional discount Ajnjt (i) com puted during P hase II.

At the s ta r t of Phase II the in itial discount, Ajnjt (i), is com puted as:

, if i € W '  

0  , otherw ise

and  Aextra(i) =  0 for all agents. T he dependents for agents i €  W m are com puted as 

« (i)  =  W '  \  ( ( J i  ), w ith  a{i)  =  0 otherw ise. T he needy agents are those agents in

W  for which p L , t ( S f ) - ( A init(i) +  Acxtra(i)) >  0 .

T he auctioneer introduces dum m y agents to  drive com petition w ith  agents past the end 

of Phase I, and  push prices into the  s ta te  where the Vickrey test (Definition 6.10) holds. 

T h e  auctioneer sim ulates the  dum m y agents, generating  bids in each round. T hese bids 

are  not visible to agents.

T he auctioneer first introduces a  dum m y agent for any agent th a t d ropped  ou t of the 

auction  in the last round of P hase I. A dditional dum m y agents are in troduced dynam ically  

a t  the  end of each round.

A sim ple rule is used to  construct the  valuation of a  dum m y agent:

D efinition  7.1 [dummy agent] T he valuation function of a  dum m y agent for agent j  is 

based on the ask prices of agent j :  set v( S)  =  Pask , j {S)+L  for bundles S  w ith  Paskj (S) >  0, 

an d  v(S)  = 0  for all o ther bundles, for some large constan t L > 0.
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T he auctioneer updates the  set of active agents, an d  perform s the  following steps a t 

the end of each round of Phase II:

1. C om pute the new second-best allocation w ithout each needy agent in tu rn , restricting 

a tten tio n  to  only th e  real agents (ignoring the dum m y agents). U pdate

and com pute the  new dependents of each needy agent, com paring the  agents in the 

second-best allocation w ith the  agents in  the efficient allocation.

2 . For each needy agents w ith active dependents, increm ent A extra(*) by ^incr(j) 

where A \ncr{j) > 0 is the increase in bid price by agent j  for bundle S* (the bundle 

it receives in the allocation a t the end of Phase I) since the previous round.

3. Remove agent i from the  set of needy agents if p^id l (5*) -  (A ina{i) +  A extra(1)) <  0-

Test fo r  term ination: Phase II term inates when there  no needy agents has any active 

dependents. Special cases of th is term ination condition hold where there  are: (1) no needy 

agents, (2) no active agents, (3) no dependent agents, etc.

O therwise, the auctioneer introduce dum m y agents according to  the  following rules:

( 1) for any agent th a t has ju s t dropped out of the auction, i.e. th a t was active in the 

previous round b u t is no longer active, and replace any dum m y agent th a t already exists 

for this agent w ith a  new one.

(2 ) in a s ta te  o f quiescence for the active agents , 1 in which case a  dum m y agent is 

introduced for: ( 1) an  agent w ith no dum m y th a t is not active; or failing th a t (2 ) an  active 

agent w ith no dum m y; or failing th a t (3) an  active agent th a t  already has a t least one 

dum m y ageut.

After term ination  allocation S*, as com puted a t th e  end of Phase I is implemented, 

and the  final ad justed  prices axe:

Patljust(i) =  m ax [0, P b i d , i ) — (^in it(*) "F A ^ tra M ) ]

7.3.1 Discussion

T he precise definition of quiescence is not too im portan t. I consider th a t the auction  is in 

quiescence if: (1) the  sam e active agents have partic ipa ted  in the auction  for the past three

1 It is possible tha t there is a  bidding war between the dummy agents and non-active agents without 
displacing the allocations of active agents.
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rounds; an d  (2 ) all partic ipa ting  active agents have been allocated the sam e (non-em pty) 

bundle in the  provisional allocation in th e  past three rounds, and  for the  sam e price.

7.3.2 Variation: zBundle(2) and Phase II

One problem  w ith the extended iB undle auction  is th a t the  first phase is iBundle(3), which 

m ain tains separate prices for each agent, and  can  take longer to  converge th an  iBundle(2), 

which has more direct feedback between agents.

In order to  apply Phase I I  and  the ADJUST* m ethod to iBundle(2), w ith anonym ous 

prices, we might first build a set o f individual ask prices for each agent, Pi(S),  for bundle 

S. One approach is to  initialize them  to the  anonym ous prices, and  then  try  to  ad just 

the prices towards a  set of non-anonym ous com petitive equilibrium  prices, in particu la r 

reducing the price on bundles th an  an agent does not bid in the final allocation  as far as 

possible. T he goal is to com pute individual prices for each agent th a t are approxim ately  

a  negative translation  of its valuation function, so th a t the  ADJUST* technique com putes 

Vickrey paym ents.

Inform ation in bids placed in earlier rounds o f the auction can be used to ad just prices. 

For exam ple, if an  agent bids for bundle S i a t price pi in an  earlier round, b u t not for bundle 

So a t price po, then  th is indicates th a t  u (S i )—p i >  v (S 2 ) ~ P 2 , and v( S \ )  — v ( S 2 ) > Pi ~ P 2 - 

Now, if the  agent bids for bundle S i b u t not S 2  a t the  final prices, then  the final price 

p^S2) on bundle S2 can be reduced a t least u n til p^S2) =  p l {Si)  -  (pi -  P2 )-

Similarly, we can reduce prices to an  agent not in the final allocation to  the  prices in 

the  first round in which the agent placed no bids.

7.3.3 Worked Examples

It is useful to dem onstrate iBundle E xtend& A djust on Problem  8 in Table 7.1, for different 

values of a and b. In each case the  auction term inates w ith Vickrey paym ents for myopic 

best-response agent strategies.

•  Case (a =  b =  3). Phase I: S ‘ =  (0 ,0 , A B ), P* =  13, W  =  {3}, p£id =  (0 ,0 ,13). 

Phase II: F irst, com pute: (S _ 3)* =  { B , A ,  0), (P _ 3)* =  13, (W -3)* =  {1,2}, a (3 ) =  

0, A init(3) =  13 -  13 =  0. Term inates im m ediately because agent 3 is the  only agent 

in th e  efficient allocation, an d  therefore there  are no dependents. T he outcom e is
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to allocate bundle A B  to agent 3 for pz =  13 — (0 +  0) =  13, which is the  Vickrey 

paym ent (pVick(3) =  15 -  (15 -  13) =  13).

• Case (a =  6 =  10). Phase I: S* =  ( £ ,  A , 9), P '  =  15, W m =  {1,2}, p£jd =  (8 ,7 ,0 ). 

Phase II: F irst, com pute: (S_i)*  =  (0,0, A B ) ,  (P - i)*  =  15, (W -i)*  =  {3}, a ( l )  =  

{1,2} \  {3,1} =  {2}, A init( l)  =  15 -  15 =  0, (S _ 2)* =  (0 ,0 , A B ) ,  (P _ 2)* =  15, 

(VV_2) ‘ =  {3}, a (2 ) =  {1,2} \  {3,2} =  {1}, A inil(2) =  15 -  15 =  0. Agents 1 and  2 

are active agents.

Do not term inate  because agents 1 and  2 are needy, an d  b o th  have th e  o ther agent 

as an active dependent. Instead, introduce a  dum m y agent for agent 3, w ith values 

=  (0 ,0 ,15  +  L) for a  large L  >  0. As prices increase agent 1 drops out first, 

when p i ( B )  >  10. At this tim e A extra(2) =  2 because agent l ’s bid has increased by 

2 since the end of Phase I. A dum m y agent is in troduced  for agent 1, w ith values 

vs =  (0,10 +  L,  10 +  L).  Finally, agent 2 drops ou t w hen P2 (A)  > 10, a t which tim e 

Aextra(l) =  3 because agent 2’s bid has increased by 3 since the  end of Phase I. Phase 

II term inates because there are no active agents.

T he outcom e is to  allocate item  B  to agent 1 for pi =  8 — (0 +  3) =  5 and  item  A  

to agent 2 for p2 =  7 -  (0 +  2) =  5. These are the Vickrey paym ents: p Vick(l) =  

Pvjck(2) =  10 -  (20 -  15) =  5.

• Case (a =  6 =  20). Phase I  is the  same as in case a  =  6 =  10. Phase I I  A s  in case 

a =  6 =  10, in troduce a dum m y agent for agent 3, w ith  values V4 =  (0 ,0 ,15  +  L) 

for a  large L > 0. T his time, as prices increase agent 2 drops ou t first, when 

p2 (A) >  10 and A extra(l)  =  3. Introduce a  dum m y agent for agent 2 w ith value 

V5 =  (10 +  L ,0 ,10 +  L). Finally, agent 1 enters (S _ 2)*, when p\ {B)  =  15 and 

Aextra(2) =  7. At this stage agent 2 is no longer needy, because its to ta l discount 

^init (2 ) +  Aextra(2 ) is equal to  its bid price a t the end o f Phase I.

T he outcom e is to allocate item  B  to agent 1 for p t =  8 — (0 +  3) =  5 and  item  A  

to agent 2 for p2 =  7 -  (0 +  7) =  0. T hese are the Vickrey paym ents: pVick(l) =  

20 -  (30 -  15) =  5 an d  pvick(2) =  10 -  (30 -  20) =  0.
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7.4 Iterative Vickrey Auctions

E arlier, in chap ter 4, I surveyed previous results in the design of iterative Vickrey auctions 

(see Table 4.7). Iterative Vickrey auctions are known for linear-additive, unit-dem and, 

and  gross-substitu tes agent preferences. All auction  designs achieve Vickrey paym ents 

w ith  myopic best-response agent strategies, i.e. agents th a t bid to maxim ize utility  in 

the curren t round, taking prices as fixed. iBundle E x tend  & A djust is also provably an 

itera tive Vickrey auction in all these cases because the  agents-are-substitu tes condition 

holds.

It is useful to define the  concept of m yopic-im plem entation  of the Vickrey outcom e (the 

efficient allocation and  the Vickrey paym ents) in an  iterative auction:

D e f in it io n  7.2 [myopic-implementation] A uction A  m yopically-im plem ents the  Vick­

rey outcom e if the auction term inates w ith the  Vickrey outcom e for agents th a t follow 

myopic best-response bidding strategies.

Let B R( v i , p )  denote the best-response bid for agent i w ith  value Ui(S) for bundles 

S  Q G, given prices p(S)  on bundles. T he best-response can define a  set of bundles if the 

agent is indifferent across a  num ber of bundles. Call th is a  truthful best-response bidding 

strategy. Also, let B R ( i i , p )  denote an  untruthful best-response bidding stra tegy  for agent 

i, for some valuation function i i  ^  vt .

One might imagine th a t an  iterative auction  th a t myopically-im plem ents the Vickrey 

outcom e would share the sam e strong incentive-com patibility properties as the Vickrey- 

Clarke-Groves mechanisms, i.e. strategy-proofness such th a t myopic best-response is a  

dom inant s tra tegy  for an  agent, optim al w hatever the  strategies o f o ther agents. In fact, 

m anipulation  rem ains possible in such an  auction, because agents have o ther strategies 

available.

Gul & S tacchetti [GSOO] propose an  iterative Vickrey auction w ith gross-substitutes 

agent preferences th a t com putes Vickrey paym ents in cases in which they can be com puted 

in the m inim al linear-price com petitive equilibrium . T h e  au thors prove th a t Vickrey pay­

m ents make tru th fu l myopic best-response a  Bayesian-Nash equilibrium  of the  auction.

L em m a  7 .1  Truthful m yopic bidding is a sequentially rational best-response to truthful 

m yopic bidding by other agents in  an iterative auction uiith linear-prices that myopically- 

im plem ents the Vickrey outcome.
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P r o o f . T he proof follows quite directly  from the strategy-proofness of the  GVA. Basi­

cally, for any o ther s tra tegy  the agent selects a  GVA outcom e for some non-tru th fu l valua­

tion function, which is less preferable th an  the  GVA outcom e for its tru e  valuation function. 
See Gul Sc S tacchetti [GSOO] for details. |

In o ther words, Gul Sc S tacchetti show th a t if every o ther agent follows a  myopic best- 

response stra tegy  in their auction, and if m inim al CE prices com pute Vickrey paym ents, 

then myopic best-response is the  optim al s tra tegy  for agent i.

A lthough the  connection between Vickrey paym ents in an  iterative com binatorial auc­

tion and  incentive-com patibility appears to be widely accepted in th e  lite ratu re , I have not 

found a  general proof.2 B ikchandani Sc O stroy [BOOO], for exam ple, s tate:

“we explore the ex tent to  which the above approach [using a  prim al-dual algorithm  

to design an iterative Vickrey auction] ... can be extended to yield incentive com patible 

ascending-price auctions for m ultiple objects... [in] an  ascending-price auction  [that] finds 

the sm allest m arket clearing (W alrasian) prices ... buyers get th e ir m arginal p roduct and 

therefore have the incentive to  bid tru thfully .”

Assum ing for the m om ent th a t iBundle Extend& A djust does indeed im plem ent the 

outcom e of the GVA w ith  myopic best-response agent strategies, I prove the Bayes-Nash 

incentive-com patibility o f the auction:

T h e o r e m  7 .2  ( i n c e n t iv e - c o m p a t ib i l i ty ) .  Truthful m yopic bidding is a sequentially ra­

tional best-response to truthful m yopic bidding by other agents in  iBundle Extend& Adjust 

as bid increm ent t  —> 0, i f  the auction myopically-implements the Vickrey outcome.

P r o o f .  Suppose agent i €  I  follows a  strategy  o ther th an  tru th fu l myopic best- 

response, while the o ther agents follow tru th fu l myopic best-response. Let p l (S)  denote 

the prices a t the end of Phase I, p I l {S) denote the prices a t the  end  of Phase II, bu t 

before prices axe ad justed , Padjust,»(5) denote the ad justed  prices a t the  end of P hase II, 

and S =  ( 5 [ , . . .  ,5 / )  denote the  allocation com puted a t the  end o f P hase  I.

T he first step  in the  p roof is to  construct a  valuation function iii for agent i, for

"The connection between Vickrey payments and incentive-compatibility is implicit in Ausubel’s [Aus97, 
AusOO) auctions. Ausubel does provide careful proofs of the incentive properties of his dynamic auctions, 
but it is not clear how his analysis can be adapted to my mechanism.
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which (Padjust , i (Si) , P - i ( S - i ) )  are in  com petitive equilibrium  w ith  allocation S given agent 

preferences v- i ) .

Consider the  valuation function 6 , defined by:

r p f ' i S i )  , i f  s  = Si

W )  =  < p i 1 (Si) , if  S D S i

[  0 , otherw ise

Prices (p[( 5 , ) ,p l /i (5_ i)) form a  com petitive equilibrium  w ith allocation S and  agent 

preferences (v i , v - i ) .  (C S l) holds for agent i w ith  preferences v, because p[(Si)  < p ( f (Si)  =  

and  p{ l (S' )  >  p / (5 l ), VS' D Si.  (C S l) holds for agents j  jz i a t the end of Phase 

I, and a t the end of Phase II because the agents continue to follow myopic best-response 

strategies and  prices p j ; are negative translations o f agen t’s valuation functions. (CS2) 

holds because allocation  S m aximized revenue to the  auctioneer a t the end of P hasel, and 

continues to m axim ize revenue a t  prices ( p f ,? ^ )  because the  price p j ! (S)  on all bundles 

S  7= Sj  increases by less th an  the price on bundle Sj  during  Phase II.

By the analysis of the A d j u s t  procedure in the  previous chap ter (see section 6.2.1),

prices (p((Si)  — (P* — (P - iJ ’ J .p f/^ .S -j)) are also in CE w ith allocation S for agent prefer­

ences (iii, v- t ) :  where P* is the revenue from allocation S a t prices (pf(S’j ) ,p i /i (5 _ ,)), and 

(P_i)*) is the value of the revenue-maxim izing allocation w ithout agent i  a t prices p !_!t-

T he ad justed  price Padjust.t^j) a t the end of Phase II is equal to  p{(Si)  -  (P* -  ( P - i ) m 

because it is com puted as p{r(Si) -  A (i), where A (i) =  P* +  S — (P -j)* , for 5 =  p f ; (5 ,) -  

Pi(Si) .  T hus, (Padjust,t(5i),p{/j(5_j)) are in C E w ith  allocation S for agent preferences

( V i , V - t ) .

T he second-step in the proof is to show th a t agent i ’s u tility  w ith tru th-revelation  in 

the GVA is greater th a n  its u tility  a t the outcom e o f th e  auction, i.e. Vi(Si) -Padjust,i(5i). 

F irst consider its GVA paym ent w ith a  report of Vi, when th e  o th er agents report tru th fu l 

values i>_j. T he Vickrey outcom e in this case is allocation S, as com puted in the auction, 

and  agent i ’s u tility  is

ui(^i) — Vi(Si) ~  Pvick,i(fii> u—i)

>  Vi (Si )  Padjust.i

T he inequality  follows because the Vickrey paym ent is sm aller th an  the m inim al price over 

all m inim al CE prices.
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Finally, it follows from the  strategy-proofness of the GVA th a t

Ui(vi) >  Ui(t)i), for all v , ^

and  therefore agent i ’s u tility  from tru th-revelation  in the GVA is g reater th an  its u tility  

from outcom e (padjust,n Si) in the  auction. T his establishes th a t for agent i tru th fu l myopic 

bidding is a  sequentially-rational best-response in equilibrium  w ith tru th fu l myopic bidding 

from o ther agents, under the assum ption th a t the auction m yopically-im plem ents the Vick­

rey outcome. |

In o ther words, term inating  in Vickrey paym ents provides qu ite  a  high degree of 

incentive-com patibility, b u t not full strategy-proofness. A m ethod is introduced in the 

next section to restric t agent strategies and  make a slightly stronger claim  abou t the 

robustness-to-m anipulation of an iterative Generalized Vickrey Auction.

7.5 Proxy Agents: Boosting Strategy-Proofness

Moving from single-shot Vickrey mechanisms to iterative Vickrey m echanism s make it 

necessary to accept a loss in fu ll  strategy-proofness. Full strategy-proofness requires th a t all 

agents sim ultaneously com m it to  a  (possibly untru thfu l) valuation function, which conflicts 

w ith the desire to allow agents to reveal increm ental inform ation.

Ideally, we would like to  restric t agents to  follow a  (possibly u n tru th fu l) best-response 

strategy, for some ex ante fixed valuation function. Such a  restric tion , if possible, would 

allow the following strong  claim  ab o u t strategy-proofness:

L em m a  7 .2  Truthful m yopic bidding is a d o m in a n t  s t r a t e g y  in  an iterative Vickrey 

outcome if  agents are restricted to follow a m yopic best-response strategy fo r  some  e x  a n te  

fixed (but perhaps untruthful) valuation function  v(-).

One sure way to enforce th is restric tion is to  introduce a  proxy-bidding agent interface 

into the auction, which requires a  bidding agent to  provide a  com plete valuation  function 

up-front, and  then  follows a  myopic best-response strategy  w ith  th a t value inform ation in 

the auction. As noted above this would transform  the iterative auction into a  single-shot 

mechanism, and lose the  increm ental inform ation revelation properties.
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new prices, 
best-response bids

incremental 
value informatioi

Proxy 2

Agent 2

Auctioneer

Figure 7.1: Proxy Bidding Agents.

A m iddle ground, which provides some additional strategy-proofness over-and-above 

Bayesian-Nash incentive-com patibility, b u t w ithout providing com plete strategy-proofness, 

is to restric t an  agent to follow a  myopic best-response strategy  th a t is a t least consistent 

w ith a  single valuation function across all rounds.

One might imagine two ways to  restric t agent i to  a best-response strategy  for some 

consistent valuation function t)i(-).

•  In troduce additional bidding rules, for exam ple preventing “ju m p  bids” by making 

an agent bid a t the current ask price; and  check th a t an  agen t’s bids across m ultiple 

rounds in the  auction as prices change are consistent w ith a  best-response strategy 

for a  particu la r valuation function.

•  Provide sem i-autonom ous proxy bidding agents, one for each agent, th a t receive 

increm ental value inform ation from agents an d  follow a  myopic best-response strategy 

consistent w ith th a t inform ation.

In Parkes & U ngar [PUOOb] we pursued the idea of sem i-autonom ous proxy bidding 

agents, th a t sit between agents and  the auctioneer, and  subm it best-response bids whenever 

they have enough inform ation abou t an  agent’s (possibly u n tru th fu l) valuation function 

to determ ine the utility-m axim izing bundle(s) a t the  current prices (Figure 7.1). Essen­

tially the proxy agents transform  the iterative auction into an  iterative d i r e c t - r e v e la t io n  

m echanism, in which agents report increm ental inform ation abou t their values for different
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bundles. In com parison, the classic m echanism  design lite ra tu re  has typically considered 

only single-shot direct-revelation mechanisms.

Sem i-autonom ous proxy agents re ta in  the com putational advantages of iterative auc­

tions because agents can provide increm ental inform ation abou t value; looking ahead  to 

the next chapter, an  iterative auction  w ith proxy bidding agents rem ains bounded-rational 

compatible—  an agent can follow its optim al s tra tegy  w ith an  approxim ate valuation func­

tion.

T h e  restric tion to best-response strategies does not itself streng then  the  incentive- 

com patibility  properties of an iterative Vickrey auction. T he following result is a  direct 

consequence of Theorem  7.2, the Bayesian-Nash incentive-com patibility of an iterative 

com binatorial auction th a t m yopically-implements the Vickrey outcome:

T h e o r e m  7.3 Truthful dynam ic inform ation revelation is a sequentially rational best- 

response to truthful dynamic inform ation revelation by other agents in  an iterative auction  

A  with best-response proxy bidding agents that m yopically-implements the GVA.

In one extrem e (and unachievable) case, if the proxy agents are able to force agents 

to provide increm ental value inform ation consistent w ith a single ex ante fixed valuation 

function then we can make the following claim:

P ro po sitio n  7.1 (d o m in a n t s t r a te g y ) .  Truthful dynam ic inform ation revelation is a 

dom inant strategy in an iterative auction A  with best-response proxy bidding agents that 

m yopically-im plem ents the GVA, when agents provide inform ation consistent with an ex 

ante fixed (but perhaps untruthful) valuation function.

In o ther words, increm ental tru th-revelation  is a  dom inant s tra tegy  so long as the 

decisions m ade by o ther agents abou t how to m isrepresent their values for bundles tire 

not conditioned on observed inform ation during  the auction. T his is a  stronger claim 

th an  Bayesian-Nash (Theorem  7.2), which sta tes th a t myopic best-response is sequentially- 

ra tional in equilibrium  w ith myopic best-response from o ther agents, b u t weaker th an  the 

full strategy-proofness of the  GVA.

One might imagine a  m ethod in which an  agent is m ade to co m m it to  a  particu lar 

"m anipulation function” , a  particu lar m apping from values to repo rted  values, before it
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com putes its ac tu a l values for different bundles. T his m anipu lation  function  could also 

reside in the  proxy agent. However, th is m anipulation  function would only provide the 

required p roperty  of an ex ante fixed valuation if used in com bination w ith  a  m ethod 

to validate th a t increm ental inform ation provided by an agent to its proxy was truthful 

inform ation, which flies in the  sp irit of m echanism  design.

A m iddle ground can be achieved w ith proxy bidding agents tha t:

(a) enforce self-consistency  in inform ation reported  across rounds

(b) require an  agent to provide enough value inform ation in each round to enable 

the proxy agent to  determ ine a  bundle(s) th a t  maximizes u tility  for all possible future 

refinem ents, given prices in the  curren t round.

One reasonable proposition abou t the incentive properties of such a  proxied iterative 

Vickrey auction:

P ro po sitio n  7 .2  Given auction A , that myopically-im plem ents the Vickrey outcome, 

introducing proxy bidding agents and consistency checks “lim its ” the opportunities fo r  suc­

cessful manipulation.

Intuitively, in every round th a t an agent reports more value inform ation it commits 

itself to  a  sm aller set of possible reported  valuation functions, and  restric ts its ability to 

condition fu ture announcem ents on inform ation revealed by o ther agents. Providing a 

theoretical a n d /o r  em pirical m easure of “lim its” is left for fu tu re  work.

7.5.1 Consistency Checking and Best-response

Formally, let us consider w hat is required for a  proxy agent to: (a) have enough inform ation 

to com pute a  best-response bid; and  (b) check inform ation consistency across rounds.

Let ^approx.t'^approx,i> •• • > denote the  sequence of approxim ate valuation  inform ation 

provided by agent i , in rounds 1, 2 , etc.

Given an approxim ate valuation function uapprox,i, let C(uapprox) Q V denote the set of 

com pletely specified valuation functions th a t are  compatible w ith  approxim ate inform ation 

^approx; where V is the set of all possible valuation functions. T he p articu la r definition 

of compatible is th a t which is n a tu ra l given th e  type of approxim ation, for exam ple if the 

approxim ation sta tes upper- an d  lower- bounds on values, th en  a  com patib le value is any
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value between the bounds.

An approxim ation is consistent w ith  an  earlier approxim ation if the only com patible 

valuations were also com patible before:

D efin itio n  7 .3  [consistent] A pproxim ation u"pprox is consistent w ith  approxim ation 

Approx. w ritten  u"pprox C < pprox, if the  set of com patib le values C(u"pprox) C C « pprox), 

i.e. if Uapprox places a stronger condition on the com patible valuation functions.

T he consistency check by the proxy agent across rounds is defined as follows:

D efin itio n  7 .4  [consistency check] For consistency from round t to round t +  1. the 

proxy agent requires

v t+l ■ C v l uapprox,t — uapprox,i

such th a t the approxim ation in round t  +  1 is consistent w ith the approxim ation in round 

t.

In words, the inform ation in round t 4- 1 m ust be a  refinement of the  inform ation in 

round f, and  therefore consistent w ith the inform ation in all previous rounds by transitivity .

Given prices p-(5) to agent i for bundles S  C Q in round t, the auctioneer requires 

enough inform ation from agent i  to com pute a  best-response th a t is op tim al for all fu ture  

refinements.

D efin itio n  7.5 [best-response inform ation requirem ent] In  round t agent i m ust provide 

enough inform ation t)‘pprox j for a  single bundle Sbr to  solve m axst)(S ) — pj(S ) (to w ithin 

m inim al bid increm ent e) for all v  6  C(t)jpproxti), for current prices p [(5 ).

In o ther words, the agent’s best-response stra tegy  is the  sam e for ail valuation functions 

consistent w ith its current approxim ate value inform ation a t the curren t prices.

I have provided on definitions for a  worse-case framework; i.e. a  new approxim ation 

is only consistent w ith an  old approxim ation if there are no  new com patible valuations— 

not even one. Similarly, the best-response condition  sta tes  th a t there m ust be a  single 

best-response for every future set of consistent approxim ations.

These definitions are not su itable w ith some stochastic approxim ations, such as “the 

value for bundle 5  is Normally d istribu ted  w ith m ean p  and  stan d ard  deviation a " . More 

su itab le  definitions would replace the  worst-case guarantees w ith “w ith  high probability” 

guarantees. For example, a  new approxim ation might be said to be ^-consistent w ith  a
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A B AB
Agent 1 0 14* 14
Agent 2 10* 0 10
Agent 3 4 5 12

Table 7.2: Problem 9.

current approxim ation if the  probability  th a t a  valuation consistent w ith  the  new approx­

im ation was also consistent w ith the previous approxim ation is at least 1 — 5.

7 . 5 .2  Special Case: Upper- and Lower- Bounds

An im portan t special case occurs when an agent can provide approxim ate inform ation in 

the form of upper- and lower- bounds on value.

Bounds [n(S ),i;(S )]£ in round t denote lower-bounds v(S)  < v{S)  on bundles S , for 

some valuation function u(S), and  upper-bounds iJ(S) >  v(S) .  V aluation function v(S)  is 

com patible w ith bounds, v(S)  G C([u(S), u(S)]), if v(S)  >  v(S)  and v(S)  < v(S)  for all

s c g .

Given prices p ,(5 ) and  bounds [uj(S’), tJ;(S)]), let u ^ S )  = Uj(S) — pi{S)  and  Ui(S) = 

Vi { S ) - p i ( S ) .  T he bounds provide sufficient inform ation for a  best-response bid if for every 

bundle 5:

Mj(S) + e > Tii(T) , V T  ^  S ,T  C Q  (dom inates)

or

3 T  ^  S ,T  C  Q such th a t tZi (S)  <  a*(T) +  e

In words, th is s ta tes th a t every bundle m ust either have a  u tility  th a t dom inates the 

u tility  of all o ther bundles, for all fu tu re  refinements, or have a  u tility  th a t is dom inated 

by a t least one o ther bundle for all fu ture refinements. T he best-response is to bid all 

bundles th a t satisfy the (dom inates)  condition.

7 . 5 .3  Example: Incremental Information Revelation

T his section presents a  worked exam ple of iBundle(2) w ith proxy bidding agents on P rob­

lem 9 in Table 7.2, in which the efficient allocation S* =  (A, B ,0 ) .

Assume th a t the agents in itially  provide the following inform ation to  their proxy agents:
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A  B  A B

agent 1 0 [13.5,14.5] sam e as B

agent 2 [2,12] 0 sam e as A

agent 3 [2,6] [2,6] [8,16]

Assume th a t the m inim al bid increm ent, e =  2. T h e  proxied auction  proceeds auto­

m atically  through 7 rounds w ith this inform ation, as illustra ted  below:

Round

.4

Prices 

B AB
Bids Selected utility bounds

Agent 1 Agent 2 Agent 3 Agent 1 Agent 2 Agent 3

1 0 0 0 (z?,or (.4 ,0 )' (.45 ,0 ) B:[13.5, 14.5] .4:[2, 12] •4:[2, 6] .45:[8, 16]

2 0 0 2 (5 ,0 ) (.4,0) (.45 ,2)- B:[13.5, 14.5] -4:[2, 12] .4:[2, 6] .4B:[6, 14]

3 2 2 2 ( 5 .2 ) ' (-4,2)' (-45,2) B:[11.5, 12.5] .4:[0, 10] •4:[0, 4] .4B:[6, 14]

4 2 2 4 (5,2)* (A, 2 )• (-45,4) B:[11.5, 12.5] .4:[0, 10] •4:[0, 4] .4B:[4, 12]

5 2 2 6 (B, 2) (-4,2) (-45,6)* B:[11.5, 12.5] .4:[0, 10] •4:[0, 4] .4B:[2, 10]

6 4 4 6 (* ,4 )- (-4,4)* (-45,6) 5:[9.5, 10.5] ,4:[-2, 8] •4:[-2, 2] .4B:[2, 10]

7 4 4 8 ( f l,4 )‘ (.4,4)’ (.45 ,8) 5 :[9.5, 10.5] .4:[-2, 8] •4:[-2, 2] .4B:[0, 8]

8 4 4 10 (B.4) (-4,4) ■} B:[9.5, 10.5] .4:[-2, 8] •4:[-2, 2] .45:[-2 , 6]

In rounds 1-7 the proxy agents have enough inform ation to  subm it a  best-response 

bid (to  w ithin e). However, in round 8, the approxim ate inform ation provided by agent 

3 is not sufficient to  determ ine the best-response. Notice th a t th e  bounds on bundle A B  

do not satisfy the (dominates)  condition w ith respect to  the bounds on bundle A  (or on 

bundle B ).

In this round agent 3 m ust provide more value inform ation to  its proxy agent. Only in­

form ation consistent w ith uapProx,3(A) =  [2 , 6], t>approx,3 (-S) =  [2 , 6 ],u appr0)C,3 (A i?) =  [8 ,16] 

is allowed. Suppose th a t agent 3 provides bounds [11, 16] on bundle A B .

T he auction can now proceed as follows:

.4 5 .45 Agent 1 Agent 2 Agent 3 Agent 1 Agent 2 Agent 3

8 4 4 10 (B,4) (.4,4) ( .4 5 ,1 0 )' B:[9.5, 10.5] •4:[-2, 8] •4:[-2, 2] .45:[1, 6]

9 6 6 10 (5 ,6 ) ? (.45,10) B:[7.5, 8.5] .4:[-4, 6] .4:[-4, 0] .45:[1, 6]

At round 9 m ore inform ation is required from agent 2. Suppose agent 2 first provides
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new bounds uapprox,2 (A) =  [2,10]. These bounds are consistent, b u t not sufficient for best- 

response because the  lower u tility  bound  is still more th an  e below 0. W ith  inform ation 

Approx,2 (A) =  [6,10] the  auction  can continue.

.4 B AB Agent 1 Agent 2 Agent 3 Agent I Agent 2 Agent 3

9 6 6 10 (B, 6)‘ (-4,6)* (AB, 10) B:[7.5, 8.5] A [0, 6] A:[-4, 0] AB:[1, 6]

10 6 6 12 (B ,6)- (-4,6)* (AB, 12) B:[7.5, 8.5] A:[0, 6] A[-4, 0] AB:[-1, 4]

11 6 6 14 (B, 6) (-4,6) B:[7.5, 8.5] A [0, 6] .4:[-4, 0] AB:[-3, 2]

In round 11 more inform ation is required from agent 3. Suppose th a t agent 3 provides 

^approx,z ( A B )  =  [11,13], which will ad just the  u tility  bounds on A B  to  [-3, -1]. T his is 

enough inform ation for the  agen t’s proxy agent to  com pute an  em pty  best-response:

.4 B .4B Agent 1 Agent 2 Agent 3 Agent 1 Agent 2 Agent 3

12 6 6 14 (B ,6) (-4,6) 0 B:[7.5, 8.5] A[0, 6] A[-4, 0] .4B:[-3, -1]

and the auction term inates w ith  final allocation S* =  (23, A, 0) which is the efficient 

allocation. The final inform ation revealed to  th e  proxy agents in th is exam ple is tab u la ted  

below.

A  B

agent 1 0 [13.5,14.5]

agent 2 [6,10] 0

agent 3 [2,6] [2,6]

Notice two in teresting effects of the proxy agents:

•  T he auction has a  “m ulti-m odal” interface. An agent can e ither subm it qu ite  ac­

curate  inform ation up-front, as is the  case for Agent 1 in this exam ple, or provide 

increm ental inform ation as required, as is the  case for Agents 2 and  3.

•  T he auction is now “staged” , w ith  a  num ber of rounds perform ed au tom atically  via 

com m unication w ith  th e  proxy agents b u t not com m unication w ith  the  ac tua l agents.

A B

sam e as B  

sam e as A  

[11,13]
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7.5.4 Example: Strategic Revelation in a Proxied English Auction

Consider a  sim ple exam ple of a  proxy bidding-agent interface into the  English auction, 

which is an  ascending-price auction for a  single item  in which the  item  is sold to the 

highest b idder for its bid price. T he English auction m yopically-im plem ents the Vickrey 

outcom e as the  bid increm ent e -> 0, w ith  the item  sold to  th e  highest b idder for e above 

the second-highest value over all agents.

In troducing proxy agents th a t accept refinements on upper- and  lower- bounds on value 

from agents makes the auction  a  staged Vickrey auction. As discussed above:

-  iterative tru th  revelation is a  dom inant s trategy  in response to  strategies from other 

agents consistent w ith ex ante fixed valuation functions

-  iterative tru th  revelation is a  Bayesian-Nash equilibrium  of the  proxied auction, i.e. 

a sequentially-rational best-response to  iterative tru th  revelation from o ther agents

However, iterative tru th-revelation  is not a  dom inan t-strategy  equilibrium . I construct 

an exam ple below in which an  agent can increase its u tility  w ith  a non-tru th fu l strategy.

Consider the following example:

Agent 1 Agent 2 Agent 3

value  5 10 15

I n c r e m e n ta l  T ru th -R e v e la t io n

F irst, suppose th a t each agent plays the Bayesian-Nash equilibrium , m aintaining bounds 

com patible w ith its true value. Consider initial bounds [2, 6], [5, 15], [8, 20]. Proxy agents 

1, 2 and 3 bid while p < 2, then agents 2 and 3 bid while p < 5. Finally, w ith the price 

a t p =  5 -I- e, agents 1 and  2 need to provide more inform ation. Suppose agent 1 updates 

its bounds [2,6] [2,5], and  agent 2 [5,15] -> [9,12]. P roxy agent 1 drops out, while

proxy agents 2 and  3 bid while p  < 8. W ith  the price a t p  =  8 -f e, agent 3 provides more 

inform ation. Suppose agent 3 updates its bounds [8,20] -*  [12,18]. W ith  th is inform ation 

the price increases to p =  9 -I- e, and  agent 2 might continue refining its lower bound until 

it is approxim ately 10. At th is point agent 3 wins the auction, and  pays 10 +  e.
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Static Incremental Strategies

Now, suppose th a t agent 2 provides inform ation consistent w ith v<i =  9 instead of vo =  10. 

Suppose th a t agent 1 continues to  follow an  increm ental tru th fu l strategy. It should be 

clear th a t agent 3’s best stra tegy  is increm ental tru th-revelation . T his s trategy  will win 

the item  for a price of 9 +  e, which is the best possible outcom e for agent 3.

D y n a m ic  S tr a te g ie s

Finally, here is an  exam ple to dem onstrate  th a t increm ental tru th  revelation need not be 

an agen t’s best strategy, and does not form a  dom inant stra tegy  equilibrium .

Suppose th a t agent 1 follows a  tru th fu l strategy, while agent 2’s stra tegy  is: 

set initial bounds [4,30]. A t first request fo r  more inform ation, provide bounds [6,30]. 

I f  the agent is provisionally allocated the item  in the next state o f the auction provide 

bounds [25,30], otherwise provide bounds [7,7].

Notice th a t agent 2 makes a  dynam ic decision abou t w hether to announce inform ation 

consistent w ith a value of 7, or w ith a  value somewhere between 25 and  30.

F irst, consider the outcom e if agent 3 follows the following increm ental tru th fu l s tra t­

egy. In itia l bounds [5,20]. T he price will increase to 4 +  e, a t which point agent 3 is 

provisionally allocated the item. Agent 2 provides new bounds [6,30], and the price in­

creases to 5 +  e, w ith the  item  allocated to  agent 2. Finally, agent 2 updates its bounds to 

[25,30], and the auction will term inate w ith agent 2 buying the  item  for price 15 +  e.

Now, consider an  alternative strategy  for agent 3. In itia l bounds [30,40]. T he price 

will increase to 4 +  e, a t which point agent 3 is provisionally allocated the  item . Agent 2 

provides new bounds [6,30], and  the price increases to 6 +  e, w ith the  item  allocated to 

agent 3. Finally, agent 2 updates its bounds to  [7,7], and  the auction will term inate w ith 

agent 3 buying the item  for price 7 +  c.

7.5.5 Real World Proxy Agents

O n-line auctions such as eBay, www.ebay.com, for consum er-to-consum er e-commerce 

present a  real-world example of auctions w ith separate valuation and  bidding problems: 

people value items, and eBay provides au tom ated  bidding agents th a t m onitor auctions 

and  place bids. In an  ascending-price auction, the proxy agents are configured w ith a  user’s 

reservation value, the m axim um  she will pay for an  item, and  bid while the price is below
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th a t value. Interestingly, the proxy agents do not convert ascending-price auctions into 

sealed-bid auctions because they can inform a  user by e-m ail w hen her reservation value 

has been reached, and  accept updated values. T h is  allows the  user to  deliberate further 

ab o u t her value for the item , bu t only if th a t is required by the curren t price in the auction, 

and  makes the auction w ith proxy agents bounded-rational com patible.

Proxy bidding agents th a t restric t agents to  placing a  bid a t the  curren t ask price 

m ay also be useful in preventing “code bidding” between agents in an  auction, to achieve 

collusive outcom es. T his practice of adding “m agic num bers” on the trailing  digits of bids 

to pass inform ation to  o ther bidders was observed in the FCC  spectrum  auction, an  open 

and  sim ultaneous auction for individual licenses [CSOO]. T he FCC  introduced “click-box” 

bidding to constrain  bids to  be one o f a  finite num ber of bid increm ents above the current 

ask price.

7.6 Theoretical Analysis

F irst, consider the following lemma.

L em m a  7 .3  ( o p t im a l i ty  i f  t e r m i n a te s ) ,  iBundle Extend& Adjust computes the efficient 

allocation and Vickrey paym ents fo r  myopic best-response bidding strategies as the m inim al 

bid increm ent e —> 0.

P r o o f . T he final prices in the  auction satisfy the Vickrey test conditions (Definition 

6.10) by construction. T h e  discounts com puted during  Phase I I  o f the  extended auction  are 

sim ply equal to the discounts th a t would be com puted w ith A d j u s t *  a t the end of Phase II. 

T he final ad justed  prices are Vickrey paym ents by T heorem  6.5 in C h ap te r 5. T he alloca­

tion is the one from the end of Phase I, th e  allocation com puted w ith  tBundle and therefore 

efficient by Theorem  5.1 of C hap ter 4. |

We already have a  proof of Theorem  7.1, th a t  (Bundle E xtend& A djust com putes the 

Vickrey paym ents whenever they are supported  in  m inim al com petitive equilibrium . T he 

prices a t the end of iBundle(3) satisfy the  conditions required in Theorem  6.1 in C hap ter

4. T he prices are indeed negative translations o f agent valuation  functions when agents 

follow myopic best-response strategies.
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7.7 Experimental Analysis

In this section I describe the  results of experim ents ru n  w ith iB undle E x te n d s  A djust and  

agents w ith myopic best-response strategies, on the  sam e problem  sets used to  test iBundle 

in chap ter 5. T h e  first set of results m easure the d istance betw een m inim al CE prices and  

the result of using ADJUST* on prices a t the  end o f iB undle(3). T he results dem onstrate  

th a t iBundle w ith  ad justed  prices com puted a t th e  end of th e  auction  term inates w ith 

m inim al C E  prices. T he second set of results com pare the  ad ju sted  prices a t the end of 

the extended auction, i.e. after Phase II, w ith  prices in the G eneralized Vickrey auction. 

Again, the  results show very strong  support for C onjecture 7.1, th a t the extended auction 

is an  iterative Generalized Vickrey auction.

7 .7 .1  R e s u l t s  I: iB u n d le  a n d  A d j u s t *

F irst, in this section I present the results o f experim ents to  com pare the effect of com puting 

ad justed  prices a t the end o f iBundle, w ith  com puting m inim al CE prices and  Vickrey 

paym ents. T h e  variations ADJUST, ADJUST*, and  A d j - P iv o t *, introduced in the  previous 

chapter, are all considered. In  these first set of experim ents, first reported in Parkes & 

Ungar [PUOOb], the auction is not ex tended into Phase II and  only com putes Vickrey 

paym ents when they are supported  in com petitive equilibrium .

T he auction is tested  on problem s PS 1-12 in Table 5.5 (chap ter 5) and  also problem s 

Decay, W eighted-random  (W R), Random  and  Uniform  in Sandholm  [San99]. Each problem  

set defines a  d istribu tion  over agents’ values for bundles of item s.

In this set of experim ents the d istance 7?(pi(S*),pVick(i)) between prices p«(S*) and  

Vickrey paym ents is m easured w ith an  L i  norm , as £i(PiiPvick) =  Y h  !?«(•%) — Pvick(i)i/

i.e. the sum  absolute difference between the price charged to each agent and its 

GVA price norm alized by th e  to tal value of the allocation  over all agents. An L \  norm  is 

app ropria te  because m inim al CE prices is com puted w ith  a  linear additive m easure over 

the auctioneer’s price to  each agent in th e  allocation, and  because errors in the prices are 

always one-sided (i.e. g reater than  the Vickrey paym ents).

T here  does not appear to  be a  useful m easure o f the  d istance to Vickrey paym ents 

in problem s in which the auction ’s allocation  is inefficient, an d  different from th a t in the 

GVA. Thus, I com pute the average d istance over problem  instances in which iBundle
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Figure 7.2: Average performance of iBundle with price-adjustment A d ju s t * and A d j- P iv o t * in 
problems PS 1-12 (see Table 5.5). The number of rounds to termination is varied by adjusting the 
minimal bid increment.

com putes the optim al allocation, which approaches 100% of problem s as the  bid increm ent 

gets small.

Figure 7.2 plots the  d istance to  the Vickrey paym ents in iBundle, before and  after price- 

adjustm ent using A d j u s t * and  A d j- P iv o t *, averaged over 25 tria ls each of problems 

PS 1-12. I ran iBundle w ith different bid increm ents to  vary the num ber of rounds to 

term ination, and average perform ance across problem sets by norm alizing the  num ber 

of rounds to term ination  according to  the  m inim al num ber of rounds in  which iBundle 

achieves 100% allocative efficiency. For com parison, I also plot the perform ance o f m inim al 

CE prices.

T he results show clear su p p o rt for Theorem  7.1, th a t s ta tes th a t iBundle(3) followed 

by A d j u s t * com putes m inim al CE prices. T he average d istance betw een m inim al CE 

prices and GVA prices across these problem s is 5.3%. For sm all bid increm ents iBundle 

com putes prices to w ithin 6.5% of the Vickrey paym ents, w ith ADJUST to w ith in  5.5% 

(not p lotted), and  w ith ADJUST* and ADJ-PlVOT* to w ith in  5.2%. T h e  prices continue 

to ad just towards the  m in CE prices for bid increm ents sm aller th an  those required for 

100% allocative efficiency, corresponding to  norm alized rounds to  te rm ination  >  1. It is 

notew orthy th a t the  approxim ate m ethod A d j- P iv o t * is as effective as A d j u s t * for sm all 

bid increm ents.

T he benefit o f A d j u s t * over A d ju st  is quite m arginal w ithout the extended  phase o f
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the auction. In com parison, the results w ith  ADJUST* after the second phase o f the auction  

dem onstrate the im portance o f  com puting price adjustm ents beyond a  single m inim al CE  

price vector (see Figure 7.5 for exam ple).

I also com pute the  fraction of all problem s in which X>(p,,pvick(i)) <  2%, to test the 

proportion  of problem s in which prices are approxim ately  Vickrey. C E  prices are equal 

to Vickrey paym ents in approxim ately 57% of problem  instances; and  iB undle w ith  bo th  

A d j u s t * and A d j - P iv o t * com putes Vickrey paym ents in these problem s, while iBundle 

alone term inates w ith  Vickrey paym ents in only around 38% of problem  instances.

T he m inim al CE prices are close to  GVA prices (average distance <  2.5%) in problem s 

PS 4-8, in which the  agents in the op tim al allocation  also tend to  be in the second-best 

allocations. In contrast, the m inim al CE prices differ from th e  GVA paym ents by more th an  

5% in problem s PS 1, 3, 9, 11 and 12, which are characterized by op tim al allocations th a t 

are very different from second-best allocations, and  agents w ith com plem entary dem ands 

for bundles (see Table 5.5).

As expected, add itional analysis shows th a t the Vickrey test (Definition 6.10) is suffi­

cient b u t not necessary for the ad justed  prices to  equal Vickrey paym ents. T he specificity 

of the test was 100% (no false-positives), b u t its sensitiv ity  was only 56% (some false- 

negatives); i.e. some cases in which the ad justed  prices were in fact Vickrey paym ents 

were undetected.

T he success of A d j - P iv o t *, the approxim ate ad justm en t m ethod th a t uses pivot allo­

cations from earlier rounds of the auction, is confirmed in  the results illustra ted  in Figure 

7.3, for problem s Decay, W R, Random , and Uniform. In Decay I set S andholm ’s a  param ­

eter to 0.85. T he distance to Vickrey paym ents is p lo tted  against the  ru n  tim e of iBundle 

with A d j - P iv o t *, com puted w ith  respect to  the  tim e to  solve the single-shot General­

ized Vickrey auction  (for the sam e w inner-determ ination algorithm  in bo th  auctions). I 

varied the  m inim al b id  increm ent to ad just the  num ber o f rounds in iBundle, and  study  

the d istance between final prices and  m inim al C E and  Vickrey paym ents as the  allocative 

efficiency and correctness trends to  100%.

M inim al CE prices are equal to Vickrey paym ents in  W R, because there is typically 

a  single agent in the efficient allocation in th is problem  set. iB undle w ith  A d j - P iv o t * 

com putes the Vickrey paym ents in these problem s. I t is interesting th a t A d j - P iv o t * is 

able to com pute prices closer to the Vickrey paym ents th an  the  m inim al C E prices in
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Figure 7.3: Performance of iBundle with price-adjustment A d j- P iv o t * problem sets from Sand- 
holm [San99]. The bid increment in iBundle is adjusted to give different run times.

Decay and Random . Recall th a t the A d j u s t *  procedure minimizes each agen t’s paym ent 

separately, and  can com pute prices th a t are closer to the  Vickrey paym ents th an  any 

single set of CE prices. Finally, notice th a t the  m inim al CE prices rem ain quite  far from 

Vickrey paym ents in the Uniform problem  set. T he second-best allocations in Uniform are 

typically quite different from optim al allocations, and  the agents-are-substitu tes condition 

(Definition 6.3) often fails.

A lthough my focus in this work was not on th e  auctioneer’s w inner-determ ination work, 

it is w orth noting th a t the  run tim e in the iterative auction  is basically com parable to th a t 

in the GVA. if one considers the level of accuracy a t which the  perform ance of iBundle and  

A d j - P iv o t * levels ou t. T he obvious exception here is in the  w eighted-random  problem  

set, bu t this was actually  the easiest problem  to solve- the  GVA solved th e  problem  in an

209

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



average tim e of 9.1 sec, com pared w ith  362 sec, 1791 sec, an d  138 sec for Decay, Random , 

and  Uniform, on a  450 MHz Pentium .

7.7.2 R esults II: {Bundle Extend&Adjust

iBundle E xtend& A djust is tested  in the  sam e suite o f problem  instances; i.e. problem s PS 

1-12 and  problem s Decay, W eighted-random , R andom  and  Uniform. P roblem  sizes (num 

agents, num  item s, num  bundles) are set to (8, 50, 120) in Decay, (20, 50, 400) in Uniform, 

(8, 30, 80) in R andom  and  (15, 50, 300) in W eighted R andom . Decay p aram eter a  =  0.85. 

T he results are  averaged over 40 trials.

T his tim e I m easure th e  d istance between agent paym ents in the auction  and GVA 

paym ents w ith an  L i  norm , as ^2(Pi>Pvick) =  [ S j ( P i  ”  P v ic k W ) 2 ] ■ I com pute th e  average 

d istance to Vickrey paym ents over the instances in which the  auction  term inates w ith the 

optim al allocation. As the  bid increm ent gets sm all this fraction approaches 100%. T his 

provides a  more useful m easure of d istance th an  com puting the  average L i  d istance over 

all trials, including those in which the allocation is not efficient.

Figure 7.4 plots the  d istance between Vickrey paym ents and  auction paym ents against 

the “correctness” of the auction, the fraction of instances in which the  auction  com putes 

the  efficient allocation, which approaches 100% as m inim al bid increm ent e -> 0, for PS 

1-12. T he allocative efficiency in these experim ents increases from around 90% a t 23% 

correctness, to alm ost 100% a t correctness of 65% and  above, as the  bid increm ent gets 

small. T he figure plots the between Vickrey paym ents and: (1) prices a t the  end o f Phase I 

(iBundle); (2) after the  in itia l price ad ju st a t the s ta r t  of Phase II (iB undle and  A d ju s t *); 

(3) a t the end of Phase II (iBundle, Extend& A djust); and  (4) m inim al C E  prices.

Considering aggregate sta tistics, the  num ber of rounds on Phase II is sm aller th an  

in Phase I, b u t the auctioneer’s com putation  in each round takes more tim e. At 95% 

correctness the  average num ber of rounds in Phase I is 149, com pared to  18 in Phase II; 

each round in Phase I takes an  average of 0.5s, com pared to  2.8s in Phase II; the agent 

valuation inform ation provided a t the  end of Phase I is 77%, and  increases to  83% at 

the end of Phase II, using the  m etric introduced in  section 5.3.1 in chap ter 5. Finally, 

approxim ately  l-in-3 agents receive a  dum m y agent during P hase II.

Figure 7.5 illustra tes th e  perform ance of the auction  in  problem s Uniform, Decay, 

R andom , and  W eighted R andom . In  all problem s allocative efficiency approaches 100%
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Figure 7.4: Distance to Vickrey Payments in PS 1-12.

for sm all bid increments, and the  d istance to GVA paym ents approaches zero. T h e  effect 

of Phase II is quite significant.

It is w orth noting th a t the  auction im plem ents the  Vickrey outcom e even in problem s in 

which the outcom e is not supported  in any com petitive equilibrium ; notice th a t the  distance 

between the m inim al CE prices and the  GVA paym ents is non-zero in all experim ents. 

This is im portan t because there is often no single set of CE prices th a t supports  Vickrey 

paym ents.

7.8 Discussion: Phase I to Phase II Transition

It is im portan t th a t agents cannot identify the  transition  from Phase I to Phase II, because 

an  agen t’s bids in Phase II do not change either the final allocation or its own final paym ent. 

T h e  only effect of an agent’s bids in P hase  II is to reduce the  final paym ent m ade by other 

agents. If it is costly to partic ipa te  in the  auction an  agent would choose to d rop  ou t after 

Phase I. In addition, there are opportunities for collusion between agents in P hase II (just 

as th e  GVA itself is vulnerable to collusion).

Certainly, we m ust hide bids from dum m y agents in Phase I (or give the dum m y agents 

false identities). Each agent only needs inform ation abou t its own ask prices, an d  w hether 

or not it is receiving a  bundle in the provisioned allocation. Agents do not need any 

inform ation abou t the bids, prices, o r allocations of o ther partic ipants.

It is also im portan t th a t agents cannot d istinguish  the  com petitive effects o f bids from
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Figure 7.5: Distance to Vickrey Payments.
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dum m y agents from the com petitive effects o f bids from real agents. T h is is our reasoning 

for constructing  dum m y agents to  mimic th e  real agents th a t com pete for item s in Phase 

I of the  auction.

Finally, ano ther concern is th a t an  agent cannot detec t from the  auctioneer’s response 

tim e th a t we have moved from P hase I into Phase II.

F igure 7.6 illustrates a  typical run  o f iBundle Extend&  A djust. Figure 7.6 (a) plots: 

(i) the efficiency of the  allocation im plem ented during the  auction; (ii) the  revenue to the 

auctioneer, which increases m onotonically across rounds; and  (iii) the ad justed  revenue, 

which falls towards the Vickrey paym ent during  Phase II. Notice th a t the efficiency of the 

allocation oscillates during Phase I until it is locked-in, and  th a t the final ad justed  prices 

at the end of Phase II are the Vickrey paym ents. Figure 7.6 (b) plots the C PU  tim e for 

the auctioneer in each round of the auction. Notice th a t it climbs slowly during Phase I, as 

agents subm it more bids in each round and  the  w inner-determ ination problem s get larger. 

T he transition  from Phase I to II is quite apparen t, a t around  itera tion  70, when there is 

a ju m p  in CPU  time. T he auctioneer m ust check Vickrey conditions a t the end of every 

round during Phase II. Figure 7.6 (c) plots the  num ber of active agents and  dum m y  agents 

during the auction. T he num ber of active agents falls during  Phase I until all agents are in 

the provisional allocation, at which point the  optim al allocation is found and  the auction 

enters Phase II. D uring Phase II the  num ber of dum m y agents increases as agents continue 

to drop out of the auction.

7.8.1 Unresolved Issues

T here are a  num ber of interesting areas for fu ture work. I divide them  into com putational 

issues, and issues abou t agent incentives in  iBundle Extend& A djust.

C o m p u ta t io n a l

F irst, it should be possible to reduce the com putational dem ands on the  auctioneer. For 

exam ple, it would be useful to allow the auctioneer to recom pute the dependent agents in 

each round of Phase II w ithout explicitly com puting the  second-best revenue-maxim izing 

allocations.

It would be in te restin g  to  investiga te  th e  perfo rm ance  o f  ap p ro x im a te  m e th o d s such  as 

A d j - P iv o t *, w hich proved very effective in w hen  u sed  to  a d ju s t prices im m ed ia te ly  a fte r
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Figure 7.6: 25 goods, 10 agents, 150 bids.
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iBundle. T h e  pivot m ethod uses the cached provisioned allocations com puted during the 

auc tion  to com pute second-best allocations.

Agent Incentives

T he separation  o f concerns between Phase I and  Phase II in iBundle Extend& A djust is 

po ten tially  dangerous. At the end of Phase I the  final allocation  has been determ ined, 

and  bids from an  agent during Phase II serve to  reduce the  final paym ent m ade by o ther 

agents. T his separation  is qu ite  different from the  Groves m echanisms, in which the agents 

subm it their valuation functions in a  single-shot and  there is no sense of “w hat I am doing 

now is changing the allocation” and “w hat I am  doing now is changing the prices” . O f 

course, the situation  in iBundle E xtend& A djust is not com pletely decoupled. Bids during 

Phase I do affect prices a t the end of Phase II, in add ition  to the allocation.

However, one concern is th a t the m echanism  for po ten tial collusion, which is a  problem 

in the regular Groves mechanism, is qu ite  explicit in iBundle. For every $1 th a t agent 1 

bids-up during Phase II, one (or more) agents pay Si less. To the  extent to  which the 

o pportun ities for collusion are so transparen t it will be very im portan t th a t there is a 

high-degree of uncertainty about the phase (I or II) of the  auction.

It would be useful to investigate the incentive properties of proxied iterative mecha­

nisms, and  to understand  the  difficulty of m anipulation  in w ith  myopic best-response proxy 

agents and  consistency checks. An appropria te  question to  ask is the  degree to  which proxy 

agents “lim it” the  opportunities for m anipulation  in P roposition  7.2.

Finally, I would like to reduce the level of price d iscrim ination  in the auction. For 

exam ple, in application  to the allocation of a  single item , the  curren t auction m aintains 

a  separate  ask price for each agent. In com parison, the English auction  im plements the 

Vickrey outcom e with a  single ask price which is the  sam e to all agents.
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Chapter 8 

Bounded-Rational Compatible Auctions 

&: Myopic Best-Response

T his chapter introduces the idea of bounded-rational compatibility, which cap tu res the 

concept of allowing an  agent to  im plem ent an  equilibrium  bidding stra tegy  w ithout com­

puting  its exact preferences across all outcom es. B ounded-rational com patib ility  parallels 

the idea of strategy-proofness in auctions. In a  strategy-proof auction  an  agent can com­

pute its optim al s tra tegy  w ithout any inform ation abou t the  preferences of o ther agents. 

In a  bounded-rational com patible auction an  agent can com pute its equilibrium  strategy  

(e.g. Bayesian-Nash, dom inant-strategy, etc.) w ithout com plete inform ation ab o u t its own 

preferences. In o ther words an approxim ate valuation function is sufficient to  com pute an 

optim al strategy. T his useful in problem s in which agents have lim ited com putational 

resources, local valuation problem s tire hard, an d  there are many possible outcom es.

It is also useful to  discuss the com plexity o f myopic best-response w ith in  the context 

of bounded-rational com patibility; i.e., under w hat conditions can an agent com pute its 

myopic best-response stra tegy  w ithout first evaluating its com plete preferences over all 

outcom es, and how significant are the savings com putationally? C learly  an  agent can 

com pute its set of best-response, or surplus-m axim izing, bundles for a  particu la r set of ask 

prices w ith suitable bounds on the values of each bundle, b u t w hat abou t best-response to 

a sequence of prices over the course of an  itera tive auction? An in itial a ttem p t is m ade 

in th is chapter to provide a  structural analysis of the  myopic best-response problem , to 

identify conditions in which myopic best-response is a  polynomial problem  while com plete 

revelation is an  exponential problem.

An explicit m odel of the bounded-rationality  of agents can provide a  new insight into 

com putational m echanism  design. In  particu lar, we m ight take as a  goal to maxim ize
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allocative efficiency given  the bounded-rationality  of agents. In  a  sense th is tu rns Rus­

sell’s definition of “bounded-optim ality” [Rus95] on its head. Instead  of requiring th a t a 

bounded-rational agent takes the  best decision possible given the  constra in ts of its com pu­

tational machine, let us design the environm ent o f an agent—  the m echanism  — to extract 

the m ost value from the  m etadeliberation and  resource-bounded com putation  of agents. 

Again, th is brings us back to the concept of a  bounded-rational com patible auction.

E xperim ental results presented in this chapter dem onstra te  th a t itera tive auctions can 

com pute m ore efficient allocations than  sealed-bid auctions, for myopic best-response agent 

strategies and  the sam e lim its on agent com putation. Well designed m echanism s can allow 

agents to avoid unnecessary com putation and  shift agent com putation  towards evaluating 

preferences towards local problem s th a t are com patible w ith  good system -w ide solutions. 

An obvious exam ple of good mechanism design is strategy-proofness, so th a t agents do 

not waste precious cycles worrying about o ther agents. B ounded-rational com patibility 

captures th is more sub tle  idea of providing agents w ith inform ation to  make good decisions 

about their own deliberation.

From a  design perspective, one can imagine th a t bounded-rational com patibility  in­

troduces a  new constra in t to mechanism design, which can be taken in com bination w ith 

o ther gam e-theoretic requirem ents such as incentive-com patibility and  efficiency. T he pre­

cise type of bounded-rational com patibility depends on th e  equilibrium  concept adopted 

in analysis of a  mechanism; e.g. dom inant-strategy, Bayesian-N ash equilibrium  etc. Es­

sentially an  agent m ust be able to com pute its equilibrium  concept w ith  an  approxim ate 

valuation function.

T he formal definition of bounded-rational com patib ility  leads to a couple of m etrics to 

quantify the  degree of BRC in an  auction for a  particu la r problem  and  a  particu lar model 

of agent bounded-rationality .

E xperim ental results are presented for two models of agent deliberation  in equilibrium .

1. Costly com putation  and  rational m etadeliberation  in  a  single-item  allocation prob­

lem, com paring the  properties of sim ple auction m echanisms.

2. Lim ited com putation  and  myopic m etadeliberation w ith in  a sim ple m odel of agent 

interaction, called “lazy deliberation and  eager b idding” (LD EB ).

T he LDEB m o d e l  p r o v id e s  a  c o u p le  o f  m e t r i c s  t o  q u a n t i f y  t h e  d e g re e  o f  b o u n d e d - r a t i o n a l
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com patib ility  of a  mechanism. O ne m etric, bounded-efficiency, measures allocative effi­

ciency for different com putation budgets. A nother m etric, bounded-computation, m easures 

th e  am ount of com putation actually  perform ed by agents for different com putation  bud­

gets. In a  bounded-rational com patible auction  th e  bounded-com putation peaks a t a  level 

below th a t required for agents to  com pute their com plete preferences.

T he outline of this chapter is as follows. F irst I introduce the agent valuation problem , 

define bounded-rational com patibility, and present a  few examples. T hen, I consider the  

com plexity of myopic best-response in  iBundle, and  characterize conditions on problem  

dom ains for which myopic best-response is polynomial while com plete revelation is expo­

nential. T he last two sections present two sets o f experim ental results. Section 7.4 presents 

a  com parison of sim ple auction models for a  sim ple m odel of costly agent deliberation . Sec­

tion 7.5 presents a com putational study  of auc tion  models for a  sim ple m odel of lim ited 

agent deliberation, in allocation problem s w ith m ultiple items.

8.1 Agent Decision Problem

It is helpful to assume th a t an agent’s decision problem  can be separated  into a  valuation  

problem, to com pute the value of different item s, and  a  bidding problem, to  com pute an 

optim al bid. Each problem  is well-defined in separation , for exam ple the valuation problem  

can be solved w ith decision analysis tools and  optim ization  m ethods th a t are independent 

of the particu la r auction, while the bidding problem  can be solved w ith gam e-theoretic 

m ethods. F igure 8.1 illustrates th is decision problem . T he arrows show the  flow of infor­

m ation.

A uction design can influence the  effectiveness o f an agent’s deliberation  on its local 

valuation problem  because an  agent can decide how to deliberate dynamically du ring  the 

course of an  auction, for exam ple based on price inform ation. Careful auction  design can 

sim plify an agent’s valuation problem ; auctions can allow an  agent to avoid  unnecessary 

com putation  on its valuation problem  and  bid w ith  approxim ate valuations.

Before tu rn ing  to valuation, note th a t the  b idding  problem  can be hard , in particu la r 

when an  agent w ith inform ation ab o u t the b idding  strategies of o ther agents can m anip­

u la te  the outcom e of the auction. C ounter-speculation and  gam e-theoretic reasoning is 

difficult. T his is the critical role for s tra tegy-proof mechanisms.
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Figure 8.1: The Agent Decision Problem.

As an  exam ple of a  hard  valuation problem , consider an  auction  for m achine time in 

a m ulti-agent job-shop scheduling problem , in which each agent has jobs to  schedule on 

a shared machine. To com pute the value of a  bundle of m achine times an  agent must 

com pute its best schedule of jobs given the time specified in the bundle, which can be a  

N P-hard  problem. Consider also an  auction-based system  for d istribu ted  task  allocation 

where agents need to  reform ulate local plans to  com pute costs for perform ing additional 

tasks; or an auction-based system  for allocating landing tim es a t an a irp o rt, where the 

valuation problem  is to  com pute the value of a  tim e slot based on local constrain ts such 

as the availability of support and  m aintenance crews, gate  availability, and  costs for late 

arrival.

Let Vi(S) > 0 denote agent i ’s value for bundle S  C G  of items, where G  is a  set of 

discrete items.

D e f i n i t i o n  8.1 [valuation problem] T he valuation problem  for agent i is to  com pute 

V{(S, Qi) for all bundles S  C G, given preferences Oi 6  ©*, where Q t is the  set o f all possible 

types.

Recall th a t the type of an  agent defines its preferences, in  th is case the value of an 

agent for all possible bundles of items. We can define an  approximate valuation function 

in term s of stochastic inform ation about an  agent’s type.

Let 0app,i €  A(@ 0 denote a  d istribu tion  over types, where A(©i) is the  set of d istribu­

tions on types. Similarly, Uj(S,0app,i) 6  A(R) defines a  d is trib u tio n  over the agen t’s value
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for bundle S.  An agent has approxim ate inform ation abou t its valuation  function if the 

value of one or more bundles is no t com pletely defined:

D e f in i t i o n  8 .2  [approxim ate valuation] Agent i has an  approxim ate valuation function, 

Wi(5,0appt,-), if there is a t least one bundle S '  for which the value Ui(S, ,0 app,i) rem ains 

uncertain.

Exam ple approxim ate valuations in a  com binatorial allocation problem  include:

-  lower bound, U;(S'), and u p p er bound, tJ,(S'), such th a t y ^ S ' )  <  u,(S', 9i) < v i(S' ) ,  

for a t least one bundle S'  C G

-  vt {S' ,6i)  =  C/(a, 6), uniform ly d istribu ted  between a and  6, for som e bundle S '  C G

An agen t’s metadeliberation problem  is to estim ate the  value of add itional com putation

vs. acting, and  to  decide what to  deliberate  on and  for how long.

Russell and Wefald [R.W91] present a  general m odel of m etareasoning, th a t considers 

com putational actions explicitly w ith in  an  agen t’s decision problem . A bounded-rational 

agent chooses a  sequence of actions, com putational or otherw ise, to m aximize expected 

utility, given models of com putation  and  m odels of its world. T he value of com putation 

derives from the effect th a t the com putation  has on the actions th a t an  agent takes in the 

world. Russell and  Wefald develop myopic approxim ations to  m etareasoning and  present 

an application  to a  stochastic decision problem .

A bounded-rational com patible auction allows an  agent to  perform  useful 

m etadeliberation . An agent w ith lim ited or costly com putation  and  sim ple m etadelibera­

tion can avoid fu rther deliberation  abou t value when it knows th a t its bid is optim al for 

all possible values consistent w ith its approxim ate solution. An agent w ith costly com pu­

ta tion , for exam ple an  opportun ity  cost associated w ith  deliberation, considers the  cost of 

deliberation  and  the expected value of the effect of further deliberation  on the u tility  of 

its decision.

8.2 Bounded-Rational Compatible Auctions

A bounded-rational com patible (BRC) auction  is an  auction  in which a n  agent can  com pute 

its optim al strategy, for a  particu la r equilibrium  concept, w ith an  approxim ate valuation 

function and  w ith minimal information abou t the  o ther agents. We first introduced the 

term  bounded-rational compatible auctions in  Parkes e t al. [PUF99]. It is im portan t to
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quality  the  definition in term s o f inform ation abou t o ther agents, because we wish to 

identify auctions in which an  agent can avoid valuation work w ithout add itional work 

m odeling the  o ther agents. To understand  this, consider the following exam ple.

Example. An agent in the  Vickrey auction w ithout any inform ation abou t the prefer­

ences or strategies o f o ther agents cannot com pute its optim al s tra teg y  w ithou t com plete 

inform ation abou t its own valuation problem , because the op tim al s tra teg y  of an unin­

formed agent is to bid its com plete and  accurate valuation function. However, an  inform ed  

agent in the Vickrey auction can com pute its optim al s trategy  w ith  approxim ate value 

inform ation. For exam ple if an  agent knows th a t the  highest bid from an o th er agent is $10 

then it can bid optim ally w ith  a  lower bound on its own value of $12; i.e. a  bid of b =  $12 

will m aximize utility.

A n atu ra l way to  handle inform ation in the characterization o f bounded-rational com­

patible auctions is to require th a t an  agent can  com pute its equilib rium  stra tegy  w ithout 

any additional inform ation abou t the problem s of o ther agents beyond th a t which is re­

quired to com pute the optim al s tra tegy  w ith com plete inform ation ab o u t the agen t’s own 

problem.

We define the concept of an  inform ation-restricted  agent:

D e f in it io n  8 .3  [inform ation-restricted] An agent i  is inform ation restric ted  if it has the 

m inim al am ount of inform ation abou t the  o ther agents needed to  com pute its equilibrium  

strategy  w ith com plete inform ation abou t its own preferences.

In o ther words, an  inform ation-restricted  agent has no more inform ation th an  is mini­

mally required by the solution concept in the  m echanism. For example:

-  an inform ation-restricted  agent in a  dom inant-strategy equilibrium  has no inform a­

tion  abou t the o ther agents, because it requires no inform ation to  com pute its dom inant 

strategy.

-  an inform ation-restricted agent in a  Bayesian-Nash  equilibrium  has the  d istribu tional 

inform ation about agent preferences required to com pute the expected-u tility  m axim izing 

strategy  in the Bayesian-Nash equilibrium .

W ith  this concept we can define a  bounded-rational com patible auction . T h e  equilib­

rium  concept undefined in the  general definition.
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D efinition  8 .4  [bounded-rational compatible] An auction  is B RC if an  inform ation- 

restricted agent can com pute its equilibrium  strategy  w ith  approxim ate inform ation about 

its valuation problem  in one or more non-trivial problem s.

In o ther words, in a  BRC auction an  agent can com pute its op tim al stra tegy  w ith 

incom plete inform ation ab o u t its preferences and  m inim al inform ation abou t th e  other 

agents. This definition precludes an agent from com pensating for less inform ation about 

its own problem  by collecting inform ation ab o u t the problem s of the  o th er agents.

We also exclude trivial problems from consideration:

D e f in it io n  8.5 [trivial problem] An instance of m echanism  M  for agent i, a s  defined 

w ith preferences =  ( 0 i , . . .  ,0 j_ ! ,0 j+ l ,0 /)  of the o ther agents, is trivial if the outcom e 

im plem ented in equilibrium  /(0 j ,0 _ j)  is the sam e irrespective o f the  type  6{ 6  0 j  of agent

In o ther words a  problem  is triv ial for agent i if the  sam e outcom e would be im plem ented 

by the m echanism  for all possible preferences of agent i, even when agent i has complete 

and accurate inform ation ab o u t its preferences.

Example. Consider a  second-price sealed-bid auction  in which agent 1 is the  only agent. 

T his is a  trivial problem  because the  agent will win the  item  for $0 w hatever its bid.

We exclude triv ial problem s from the definition of BRC because an  agent can trivially 

com pute its optim al s tra tegy  w ith  approxim ate inform ation ab o u t its preferences in a 

trivial problem  (so long as it knows the problem  is trivial!), because it can sim ply follow 

a  strategy  for any possible set o f preferences.

T he precise in terp re ta tion  o f equilibrium  in BRC is left undefined, and  depends on the 

analysis m ethod adopted  for a  m echanism. Special cases of bounded-rational com patibility, 

for particu la r equilibrium  concepts, include:

D e f in it io n  8 .6  [dom inant BRC] An auction is dom inant-strategy  B RC if an  inform ation- 

restric ted  agent can com pute its dom inant strategy w ith  approxim ate inform ation about 

its valuation problem , in one o r more non-trivial problem s.

D e f in it io n  8.7 [myopic BRC] An iterative, price-directed, auction  is myopic BRC if 

an  in form ation-restricted  agent can im plement its m yopic best-response s tra tegy  in  every
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round w ith  approxim ate inform ation abou t its valuation problem , in one or more non­

triv ial problems.

Note carefully th a t myopic bounded-rational com patibility  requires th a t an  agent com­

putes its optim al strategy  in every round of the auction w ith an approxim ate valuation 

function, not ju s t in a single round.

8.2.1 Bounded-Rational Compatible Auction Examples 

E n g lis h  A u c tio n

P r o p o s it io n  8.1 The English auction is myopic bounded-rational compatible.

P r o o f . Consider the English auction, an  ascending-price auction for a single item, 

w ith myopic best-response agent strategies. An agent th a t knows its value v  can com pute 

its optim al myopic best-response stra tegy  w ithout any inform ation abou t the bids from 

o ther agents, i.e. b*(p) =  p  if p <  u, and  drop out of the auction otherw ise. An agent 

can also com pute its optim al strategy  w ith an  approxim ate valuation, e.g. bounds v < 

u < v. in some problems. For exam ple, if the highest outside bid b =  v  — A, then the 
agent can com pute its optim al strategy  (bid a t every price) w ith lower bound v > v  -  A . |

Consider the simple example in Figure 8.2. Agents 3 and  5 will bid the ask price up to 

ju s t above agent 5’s lower bound, the second-highest lower bound. At this price, agents 1 

and  2 can drop out of the auction w ithout com puting their exact values, while agents 3, 

4 and 5 m ust perform further deliberation. T his bidding problem  dem onstrates the BRC 

property  of the English auction, in th is example, for agents 1 and 2.

3
-r 5

Ask Price

Figure 8.2: Example Scenario in the English Auction.
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The Vickrey Auction

P r o p o s it io n  8 .2  The Vickrey auction is not dom inant bounded-rational compatible.

P r o o f . An agent th a t knows its value v  can com pute its dom inant s tra tegy  w ithout 

any inform ation abou t the bids from o th er agents, i.e. s '  = v. Therefore, in  order to be 

dom inant BRC the Vickrey auction  m ust allow an  agent to  com pute its dom inant strategy 

w ithout any inform ation abou t the bids from o ther agents, and  approxim ate value inform a­

tion for its own problem. B ut its dom inant strategy  in this uninform ed case is tru th fu l and

com plete revelation of its value inform ation, which presents a conflict w ith th e  dem ands of 

BRC. |

Posted Prices Market

P r o p o s it io n  8 .3  A posted price m arket is dom inant BRC.

P r o o f . A posted-price m arket w ith infinite supply, or w ith  an  exclusive take-it or 

leave-it offer to an agent, is not a  s itua tion  of strateg ic interaction. T here is no relevant in­

form ation abou t the o ther agents, and  the  optim al s tra tegy— also a dom inant s tra tegy  — is 

to accept the price on an item  if the price is below an  agent’s value. An agent can com pute

this optim al stra tegy  w ith approxim ate inform ation abou t its value, for exam ple w ith a 

lower-bound th a t is above the  ask price. |

8.2.2 Preliminary Theoretical Results

It is useful to  outline some possibility and  im possibility results for m echanism  design, once 

bounded-rational com patibility  is introduced into the mix of desirable auction  properties.

T h e o r e m  8 .1  (possibility). The English A uction is efficient and Bayesian-Nash  

bounded-rational compatible fo r  the single-item  allocation problem.

P r o o f . Myopic best-response is a  Bayesian-Nash equilibrium  o f the  English auction, 

i.e. the myopic best-response is sequentially rational for an  agent given myopic best- 

response by every o ther agent (see section 7.4). T he English auction  is efficient w ith  this
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strategy, and  we have already show an exam ple o f how myopic best-response can  be imple­

m ented w ith an  approxim ate valuation function. |

T heorem  8.2 (possibility). iBundle is efficient and m yopic bounded-rational compat­

ible fo r  the combinatorial allocation problem.

P ro o f. iBundle is efficient w ith myopic best-response strategies, and  it is quite 

straightforw ard  to construct non-trivial problem s in which a t least one agent can im plem ent 

its myopic best-response strategy  in each round w ithout com plete inform ation ab o u t its val­

uation  function. For example, the  sim ple problem  in section 3.2.2, an  agent can bid for its 

value m axim izing bundle w ith a  partia l-ordering  over bundles. |

Theorem  8.3 (im possibility). No strategy-proof (direct-revelation) auction can be dom ­

inant strategy bounded-rational compatible and efficient.

P ro o f. Dom inant strategy  bounded-rational com patib ility  requires th a t an  agent can 

com pute its equilibrium  stra tegy  (in this case its dom inant strategy) w ith an  approxim ate 

valuation function and  no inform ation abou t th e  preferences or strategies of o th er agents. 

A single-shot direct-revelation m echanism  cannot be efficient unless every agent subm its 

com plete and accurate inform ation ab o u t its valuation function in every problem . Any 

approxim ate inform ation, for exam ple specifying an  incorrect value for bundle S '  can be 

exploited by constructing  a  non-trivial problem  in which the values of the  o th er agents 

for particu la r bundles make the  error in the value of bundle S '  cause the selection of an  

inefficient allocation. An uninform ed agent w ith  an  approxim ate valuation function cannot 

subm it com plete and  accurate inform ation ab o u t its valuation function in every problem . |

8.2.3 Discussion

A lthough the  definition of bounded-rational com patib ility  requires only a  single non-trivial 

problem  in which the  agent can com pute its op tim al s tra tegy  w ith  approxim ate inform ation 

#app,i ab o u t its valuation problem , the definition is successful in separating  direct-revelation 

and  iterative auction  designs. B ounded-rational com patib ility  also captures o th er m arket 

m echanism s, such as posted-price m echanisms, and  dem onstrates th a t there is often a
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trade-off between allocative-efficiency and  bounded-rational com patibility. O f course, it­

erative auctions such as iB undle are in teresting because they  are B RC and  efficient.

8.2.4 Approximation-Proofness

T he strategy-proofness of a  m echanism  can break when agents have approxim ate valuations 

[San96]. An agent th a t is inform ed ab o u t the bids th a t ano ther agent will place can 

optim ize its local com putation  abou t value, and  subm it more useful bids in the  auction.

For example, the Vickrey auction is not strategy-proof for an  agent w ith an  uncertain  

value for its item  and  costly com putation. T h e  agent can avoid costly com putation  if it 

has access to  free inform ation abou t the  o ther agent.

P r o p o s it io n  8 .4  A bounded-rational agent with uncertain values and lim ited computa­

tion can improve its expected utility with inform ation about the bids from  other agents in 

a strategy-proof auction.

For example, if an  agent has uncertain  values on two item s, bu t can only refine its value 

for one item , it will help to know the likely prices on the items. T he bounded-rationality  

of agents can break the strategy-proofness of an  auction.

However, so long as a  m echanism  satisfies approximate-proofness, then  this loss in full 

strategy-proofness is not a  problem . T h e  concept of approxim ate-proofness parallels th a t 

of strategy-proofness, and  sta tes th a t the dom inant s trategy  for an  agent is to  report 

tru th fu l (but approxim ate) inform ation abou t its valuation function, o r tru th fu l statistics 

abou t its approxim ate valuation function.

D efinition  8.8 [approxim ate-proof] A direct-revelation m echanism  is approxim ate- 

p roof for s tatistics /i(0app,,), if s,(0app,i) =  M(®app,i) in dom inan t-strategy  equilibrium .

In o ther words, a  direct-revelation m echanism  is approxim ate-proof for s ta tis tics  

M(#app,i)i such as mean, upper- and  lower-bounds, etc. if the  dom inant s tra teg y  of an  agent 

is to reveal this aggregate inform ation abou t its approxim ation tru thfully . A special case 

is th a t the m echanism  sim ply allows the  agent to  provide its com plete approxim ation, for 

exam ple upper- and lower- bounds on the  value of every bundle.

Example. T he single-item  Vickrey auction, in  which an  agent can  repo rt a  single value 

for the  item, is approxim ate-proof for m ean statistics, w ith  an  expected utility  maxim izing

226

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



agent w ith  a  quasi-linear u tility  function. G iven approxim ate inform ation vt(0apP)i) the 

agent’s dom inant s tra tegy  is to report its tru e  expected value. To understand  this, notice 

th a t the  agent wants to  buy the item  whenever the  highest bid  from ano ther agent is less 

th an  its expected value.

In an  approxim ate-proof m echanism the loss in strategy-proofness for agents w ith ap­

proxim ate valuation functions and  lim ited com putation  is not necessarily a problem. In 

fact, in an  approxim ate-proof auction  it is beneficial for an  agent to allocate its com pu­

tational resources to maximize the effectiveness w ith  which its final valuation function 

im plem ents the optim al outcom e for com plete inform ation ab o u t agents’ preferences. If an  

agent can improve the quality of the final result through deliberation  ab o u t o ther agents, 

so th a t it can in tu rn  improve the quality o f its own valuation inform ation, then  this is 

useful.

O f course, we would prefer an  iterative auction th a t can guide agent m etadeliberation, 

and provide inform ation to guide an  agent’s valuation deliberation  for “free” .

I leave the design of approxim ate-proof m echanisms for com binatorial problem s as an  

im portan t open problem. Note, for example, th a t the  GVA is not approxim ate-proof w ith 

expected-value inform ation. T he property  th a t  holds in the single-item  Vickrey auction 

requires linearity, which does not hold in the com binatorial GVA. By the  revelation princi­

ple, clearly one could sim ply look for approxim ate-proof d irect-revelation mechanisms th a t 

allow an agent to report complete inform ation about its approximation  to the mechanism. 

P erhaps more interesting is the design of approxim ate-proof m echanisms for aggregate 

sta tis tics  on an  agent’s approxim ate inform ation abou t its preferences, such th a t tru th fu l 

inform ation of this s ta tis tic  is a  dom inant strategy.

8.3 Myopic Best Response

A running  assum ption in my dissertation can be s ta ted  as follows:

Claim 8.1 iB und le  solves realistic problem s with less in form ation and less agent com­

putation than GVA.
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In hard  problem  instances we will need com plete inform ation revelation from agents to 

com pute and verify an  optim al allocation. T h e  claim  is th a t despite the  sam e worst-case 

perform ance, the  average-case perform ance o f iB undle is good, in th a t we solve easy in­

stances w ith as little  inform ation as possible. Back in chapter 3, section 3 .2 .2 ,1 introduced 

a  few exam ples th a t can be solved w ith  approxim ate inform ation from agents. B ut, w hat 

abou t the com putation required by an  agent to  provide myopic best-response bids?

Leaving aside w hether or not the sequential complexity of myopic best-response is 

harder or easier than  direct-revelation complexity, let us consider the sim pler problem  of 

responding to a  single price vector.

D e f in it io n  8 .9  [best-response problem] C om pute set of bundles, B R (p), to  solve:

m ax u (S ) — p(S )

T he following section considers conditions on an  agent’s local problem , valuation prob­

lem, and  approxim ation algorithm  for best-response to be easy while com plete revelation 

is hard.

8.3.1 Structural Analysis

One approach is to characterize the  s tru c tu re  of an  agent’s valuation problem , approxim ate 

valuation complexity, and  exact valuation complexity, in which best-case myopic best- 

response is polynom ial-tim e com putable (in the  num ber of items) while worst-case com plete 

revelation is exponential-tim e com putable (in the  num ber of item s).

Consider the following cases, in which myopic best-response is com putable in best-case 

polynom ial time, while com plete revelation rem ains hard:

(a) A polynom ial-tim e approximate valuation algorithm, an  exponential-tim e exact 

valuation problem , and  a  polynom ial num ber of interesting bundles.

(b) A polynom ial-tim e approximate inference capability (e.g. if v ( S i) =  x  then  

v (S ')  < x , for all S '  X S i) , w ith  exponential inference power, a  polynom ial algo­

rithm  to com pute the  exact value o f a  single bundle, and  an  exponential num ber of 

in teresting  bundles.
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In  case (a), the  agent can com pute its com plete approxim ate valuation function in

polynom ial time, com puting an  approxim ate value for each bundles in  polynom ial time on

a polynom ial num ber of in teresting bundles. I t rem ains an  exponential-tim e problem  to 

com pute the agen t’s exact valuation function, because it m ust do an  exponential am ount 

of work on each o f a  polynom ial num ber of bundles.

In case (b), the  agent can com pute its com plete approxim ate valuation function in

polynom ial time, because it can com pute the approxim ate value o f an  exponential num ber 

of bundles (th is is w hat is m eant by the  “exponential power” sta tem en t) in polynom ial 

time, based on the exact value of a  single bundle, th a t it can also com pute in polynom ial 

time. T his approxim ate inference capability can be repeated  for a  num ber of “seed” 

bundles, until the agent has enough inform ation to  com pute its best-response. It remains 

an exponential-tim e problem  to com pute the  agent’s exact valuation function, because it 

m ust do a polynom ial am ount of work on each of an  exponential num ber of bundles.

O f course, this analysis is sim plistic and ignores the sub tle  question o f w hether the ap­

proxim ate inform ation allows an  agent to  com pute its best-response. Factors th a t should 

boost the ability  of an  agent to  com pute its myopic best-response w ith  approxim ate infor­

m ation and  lim ited deliberation  are:

-  high variance in values for different bundles w ith sim ilar prices, or ask prices th a t are 

very different in s tru c tu re  from values.

-  a  sm all num ber of in teresting  bundles to  enable single-bundle approxim ation m ethods 

w ithout inference across bundles

-  a  s tru c tu red  local problem  to allow approxim ate value inferences across bundles

-  linear prices instead of non-linear prices on bundles

T he results in the next couple o f sections present an  experim ental com parison between 

the com putational and  economic properties of different auction m echanism s w ith a  simple 

m odel of a  bounded-rational agent. T h e  results dem onstrate  the  effect th a t auction de­

sign can have on the  efficiency of an  allocation. Itera tive  auctions allow agents to  follow 

strategies w ith less value com putation  and  can lead to  more efficient allocations because 

agents use deliberation  to refine values on im portan t item s a n d /o r  bundles as feedback is 

provided by the m echanism  abou t the bids and  preferences of o th er agents.
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8.4 Costly Deliberation and Single-Item Allocation

T he first set of experim ents consider costly agent deliberation in a  single-item  allocation 

problem . I compaxe the perform ance of three sim ple auction models: a  sealed-bid auction, 

an  ascending-price auction, and  a  posted-price m arket.

An agent’s metadeliberation problem  is to  determ ine how much deliberation  to  per­

form before placing a  bid. T he decision is a  tradeoff between reducing uncertain ty  about 

the value of the good so th a t th e  bid is accurate , and avoiding the cost of deliberation. 

Given the model of an  agent’s valuation  problem  and  decision procedure we derive optim al 

m etadeliberation strategies for agents. T he key observation is th a t th e  value of deliber­

ation  is derived from the effect o f deliberation  on an agent’s bid. D eliberation can only 

be worthwhile when it changes an  agent’s bid and  expected u tility  from the decision is 

g reater th an  cost. To the best o f my knowledge, this was the first model o f norm ative 

agent m etadeliberation w ithin an  iterative auction  [Par99].

An agent’s optim al m etadeliberation  s tra tegy  does depend on the bids th a t o ther agents 

will make, even in incentive com patible auctions (unlike an agent’s op tim al b idding s tra t­

egy). For example, an  agent should  never deliberate  abou t its value for a  good if its current 

upper bound on value is less th an  the ask price, because further deliberation  can never 

cause the agent to accept the price. M etadeliberation is hard  because o f uncertain ty  about 

the bids of o ther agent and the  outcom e of additional deliberation.

I describe norm ative m etadeliberation strategies for risk-neutral agents, who receive 

utility  Ui — p  for purchasing a  good a t price p.

8.4.1 Model of Agent Bounded-Rationality

In Parkes [Par99] I propose a  sim ple m odel for the  valuation problem  o f an  agent and  derive 

myopic m etadeliberation strategies an d  bidding strategies in different auction  mechanisms. 

I do not expect the valuation problem s and  decision procedures of real agents (or real 

experts) to have characteristics th a t  m atch th e  precise assum ptions (e.g. d istribu tional 

assum ptions) of the model. However, I believe th a t the  sam e qualita tive effect will be 

observed w ith alternative models o f agent deliberation  and  hard  valuation problem s.

T h e  model of approxim ate valuation m atches some of the properties of s tan d ard  algo­

rithm ic techniques for solving h ard  op tim ization  problem s, such as Lagrangian relaxation,

230

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



depth-first search, and  branch-and-bound. Furtherm ore, the  m odel su p p o rts  a  mode of 

interaction betw een people and  software bidding agents th a t is provided in some current 

on-line auctions [PUF99],

Every agent i  has an  unknow n tru e  value for a  good, and  m aintains a  lower bound 

v j and  upper bound u,- on its value, w ritten  [u,u,j. Agent i  believes th a t its tru e  value is 

uniformly d istribu ted  between its bounds, Uj ~  J0)- G iven th is belief the  expected

value for the  good is t)< =  (y; +Vi ) / 2 .  As an  agent deliberates its bounds are refined and 

its belief abou t the value of the good changes, w ith expected value v  converging to v over 

time.

Let Aj =  Vi — Vi denote an  agen t’s current uncertain ty  abou t the value of the good. 

Agents have a  deliberation  procedure th a t ad justs the bounds on value, reducing uncer­

tainty by a  m ultiplicative factor a ,  where 0 <  a  <  1. T he new bounds are a A j apart, 

and consistent w ith the curren t bounds (but not necessarily ad justed  sym m etrically). For 

a sm all a  the uncertain ty  is reduced by a large am ount, and  we refer to  (1 -  a)  as the 

computational effectiveness of an  agen t’s deliberation procedure.

An agent believes th a t the new expected value v[ for the good afte r deliberation will 

be uniformly d istribu ted  ti[ ~  U{y_i +  aAj/2,t7,- — a A j/2 ) , such th a t the  new bounds are 

consistent w ith the curren t bo u n d s.1

Finally, there is a  cost C  associated w ith each deliberation step  perform ed by an agent, 

m easured in units of paym ent; i.e. an  agent’s u tility  for value v  and cost C  is v — C.

8.4.2 Auction Models

We com pare the following auctions: second-price sealed-bid [SB], sequential posted-price 

[PP], and ascending-price [AP]. T he [PP] and [AP] auctions are BRC (dom inant and 

myopic), the [SB] auction  is not BRC.

T he auctions place different inform ation requirem ents on the auctioneer: the [PP] 

auction requires a  well-informed auctioneer for good perform ance, because the  ask price 

is critical; while the  [AP] and [SB] auctions set the price dynam ically from bids received 

during the auction.

‘This belief that the new bounds are uniform with respect to the current bounds is inconsistent with 
the prior belief that the actual value of the item is uniformly distributed between the bounds. To support a 
uniform value for the item over a sequence of deliberations the distribution for the value in the next round 
must put more weight on values towards the center of the range. In simulation this distribution is carefully 
computed to maintain a uniform prior for the true value after any sequence of deliberations.
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Second-price Sealed-bid [SB]

Actions: b id .

In  [SB] the  auctioneer accepts bids 6, from agent i, and  th en  closes the auction. T he 

item  is sold to the  agent th a t subm its the highest bid, for a  price equal to  the second-highest 

bid (or $0 if only one bid is received). T his is the  Vickrey auction.

Sequential Posted-price [PP]

Actions: a c c e p t , r e j e c t .

In [PP] the auctioneer offers the item  to each agent sequentially, for price p. T he item  

is sold to the first agent th a t a c c e p ts  the  price. T he item  is no t sold if every agent r e j e c t s  

the  price. T he [PP] auction is bounded-rational com patible (see Section 3). In  sim ulation 

I optim ize the  ask price off-line to  maximize revenue, given agent bidding and  deliberation 

strategies. T his is equivalent to assum ing a  well-informed auctioneer.

Ascending-price [AP]

Actions: r e g i s t e r ,  l e a v e ,  b id ,  d e l ib e r a t e .

I use a  variant on the s tandard  ascending-price (English) auction  th a t is designed to 

sim plify the analysis of deliberation and  bidding strategies, w ithout changing the per­

formance of the auction for rational agents. T he auction includes a  nom inal charge for 

rem aining in the auction, and  allows agents to explicitly s ta te  th a t they will le a v e  the 

auction.

Initially  all agents r e g i s t e r  w ith the  auctioneer. T hen , agents can place bids until 

they le a v e . Bids indicate the m axim um  th a t an agent is currently  prepared to  pay for 

the item . A bid 6; is accepted if bi >  p, and  the  ask price is increased to  e above the 

second-highest bid received, for some bid increm ent e >  0. Agents can place new bids a t 

any time, and  leave the auction a t any time. Agents are charged a  nom inal partic ipation  

fee to  rem ain in the auction, unless they hold the  highest bid.

A fter a  period of tim e w ithout new bids, or w ithout an  agent leaving the  auction, 

the  auctioneer announces the num ber of active agents in th e  auction, an d  the auction  

enters a  "going going gone” phase. An agent m ust b id , le a v e  or d e l i b e r a t e  to keep the 

auction  open. W hen an  agent decides to deliberate  it sends a  d e l i b e r a t e  message to the 

auctioneer. T he auctioneer then  gives th e  agent tim e to  deliberate, and  then  expects either
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a b id  or a le a v e  message. T he agent is d ropped  from the  auction  if it does no t respond. 

Finally, the auction will close, w ith the  item  sold to the agent w ith  the  highest bid for the 

value of the second-highest bid received.

An alternative solution to  prevent agents free-riding off the  deliberation  of o ther agents 

is to  add a patch  to the rules o f the English auction. T he auctioneer chooses an  agent a t 

random  in each round of the auction, and  requests th a t it place a  bid or leave the  auction.

8.4.3 M etadeliberation and Bidding Strategies

In this section I briefly describe optim al agent deliberation  and  bidding strategies in each 

auction. T he analysis of an  agen t’s optim al m etadeliberation stra tegy  in [PP] is presented 

in the A ppendix of this chapter. T he op tim al m etadeliberation stra tegy  in [PP] is also 

relevant in [AP]. T he value of deliberation  is com puted w ithin Russell & W efald’s [RW91] 

decision-theoretic framework.

Second-price Sealed-bid [SB]

T he optim al bid, 6*, for a risk-neutral agent w ith approxim ate value [uj,SJi] th a t will 

perform  no fu rther deliberation, is to  bid

To decide how long to  deliberate before bidding an  agent needs to  know the  u tility  of 

its bid, bu t this depends on the  bids placed by o ther agents—  inform ation not available 

to an  uninform ed agent. T h e  agent can assum e th a t the highest outside bid, p, is equal to 

its current approxim ate value for the  item , p  =  v b u t this will lead the agent to perform 

too much deliberation. Similarly, if an  agent assum es th a t p  =  v  or p  =  v  it will tend to 

perform  too little  deliberation.

I assum e th a t agents can com pute a  sym m etric pure-strategy Nash equilibrium, where 

every agent perform s the  sam e num ber o f deliberations. T he equilibrium  num ber of de­

liberations are com puted off-line (to  sim ulate long-term  learning), so th a t the  to ta l cost 

of deliberation  is ju s t less th an  the expected u tility  to  the  agent th a t wins the  auction. 

T his provides a  best-case num ber of deliberations for a  sym m etric pure N ash equilibrium  

of m etadeliberation  decisions.
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Value bounds Deliberation bounds Expected value Optimal action
for price p =  5

[6 ,8]
[4,7]

[3.5,6 .5]

[6 .8 ,7.2] 
[5.05,5.95]

7
5.5

accep t
accep t

[4.55,5.45] d e l ib e r a te
[3,8] [4.5,6.5 5.5 d e l ib e r a te

[4.5,5.3] 4.9,4.9 4.9 r e je c t
[2,4] 2 .8 ,3.2 3 r e je c t

Table 8.1: Deliberation bounds for an agent with a  =  0.5 and C  =  0.05 and different approximate 
values. The optimal action (d e lib e ra te , accept or r e je c t )  is computed for ask price p =  5.

Sequential Posted-price [PP]

The optim al bidding stra tegy  depends on the relation between the ask price p and the 

agent’s belief abou t its expected value 0*:

6* =
accept , i f  p < i i  

reject , otherwise.

In [PP] the u tility  u.i{b’ ) depends on the expected value vx, b u t not on the bids placed 

by o ther agents. T he optim al deliberation stra tegy  depends on the price, an  agent’s ap­

proxim ation, and the deliberation procedure param eters a  and  C. An agent will deliberate 

while the ask price is “close” to its current approxim ate value t);, where close is defined 

w ith deliberation bounds:

Definition 8.10 [deliberation bounds] An agent should deliberate when the ask price 

p  is dx < p  < d{, where dt and dx are lower upper deliberation  bounds, and depend on

[vi,v i ] , a , C.

I derive an  analy tic formula for the deliberation bounds in the A ppendix. Table 8.1 

presents bounds for an  agent w ith a  =  0.5 and C  =  0.05, and  different approxim ate values. 

T he tab le also records the  optim al action for ask price p  =  5, i.e. deliberate, a c c e p t 

or r e j e c t .  T he deliberation  bounds are always tighter th an  the  value bounds, because 

an agent should never deliberate when the ask price is ou tside its value bounds because 

deliberation cannot change its bid. D eliberation is more useful as the price is closer to 

expected value, uncertain ty  increases, and deliberation effectiveness increases, because it 

is more likely to change an  agent’s bid.

Figure 8.3 (a) illustra tes the combined bidding and  deliberation  s tra tegy  for an  agent in 

[PP], T h e  stra tegy  is as follows: when the ask price is between the bounds on deliberation,
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d e l i b e r a t e .  Otherwise: if the  ask price is less th an  vi (expected value o f the item ), 

a c c e p t ,  and if the ask price is g reater th an  i)j then  r e j e c t .

Reject
£

Deliberate.

Accept

(a) Posted Price auction [PP].

[ ] |  Leave auction.

[2) Wait. D eliberate if 
auction w ill close, with 
probability 1 /  (N.a- 1)

Active
Agents

[11 Bid.

(b) Ascending Price auction [AP].

Figure 8.3: Optimal bidding and deliberation strategies in each auction. The optimal action 
depends on the ask price, p, and the deliberation bounds. Agents are more bounded-rational from
level [4] to [1],

Ascending-price [AP]

T he optim al bidding strategy  for an  agent in [AP] depends on the relation between the 

current ask price and  an  agen t’s deliberation bounds.

* ~
b id  , if p < di

b’ =  < le a v e  , if p  > di

w a it  , otherwise.

T his s trategy  is equivalent to  accepting any ask price less th au  d, and  rejecting any ask 

price greater than  di, which is the  op tim al s tra tegy  in [PP]. However, when th e  ask price is 

between the bounds an  agent will now w a it , and  only deliberate when it m ust deliberate

and bid to keep the auction open. Agents th a t e ither w a it or b id  rem ain active. Let N a

denote the num ber of active agents.

Even though an  agent has tin op tim al m yopic  s trategy  to d e l i b e r a t e  a t the current 

ask price, prices increase as agents bid. T h e  price might increase so th a t p  >  di, in which 

case the agent is b e tte r  to  le a v e  the  auction  th an  d e l i b e r a t e .  In  the going-going-gone
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phase of the auction, an  agent w ith bounds d{ < p  <  d*, will wait if ano ther agent will 

deliberate and bid, and  only deliberate and  bid to  prevent th e  auc tion  from  closing .2 I 

call this the  “w aiting gam e” . Agents try  to free-ride off the  deliberation  o f o ther agents. 

All determ inistic Nash equilibrium  solutions have a  single agent th a t deliberates, while 

all o ther agents vait: if no agent deliberates then  it is a  ra tio n a l un ila tera l deviation 

for any single agent to deliberate, and if more th an  one agent deliberates th a t it is a 

rational un ilatera l deviation for one of those agents to vait.

In the unique mixed  N ash equilibrium  (also sym m etric), w ith  agents th a t  randomize 

am ong strategies, every agent d e l ib e r a t e s  w ith probability  1 /{ N a — 1). T h e  denom inator 

is N a — 1 because the agent th a t is currently  holding the highest bid will not deliberate. 

Uninformed agents can im plem ent this s trategy  because th e  auc tion  announces the num ber 

of active agents N a a t the  s ta r t  of every round. T h e  agents do not need to know the 

strategies or u tility  functions of o ther agents. Figure 8.3 (b) illustra tes the combined 

bidding and deliberation  stra tegy  of an agent in [AP]. T he N ash equilibrium  allows agents 

to deliberate sequentially. Agents exchange inform ation abou t th e ir local problem s through 

the ask price as they deliberate  and bid.

We assum e in sim ulation th a t agents im plement this outcom e, an d  sim ulate the mixed 

Nash equilibrium  by choosing an  active agents a t random  to deliberate . An agent th a t is 

selected deliberates un til th e  ask price is outside its deliberation  bounds, when it either 

bids or leaves the auction.

8.4.4 Experimental Results: Costly Computation

We com pare the perform ance of each auction  in term s of the allocative efficiency.

In each tria l we assign a  value for the  item  to each agent from  the  sam e d istribution, 

Vi = U {0 ,10), uniform  betw een 0 and  10. Every agent has in itia l bounds on value, [t/i,uf] =  

[0,10] (i.e. ignorance). Each auction is tested  w ith four different agent bounded-rational 

levels, as sum m arized in Table 8.2, and  w ith between 1 = 5 an d  I  =  100 agents. In 

each experim ent all agents have the same deliberation effectiveness, 1 — a ,  and  the same 

deliberation cost, C. T h e  bounded-rational level can be in terp re ted  as a  function of the 

com putational power of an  agent’s deliberation procedure, or a  function o f the difficulty 

of an  agen t’s valuation problem . For example, moving from level [1] to  level [4], either the

‘ W e assume tha t the auction allows enough time for an agent to deliberate later in the auction.
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valuation problem  gets easier, or the agents have more com putational resources.

Bounded-rational
Level

1 - deliberation 
effectiveness 

a

Deliberation
cost

C

Initial Deliberation 
bounds 

d d
[1] 0.7 0.5 5 5
[2] 0.3 0.5 4.2 5.8
[3] 0.7 0.05 2.9 7.1
[4] 0.3 0.05 1.8 8.2

Table 8.2: Bounded-rational levels and corresponding initial deliberation bounds

We provide the agents w ith optim al deliberation  and  bidding strategies and  sim ulate 

agent deliberation procedures. In particu lar, we com pute new value bounds such th a t: (I) 

the tru e  value rem ains between the bounds; (2 ) the tru e  value is uniformly d istribu ted  

between the bounds w ith respect to all stochastic sequences of deliberations.

In the [PP] auction we optim ize the  ask-price for revenue. In the [AP] auction we select 

the m inim um  bid-increm ent th a t provides agents w ith positive u tility  from participation.

8.4.5 Second-price Sealed-bid Auction [SB]

We choose the num ber of deliberations perform ed by each agent in the [SB] auction off­

line, selecting the m axim um  num ber o f deliberations for which the  agents still gain utility  

th rough partic ipation  in the auction .3 F igure 8.4 plots efficiency as the num ber of agents 

increases, for each level of bounded-rationality , and  also the op tim al perform ance (w ith 

agents th a t know the value of the resource). T he results are averaged over 500 trials.

T he sealed-bid auction perform s well for sm all num bers of agents and easy valuation 

problem s (or agents th a t have sufficient com putational-resources), i.e. for up  to  20  agents 

for type [3] and [4] agents, and  for all types of agents when there are less th an  5 agents. 

However, the auction fails a t high levels of bounded-rationality , (e.g. [1] and  [2]), even w ith 

sm all num bers of agents. No agent can deliberate  when the to ta l cost for every agent to 

perform  a single deliberation is greater th an  the  expected utility  to  the  agent th a t  receives 

the resource. Every agent m ust perform  the  sam e num ber of tim es in the [SB] auction .4

3The agents each perform the following numbers of deliberations for each level of bounded-rationality: 
[1 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ]; [1 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ]; [17 ,10 ,7 ,3 ,2 ,1 ,1 ,1 ,0 ,0]; [16 ,10 ,6 ,2 ,1 ,0 ,0 ,0 ,0 ,0], for /  =  
[3, 4,5,10, 20,30,40, 50,60,100].

4 In an alternative model, we could compute a mixed-strategy equilibrium for agent deliberation, where 
agents deliberate m times with probability p. The problem is th a t there are many such equilibrium, for 
example 10 agents can deliberate twice for the same cost as 20 agents th a t deliberate once. There is no 
simple mechanism for equilibrium selection in a system of uninformed agents.
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Figure 8.4: Efficiency in the sealed-bid [SB] auction, for agents with bounded-rational levels [1] 
to [4], and for agents that know their value for the resource [Opt],

W hen no agent deliberates the  efficiency is approxim ately 50% because every agent bids 

bi =  5, and the resource is allocated a t random . T he auction  is not bounded-rational 

com patible, so agents cannot reason effectively about when to deliberate. T he trad itional 

result from auction theory, for agents th a t know their value for the  resource, is illustrated 

as [Opt]. In this case [SB] achieves 100% efficiency for all num bers o f agents because it is 

a dom inant s tra tegy  for agents to  bid their tru e  value for the  resource [PMM87].

8.4.6 Sequential Posted-price Auction [PP]

We set the price in the [PP] auction to maximize revenue .3 F igure 8.5 compares the 

perform ance of [PP] ‘o’ w ith [SB] ‘x ’ for each bounded-rationality  level, as the num ber of 

agents increases. S ubplot [4] also shows, line the perform ance of [PP] w ith agents th a t 

know th e ir value for item . T he results are averaged over 1000 trials.

T he [PP] auction achieves low efficiency w ith sm all num bers of agents, bu t tends to 

support solutions w ith  reasonable efficiency as the num ber of agents increases. In com par­

ison [SB] is alm ost 100% efficient for sm all num bers of agents, b u t fails for larger numbers 

of agents. T he [PP] auction does not perform  well for sm all num bers of agents because 

the optim al price varies considerably across trials. Similarly, [PP] w ith agents th a t know

5The price is set as follows for each level of bounded-rationality: [4.9,4.9,4.9, 4.9,4.9,4.9,4.9],
[5.8,5.8,5.8, 5.8,5.8,5.8,5.8], [6.6,6.6,7.0, 7.1,7.1,7.1,7.1], [6.8,7.8,8.2, 8.2,8.2,8.2,8.2], for I = 
[5.10,20,30,40, 50,100]. The optimal ask price for agents tha t know the value of the item is: [6.8,7.8,8.6, 
8.8,9,9.3,9.5].
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Figure 8.5: Efficiency in the posted-price [PP] ‘o’ and sealed-bid [SB] ‘x ’ auctions, for agents with 
bounded-rational levels [1] to [4], We also plot in subplot [4] the performance of [PP] with agents 
that know their value for item (line V ).

their value of the resource perform s worse th an  [SB] w ith bounded-rational agents for 

sm all num bers of agents. However, when there are m any agents, offering agents a  fixed 

price sequentially allows agents to deliberate ab o u t their value for the resource w ithout 

losing utility. Agents receive an exclusive offer of the  resource, a t a certain  price. There 

is much more uncertain ty  in the [SB] auction. T he auctions have the sam e perform ance 

w ith agents th a t have lim ited com putational resources (level [1]). In  this case there is no 

ask price th a t  will m otivate agents to  deliberate (see deliberation  bounds in Table 8.2), 

and the best the auctioneer can do is sell the resource to  the  first agent for p =  4.9.

Also, notice th a t w ith agents th a t know their value for the  resource, the efficiency 

approaches 100% as the num ber of agents increases. In com parison, the perform ance of 

[PP] w ith bounded-rational agents does not approach 100%, even as the num ber of agents 

increases. Let us consider type [4] agents. Table 8.2 shows th a t these agents have in itial 

deliberation  bounds [d,d\ =  [1.8,8.2]. T his m eans th a t if the auctioneer charges a  price 

p > 8 .2 , no agent will deliberate, and  the resource will not be sold because every agent 

will r e j e c t  the  price. T he ask price is lim ited to p  =  8.2, even for m any agents, and  this 

lim its the ab ility  of the auctioneer to  sell the resource to the  agent w ith the highest value.
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8.4.7 Ascending-price Auction [AP]

We set the  bid-increm ent in the [AP] auction  to  the  m inim um  value th a t allows agents to 

gain positive u tility  from partic ipa tion  in  th e  auc tion .6 F igure 8.6  com pares the  perfor­

m ance of [AP] ‘+ ’ w ith [PP] ‘o ’ for each bounded-rationality  level, as the num ber of agents 

increases. T he results are  averaged over 200 trials.

M [21

- 0.8

0.6

0.4
0 50 100

Num ber ol Agents. N

1 ^  Pi

- 0.8

' 0.6

0.4.
0 50 100

Num ber of Agents, N

1 + s. [41

- 0.8

0 SO 100
N um ber of Agents. N

0  50 100
Num ber of Agents. N

Figure 8 .6 : Efficiency in the ascending-price [AP] ‘+ ’ and posted-price [PP] ‘o’ auctions, for agents 
with bounded-rational levels [1] to [4].

The [AP] auction  has very good perform ance, m atching [SB] for sm all num bers of 

agents, and  m atching [PP] for larger num bers o f agents. In  particu lar, for agents th a t 

have m oderate com putational resources (i.e. levels [3] and [4]), th e  [AP] auction  generates 

higher final ask prices th an  [PP] and  su p p o rts  b e tte r  efficiency. T he perform ance of [AP] 

holds up as the num ber o f agents increases because agents deliberate  in sequence, and  wait 

for o ther agents to deliberate. A round th e  sam e num ber o f agents deliberate  for all large 

num bers of agents, because the bid increm ent is finite. [PP] perform s b e tte r  th an  [AP] 

w ith agents of type [2], because in this special case the ab ility  to  set an  exact ask price 

before the auction is critical to provide incentives for the right agents to  deliberate.

[AP] always outperform s [SB], achieving as good a  perform ance when [SB] does not 

fail, bu t perform ing b e tte r  th an  [PP] when [SB] fails. This is an  in teresting result, given 

the strateg ic equivalence o f the English an d  Vickrey auctions in  trad itio n al auction  theory

6The bid-increment is set as follows for each level of bounded-rationality: [1 ,1 ,1 ,1 ,1 ,1 ,1 ], [0.7, 
1 ,1 ,1 ,1 ,1 ,1], [0.2,0.2,0.4,0.4,0.5,0.5,0.5], [0.2,0.2,0.6,0.6,0.6,0.6,0.6], f o r /  =  [5,10,20,30,40,50, 100].
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[PMM87]. It is perhaps surprising th a t the perform ance o f [AP] can be sustained for large 

num bers of agents. T he finite bid increm ent lim its the  to ta l am ount o f deliberation in the 

auction, even as the  num ber of agents increases.

8 .4 .8  M ix t u r e  o f  A g e n ts

Let us consider a  m arket w ith a  mixture of agents; some w ith  hard  valuation problems 

("inexperienced agents” ), and  some w ith easy valuation problem s ( “experienced agents” ). 

We assum e a  fraction /  of inexperienced agents; and  a fraction 1 — /  o f experienced agents 

th a t know their value Vi for the item. Fig 8.7 plots perform ance for I  =  30, w ith a  =  0.3 

and  C  =  0.05.7

[AP]

[PP1

0.8

[SB]

0.6

0.4.
0.2

Fraction
0.4 0.6 0.0

Fraction of Bounded-Rational Agents

F ig u re  8.7: Performance of [SB], [PP] and [AP] for a  m ixture of agent types, with I  = 30 agents. 
Fraction /  of agents have bounded-rational level [4], while fraction 1 — /  of agents know their vaiue 
for the resource.

In this example, the perform ance of [AP] dom inates [SB] and  [PP] for all m ixtures 

of agents. W ith  many experienced agents, e.g. /  <  0.4, th e  [SB] and [AP] auctions 

are approxim ately equivalent, and perform  b e tte r  th an  the  [PP] auction. (This is the 

trad itional auction  m odel). For a  m edium  to large fraction  o f inexperienced agents, /  >  0.4, 

the perform ance of [SB] falls off, while [PP] approaches [AP]. T h is illustra tes the value of 

a bounded-rational com patible auction ([AP] vs. [SB]) w ith  bounded-rational agents.

' In [SB] no agents perform any deliberation, In [AP] we choose bid increments: [0.2,0.3,0.4,0.4,0.4,0.6] 
for /  =  [0,0.2,0.4,0.6,0.8,1.0]. In [PP] we choose the following ask-price: [8.8,8.6,8.2,8.2,8.2,8.2].
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8.4.9 Comparing Agent Deliberation across Auctions

In this section we com pare agent deliberation  in a  system  w ith I  =  30 agents, and  a  =  0.7 

and C  =  0.05 (level [3] in Table 8.2). In  this problem  the  [SB], [AP] and  [PP] auctions 

achieve efficiency of 92.1%, 96.1% and  91.6% respectively. T he [AP] auction  outperform s 

the o ther two auctions. T he average u tility  for an agent th a t wins each auction  is 2.52, 

1.56 and  1.87 in the [SB], [AP], and  [PP] auctions, so th a t the auctions can support an 

average of 1.7, 1.0 and  1.2 deliberations per-agent (dividing by IC ).

Optim al
C o nstr-O p tim al

S10

A gent V alue, vt

(b)

[AP)

£
[SB]S

o
IE30.5

[PP]
z

A gent V alue, vt

(a)

Figure 8 .8 : Comparison of Agent Deliberation for /  =  30 agents with bounded-rational level 
[4]. (a) Average number of deliberations performed by a single agent, as a function of the agent’s 
(true) value for the item, (b) Average best-case number of deliberations to solve allocation problem 
(Optimal), and average best-case distribution of a  constrained number of total deliberations (1 per 
agent) to maximize probability of correctness (Constr-Optimal).

Figure 8.8  (a) plots the average num ber of deliberations perform ed by agents in each 

auction, as a  function of the true value of the  agent for the resource, averaged over 500 trials. 

T he agents in [SB] all perform  the  sam e num ber of deliberations, a  single deliberation in 

this case because the u tility  can su p p o rt a  m axim um  of 1.7 deliberations per-agent. T he 

average num ber of deliberations perform ed in [AP] is 1.0 (compared to  a  m axim um  possible 

of 1.0), and  0.29 deliberations are perform ed in [PP] (compared to a  m axim um  possible of 

1 .2 ) .

In fact, 81.2% of agents in [PP] perform  no deliberation, including 80.9% o f agents 

w ith true value between 8 and  10. T his occurs when o ther agents buy the  item  earlier, 

and  represents a  clear loss in allocative efficiency. T he seller cannot set a  higher price than  

7.1, because no agents would deliberate and the  item  would rem ain unsold (see the in itial 

upper bound on deliberation in Table 8.2). In  com parison, 53.4% of agents in  [AP] do
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not deliberate, including 51.8% of agents w ith value betw een 8 and  10. In  b o th  system s 

agents w ith  high value for the  item  choose to  deliberate  m ore th a n  agents w ith low value, 

we show th a t this is useful to enhance the quality  of resource allocation.

Figure 8 .8  (b) plots th e  best-case deliberation in  to  solve th e  allocation problem  (Op­

tim al), averaged over 500 trials, and  the  best-case d is trib u tio n  of to ta l deliberation  (1 per 

agent) to m axim ize probability  of correctness (C onstr-O ptim al), averaged over 50 trials.

T he O ptim al deliberation  d istribu tion  in a  problem  instance is com puted assum ing an 

oracle, th a t decides which agents should deliberate and  cooperative agents. T he oracle has 

perfect inform ation abou t the true  value of each agent, b u t canno t predict the stochastic 

n atu re  of the  valuation procedure. D eliberation continues un til the  lower bound on one 

agent is g reater th an  the  upper-bounds on all o ther agents. T h e  C onstrained-O ptim al 

solution is com puted for a  to ta l deliberation budget Cmax by com puting the best solution 

from the subset of deliberation  allocations w ith increasing deliberation  allocated to agents 

w ith higher values (this is sufficient).

Notice th a t the  agents w ith high value deliberate m ore th an  the agents w ith low value 

in O ptim al and  in C onstr-O ptim al. Every agent m ust deliberate  while its upper bound is 

greater th an  the lower bound  of the agent w ith th e  greatest value, and  th is requires more 

deliberation  for agents w ith  high values. In O ptim al the  average num ber of deliberations 

perform ed per-agent is 2 .6 , while the  three agents w ith g reatest value perform  an average 

of 5.8 deliberations each, and  the  single agent w ith the g reatest value perform s an  average 

of 10.2 deliberations.

T he [AP] auction allows agents w ith high values to  com pute more accurate valuations, 

and  place more accurate bids, th an  agents w ith low values. Given a  fixed budget for to tal 

deliberation  (because agents will not lose u tility  from partic ipa tion  in the  auction) this 

enhances the  efficiency of resource-allocations. In  [PP] the  ask price m ust be low enough 

for agents to  deliberate, and  this can make it im possible to  separate  agents w ith high value 

from agents w ith m edium -high value. Agents w ith  m edium -high value m ight accept the 

price, while agents w ith  high value are not offered th e  item . In  [AP] the  ask-price increases 

to the agen ts’ in itia l lower bound on deliberation, and  th en  continues to increase as agents 

deliberate  an d  bid sequentially. As the price increases it provides incentives for agents 

w ith high values to  continue to  deliberate, while agents w ith  lower values drop out of the 

auction.
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8.5 Limited Computation and M ultiple Items

A second set of experim ents considered lim ited com pu tation  and  m ultiple items, and  looked 

a t the  ab ility  to boost allocative efficiency w ith  bounded-rational com patible auction de­

sign, th rough the  prom otion of b e tte r  m etadeliberation . A useful BRC auction  will m axi­

mize allocative efficiency in a  particu la r problem , given self-interested agents w ith lim ited 

com putation .

T he results highlight the  advantages of BRC auctions when agents have lim ited com­

p u ta tio n  and  hard  valuation problem s, especially in m ulti-item  allocation problem s when 

agents m ust com pute the value of a  num ber of different item s or bundles of items. For 

exam ple, the  English auction achieves g reater allocative efficiency w ith less agent com pu­

ta tio n  th an  a  sealed-bid Vickrey auction.

I a d o p t  a  s im p le  m o d e l o f  m e ta d e lib e r a t io n  in  a  d e c e n tr a liz e d  s y s te m , th e  lazy deliber­

ation and eager bidding (LDEB) m o d el:

• Lazy sequential deliberation. Sequential (asynchronous) deliberation ensures th a t no 

two agents deliberate a t the sam e time. A gents are selected a t random  to e ither bid 

or deliberate, and deliberate if the  value from  deliberation  is greater th an  the value 

from bidding at th a t moment.

•  Eager bidding. Agents bid whenever the expected  u tility  from bidding is g reater than  

the  expected u tility  from deliberation , given the  curren t approxim ate valuation of 

the agent.

T he sequential deliberation  model, coupled w ith  eager bidding and  instan t updates by 

the  auctioneer of the s ta te  of the auction  (e.g. ask prices, curren t allocation) maximizes 

the  value of increm ental deliberation  by agents. Inform ation ab o u t agents’ refined values 

is shared w ith o ther agents (via new prices, etc.) before any agent perform s additional 

deliberation.

Figure 8.9 illustrates the  LDEB m odel o f agent partic ipation . Agents’ bids, the s ta te  

of the auction  and agents’ values w ith  the  following steps: (1) agents w ith  optim al bids 

place bids w ith the auctioneer; (2 ) th e  auctioneer updates th e  s ta te  of the  auction; ( 1) 

and  (2) repeat; (3) when quiescence is reached, e ith e r (a) no agent wants to  deliberate  and  

the  auction  term inates or (b) one agent th a t prefers to  deliberate  than  have the  auction  

te rm inate  perform s an  increm ental am ount of deliberation  on its value, then  back to ( 1).
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Figure 8.9: The Lazy Deliberation and Eager Bidding Agent Participation Model.

T he lazy deliberation and  eager bidding m odel provides a  general m odel to  compare 

auction perform ance w ith  bounded-rational agents. In  th is case the b id /d e lib e ra te  decision 

of agent agent is determ ined for agents w ith lim ited com putation , b u t it could equally well 

apply to agents w ith costly com putation. T he LDEB m odel is reasonable in a  system  

w ith fast com m unication an d  lazy deliberation, and  provides a  best-case m easure of the 

allocative efficiency of auctions when agents have lim ited or costly com putation.

8.5.1 Performance Metrics

I propose m etrics bounded-efficiency and bounded-computation to  com pare the performance 

o f  different auctions in a  particu lar problem  a t design time. T h e  m etrics assum e a  model 

o f  agent deliberation procedures, com putational resources, and  valuation problems. 

Bounded-efficiency and  bounded-com putation Eire defined as follows:

•  Bounded-efficiency P er f A (Cmax)  of auction A  is the allocative-efficiency achieved 

w ith agents th a t have lim ited com putation budget C max.

•  B ounded-com putation CompA (Cm!iX) of auction A  is th e  average com putation per­

formed by agents w ith com putation  budget C max.

T he bounded-efficiency and  bounded-com putation m etrics are com puted in sim ulation 

w ith the l d e b  m odel and  lim ited agent com putation. T he m etrics are closely related 

to  the theoretical characterization of BRC auctions. For exam ple, the  ra tio  of bounded- 

com putation  to  com putation  budget provides a  d irect m easure o f the  bounded-rational
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com patibility  of an auction:

T heorem 8.4 Auction A  is bounded-rational compatible i f f  the bounded-computation 

CompA (Cexax:x.) <  Cexacti where Cexact is the com putation required to compute exact values 

fo r  all items.

In the  Vickrey auction CompA (Cexaci) =  Cexacti while in the  English auction 

CompA (Cexact) <  Cexact because agents can bid optim ally  w ithout exact values for items.

An asym ptotic measure of the efficiency of an auction  m echanism  is given by the 

m axim um  bounded-efficiency of an  auction, P e r fA , is com puted:

Perf'A  =  lim P e r fA (C)
C -* o o

In the English auction P er fA =  100%, while in a  posted-price m arket P e r fA < 100%.

8.5.2 Auction Models

T he experim ents study  three different allocation problem s: the single-item  problem , the 

linear-additive problem , and the assignm ent problem. T he linear-additive and assignm ent 

problem s are defined in the following way:

• Linear-additive problem. A llocate |G | item s to m aximize to ta l value over all agents, 

for agents w ith additive values for item s. T he value for bundle 5  C G  of items 

v i {S)  =  item s th a t have values Vi{j) =  U( 0,10).

•  A ssignm ent problem. A llocate |G | item s to  m axim ize to tal value over all agents, 

for agents th a t dem and a t most one item . T he value for bundle 5  C G  of items 

Vi(S) =  m a x j^ U jO ), w ith item s th a t have values u,(y) =  17(0,10).

T he auction models, i.e. Vickrey, ascending-price and  posted-price m arket, are adapted 

for each problem  dom ain.

• Second-price sealed bid auction  (Vickrey). In  the additive-value m ulti-item  problem  

we allow agents to  subm it O R  bids, e.g. (A ,p i) OR {B .p i)  indicates th a t the agent 

will pay up to  p i for item  A  and up to  P2 for item  B ,  for as m any item s as desired. To 

com pute the Vickrey outcom e separate  the  bids across item s, an d  run  an  individual
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single-item  Vickrey auction for each item . In  the assignm ent problem  we allow agents 

to subm it XO R bids, e.g. (A ,p i) XOR (B ,P 2 ), indicates th a t an  agent will pay up to 

pi for A  or up to  p2 for item  B  b u t does not want bo th . T h e  allocation and  Vickrey 

paym ents in th is case can be com puted by solving th e  problem  w ith  all agents and 

then  once w ithout each agent in tu rn . A linear-program  will solve the  assignm ent 

problem .

•  Vickrey-minus. T h e  Vickrey-minus auction is a  Vickrey auction, except in an initial 

round d  agents are elim inated. T h e  dropped agents perform  no com putation  about 

their values for item s and  place no bids.

•  Simultaneous Ascending Price Auction. T he sim ultaneous ascending-price auction 

im plem ents a  separate  ascending-price auction for each item . All auctions close 

sim ultaneously when every individual auction has reached quiescence.

• Posted-price. I consider two sim ple generalizations of the  posted-price m arket for the 

additive and assignm ent m ulti-item  problem s. In b o th  cases the  auctioneer chooses 

one price p, the  sam e for all items. In the additive-value problem  each item  is taken 

in tu rn  and offered sequentially to agents, w ith agents selected a t random . Item s are 

sold to  the first agent to accept the  price, and rem ain unsold if all agents reject the 

price. In the assignm ent problem  all unsold items, in itially  all item s, are offered to 

agents, w ith agents selected a t random . Item s are sold to  th e  first agent to  accept 

the price, and rem ain unsold if all agents reject the price.

8.5.3 Agent M etadeliberation

T he model of agent com putation  shares all the features of th a t  in Section 8.4 except th a t 

agents now have lim ited deliberation instead of COSTLY COMPUTATION. Each invocation 

of the valuation procedure costs an  agent a  single un it, and  each agent has a  lim ited 

budget Cmax- If an  agent is selected to deliberate in the LDEB m odel, it deliberates if its 

expected utility  from  deliberation is positive. O therwise it places its op tim al bid, given its 

approxim ate inform ation ab o u t its values for different items.

Agents do not deliberate  past a  m inim al uncertain ty  on the  value o f each item, A mj„ >  

0 , and once the  uncertain ty  is w ithin this m inim al error the  agent bids w ith  a  certain  value
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a t the  m ean o f the  final bounds. Similarly, when an  agent exhausts its deliberation budget 

it assum es m ean values for all items.

T h e  m ain in terest in these problem s is th a t an  agent now has m ultiple item s to  delib­

era te  abou t. Agents com pute independent bounds on the value o f each item  j  6  G. In  the 

additive-value model, this implies th a t agent i has lower and  upper bounds on a  bundle 

S  C G, w ith  lower bound v ^ S )  =  upper bound Vi{S) =  5ZjesU i(i) . In

the  assignm ent model, this implies th a t agent i has lower and  upper bounds on a  bundle 

S  of Uj(S) =  m a x jz sU iti)  and  Vi{S) = m a x je s v i( j ) .

T he following m etadeliberation strategies are im plem ented for each m arket and  allo­

cation problem :

•  Sealed-bid. Every agent deliberates until it has accurate values for all items, or until 

it has used all its com putation  budget. At each new deliberation  step  the next item  

is selected a t random .

•  Price-based. (1) Additive-value problem . Every agent deliberates while the ask price 

is between its bound on value for one or m ore item s, selecting item s a t random . 

T he optim al bidding stra tegy  is com puted based on upper- and  lower- bounds while 

deliberation  rem ains, otherw ise based on th e  m ean values. (2) Assignm ent problem . 

An agent will bid for an  item  whenever the  u tility  (value - price) for one item  domi­

nates the  u tility  for all o ther item s, i.e. whenever the  m inim um  possible u tility  from 

some item  j '  is a t least the m axim um  possible u tility  from all o ther item s j  €  G, 

U i(f)  = U ,( f)  ~  P (j') > Ui(j) = M j )  ~  P (j) for all j  £  j ' .  O therwise, an agent 

deliberates abou t the value of an  item  th a t can  possibly m axim ize utility, selecting 

one of those item s a t random .

8.5.4 Experimental Results: Limited Com putation

T he results com pare the bounded-efficiency and  bounded-com putation  o f each auction 

in single-item  and  m ulti-item  allocation problem s. In add ition  to  com puting bounded- 

efficiency and  bounded-com putation, we also com pute the  average num ber of tim es th a t 

the final allocation is optim al. T h is can provide a  m ore sensitive m easure of the difference 

in perform ance between two auctions th an  allocative efficiency.
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T he num ber of agents are ad justed  between 5 and  50, and  we consider m ulti-item  prob­

lems w ith 10 items. A gents’ values for individual item s are independently  and  identically 

d istrib u ted  according to a  uniform  d istribu tion  between 0 and  10. T he in itial approxim ate 

value for each agent for an item  is (U i( j) ^ iU ))  — (0 ) 10), to  represent com plete uncertainty.

We set the deliberation p aram eter a  =  0.7, so th a t an  agent reduces uncertain ty  in the 

value of an  item  by 0.3A w ith  a  single deliberation step , where A  is th e  difference between 

an agent’s upper and lower bound for the  value of a  particu lar item . T he m inim um  

uncertain ty  A mjn =  0.5, and agents assum e the approxim ation is accurate  when V i(j) — 

Vi(j) <  0.5 and take the value equal to the m ean of the  final bounds. Given this, the num ber 

of deliberation  steps required to  com pute an  exact value for a  single item  is Cexact =  9.

T he bid increm ent in the ascending-price auctions is e =  0.1, and  we test the  Vickrey- 

minus auction w ith  between 10-50% dropped  agents. We set th e  ask price in the  posted- 

price m arket to maximize bounded-efficiency for a  com putation  budget Cmax =  3, which 

is 33/o of Cexact •

The posted-price m arket requires th a t the  auctioneer has a priori d istribu tional infor­

m ation abou t agents’ values, to set an ask price which maximizes perform ance on average. 

In sim ulation we select the ask-price to m axim ize bounded-efficiency for a  particu la r agent 

com putation  budget, w ith the  sam e ask price used in all problem  instances. T he intention 

is to provide a  best-case analysis o f the  perform ance of a  posted-price m arket. O ne can 

consider an auctioneer th a t has partic ipa ted  in a  m arketplace for an  extended period and 

has been able to ad just its ask price to  m axim ize perform ance.

Single-item Problem

In Figure 8.10 (a) and (b) we p lo t the bounded-efficiency and  bounded-com putation  for 

each auction in the single-item  allocation problem , w ith 20 agents. T h e  results are averaged 

over 100 trials. In the posted  price auction p* =  7.3, and  the  Vickrey-minus results are 

presented for 10 (i.e. 50%) elim inated agents. In Figure 8.10 (c) we plot bounded-efficiency 

versus bounded-com putation, to com pare the  bounded-efficiency against the  com putation 

actually  perform ed by agents.

F irst, note th a t the bounded-efficiency in  the  English, Vickrey and  Vickrey-minus 

auctions increases as Cmax increases, because agents perform  m ore deliberation  and  place 

more accurate bids. Paradoxically, the  perform ance o f the posted-price m arket actually
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* —*  English 
o - o  Vickrey 
+ - +  P o s te d -p r ic e  
*  *  V ickrey-m inus

(a) (b) (c)

Figure 8.10: Single-item problem with 20 agents, (a) Bounded-efficiency as comp budget in­
creases, (b) Bounded-computation as comp budget increases, (c) Bounded-efficiency vs. bounded- 
computation.

falls  slightly for agents w ith large com putation budgets because the price is set to maximize 

perform ance for C max =  3. T he agents in posted-price perform  less average com putation 

as the available com putation  increases (see Figure 8.10 b). As Cmax increases the item  is 

more likely to be sold to an  earlier agent, because the agents can com pute more accurate 

values. T he sam e effect is observed for posted-price in the  additive-value and  assignment 

problem s, Figure 8.11 (a) and Figure 8.12 (a).

In this single item  problem  the English auction does not ou tperform  the  Vickrey w ith 

agents th a t have the  sam e com putation budget, Figure 8.10 (a). An agent in the  English 

auction  cannot use inform ation abou t prices to  make good allocation decisions; the only 

decision th a t an agent can take is to avoid com putation , because it only has a  single 

item  for which to com pute value. However, the English auction  is effective in reducing 

unnecessary agent com putation, achieving 100% bounded-efficiency w ith  49% less agent 

com putation  than  the  Vickrey auction. T his is illustra ted  in  F igures 8.10 (b) and  (c).

T he posted-price m arket achieves around 90% bounded-efficiency w ith  as little  as 8% 

of the com putation  of the Vickrey auction, clearly dem onstra ting  its bounded-rational 

com patibility. A lthough the bounded-efficiency of the Vickrey-m inus auction is less than  

for the Vickrey auction, it allows agents to  perform  50% less com putation  on average 

(Figure 8.10 b), because 50% of agents are elim inated.

We tested  the  perform ance of the auctions for different num bers of agents, and  found as 

expected th a t the  perform ance of the posted-price m arket an d  the  Vickrey-m inus auctions 

increase w ith more agents.

250

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Additive-value Problem

Figure 8.11  plots experim ental results for the  additive-value m ulti-item  problem  w ith  10 

items. T he perform ance of each auction  is com pared for 5, 20 and  50 agents, com puted 

over 80, 30 and 20 tria ls respectively. We set the  posted  price p* =  5.6,8.4 and  8.8  for 

each problem  size, and  drop 50% of agents in  Vickrey-minus.

Figures 8.11  (a -  c; plot the  bounded-efficiency, num ber of op tim al allocations, and 

bounded-com putation  for the problem  w ith 20 agents. Figures 8.11 (d -  f) plot bounded- 

efficiency versus bounded-com putation  for 5, 20 and  50 agents.

I00( II lO O r

80

60

40
English
Vickrey
P osted -p rii 20

a  a  V ickrey-m inus
751

100 100100

(a) Bounded-efficiency. (b) O ptim al allocations. (c) B ounded-com putation. 
Perform ance vs. C om putation  budget w ith 20 agents.
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Vickrey
P o s te d -p ric e

a  a  v ick rey -m inus
751

100 100
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l  85
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..........."

20 40 60 80
Bounded-axnoutaoon
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(d) 5 agents. (e) 20 agents. (f) 50 agents.
Bounded-efficiency vs. B ounded-com putation.

Figure 8.11: Additive-value problem.

In th is m ulti-item  problem  th e  English auction perform s b e tte r them the Vickrey auc­

tion for agents w ith the  sam e com putation  budget, as shown for exam ple in  Figure 8.11 

(a) and  (b). W ith  20  agents, for m edium  budgets, 30 <  Cmax <  80, the bounded-efficiency 

is g reater in the English auction, and  the  auction com putes more optim al allocations. For 

in term ediate com putation  budgets the agents in the English auction can use prices to  make 

good decisions abou t how to allocate com putational resources.

Furtherm ore, the agents in th e  English auction  com pute 100% efficient allocations w ith
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49% less com putation  th an  the agents in the Vickrey auction. T his is illu stra ted  in Figure 

8.11  (c) and  (e). For large com putation  budgets the agents in the  English auction can 

avoid com putation  altogether.

Figures 8.11 (d -  f) show th a t as the num ber of agents increases from 5 to 50, the 

agents in the  English auction  are able to  avoid m ore com putation  on average, com puting 

100% efficient allocations are com puted w ith 31%, 49% and 58% less agent com putation  

th an  in the Vickrey auction.

Figures 8.11 (d -  f) also show th a t the  posted-price m arket perform s especially well as 

the num ber of agents increases, achieving bounded-efficiency o f 88%, 93% and 96% for 5, 

20, and 50 agents, and  w ith 20%, 10% and 5% of the com putation  in the  Vickrey auction.

The Vickrey-minus auction  elim inates 50% of the  agents from the auction, and reduces 

the average com putation  by 50%. For large num bers of agents it perform s alm ost as well 

as the Vickrey auction, w ith 97% bounded-efficiency for 50 agents.

T he num ber of op tim al allocations does not reach 100% in e ither the  Vickrey or English 

auctions, see Figure 8.11 (b). T his is because the  agents do not refine their value for items 

beyond uncertain ty  V i(j) —v ^ j )  <  A mjn. This level of accuracy is sufficient for allocations 

which are approxim ately 100% efficient, bu t not sufficient for 100% optim al allocations. 

We see the sam e effect for the assignm ent problem  in Figure 8.12 (b).

Assignment Problem

Figure 8.12 plots experim ental results for the assignm ent problem  w ith  20 agents. The 

results are averaged over 20 trials, w ith  posted-price is p* =  6.5 and  10 dropped agents in 

Vickrey-minus.

100 too

X  Jf 80

English 
Vickrey 

+ ~ ► P o s te a -p r ic e  
*  a  v ic k rey -m inus

20

100too 100»tc Bounded-computation

(b) (c)

Figure 8.12: Assignment problem with 20 agents, (a) Bounded-efficiency; (b) Optimal allocations; 
(c) Bounded-efficiency vs. bounded-computation.
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T he results are sim ilar to in the additive-value allocation problem . T he English auction 

com putes 100% efficient allocations w ith  51% less com putation  th an  the Vickrey auction, 

and  has g reater bounded-efficiency for m edium  com putation  budgets because agents can 

use prices to avoid com putation on values for item s w ith  optim al bids, and  perform  com­

p u ta tio n  on the value of o ther items.

T he Vickrey-minus auction  has sm aller bounded-efficiency in this problem  th an  in 

the additive-value problem. Good allocations require careful coordination between agents 

in the assignm ent problem, and  dropping ju s t  one agent in the optim al allocation can 

com pletely change the optim al allocation w ith the rem aining agents. In com parison, good 

allocations in the additive-value problem  are m ore stab le  to  removing agents.

T he posted-price m arket perform s well in th is problem . Its bounded-efficiency is 98%, 

89% and 92% for 5, 10 and 20 agents, w ith 40%, 28% and  14% of the  agent com putation  in 

the Vickrey auction. This suggests th a t prices which support the optim al allocation tend 

to be sim ilar for all items.

8.5.5 Discussion

T he experim ental results dem onstrate th a t the  BRC auctions (ascending-price and  posted- 

price) can com pute better allocations th an  non BRC auctions (the Vickrey auction) when 

agents have lim ited com putation budgets and  m ust com pute the  values for m ultiple items.

In the additive-value and assignm ent problem s the  ascending-price auction has greater 

bounded-efficiency than the Vickrey auction  for in term ediate com putation budgets, and 

com putes optim al allocations for significantly less agent com putation  as agents’ com puta­

tion budgets increase. Agents can prune local com putation  based on inform ation about 

the values of o ther agents. T he effect is particu larly  noticeable as the num ber o f agents 

increases, because more agents can avoid com putation  for increm ental com putation by any 

one agent. In  com parison, uninform ed agents in  the  Vickrey auction can do no b e tte r than  

select item s on which to com pute value a t random . T h is is suboptim al when an  agent has 

m ultiple item s to  value.

Posted-price markets are useful in system s w ith m any agents, a t least if the  auctioneer 

is able to ad just the ask price over tim e to  m axim ize perform ance. T he posted-price 

m arket provides a  satisficing approach. P rices can su p p o rt good solutions w ith very little  

com putation , because items are often sold before they are offered to m any agents and
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prices allow agents to  control com putation.

T he Vickrey-minus auction  elim inates a  fraction /  of agents and  reduces com putation 

by the same am ount, / ,  can perform  alm ost as well as the  Vickrey auc tion  in  problem s 

w ith m any agents and  heavy com petition  between agents for item s. T he auction  can 

significantly reduce agent com putation  for only a  sm all reduction  in  allocative efficiency. 

R estricting partic ipa tion  m ight be useful in system s in which a  single-round sealed-bid 

auction is im portan t, perhaps because com m unication is unreliable or expensive.

8.6 Related Work

8.6.1 Resource-Bounded Reasoning

Good [Goo71] and  Simon [Sim76j provide early discussions on the  explicit in tegration  of 

the costs of deliberation w ith in  a  framework of agent com putation. Later, H orvitz [Hor87] 

introduced the concept of bounded-optimality, th a t an  agen t’s actions m axim ize expected 

u tility  given its bounds on com putation, which is developed in [RSP93].

Horvitz [Hor87] and  B oddy & Dean [BD89] introduced the  idea of anytim e algorithm s 

or flexible computation, com putational procedures th a t com pute answers to  hard  problems 

incrementally. S tochastic performance profiles can be associated w ith  anytim e algorithm s, 

to allow an agent to  reason ab o u t the expected value of further deliberation  given a  m odel of 

the cost of further deliberation. In special cases they allow trac tab le  m odels for norm ative 

m etadeliberation.

Sandholm  [San93, San96] has considered the effect of agent bounded-rationality  in 

d istribu ted  task allocation problem s. Sandholm  [San93] im plem ented a  C o n t r a c t N e t  

[DS88 ] based system  for a  d is trib u ted  task  allocation problem , w ith  agents th a t  bid on the 

basis of m arginal values for tasks. T he system , TRACONET, allowed agents to  bid w ith 

approxim ate values and  continue to  deliberate during the auction.

In subsequent work Sandholm  & Lesser [SL96] propose a  fram ework for leveled com­

m itm ent contracts between agents, which allows agents to  decom m it from a  contract. As 

noted by the au thors, th is is useful w ith  agents th a t have approxim ate values for tasks 

and  continue to  refine their beliefs after striking initial contracts. For exam ple, agents can 

correct early m istakes as they continue to  com pute values for tasks. T h e  technique allows 

agents to integrate local deliberation  w ith negotiation between m any o th er agents.
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S andholm  & Lesser [SL97] study  a  coalition form ation problem , in which the problem  

of com puting  the  value of a coalition s tru c tu re  is com plex because it requires determ ining 

an op tim al assignm ent of tasks to  agents in th e  coalition. However, the  au thors do not 

design a  m echanism  th a t allows approxim ate inform ation ab o u t coalition values. Instead 

it is assum ed th a t agents predict value perfectly. T here  is no a tte m p t to integrate the 

form ation and  valuation problems.

Sandholm  [San96] dem onstrates th a t the  strategy-proofness of an  auction can break 

when agents have approxim ate values for item s and  options to  continue com putation or 

subm it bids. An agent can make a  b e tte r decision ab o u t w hether or not to perform  further 

com putation  abou t the  value of an  item  if it is well inform ed ab o u t th e  bids from o ther 

agents. As discussed in section 8.2.4, this loss in strategy-proofness can help to  increase 

aliocative-efficiency so long as the auction is approximate-proof, such th a t tru th-revelation 

of approxim ate inform ation is a  dom inant s tra teg y  for an  agent.

Larson & Sandholm  [LS01] model agent deliberation  in an  auction where agents make 

explicit decisions abou t w hether to  deliberate  abou t their own values or the values of 

o ther agents. D eterm ine equilibrium  agent strateg ies and  show th a t  w hether or not agents 

engage in strong strategic deliberation, which is deliberating  ab o u t the  values of o ther 

agents, depends on bo th  the  model of bounded-rationality  and  the auction mechanism. 

Unlike my analysis Larson & Sandholm  do not present any efficiency com parisons across 

auction  designs.

8.6.2 Auction Models W ith Costly Participation

A num ber of economic equilibrium  models consider costs associated  w ith  partic ipation  in 

an auction, for exam ple costs of bid p repara tion  and  inform ation acquisition. However, 

alm ost all models assum e th a t all partic ipa tion  decisions are  m ade as a  one-shot decision 

before an  auction  s ta rts , and  the models canno t cap tu re  th e  im portan t idea th a t agents 

may continue to incur costs as an  auction proceeds.

M atthew s [Mat84] and  Lee [Lee85] m odel auctions in which there is a  cost of inform a­

tion  acquisition, bu t all agents have the sam e value for item s. In  M atthew s [Mat84] agents 

make a  continuous decision abou t inform ation acquisition, while in Lee [Lee85] agents 

make a  single-shot decision abou t w hether o r not to  pay to  become informed. B oth au­

thors conclude th a t a  seller th a t cares abou t revenue-m axim ization m ight want to  restrict
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participation , because it carries th e  to ta l cost of agent partic ipation . Sim ilarly, Samuelson 

[Sam85] shows th a t it can be useful to  restric t partic ipation  when agents have partic ipa tion  

costs (for exam ple bid p repara tion  costs) and  individual values for resources. T he results 

are consistent w ith my work on m odels of agent bounded-rationality  w ith in  auctions, if 

one views the cost of valuations as an  external cost of partic ipation.

K olstad & G uzm an [KG99] com pute a  rational expectations equilibrium  for costly in­

form ation acquisition in a  first-price sealed-bid auction, in which agents choose the  am ount 

of inform ation to acquire w ith in  a  cost-benefit model. T h e  inform ation allows agents to 

tender accurate bids in a  construction  project. Levin & Sm ith  [LS94] com pute mixed- 

strategy  rational-expectations en try  strategies in first-price and  second-price sealed-bid 

auctions, for agents w ith costs o f partic ipation  th a t make sim ultaneous en try  decisions 

based on initial estim ates of value. T he auctioneer can improve revenue by restric ting 

partic ipation  because agents ad ju s t their bids to  allow for costs of partic ipa tion .

Stegem an [Ste96] derives a  sim ilar result for a  private-value auc tion  and  agents w ith 

one-tim e partic ipation  costs. N either Levin & Sm ith or Stegem an can distinguish  between 

iterative and  single-stage auctions because agents decide w hether or not to  en ter the  auction 

before the auction s ta rts .

In one of the few models to allow agents to  enter sequentially, E h rm an  & Peters [EP94] 

com pare the  perform ance o f different auctions for agents w ith one-shot partic ipa tion  costs. 

The au thors show th a t a  sequential posted-price auction  is useful for high costs of partic i­

pation because it controls partic ipa tion , th rough controlling the  num ber o f agents th a t are 

offered the item.

Similarly, in a  m odel o f affiliated values, in which the value of one agent for an  item  

is partia lly  related to the value o f o ther agents, Milgrom & W eber [MW82] show th a t 

the English auction outperform s o th er auctions. The inform ation d u ring  th e  auction, from 

agents’ bids and decisions to  leave th e  auction, allow an agent th a t rem ains in the auction to 

refine its estim ate of value. Bids from  o ther agents directly  improve an  ag en t’s valuation. In 

com parison, w ith hard  valuation problem s and  an iterative approxim ation  algorithm  bids 

from other agents provide inform ation th a t improve an  agent’s m etadeliberation . M ilgrom 

& W eber also show th a t providing expert appraisals always improves perform ance (the 

"linkage principle” ), which is analogous to  providing free com putational resources in a 

model of bounded-rational agents and  hard  valuation.
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Appendix

In this A ppendix  I derive the  expected utility  of deliberation  for an agent in  the posted- 

price auction  [PP], and  present a  m ethod for com puting the deliberation  bounds (Definition 

8.10) which are used to determ ine when an  agent should deliberate. Let u, denote the 

curren t expected value (m ean of bounds).

T he expected u tility  o f deliberation, Ui(Dm ), for a sequence of m  deliberations, is 

com puted as the estimated  increase in u tility  minus the cost of deliberation:

Ui(Dm ) = Ui{b*Dm) — Ui(b') — m C

where Ui{b') is the expected utility  of the current optim al bid 6*, and  Ui{b'Dm) is the ex­

pected utility  of the optim al bid b‘Dm after deliberation. Both expected values are com puted 

w ith respect to the agent’s belief about its expected value for the  item  after deliberation .8 

An agent will deliberate when Ui(Dm ) > 0 for some m  > 0.

We com pute iii(D m ) by case analysis on the ask price:

•  [Uj <  p] No deliberation. iii{D m) =  - m C  for all m  >  0 because the  agent’s optim al 

bid is unchanged ( r e j e c t ) ,  and  Uj(&0 m) =  iij(6*) =  0 .

•  [Hi <  P  <  ^t]  See below.

•  [p <  Ht] N ° deliberation. Ui(Dm ) =  —m C  for all m  >  0 because the agen t’s optim al 

bid is unchanged (a c c e p t) , and  Ui(b'Dm) =  Ui(b’ ).

T he case u, <  p <  tJ, can be divided into two subcases, Vi < p < v l  and v± < p < t>j. We 

solve subcase Vi < p < u[. T h e  solution is valid for the o ther subcase by sym m etry. The 

utility  of deliberation  depends on the distance between the  ask price p  and  t I n t r o d u c e  

param eter, 7 ,, for the d istance between p and  t)*:

7* =

P aram eter 7 ; is always between 0 and 1, and 7 ,• =  0 when p = v j, and 7 i =  1 when

p =  Vi, or p =  v t . In this case the  current optim al bid (w ithout deliberation) is r e j e c t ,

and  U i ( D m ) can only be positive if the optim al bid after deliberation is a c c e p t ,  th a t is

aThis is necessary to ensure tha t the utility of deliberation (before allowing for cost) is always positive.
Although deliberation might determine th a t the current optimal bid has less utility than the agent believed 
before deliberation, the true utility is unchanged.
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when Vi > p  after deliberation. A fter a  sequence of m  deliberations the  expected value is 

d istribu ted  uniformly: v  =  U ( v i  +  a mA /2 ,u i  — a mA /2 ), so the upper bound m ust be at 

least p:

V{ -  a m & i/ 2 >  p

Let m ’ (a ,C )  denote the m in im um  number o f deliberations that can possibly have pos­

itive utility, com puted (after su b stitu tio n  for 7 ) as:

m * ( a  7 ) =  [ M L U l "
m  la ,7 }  log(a)

T he estim ated  u tility  of an agent’s optim al bid after m  >  m *(a, 7 ) deliberations is:

u ,-a mA/2

Ui{bmp m )  — j (Vi -  p )
dtij

A(1 -  a m)
ii=p

_  (vj — a mA t/ 2  — p )2

2Aj(l — a m )

_  A j( l  — 7  — a m )

8(1 -  Qm)

because i i  = U (vi +  a mA j/2 ,U i — a mA t/2 ), and  the  agent will a c c e p t  the  price if i i  > p, 

for expected utility  t)j — p.

P u ttin g  everything together, because Uj(6*) =  0 (the current optim al bid is reject), 

the expected u tility  of deliberation  in this case is:

Ui{Dm) = *
A,8(i-a°p~ ~ m C  , if m >m *(a ,7) 

—m C  , otherwise.

C om parative statics confirms ou r in tu ition  abou t the value of deliberation  to  an  agent. 

D eliberation is more useful as: th e  price gets closer to  an  agent’s expected value (because 

it is more likely to change an agen t’s bid); as the value o f uncertain ty  increases, as the 

deliberation effectiveness increases: and  as the  deliberation cost decreases.

•  d iii(D m ) /d 7  <  0

P ro o f .  By contradiction. Assum e d u i(D m ) /d 7  =  —2(1 — 7  — a m) / 8 ( l  — a m) is 

positive, for some m  >  m * (a ,7 ). T his implies th a t 1 — 7  <  a m. However, m  >  

m *(a , 7 ) iff 1 — 7  >  a m, giving a  contradiction |
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•  dv.i{Dm ) /d A  > 0, when p  =  V{

P ro o f .  W ith  7  =  0, we have U i ( D m ) =  A i( l  -  a m ) / 8 , an d  d u i(D m ) / d Aj =  (1 — 

a m ) / 8 , positive because a m <  1 |

•  d u i{D m ) /d a  < 0, when p =  i i

P ro o f .  W ith  7  =  0, d u i{D m ) /d a  =  —m A a m ~ l / 8 , which is negative |

• d u i{D m ) /d C  < 0

P ro o f .  Trivial, because dv.i(D m ) /d C  =  —m  |

Finally, we can com pute the  deliberation bounds, from the largest 7  for which u,(Z?m) >  0 

for some m  >  0. W hen no such 7  exists, then di = dt =  u; and  the agent will not deliberate 

at all, for any ask price.
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Chapter 9 

Extended Example: Distributed Train 

Scheduling

In this chapter I present a  com putational s tudy  o f an  auction-based m ethod for decentral­

ized tra in  scheduling . 1 A uction m ethods are well su ited  to  the  natu ra l inform ation and 

control s tru c tu re  of m odern railroads. I assum e separate  network territories, w ith an  au­

tonom ous dispatch agent responsible for the flow of tra in s over each territory. Each tra in  

is represented by a self-interested agent th a t  bids for the righ t to  travel across the network 

from its source to destination , subm itting  bids to  m ultiple dispatch agents along its route 

as necessary.

T he natu ra l separation of track control across m ultiple dispatch  agents precludes a 

com binatorial auction for the entire problem . Instead each individual d ispatcher runs an 

auction for the right to travel across its territory, and  tra in s  m ust solve a  coordination 

problem  to receive com patible entry  and  exit tim es across th e ir com plete route. T rains bid 

for the right to enter and  exit a  territo ry  a t particu la r times. T he d ispatcher agents selects 

bids to  maximize revenue in each round. Feasibility requires th a t there is a  safe schedule 

for tra ins over the d ispatcher’s region given the bid times. As such, the scheduling problem  

lies outside of the stan d ard  com binatorial allocation problem .

An additional difficulty in this dom ain is presented by th e  continuous tim e dim ension to 

a  bid. Instead of imposing a finite tim e discretization  on th e  system  I provide an  expressive 

bidding language th a t allows trains to  bid for th e  right to  en ter and  exit w ithin ranges 

of times (e.g. “arriving no later th an  12pm” ). Prices are approxim ated w ith a  finite grid 

of (entry, exit) pairs, and  updated  by dispatcher agents w ith  tBundle-style price update  

rules.

‘This chapter is almost identical to Parkes Ungar [PU01].
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C om putational results on a  sim ple network w ith straight-forw ard best-response bidding 

strategies dem onstrate  th a t  the auction com putes near-optim al system -wide schedules. In 

addition, the m ethod appears to  have useful scaling properties, b o th  w ith the  num ber of 

trains and w ith the num ber of dispatchers, and generates less extrem al solutions th an  those 

obtained using trad itional centralized optim ization techniques.

9.1 Introduction

Auction-based scheduling m ethods are well-suited to the decentralized inform ation and 

control s tru c tu re  of m odern railroads. T he flow of trains over a  railroad network is not 

controlled by a  single centralized scheduler, bu t ra th er by the jo in t decisions of a  num ber 

of largely autonom ous dispatcher agents, each responsible for a  local track territory. In 

addition, trains are operated  by com peting companies, each of which would prefer for their 

trains to run on-schedule even if the tra in s of o ther com panies m ust wait. Real tra in  drivers 

receive bonuses for on-line arrivals, and  have private inform ation abou t repair schedules, 

etc.

A uction-based m ethods fill two im portan t needs. F irst, they respect the n a tu ra l au ton­

omy and private inform ation w ithin such a  d istribu ted  system . Secondly, they can provide 

incentives for tra ins to reveal tru th fu l inform ation (indirectly, via bids) abou t their values 

for different schedules. In  a  naive central im plem entation, a  self-interested tra in  w ith pri­

vate inform ation about its tim e constrain ts, value, and  costs, cannot be expected to  act 

truthfully, bu t ra th er to  m isrepresent th is inform ation if it will improve its own schedule 

in the system -wide solution.

T he tra in  scheduling problem  th a t I address in this chapter falls w ithin a  hierarchy of 

in terrelated  tra in  scheduling problems; see [KH95] for a recent survey. I assum e th a t all 

strategic planning, i.e. deciding on tra in  routes and  assigning values, times, and  costs, is 

already com pleted. T he inpu t is a  set o f trains, each w ith a  defined routes over a  track 

network, a  value for com pleting its journey, and an optim al dep artu re  and  arrival tim e 

and cost function for off-schedule perform ance. T he system -w ide problem  is to  com pute 

a robust and safe schedule for the  movement of trains over the network to maxim ize the 

to tal cost-adjusted value over all trains.

In constructing  an  optim al schedule I depart from earlier m odels for au tom atic  tra in
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scheduling th a t used fixed-priority scheduling rules.2 T hese early models have been criti­

cized for a  “hurry  up and  wait” approach [KHC91], w ith high priority  trains moved down 

lines as fast as possible, possibly causing problem s and  inefficiencies a t yards further down 

the line. I build  instead on the pacing models o f K raay et al. [KHC91], which control the 

speed of tra in s in finding optim al schedules.

T he auction  design has each d ispatcher agent running  a  separate  auction, for the right 

to en ter and  exit its territo ry  a t particu la r tim es. T here are necessarily multiple auctions, 

to respect the autonom y of individual d ispatchers to  m ake local decisions. All auctions 

term inate  sim ultaneously, when there is quiescence across the  system .

A tra in  agent m ust bid for pairs of en try  and  exit tim es across m ultiple dispatchers 

to com plete its journey, which presents a  coordination problem . T he exit tim e from one 

dispatcher m ust be early  enough to allow the  tra in  to  en ter the next dispatcher on its 

route a t the required en try  time. Iterative auctions (as opposed to sealed-bid auctions) 

allow tra in s to ad just towards a  good solution, and should help to  solve this coordination 

problem . In addition , trains can subm it bids for sets of tim es, i.e. “I want to enter your 

territo ry  a t  any tim e after 10am, b u t leave no la te r th an  1.30pm, and  my m axim um  travel 

speed is lOOkm/hr.” T his constrain t-based bidding language is a  concise way to handle 

the continuous tim e a ttr ib u te  of a  bid w ithout im posing an  explicit discretization on time.

In each round the auctioneer com putes the  set of b ids th a t m aximize revenue, subject 

to the constra in t th a t there m ust be a  safe schedule for tra in s given the entry  and exit times 

in accepted bids. T he w inner-determ ination problem  is solved w ithout a  discretization on 

time, form ulated as a  mixed integer program .

A lthough there is no explicit discretization on tim e im posed on agents’ bids, the prices 

in the auction  are m aintained over a  discrete price lattice. T he lattice m aintains prices on 

pairs of entry  and  exit times, and  prices are com puted on-the-fly for any pair of entry-exit 

times based on the closest la ttice points. T he discrete price la ttice does not restric t the 

times th a t can receive bids, bu t ra th e r provides an  approxim ate m ethod to m aintain prices. 

Prices are increased across rounds w ith an  iBundle style price-update, i.e. based on the 

bid prices from unsuccessful agents.

E xperim ental results com pare the quality  o f schedules com puted in the auction-based

^Priority-based dispatching is still used in most N orth American railroads; high priority trains are 
generally not delayed even if they are running early, while low priority trains are delayed even if they are 
running late [Hal93].
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m ethod w ith schedules com puted under a  trad itional centralized optim ization  approach. 

In  order to make a  fair com putational com parison across the  m ethods th e  global scheduling 

problem  and  the w inner-determ ination  problem s are b o th  form ulated as (closely related) 

m ixed integer program s, and  solve w ith  C PL E X , the  s tan d ard  mixed integer program m ing 

software package. T h e  experim ents com pare th e  centralized solution (w ith  com plete infor­

m ation abou t agents’ problem s) w ith  th e  auction solution on a set of stochastic problem  

instances.

In assessing the perform ance o f the  auction-based m ethod I make a  reasonable assum p­

tion about agent bidding strategies, i.e. th a t agents follow a  m yopic best-response bidding 

strategy, and subm it bids to m axim ize value given the curren t ask prices.

T he com putational results d em onstra te  th a t the  auction-based m ethod  can generate 

better schedules th an  the centralized m ethod, and  in less tim e. M oreover, the  auction 

appears to have good scaling p roperties w ith  the num ber of agents an d  d ispatchers, at 

least for the auction param eters selected in the  tests (e.g. price up d ate  speed, tim e in each 

round to solve w inner-determ ination, etc.)

As a  word of caution, it also seems likely th a t the bid-coordination problem  will become 

qu ite  hard in the auction as the  num ber of dispatchers increase, perhaps for routes across 

five or more dispatchers. T he perform ance of the  sim ple myopic b idding s tra teg y  might 

begin to fall-off in these cases, leaving agents “exposed” to  tim es th a t they cannot fit 

w ith times from o ther dispatchers. F u rth er s tudy  is required to  consider alternative , more 

sophisticated  bidding strategies in these cases.

T he outline of the rest of th is ch ap te r is as follows. In section 9 .2 1 define th e  global tra in- 

scheduling problem , and  form ulate a  m ixed-integer program  m odel under assum ptions of 

centralized inform ation ab o u t th e  local values and  cost functions of each tra in . In  section 

9.3 I describe the key elem ents of th e  auction-based solution: the bidding language, price- 

updates, w inner-determ ination, term ination  conditions, an d  bidding rules. Section 9.4 

form ulates the  bidding problem  for a  tra in  agent in the auction  as a  sh o rtes t-p a th  problem , 

which is solved using dynam ic-program m ing. Finally, section 9.5 presents experim ental 

results over a set of stochastic tra in  scheduling problems.
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9.2 The Train Scheduling Problem

Each tra in  is assum ed to  have a  source and destination  node, a value to complete its 

journey, and  a  cost for off-time departu re  an d /o r arrival. T h e  global objective is to find a 

safe schedule th a t m aximizes the to ta l net value, the  to ta l value minus cost of delay across 

all tra ins th a t run.

east
 ►

1 2 3 4  5 6  7 8

double track 
(siding)

single track
yard

Figure 9.1: The Train Scheduling Problem.

I introduce a novel mixed-integer program m ing (M IP) form ulation th a t allows trains 

to be dropped when necessary, i.e. to  allow o ther high-valued trains to run  on-tim e. A 

very sim ilar form ulation is adopted for the w inner-determ ination problem  in the auction 

(see the next section).

9.2.1 Track Network: Topology and Constraints

In m odeling the tra in  scheduling problem  I make a  num ber of simplifying assum ptions, 

bo th  abou t the network struc tu re  and  abou t the types of interactions th a t are allowed 

between trains.

T he key assum ption is th a t of a  single line o p era tio n - a  sequence of single-track, double­

track, or yard sections, separated  by nodes. T h e  s tru c tu re  is illustra ted  in Figure 9.1. 

This simplifies the specification of the  global train-scheduling problem  and  the winner- 

determ ination  problem  in the  auction-based m ethod. T he single line assum ption also allows 

tra in  agents to restric t th e ir a tten tio n  to  tradeoffs across m ultiple tem porally  different 

routes, ignoring a lte rn a te  paths over the network. T he sam e assum ption is made in the 

m ajority  of the tra in  scheduling literature , for exam ple in K raay et al. [KHC91]. Section 

9.7 discusses a  possible extension of th is auction-based m ethod  to  a  m ultiple line network.
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An interaction between a  pair of tra in s may be a  meet or a  pass, and  is associated w ith 

a network location and a tim e. A m e e t  is when two trains traveling in opposite directions 

are a t the sam e location a t the sam e time. A p a s s  is when two trains traveling in the 

same direction axe a t the sam e location a t the sam e time.

S 1-5

0.5

T t5 T9 T7 20 25 n o
Time

Figure 9.2: A Safe Train Schedule.

T he feasibility of a  schedule for tra ins across a  network is determ ined by the safety  of 

meets and passes. This depends on th e  type of section:

(51) Any num ber of trains can meet and  pass in yards.

(52) Any num ber of trains can m eet on double-track sections, bu t no tra in s can pass.

(53) No trains can meet or pass on a  single-track section.

In addition, a  feasible schedule m ust m aintain  a  m inim um  separation distance, A safety, 

between tra in s on single and  double track sections. This m inim um  separation  distance 

requirem ent is waived for tra ins in yards. Finally, no tra in  can exceed e ither its m axim um  

speed, or the m axim um  safe speed on any section.

Figure 9.2 illustrates a  safe tra in  schedule for the  param eters in the experim ental model 

in Section 9.5. This solution is for ten  trains, trains 1, 2, 4, 5, 6, 8, 9 ru n  E ast, the o ther 

trains ru n  West. The sidings (or double-track sections) in this network are illu stra ted  w ith 

an  “S” on the right of the plot, the yard  w ith  a  “Y ” . Notice th a t trains m eet a t sidings 

and a t the yard, bu t no tra in s m eet o r pass on the  single track sections. No tra ins pass in
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the yard  in th is exam ple, a lthough  this is a  legal m anoeuvre. Notice also th a t the  trains 

rem ain a  safety d istance ap a rt, and  m aintain  constant speeds w ithin each section.

Allowing tra in s to  meet b u t not pass on double-track sections reduces problem-solving 

complexity because there are m any ways for two tra ins to  cross in  the  sam e direction 

but only a  few ways for two tra in s to  cross in opposite directions. Similarly, modeling 

infinite-capacity yards and  double-track sections (sidings) is a  sim plifying assum ption.

9.2.2 Schedules

A schedule specifies the network position across tim e for each tra in  in the system . It is 

sufficient to  to  consider schedules in which trains travel a t a  constant speed across each 

section (the speed can vary from tra in  to tra in  and  from section to section), by the following 

result:

L e m m a  9.1 A n y feasible schedule can be reduced to a feasible schedule where each tram  

travels at a constant speed w ithin each track section.

T he transform ation  th a t m aintains feasibility is to  hold tim es a t nodes between track 

sections constant, and  smooth  the  speed of each tra in  betw een these points. T h e  proof 

is quite stra igh tfo rw ard- ju s t show th a t the  num ber of meets are the  sam e for any speed 

profile consistent w ith  the en try  and exit points, and  th a t  the num ber of passes is (weakly) 

less when tra in s travel a t a  constan t speed. I choose to ignore constrain ts on acceleration 

across sections.

T his observation reduces the size of the  search space in the  scheduling problem , and 

simplifies the problem  of finding optim al tim es for trains a t the  ends of each section.

9.2.3 A M ixed Integer Programming Formulation

Let I  denote the set of tra in s and  M  denote the set of nodes between track sections. It 

is useful to view the network in a  w est-east orientation, w ith nodes ordered such th a t 

j  > k  for j  €  jV  fu rther east th an  k  €  N '. T he tra in s are divided into a set east C 1  

th a t travel w est-to-east and  west th a t travel east-to-w est. T he nodes are labeled w ith 

the type of section to the east, e.g. the section between node j  and  j  +  1 is a  yard if 

j  €  yard, single-track if j  e  single, and  double-track otherw ise. T he m inim um  travel time
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for tra in  i between node j  and  j  +  1, its free-running tim e r ( i , j ) ,  is defined by the  length 

of th e  section, the  m axim um  speed of the  tra in , and  th e  m axim um  safe speed over the 

section. R em em ber, this is a tim e to  run  from  w est-to-east for a tra in  i 6  east, and  from 

east-to-w est otherw ise.3

Each tra in  i €  I  has a source node and  op tim al d ep a rtu re  time, ( s ( i ) , t m3 (i)),  a  destina­

tion node and  optim al arrival time, (d( i ) , td(i)),  a  value Vi > 0 for com pleting its journey, 

and  a  cost penalty, costi(ts , td), for off-schedule perform ance. Following [Hal93] we assum e 

a linear additive cost penalty  for each train . Given ac tu a l source t s and  destination  td 

times, the  cost for off-schedule perform ance is com puted as:

costt [ts , td) = C i \ t s -  £*(i)| + C i \ t d -  t'd( i)|

where C, >  0 is tra in  Vs unit cost fo r  off-schedule performance.

T his cost function assumes th a t perform ance is m easured only on the  basis of a  tra in ’s 

tim e a t its source and  destination  nodes. T his is reasonable for a  freight tra in  w ith a  single 

shipm ent to  make, b u t less appropriate  for a  tra in  th a t m ust make in term ediate scheduled 

pick-ups and  drop-offs.

Given th a t it is sufficient to consider only tra in s th a t travel a t a  constan t speed across 

each section (Lem m a 9.1), I can specify a  schedule w ith the time, t ( i , j ), of each tra in  i 

a t node j .  Let y{i)  6  {0,1} equal 1 if tra in  i  is not dropped  from the  schedule, and 0 

otherw ise. Let A SOUrce(*) and A dest(i) denote the  absolute error in dep artu re  and  arrival 

tim e for tra in  i a t source node s(i) and destination  node d(i).  T he system -w ide objective 

is to  m axim ize to ta l value minus cost:

m ax ^ 2  V 2/(l ) ~  Ci ̂ source ( i ) - £ C i A dest(i)
t t i

A tra in  can be dropped from the  schedule completely. D ropped tra in s neither achieve 

any value nor incur any cost penalties. In congested networks w ith high cost penalties it 

can be b e tte r  to drop low value trains in allow m ore tra in s to ru n  on schedule and  avoid 

cost penalties.

T he constra in ts make sure schedules are feasible, i.e. th a t a  schedule is safe, tra in s are 

separated , and  speed constraints are not violated. In  the  following ( “the  big M technique” ), 

M  is a  large positive num ber, used to  m ake sure th a t d ropped tra in s do not restric t

3 Later, when I formulate the MIP for winner-determination I will leave this information implicit in the 
bidding language to simplify the presentation.
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schedules for o ther tra in s and  also to  im plem ent disjunctive logic constra in ts as a  mixed- 

integer program .

C onstrain ts ( la )  and  ( lb )  set the  errors A sourCe{i) and  AdestW for tra in  i:

Asource(0 >  |f(*\ s(i)) -  «t(*)l “  M ( l  -  y{i))  Vi 6  I  ( la )

Adest(i) >  l*(*.«*(*)) ~  *2(l’)l “  M U  ~  !/(*)) 1  ( lb )

Notice th a t if y(i)  =  0 for tra in  i  then  A (i) =  0 is a  solution, and  we count no penalty 

for d ropped trains. T his avoids requiring non-linear term s, such as C tA soucce(i)y (i), in

the objective function. T he absolute value constrain t can be im plem ented by w riting two

greater th an  constrain ts, one for the  positive term  and one for the  negative term .

C onstrain ts (2a) and (2b) ensure consistency of travel tim es for trains, given free run­

ning times r(i,  j )  for tra in  i between node j  and  j  + 1 . Again, neither constra in t is binding 

for a  dropped tra in  by the  “big M” formulation.

t ( i , j  +  1) >  t { i , j )  -I- r ( i , j )  -  M ( l  -  y(i))  Vi €  east, V/ €  M  (2a)

t ( i , j  +  1) <  t(i, j )  -  r ( i , j ) +  M {  1 -  y(i))  Vi €  w est.V j  6  M  (2b)

The zero-one variables gap( i , i ' , j )  make sure th a t trains are a  safe d istance ap a rt a t 

all times; gap( i , i '  , j )  =  1 iff tra in  i trails tra in  i ' by a t least tim e safety  a t node j .  The 

"big M” technique is used to constra in  a  tra in  to  be either more th an  safety  ahead or more 

than  safety behind ano ther train . Note th a t constrain t (3b) is tru e  whenever a t least one 

of the trains is d ropped, so th a t th e  times on dropped tra in s are not constrained.

t { i , j )  -  t ( i ' , j )  +  Mgap{ i , i ' , j )  > safety  ,V j €  jV ,V i,i ' €  I  (3a)

t { i ' , j )  -  t ( i , j )  +  M ( 1 -  gap{ i , i ' , j )) + M { 2 -  y{i)  -  y(i' ))

> safety,  Vj €  f f ,  Vi, i ' 6  I  (3b)

T he zero-one variables af t er ( i , i ' , j )  indicate w hether tra in  i arrives a t  node j  after 

tra in  i'; after(i ,  i ' , j )  =  1  if tra in  i is after tra in  i' a t node j .  T h is ind icator variable is set 

by constrain ts (4a) and  (4b) to  be consistent w ith  the tim es defined by variables t { i , i ' , j ) .  

A dropped tra in  can assum e the  sam e ordering w ith  respect to  all tra ins, allowing them
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to trivially  satisfy (4c) and  (4d).

~  W i j )  5: Maf t er{ i ,  i ' , j )  , Vj  e  M ,  Vi, t ' 6  I  (4a)

t { i ' , j )  -  t ( i , j )  -  M {2 -  y(i) -  y (i')) <

M (1 — after(i ,  i ' , j ) )  ,Vj  €  M , V i , i '  €  I  (4b)

C onstrain t (4c) captures the  restric tion th a t tra in s traveling in the  sam e direction cannot 

pass on sidings or single-track sections. E ast-bound  tra in  i m ust rem ain after east-bound 

tra in  i' a t node j  if it is behind tra in  i a t node j  +  1 and  the  section between j  and  j  +  1 

is not a yard. Sim ilarly for west-bound trains.

after(i ,  i ' , j )  =af t er ( i , i ' , j  + 1 )

Vj  ^  yard ,V i, i ' 6  east,V i, i ' 6  west (4c)

Finally, constra in t (4d) captures the restric tion  th a t tra ins traveling in opposite direc­

tions cannot meet on single-track sections. If  east-bound tra in  i  is after west-bound tra in  

i' a t node j  it m ust also have followed w est-bound tra in  i ' a t node j  +  1 for single-track 

sections between j  and  j  +  1, otherw ise the tra in s were on the  sam e single-track section at 

the  sam e tim e and  traveling in opposite directions.

after(i ,  i ' , j )  =a f t e r ( i , i ' , j  + 1 )

Vj  6  single,V i 6  east,V i' 6  west (4d)

Taken together w ith the objective function, the  constra in ts specify a  m ixed-integer 

program  to solve the centralized tra in  scheduling problem . T he optim al solution specifies

which trains are dropped (w ith y(i) =  0) and  the tim es t ( i , j )  for o ther trains a t each node

j  in the network.

9.3 An Auction-Based Solution

Let us assum e th a t the track network is divided across d ispatcher territories, w ith each 

dispatcher responsible for the local flow of trains. A separate  d ispatcher agent auctions the 

right to travel across each territory. Each tra in  is associated w ith  a  tra in  agent th a t places 

bids for the right to  travel across a  territory , and  coordinates tim es across dispatchers on 

its route to achieve a  good schedule. T he dispatchers have inform ation abou t the local
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network topology, i.e. the  location of double-track network sections and  of yards for passing 

and  meeting.

yard yard

dispatcher 1 dispatcher 2 dispatcher 3

Figure 9.3: The dispatcher territory structure.

I assume th a t d ispatch  territo ries are separated  by neutra l yards to  allow the safety 

constrain ts on meet and  constra in ts to  be decoupled across d ispatch  territo ries, because 

yards have infinite capacity  and  allow arb itra ry  meets and passes. T h e  dispatcher on each 

side of connecting yards m ust sim ply ensure th a t trains rem ain a  safety d istance ap a rt as 

they enter and exit their territory. T he s truc tu re  is illustra ted  in Figure 9.3.

9.3.1 Auction Innovations

T he nature of the  tra in  scheduling problem  require a  num ber of innovations in auction 

design:

(1) A constraint-based bidding language allows tra in s to  subm it bids w ith  continuous tim e 

a ttrib u tes , to represent a choice set over different pairs o f times, i.e. w ithout discretization.

(2) Prices are m aintained over a  discrete lattice w ith quotes com puted on-the-fly for any 

pair of times, i.e. an approxim ate representation of a  continuous and  non-linear price 

space.

(3) T he selection of revenue-m axim izing bids is bu ilt on top of a  feasibility check th a t looks 

for feasible m eet/pass schedules given entry-exit times, i.e. the conflicts across bids are 

non-trivial and checked via solving for feasible schedules.

As noted earlier, there are im plem ent m ultiple independent auctions, one for each 

dispatcher territory. T his respects the decision autonom y of each dispatcher. Given th a t 

trains m ust receive com patible entry-exit times across m ultiple d ispatchers, th e  auctions 

are necessarily iterative to  allow tra in  agents to coordinate th e ir bids across m ultiple 

auctions.
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All auctions close sim ultaneously when bid quiescence is detected  across the system.

9.3.2 Dispatcher Auction

T rain  agents can b id  for entry  and  exit tim es in a  territo ry , while th e  d ispatcher agent has 

the flexibility to  decide exactly how a  tra in  will run, consistent w ith  those times.

B id d in g  L a n gu age

T he bidding language is quite expressive: a  tra in  can bid a  price to  enter a  territo ry  at 

tim e f e n try  and d ep art at tim e i exi t , and s ta te  w hether th e  tim es are fixed  or flexible. W ith 

a  fixed tim e the tra in  m ust en ter (or exit) the  territo ry  a t th a t exact tim e. W ith  a  flexible 

en try  time, any tim e after tentry is acceptable; w ith a  flexible exit time, any tim e before 

fexit is acceptable (subject to constraints on a  tra in ’s m inim al travel tim e). Finally, a  tra in  

agent can subm it m ultiple bids coupled w ith an  “exclusive-or” constra in t, to s ta te  th a t 

the d ispatcher can accept any one pair of times from any one bid.

Let 1C denote the  set of all bids, and (3{i) C 1C the  bids received from agent i. A set of 

bids from agent i in a  particu lar round are all associated w ith a  single en try  node, n entry(i), 

a single exit node n ex;t (i), and  true/fa lse  values fixedeMry and  fixedexil to  s ta te  w hether the 

times are fixed or represent constraints. Each individual bid k  6  (3{i) specifies an entry 

time, tentry (^’) i an exit time £exit(fc), and a bid price p(k)  >  0.

Example:

Bid (5,10, $100) xor (7,12, $150) for en try  node A  and  exit node B ,  w ith fixedenlTy bu t 

-ifixedexit, s ta tes th a t the tra in  agent is willing to  pay up to $100 to  en ter a t A  a t time 5 

and  dep art before tim e 10, or up to  $150 to  en ter a t tim e 7 an d  d ep a rt before tim e 12.

To keep the  w inner-determ ination problem  trac tab le  I also find it useful to  restric t the 

num ber of bids th a t an  agent can place in any round.4

W in n e r -d e te r m in a tio n

In each round of the  auction the  d ispatcher solves th e  w inner-determ ination  problem, 

com puting a  provisional allocation to m aximize revenue based on bids. T he provisional 

allocation m ust be consistent w ith some feasible schedule.

4 Experimentally, Bma* =  5 appears to work well in many problems.
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T he w inner determ ination  problem  is form ulated as a  m ixed-integer program , very 

sim ilar in form to th a t for the centralized tra in  scheduling problem . However, it tends to  be 

much easier to solve because: the  problem  is restric ted  to the  space of solutions com patible

centralized problem , it is not necessary to  select a  bid from every tra in  agent, even if there 

is a feasible solution involving every agent, when a  schedule w ith fewer agents generates 

more revenue.

M ix e d - I n te g e r  P r o g r a m  F o rm u la t io n .

Borrowing as much from the earlier global M IP form ulation as possible, we introduce 

new zero-one variables x ( i , k )  €  {0,1} for agent i  €  I  and  bid k  6  /3(i), the  set of bids 

from agent i, w ith x ( i , k )  =  1 iff agent i ’s bid k  is in the provisional allocation. T he linear 

objective function is:

i.e. maximize to ta l revenue where p(k)  denotes the bid price of bid k  from agent i.

C onstrain ts (2a, 2b, 3a, 3b, 4a, 4b, 4c, 4d) are adopted from the M IP  of the global tra in  

scheduling problem , w ith tra in  tim es com puted on the basis of bids from agents. Allowing 

for flexible bid times, we write:

T he source node s(i)  is the entry  node n entry(0t and  the destination  node d(i) is the exit 

node, n exit (i).

w ith the bids subm itted  by agents; and  the problem  is for only a  single territory. As in the

m ax
i,ke0(i)

* (* .« (* ))=  ^ 2  tentry(k)x( i ,  k)  , i i  f ixedenlry(i) 
kem

entry ( la ')

t ( i , s( i ) )  > ^ 2  tentry{k)x(i ,  k)  , otherw ise 
*60(«)

t { i , d { i ) ) =  texi i (k)x( i , k )  , \{fixedexh(i) ( l b ’)

ke0{i)

52 x^'k  ̂ -  y® ( lc !)

C onstrain ts ( l a ’) constrain  th e  schedule for tra in  i to an  en try  tim e consistent w ith its 

bid, sim ilarly for ( l b ’) for its exit time. C onstrain t ( lc !) ensures th a t a t m ost one bid is 

accepted per agent, and  th a t no bids are accepted from dropped trains. 

W in n e r - D e te r m in a t io n  C a c h e .
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One useful technique to  speed-up w inner-determ ination  in  itera tive  auctions is to  m ain­

ta in  solutions from previous rounds in a  cache, indexed against the  bids th a t were subm it­

ted. The cache can be checked for a  solution before solving the  m ixed integer program .

In this problem , a  hit in  the  cache depends on the  constraints su b m itted  by agents. 

Given a  set of bids 1C from agents, a  m atch is found if a  p erm u ta tio n  (in term s of the order 

of agents) of the  new bids are consistent w ith  a  set o f bids in th e  cache. To be consistent:

(1) if bids from agent i  are successful in the cached solution, then  the new bids from 

i m ust support the tim e corresponding to  the successful bid, an d  be (weakly) less flexible 

th an  the o ther tim es in the  cached bid.0

(2) if bids from agent i  are unsuccessful in the  cached solution, th en  the  new bids from 

i m ust all be (weakly) less flexible th an  the old bids.

A bid is less flexible th an  ano ther bid if it represents a  sm aller set of tim es and  a t the 

sam e price or less, vice-versa for a  more flexible bid. An exclusive-or set of bids support 

an accepted bid if one or more o f the  bids in th e  set is (weakly) m ore flexible than  the 

accepted bid.

Price Updates

Each d ispatcher agent m ain tains ask prices on a  d iscrete price la ttice, b u t without imposing 

a discretization on the tim es th a t a  tra in  agent can bid. G iven a  bid for a  pair of fixed 

times [<i, £2)1 the  price is determ ined as the price o f the  nearest point in the lattice, or as 

the m inim al price over a set o f points in the case of a  bid w ith  flexible times. T he lattice 

s truc tu re  is used to approxim ate a  continuous non-linear price space. A sm aller unit of 

discretization leads to a  higher com putational cost and  slower convergence b u t perhaps 

to a  higher schedule quality. A n alternative price s tru c tu re  m ight explicitly m aintain 

unsuccessful bids and  com pute ask prices on-the-fly exactly.

Ask prices represent a  lower-bound on the price th a t a  tra in  agent m ust bid to have 

any chance of success in  th e  auction , b u t do not guarantee th a t a  bid will be successful. 

An unsuccessful bid increases the  price on its nearest la ttice po in t, or m ultiple consistent 

lattice points in the case of an  unsuccessful constrain t-based bid.

For each bid in an  unsuccessful exclusive-or set o f bids we u p d a te  the  ask price on all

sThe other times can be more flexible if every agent th a t bids is in the cache and the prices on the 
rejected bids from each agent cire no greater than on the accepted bids.
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grid  po ints consistent w ith the b id  times. T he p rice-update m ethod:

(a) find the point on the lattice  closest to  th e  bid, or set of consistent points

(b) and  u pdate  the ask price a t th a t la ttice  po in t to  e above the unsuccessful bid price 

where e >  0 is the  m inim al bid-increm ent in  th e  auction .6 T h e  s tru c tu re  of th is price-

u p d a te  is m otivated by price updates in tBundle, the allocatively-efficient ascending-price 

com binatorial auction  introduced in chapter 5, th a t  u pdates prices on bundles of item s by 

e in response to unsuccessful exclusive-or bids.

An “infinite” value is used to  represent th e  case th a t  th e  safety condition will be violated 

w ith any bid close to a particu lar grid point. T h is is used as item s are sold to tra in  agents 

a t particu la r times (under the  continuous clearing rules, see below), to  move a  tra in ’s bid 

focus away from a  tim e th a t cannot be accepted a t any price.

Price Quotes

T h e prices on the lattice are used to com pute ask prices. T h e  ask price for a  fixed pair 

of tim es is read off the grid as the price a t the closest point. D ispatcher agents provide 

a  price-query function for tra in  agents, to  allow tra in  agents to  com pute the ask price for 

any pair of tim es “on-the-fly” . For a bid w ith  a  flexible en try  tim e a n d /o r  a  flexible exit 

tim e, the price is com puted as the  m inim al price over all com patible grid points.

T he prices on flexible times have the  following useful sem antics:

p(Aq) >p(A;2), if Aq C &2

for bids Aq and Aq if all times consistent w ith  Aq are also consistent w ith  Aq. T his follows

im m ediately from the m inim al operator used to  com pute an  ask price under a  flexible bid.

T he relationship allows a  tra in  agent to p rune its local search when considering different

tim es in its best-response strategy.

Note, however, th a t it is not necessarily the  case th a t p(Aq) >  p(Aq) for a  pair of fixed

tim es Aq and  Aq, because Aq m ight h it a  safety  conflict w ith  the  bids from ano ther agent

th a t Aq m ight escape. W hen Aq is a  flexible b id  it would also escape the  safety problem

whenever Aq escaped the safety problem.

®The price is also increased because of bids subm itted by a train  agent th a t is in the provisional 
allocation, but receives the same pair of times from the last round of the auction, and is trying to shift 
away from tha t allocation. I allow a train  agent to indicate when it is merely repeating a bid because it 
must under the auction rules, rather than because it really wants th a t pair of times.
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Bidding Rules

T he bidding rules are  qu ite  simple: (1) an  agent m ust bid a t least the  ask price for a good; 

and (2) an  agent m ust repeat a  bid  th a t supports a  pair of tim es it receives in  the current 

provisional allocation. T his ensures th a t progress is m ade across ind ividual rounds of the 

auction.

Clearing and Termination Rules

T he auctions term inate  sim ultaneously when no new bids are placed by any tra in  agent to 

any dispatcher agent. In  addition , each auction has a  continuous clearing rule, in which 

a d ispatcher com m its to  a  particu la r pair of times for an  agent th a t receives those times 

in the provisional allocation for m ore th an  a  fixed num ber of successive rounds, TC|ear- 

Continuous clearing helps to reduce bidding complexity, com m itting  tra in s  to  particu lar 

times (although they can continue to  bid for alternate  tim es a t an  add itional cost), and 

focusing search. A countervailing force is th a t early com m its can also lock-in a  particu lar 

pair of times too quickly when continued search m ight find a  b e tte r  solution.

T he M IP form ulation for w inner-determ ination is easily ad ap ted  to  include com m itted 

times. These times can  be represented w ith bids from a  dum m y agent, w ith  acceptance of 

those bids forced w ith in  the M IP solution m ethod. T he flexibility of m ixed-integer program  

form ulations of w inner-determ ination problem s was previously noted by Andersson et al. 

[ATYOO].

9.4 The Bidding Problem

Recall th a t each tra in  i 6  1  has value V, to com plete its journey, sub ject to a  cost 

costj(t3, t j )  for off-schedule perform ance, given optim al source and  d estin a tio n  times £*(i) 

and t j ( i)  and  actual tim es t3 and  t j .  T he bidding problem  is to  purchase the  right to travel 

across the network from source to  destination  a t m inim al to ta l cost, w here cost is the  sum  

of the price it pays in each auction  and  the cost of off-schedule perform ance. In  addition, 

if this cost is g reater th a n  the tra in ’s value then  it would prefer to  drop  o u t completely.

T he bidding problem  is difficult for two m ain reasons:

(a) coordination: a  tra in  agent m ust bid w ith  m ultiple d ispatchers w hen its route spans 

more th an  one territory.
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(b) dynam ic pricing: a  tra in  agent cannot know the  prices a t which the auction  will clear.

Each tra in  agent is assum ed to follow a  myopic best-response bidding strategy, bidding 

for the  schedule th a t minimizes to ta l cost given the curren t ask prices. Myopic best- 

response provides a  good sta rtin g  point to analyze the  perform ance of the auction m ethod. 

It would be interesting, b u t probably quite difficult, to  also consider the effect of fully 

strategic agent behavior on the quality  of solutions. For example, a tra in  m ight achieve 

a b e tte r outcom e by anticipating the bids of o ther agents an d  considering the effect of 

curren t bids on fu ture prices.

9.4.1 Myopic Best-response Bidding Strategy

T he myopic best-response bidding problem  can be form ulated as a shortest weighted path 

problem. T he edges in the graph correspond to  pairs of entry-exit times a t each dispatcher, 

fixed or flexible as appropriate. Edges are connected if the exit tim e on one edge is con­

sistent w ith the entry  tim e on the next edge. T he cost associated w ith an  edge represents 

the sum  of the current ask price, and  any cost for off-schedule arrival or departu re if the 

d ispatcher is a t the source or destination of a  tra in ’s route.

direction o f travel

[10,20]: $100

[10,35):$60

[10,401:550

1 3

Figure 9.4: The myopic best-response bidding problem.

Figure 9.4 illustrates a  partially-com pleted graph, w ith nodes 1, 2  and  3 representing 

yards between dispatchers d\ and d2 - T im es on edges between yards 1 denote entry-exit 

tim es for the relevant dispatcher, and  the  sum  of the  ask price and  any additional cost if
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one of the yards is also the source or destination  yard  and  the tim e would leave th e  tra in  

off-schedule.

F o rm u la t io n

A tra in ’s best-response, tak ing  current prices as fixed, is to  select a  p a th  from source to 

destination w ith m inim al to ta l cost (or no p a th  in the case th a t the m inim al cost is greater 

than  its value for com pleting the journey).

Given a  set of dispatchers, V , let ( d \ , . . .  , dn ) represent the  d ispatchers on the  route 

of a particu lar train . Let (?*_,„(£) denote the  m inim al to tal cost to  en ter d ispatcher di  no 

earlier th an  tim e £, travel from di  to dn , and  exit from dispatcher dn . T h is cost represents 

the cost of the best schedule, given curren t ask prices and  the tra in ’s costs for off-schedule 

performance. T he solution to  C* can be com puted as a recursive relationship:

r r  m  -  I  ( Cj{t' T) +  Co+u->n(r ) )  if  i  < n 
J |  nun  Cj(t,r) i f j  =  n

where C j { t \ , t o )  is the cost to  enter d ispatcher j  a t tim e 11 (or no earlier than  t \  in the case 

of a flexible bid tim e), and exit d ispatcher j  a t tim e to (or no la te r th an  £2 in the  case of 

a  flexible bid tim e), com puted as the sum  of the  price for tim es an d  any add itional cost 

penalty  for off-schedule perform ance if d ispatcher j  is a t the end o f the  tra in ’s route.

The price is the  ask-price if the  agent is not yet com m itted to  th e  good (i.e. it has not 

cleared), or zero otherw ise (in which case the price represents a  sunk  cost). T rains trea t 

offered items in the  same way as any o th er item, m aking an  assum ption  th a t it can  move 

away from such an item  if necessary w ithou t becoming exposed.

Trains consider flexible bid times in the case of non-extrem al nodes, b u t fixed times at 

source or destination  because a  cost is incurred for any deviation from op tim al departu re  

and arrival times. T he in term ediate tim e r  represents the tim e to  cross from dispatcher

dj to dJ+\. In th is description I have finessed detail ab o u t the  tim e to  travel across yards

between dispatch territories, which is sim ply incorporated into the  recursion.

D y n a m ic  P ro g ra m m in g  S o lu t io n  M e th o d

Dynamic program m ing solves this sho rtest-p a th  form ulation of the  myopic best-response 

bidding problem , com puting the best solution over a  fixed lattice o f tim e points ( th a t
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can be different for each tra in  agent), and  working from  d ispatcher dn to  di ,  pruning any 

dom inated solutions (for exam ple higher cost edges w ith  earlier en try  tim es). In  related 

work, B outilier et al. [BGS99] proposed a  dynam ic program m ing algorithm  for agent 

b idding strategies in sequential auctions w ith com plem entarities.

We im plem ent the  following algorithm :

(1) determ ine the  m axim al consistent set of cu rren t offers and  sold item s th a t also leave 

enough tim e for travel across those d ispatch  territo ries w ithou t su itab le  times.

(2) for each m axim al set, use dynam ic program m ing to  determ ine m inim al-cost routes 

in the gaps of the  schedule, i.e. for those contiguous sequences of dispatchers for which 

the tra in  is not currently  holding a  su itable p a ir o f en try  and  exit times. Flexible tim e 

constra in ts are selected for all en try  and  exit tim es except those representing a  tra in ’s 

initial departu re  or arrival time, a t which nodes the  tra in  is not willing to be flexible.

(3) fill the gaps and  select the solution w ith th e  lowest to ta l cost (including the cost for 

cu rren t offers/sold item s used in the solution).

W henever a gap occurs a t the s ta rt or end d ispatcher on a  tra in ’s route the train  

considers tradeoffs between bid price and the  cost o f off-schedule perform ance for off-time 

d ep a rtu re  a n d /o r  arrival times.

T his m ethod includes a  bias in favor of solutions consistent w ith  tim es the tra in  receives 

in the curren t provisional allocations. T his is reasonable, given th a t th e  ask prices represent 

a lower-bound on w hat might be a successful bid price b u t provide no guarantees th a t a  bid 

will succeed. T h a t an agent currently  receives a  pa ir o f tim es conveys useful inform ation 

abou t the “fit” of those tim es w ith bids from o th er agents.

Finally, given a  solution a  tra in  will subm it as m any bids th a t are consistent w ith the 

solution as possible, m aking use of XOR logic an d  constra in ts on tim es to  subm it m ultiple 

bids w ithout com prom ising the solution. T his increases its own likelihood of success, and 

also helps the dispatchers to coordinate jo in t search across m ultip le agents.

9.5 Experimental Results

T h e perform ance of the  auction based solution is com pared w ith  a  centralized solution 

in networks consisting of linear chains of d ispatcher territo ries. B oth the  global M IP 

form ulation and  the M IP for w inner-determ ination  in  each round  of the  auction are solved
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w ith C PLEX . T he rest of the  code (myopic best-response, p rice-updates, etc.) was w ritten  

in C + + .

9.5.1 Dispatcher model

Each d ispatcher territo ry  has the  sam e network structu re , as depicted  in F igure 9.5. The 

to ta l d istance is 157.5 km, consisting of a  single-track section followed by a  double-track 

section (siding) followed by a  single-track section. D ispatcher territo ries are connected 

together w ith yards. T rains have a  m axim al speed of lOOkm/hr over single- and  double­

track sections, and  lk m /h r  w ithin a  yard. For simplicity, I m odel m axim al speed as 

lOOkm/hr throughout the network and re-scale yards from size 0.5km  to a  m odel length 

of 50km.

sid ing

70 25 62.5

Figure 9.5: The Network Structure for a Single Dispatcher, with distances of each section (in km).

9.5.2 Example Problem

Consider a problem  w ith a  chain of two dispatchers, and  7 trains, each w ith  value $200 and 

cost $50 per hour of delay. T rains 1, 2, 4, 5, and 6 run east w ith op tim al d ep a rtu re  and 

arrival times (in hours) of { (1, 7), (3, 11), (8, 16), (11, 19), (10, 17) }, while tra in s 3 and 

7 run west w ith op tim al tim es { (1, 7), (12, 18) }. Given a  m axim al speed of lOOkm/hr 

the free-running tim e  of a  tra in  across the network is 3.66 hr, i.e. th is is how long it would 

take a  tra in  w ith no delays.

T h e  auction-based and  centralized solutions to  this problem  axe illu stra ted  in distance­

tim e charts in Figure 9.6. B oth  solutions find optim al solutions, w ith  value $1400 (all 

tra ins run on-tiine). T his problem  is qu ite  under-constrained, w ith  a  num ber of possible 

optim al schedules.

Notice th a t the  auction-based solution is less ex trem al th an  the  centralized solution. 

T his is qu ite  typical, a  result of the fact th a t tra in  agents tend to  b id  less extrem e times 

th an  those selected w ith  a  global LP-based branch & bound  m ethod  such as C PL E X , and 

achieve a  more evenly paced schedule from source to  destination . We would expect this
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(a) Auction solution.
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T 7
Tim e

(b) Centralized solution.

Figure 9.6: Example: 7 trains, 1 dispatcher territory. Distance in 100’s of kms, time in hrs.
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property  to make auction-based solutions m ore robust against unexpected m inor delays 

during  th e  execution of a  schedule.

9.5.3 Results

T he auction  algorithm  was param eterized as follows: a t m ost 5 bids per-agent in each 

round, a t m ost 240 seconds to  solve w inner-determ ination in  each round (w ith the best 

feasible solution used if the optim al solution is no t found), a  m inim al price increm ent of 

$25. T he price lattice was m aintained over points w ith a  granularity  of 0.2 hrs, and I used 

a tim e interval size of 0.3 hrs in the  tra in s ’ dynam ic-program m ing algorithm .

Problem Generator

A stochastic m ethod is used to  generate a  set of problem  instances. T he approach is loosely 

based around instances in K raay et al. [KHC91]. I refer the  reader to Hallowell [Hal93] 

for an account of other interesting tra in  scheduling problem  sets in the literature . I report 

results on problem  sets w ith  between 2 and  4 d ispatcher agents and betw een 5 and  15 

tra in  agents. I consider linear networks, formed from dispatcher territories as shown in in 

Figure 9.5 and connected w ith yards. T h e  problem  sets are param eterized by constants: 

p ro b (£ ), f iV , a y ,  p c ,  <?c, depmax, n siack and  crslack, as described below.

All tra ins travel from end-to-end over the  network, and travel E ast w ith probability  

p rob (E ). A tra in ’s value is selected from a  norm al d istribu tion , V* ~  iV (p v ,o v ) , w ith 

m ean p y  and stan d ard  deviation a y ,  and  its un it cost C, for off-schedule perform ance is 

norm ally d istribu ted  N ( p c ,  crc)- T he optim al dep artu re  tim e for a  train , td(i), is uniform ly 

d istribu ted , t'd(i) ~  £7(0, depmax). Finally, a  tra in ’s optim al arrival time, £*(z), is com puted 

so th a t the relative slack, i.e. (available tim e - free-running tim e) /  free-running tim e, is 

norm ally d istribu ted  w ith m ean y.siack % and  s tan d ard  deviation crs/ac* %.

T he complexity of a  train-scheduling problem  depends on m any factors, including the 

slack tim e available to each tra in , the  network section types, and  the num ber of “cross­

overs” . A cross-over is counted whenever two tra in s traveling on-tim e m ust cross a t some 

point in the network. As I scaled the  problem s, w ith  m ore tra in  agents and  m ore d ispatcher 

agents, I ad justed  the depmax param eter to m ain tain  the sam e num ber of average cross­

overs per-agent, in an effort to  m ain tain  a  sim ilar problem  complexity. An appropria te  

depmax value was com puted separately  for each problem  size based on s ta tis tica l analysis.
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M odel Size
num  dispatchers 2 3 4
num  trains 5 10 15 5 10 15 5 10 15
G lobal-tim e (s) 97 1438 2022 1161 2442 2495 886 2378 3155
Global-value ($) 895 1699 2097 854 1561 1177 898 1106 1132
A uc-tim e (s) 15 792 2568 15 1192 2039 26.9 944 2448
Agent tim e (s) 0.4 0.6 2.7 0.9 2.2 3.3 1.9 4.4 8.8
Auc-value ($) 850 1893 1737 842 1855 2632 768 1832 2162
Revenue ($) 315 698 1045 470 1030 1690 700 1365 2142
num  rounds 12 13 25 13 16 18 16 16 23
Cache h it (%) 60 50 30 61 50 47 50 52 37

Table 9.1: Comparative performance: Auction vs. Centralized methods.

W ithout this ad justm ent, adding more trains and  more d ispatchers increases the num ber 

of cross-overs and  makes problem s much more difficult to solve.

We selected prob(-E) =  0.7, p v  =  $200, o y  =  50, p c  =  $100, o c  =  25, n  stack =  100%, 

<tstack =  25%, and  set depmax to give average cross-over com plexity of 2 per-train . I 

generated 10 problem  instances for each problem  size.

R e s u l ts

Table 9.1 presents the results. T he com putation tim e o f the  centralized m ethod is bounded 

a t 3600 secs, a t which point I take the best available solution. C PL E X  also ran  out of 

memory (at 200 MB) while solving a  few of the centralized problem s, stopp ing  before 3600 

secs bu t w ithou t an  optim al solution. Notice th a t the  quality  of th e  schedule com puted in 

the auction dom inates th a t from the  centralized solution in hard  problem s, as the num ber 

of dispatchers a n d /o r  the num ber of agents increase.

T he w inner-determ ination  tim e in the auction (to taled  over all rounds and  all dispatch­

ers) has reasonable scaling properties, w ith the num ber of tra in  agents and  in particu lar 

w ith the num ber of dispatchers. T he auction appears able to  decom pose the  problem  ef­

fectively across dispatchers, such th a t m ost com putation  in term s o f coord inating  trains is 

perform ed by one “critical” dispatcher.

It is notew orthy th a t the  tra in  agent best-response bidding  problem  is quite easy, 

indicating th a t it would be interesting to  experim ent w ith a  sm aller discrete tim e step. 

Notice also th a t the sim ple cache proves quite effective, finding th e  op tim al solution around 

50% of the time.
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M ore experim ents are required, b o th  to  b e tte r  u n d ers tan d  the  average-case scaling 

properties of the auction, and also to  look more deeply a t agent strategies. My conjecture 

is th a t  the  average-case run tim e in the  auction  scales quadratically w ith the num ber of 

tra in  agents, and  perhaps sub-linearly w ith  the  num ber of d ispatch  territories.

In term s of agent strategies, I suspect th a t some agents purchase tim es th a t they cannot 

use as the num ber of dispatchers increases, and  as the  b id  coordination  problem  gets more 

difficult. T his belief is based on a  com parison of the  revenue w ith  value in the auction, see 

Table 9.1. If this is the case it will be necessary to  consider m ore sophisticated  bidding 

strategies to avoid this exposure problem.

A similar exposure problem  is noted in the  FCC sp ec tru m  auction problem, in which 

agents need sets of com patible licenses, and  bid across sim ultaneous auctions [BCLOO].

9.6 Related Work

T his is not the first study  of auction-based m ethods for tra in  scheduling problem s. Brewer 

k  P lo tt [BP96], proposed the BICAP ascending-price auc tion  for d istribu ted  tra in  schedul­

ing. T he auction proposed in this chapter is more flexible: while we allow trains to con­

s tru c t a rb itra ry  schedules across the network, B IC A P restric ts  tra ins to bid from a  small 

set of fixed paths. M arket-based m ethods have also been advocated for o ther d istribu ted  

scheduling problem s, such as for a irpo rt take-off and  landing slot allocation problems 

[RSB82],

R etu rn ing  to centralized approaches to  tra in  scheduling, K reuger et al. [KC097] have 

proposed a constraint-based m ethod which ap p ear to  have b e tte r  scaling properties than  

s tra igh t applications of M IP m ethods, b u t is perhaps less su ited  to  m aking tradeoffs across 

schedules w ith different qualities.

W ellman et al. [WWWMM01] propose an  auction-based m ethod for a  factory-scheduling 

problem , in which agents com pete for periods of tim e on (one or more) shared machines. 

As in tra in  scheduling, agents often require a  com bination o f  tim e periods, and  perhaps 

across m ultiple machines. T he tra in  scheduling problem  is different in natu re because it is 

not possible to define up-front a  s ta tic  set of m utually-com patib le tim es, any o f which can 

be safely allocated  to  any agent. Instead, a  feasible a llocation  of tim es to  agents m ust be 

checked for a  safe underlying m eet/pass schedule. M y approach  is also ra th e r different to
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th a t adopted  by W ellm an et al., since I avoid imposing a  d iscre tization  of tim e into finite 

slots, b u t provide instead a sim ple and expressive constrain t-based b idd ing  language.

9.7 Discussion

T he auction-based m echanism  for the d istribu ted  tra in  scheduling problem  presented in 

this chapter is a  b e tte r m atch to  the n a tu ra l inform ation and  control s tru c tu re  o f m odern 

railroads than  trad itional centralized scheduling solutions. M oreover, in itial experim ents 

on a  sim ple network s tru c tu re  show th a t the auction-based solution can generate b e tte r 

solutions than  a centralized approach, and  more quickly. T h e  auction-based approach also 

appears to have useful seeding properties. O f course, it would be in teresting to com pare the 

auction  approach w ith  o ther centralized satisficing  approaches. T h e  curren t com parison 

w ith an  integer-program m ing based centralized solver may be a  little  unfair.

T he m ain weakness w ith the  curren t approach is the lack of an  in teresting network 

structu re . I assume a  single-line network, which while qu ite  a  com m on assum ption in the 

academ ic tra in  scheduling lite ra tu re  [KHC91, KH95, Hal93] is perhaps not very realistic. 

In the context of an  auction-based m ethod, relaxing the  single line assum ption  would 

require two im portan t changes:

(a) extend the m ixed integer program  form ulation of the  w inner-determ ination problem 

for each tra in  agent to  schedule tra in s across m ultiple lines

(b) extend the bidding stra tegy  of tra in  agents to consider a lternative  routes, in  addition 

to alternative times

C ertainly (b) would not seem to be too difficult, given th a t tra in  agents already consider 

alternative routes in time. T he curren t “shortest p a th ” approach will ex tend  quite  readily. 

In addition, although it is not im m ediately clear how to form ulate a  m ulti-line problem  as 

a  mixed integer program , the problem  is no more difficult th an  th a t faced in a  centralized 

solution.

284

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 10

Conclusions

Auctions offer great promise as mechanisms for optim al resource allocation in complex 

d istribu ted  system s w ith self-interested agents. However, lim ited  and  costly com putation 

necessitates a re th inking of trad itional auction theory  because d irect extensions of auctions 

th a t work well in sm all problem s can fail in com plex d is trib u ted  system s. My thesis is th a t 

it is necessary to take an explicitly com putational approach to  auction design. Indeed, 

the value of auctions in e-commerce system s will depend on th e  ab ility  to m aintain the 

desirable properties of auctions, for exam ple economic efficiency, robustness, and  simplicity, 

as m ethods are introduced to allow tractab le com putation . O nce com putational issues are 

successfully addressed, auctions may provide sim ple, stable, and  robust solutions to many 

im portan t d is trib u ted  optim ization problems.

Agents often dem and bundles of items, and  have values for bundles th a t are not equal 

to the sum  of the values of the item s in the  bundle; e.g., for task  allocation, procurem ent 

problem s, and  dynam ic bandw idth allocation. C om binatorial auctions allow agents to 

represent these preferences explicitly by subm itting  bids on bundles of item s, for example 

s ta tin g  “I only want A if I also get B” . Desirable properties o f com binatorial auctions 

include strategy-proofness, such th a t tru th fu l b idding is op tim al w hatever the strategies 

of o ther agents, and allocative-efficiency, such th a t the  auction  im plem ents the value m ax­

imizing allocation. However there is a  tension between the  classic gam e-theoretic solution 

to this problem  and com putational efficiency.

T h e  Groves family of mechanisms, and  the G eneralized Vickrey A uction (GVA) in par­

ticular, are s tra tegy-proof and  efficient. B ut the GVA is a  sealed-bid com binatorial auction. 

Every agent m ust first report its value for every possible bundle, before the auctioneer
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com putes the allocation and agent paym ents. Sealed-bid auctions are undesirable com pu­

tationally  because of this com plete revelation requirem ent, which soon becomes in tractab le 

in large complex dom ains for agents w ith hard  valuation problem s. Itera tive  mechanisms 

are absolutely critical in such dom ains because they can solve problem s w ithout com plete 

inform ation revelation from agents, and even w ithout individual agents com puting their 

exact values for all outcom es. T h e  revelation principle o f m echanism  design, coupled w ith 

the uniqueness of Groves mechanisms provides useful guidance. Any stra tegy-proof and 

efficient iterative com binatorial auction m ust com pute Groves paym ents a t the  end of the 

auction.

M y dissertation  develops an  efficient iterative com binatorial auction, which avoids the 

centralization and  com plete revelation problem s of the  GVA. T he auction, iBundle, and its 

extension Extend& Adjust, is an  ascending-price com binatorial auction  th a t allows agents 

to ad just their bids in response to  bids from o ther agents. tBundle solves realistic problem s 

w ithout com plete inform ation revelation from agents, and  w ith Extend& A djust inherits 

much of the strategy-proofness o f Groves m echanisms by com puting Vickrey-Groves pay­

m ents a t the end of the auction. Instead of term inating  as soon as the  efficient allocation 

has been determ ined, E xtend^:A djust rem ains open ju s t long enough to  collect additional 

inform ation from agents (via best-response bids) to com pute Vickrey paym ents.

In sum m ary, the  m ain contributions are:

•  iBundle E xtend& A djust is the first itera tive com binatorial auction to  com pute m in­

imal com petitive equilibrium  prices in the  com binatorial allocation problem .

•  iBundle E xtend& A djust is the first itera tive com binatorial auction to  com pute the 

efficient allocation and  Vickrey paym ents in all problems in which Vickrey paym ents 

can be priced in com petitive equilibrium .

•  A prim al-dual algorithm , VlCKAuCTION, th a t com putes Vickrey paym ents w ithout 

explicit inform ation abou t agent valuation functions. T he algorithm  sim ply assumes 

myopic best-response inform ation from agents.

iBundle E xtend& A djust in terprets th e  prim al-dual algorithm  V ic k A u c t io n  as an  

ascending-price auction. T h e  only difference is an  explicit m ethod to  ad ju st prices in the 

second “extend” phase of the auction, which aim s to  be more “n a tu ra l” to  partic ipan ts
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than  the m ethod  in V ic k A u c t io n . An agent’s bids in rounds p ast th e  n a tu ra l term ination  

point of iBundle neither affect the  final allocation nor the  final price th a t the  agent pays. 

The only effect is to  reduce the  price th a t o ther agents pay. T herefore it is im portan t 

th a t an  agent not be able to  detect th a t the auction is in th is phase, or else it would sim­

ply drop out and wait for the  auction  to  finally term inate. T h e  ou tstand ing  challenge in 

com pleting a  proof of the following conjecture is to  dem onstrate  th a t E xtend& A djust ter­

minates. T h a t term ination  implies Vickrey paym ents follows directly  from the  optim ality  

of V ic k A u c t io n .

• (conjecture) tBundle Extend& A djust is the first iterative com binatorial auction  to 

com pute the efficient allocation and  Vickrey paym ents in  all com binatorial allocation 

problems.

T he com bined system , tBundle Extend& A djust w ith a  proxy bidding agent interface, 

is a prom ising dynam ic m echanism  to solve com binatorial allocation problem s w ith dis­

tribu ted  self-interested agents.

10.1 A Brief Review

C hapter 1 provides an in troduction  to the com putational problem s inherent in classic 

gam e-theoretic mechanisms, such as the Groves mechanisms. T h e  Groves mechanisms are 

centralized solutions to decentralized optim ization problem s. T h e  m echanism  makes it a 

dom inant stra tegy  for agents to provide com plete and  tru th fu l inform ation abou t their 

preferences to the auctioneer, which then  com putes an  optim al system -w ide solution.

An im portan t challenge problem  in com putational m echanism  design is to  develop a  

strategy-proof and  dynam ic m echanism , in which it is an  agen t’s dom inant s tra tegy  to 

provide tru th fu l inform ation increm entally to  the m echanism, un til ju s t enough is known 

about agents’ problem s to solve the system -wide problem . T h e  scheme proposed in this 

dissertation, com prising of iBundle, Proxy, E xtend& A djust, makes significant progress in 

this direction for the com binatorial allocation problem. T ransform ation techniques between 

the XOR bidding language and  o ther more expressive b idding languages also prom ise to 

lead to specific im plem entations of iBundle th a t are able to  exploit s tru c tu re  in agent 

preferences w ithout incurring the  cost of a  potentially  exponential explosion into values 

on bundles.
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C hap ter 2 introduces im portan t results from classic m echanism  design, including the 

Groves family of mechanisms. Groves mechanisms are the  only s trategy-proof and  effi­

cient m echanism s am ong direct-revelation m echanisms. Taken along w ith the  revelation 

principle, which sta tes th a t any m echanism  can be im plem ented as an  equivalent direct- 

revelation m echanism  (w ith agents reporting  com plete inform ation abou t th e ir prefer­

ences), this uniqueness provides useful focus to the design of iterative m echanisms. In 

particular, any efficient and  strategy-proof iterative m echanism  m ust com pute the  ou t­

come of a Groves mechanism for the underlying preferences of agents.

T he revelation principle does not m ean th a t we need to only consider direct-revelation 

mechanisms when constructing mechanisms for com binatorial problem s. T he revelation 

principle assum es unlim ited com putational resources, b o th  for agents in su b m ittin g  val­

uation functions, and  for the  auctioneer, in converting a  m echanism  into a  single-shot 

direct-revelation solution. In  fact, the  work in my dissertation  clearly dem onstrates th a t 

iterative auctions expand the im plem entation space when com putation  is an issue.

T he tensions between classic gam e-theoretic solutions and trac tab le  com putational so­

lutions soon become evident as one considers the application of mechanisms to  difficult 

d istribu ted  optim ization problem s, such as supply-chain procurem ent or bandw id th  allo­

cation. C hap ter 3 considered the com putational dem ands w ithin a  m echanism, addressing 

com putation a t b o th  the infrastructure (e.g. auctioneer) and  agent level.

A num ber of m ethods were surveyed to  address the com putational complexity on the 

mechanism infrastructure, including approxim ations, special-cases and  decentralized m eth­

ods. Naive a ttem p ts  to introduce approxim ations into mechanisms can break useful game- 

theoretic properties, such as strategy-proofness.

T he strategic complexity of a  m echanism  is closely linked to  its gam e-theoretic prop­

erties. In particu lar, a  m echanism  in which every agent has a  dom inant strategy, i.e. an  

optim al s tra tegy  whatever the strategies and  preferences of o ther agents, is useful game- 

theoretically and com putationally. From  a  gam e-theoretic perspective, a  dom inant s tra t­

egy equilibrium  is a  very robust solution concept, s tab le  for exam ple against “irra tiona l” 

agents. From a  com putational perspective, w ith a  dom inant s tra tegy  an  agent can avoid 

costly m odeling and  gam e-theoretic reasoning abou t o ther agents.

T he th ird  im portan t cost is th a t of valuation complexity, valuation problem s are of­

ten hard , agents have lim ited an d /o r  costly com putation, and  there  are m any different
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outcom es in com binatorial dom ains.

High-level b idding languages, such as bidding programs, can help in situations in  which 

it is easier to specify a  m ethod to  com pute values for outcom es th an  to  com pute values 

for every possible outcom e. T his m ight be th e  case if an  agent has a  well-formulated 

optim ization  problem  to com pute its value for different resource bundles. However, it is 

qu ite  likely th a t each outcom e has a  different structu re , and  requires add itional inform ation 

and  a new specification. A nother problem  w ith th is approach is th a t  it shifts com putation  

to the center and  is problem atic from a  privacy and  inform ational perspective.

My d issertation  adop ts an  a lternative approach, th a t of dynam ic mechanism s, in which 

agents reveal incremented inform ation abou t their preferences un til the  m echanism  can 

com pute and verify an  optim al solution. iBundle is an iterative com binatorial auction 

th a t solves realistic problem s w ithout com plete inform ation revelation from agents. The 

idea is to ‘‘open up” the algorithm  for com puting the outcom e o f th e  GVA, and  involve 

agents dynam ically in the com putational process. It is easy to construc t exam ples in 

which it is not necessary to  have com plete inform ation abou t agen ts’ valuation problem s 

to com pute and verify the  outcom e of the auction. Some sim ple exam ples were described 

towards the end of C h ap ter 3. A well s tru c tu red  dynam ic m ethod will ask agents for ju s t 

enough inform ation to  enable the  m echanism  to com pute and verify th e  outcom e.

Table 4.7 sum m arizes the progress in iterative auction design over th e  past two decades. 

Each contribution relaxes assum ptions on agent preferences a n d /o r  s treng thens the  equi­

librium  analysis of the  auction. All auctions term inate w ith efficient allocations and  prices 

th a t are in com petitive equilibrium , or equal to  Vickrey paym ents, or bo th . P rio r to 

iBundle there was no m ethod th a t term inated  in com petitive equilibrium  in the  general 

problem , let alone in  the  m inim al com petitive equilibrium  solution or w ith Vickrey pay­

m ents.

My approach to iterative com binatorial auction design integrates principles from linear 

program m ing and gam e-theoretic m echanism  design.

F irst, I assum ed th a t agents will follow a  myopic best-response bidding stra tegy  in 

every round of the auction. T his allowed the d irect application o f linear program m ing 

theory, and  prim al-dual algorithm s in particu lar, to auction design. W ith  myopic best- 

response there is an  easy m apping from  an  su itab le  prim al-dual algorithm  to  an  ascending- 

price com binatorial auction. T h e  corresponding auction, iBundle, is th e  first efficient and
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iterative com binatorial auction  for any reasonable agent b idd ing  strategy, in this case 

myopic best-response.

Second, I ex tended the  approach to  com pute Vickrey-Groves paym ents a t the end of the 

auction, in add ition  to  th e  efficient allocation. W hen successful, th is makes myopic best- 

response an  op tim al sequential s trategy  for an  agent in th e  auction , in equilibrium  w ith 

best-response from every o ther agent. I derived a  new p rim a l-d u d  algorithm , V ic kA uc ­

t io n , from a  linear program  form ulation of th e  Groves m echanism  for the com binatorial 

allocation problem . VICKAUCTION provably com putes the  Vickrey paym ents w ith only 

best-response inform ation from agents. V ic k A u c t io n  corresponds to iBundle w ith a  sec­

ond phase, E xtend& A djust. T he purpose of the  second phase is to elicit enough additional 

preference inform ation from agents to  com pute Vickrey paym ents. It tu rn s  out th a t Vick­

rey paym ents require more inform ation  than  th a t which is required to  com pute the efficient 

allocation. Vickrey-Groves paym ents are com puted by an  ad justm en t procedure from final 

prices, based on prim al-dual inform ation collected from best-response bids from agents.

C hapters 4 and  5 presented the iBundle auction, which com putes efficient allocations 

w ith agents th a t follow myopic best-response bidding strateg ies. C hap ter 4 reviews linear 

program  models for the com binatorial allocation problem , an d  introduces a prim al-dual 

algorithm , C o m b A u c t io n , th a t dynam ically com putes prices w ith enough struc tu re  to 

su p p o rt the efficient allocation in com petitive equilibrium . In  some problem s it is necessary 

to  use non-anonym ous prices, w ith a  different price for the  sam e bundle to  different agents, 

and  non-linear prices, w ith  the price on a  bundle different from  the  to ta l price over the 

item s in a bundle.

C o m b A u c t io n  has a  n a tu ra l in terp re ta tion  as an  ascending-price auction. The prim al 

solution corresponds to  a  provisional allocation and  the dual solution corresponds to bun­

dle prices. C om plem entary slackness conditions have a  n a tu ra l in terp re ta tion  w ithin an 

ascending price auction. A provisional allocation is efficient whenever: (I) every agent re­

ceives a  bundle in its myopic best-response bid set and  (2) th e  allocation maximizes revenue 

for the  auctioneer. T his connection to linear program m ing theory  proves the optim ality  of 

iBundle as an  efficient ascending-price auction.

E xperim ental results confirm  th a t iBundle com putes efficient allocations across a  suite 

of problem  instances, w ith  less inform ation revelation th an  th e  GVA. In  addition, the effect 

of price d iscrim ination on allocative efficiency is sm all, and  I expect iB undle to  perform  well
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w ith  anonym ous prices in m ost problem s. A pproxim ations are possible w ith in  iBundle. 

For example, increasing the  m inim al b id  increm ent e in iBundle decreases the  num ber 

of rounds and  can provide an  order-of-m agnitude speed-up for sm all losses in allocative 

efficiency. M ethods to  leverage the  sequential n a tu re  of w inner-determ ination w ith  iBundle 

were also studied, via caching and  h o t-s ta rt techniques.

C hapters 6 and 7 presented a  m ethod to  extend iBundle and  com pute Vickrey paym ents 

a t the end of the auction, in add ition  to  the  efficient allocation. T he m ethod justifies 

myopic best-response, m aking myopic best-response an  optim al sequential s tra tegy  for an 

agent, in equilibrium  w ith best-response strategies from other agents. T he design leaves 

iBundle basically unchanged, sim ply keeping the  auction  open for a  few m ore rounds and 

then com puting discounts to  agents a t  the  end of the  second phase. In the  end, agents are 

charged discounted prices based on discounts com puted during the  second phase.

F irst, I derived a  linear program  to com pute m inim al com petitive equilibrium  (CE) 

prices from a set of suitable com petitive equilibrium  prices and  the efficient allocation. 

M inimal CE prices provide some protection  against m anipulation, and  su p p o rt the Vick­

rey paym ents in special cases. T h e  linear program  form ulation leads to  the procedure 

A d j u s t , which com putes m inim al CE prices from the price inform ation a t the  end of 

C o m bA u c t io n , and sim ilarly a t the  end o f tBundle. I characterized necessary and  suffi­

cient conditions under which A d ju s t  will com pute m inim al CE prices, and  proved th a t 

tBundle(3) w ith A d ju st  term inates w ith  m inim al CE prices. T he discounted prices are 

equal to Vickrey paym ents in all problem s for which m inim al CE prices su p p o rt Vickrey 

paym ents.

T h e o r e m  1 0 .1 iBundle and  ADJUST is an iterative Vickrey auction when m inim al CE  

prices support Vickrey payments.

A fast b u t accurate m ethod A d j P iv o t  com putes approxim ate discounts to  agents after 

tBundle term inates, checking com plem entary-slackness conditions only w ith  respect to  the 

"pivotal” allocations th a t were previously com puted as provisioned allocations during the

auction.

Second, I derived a  linear program  form ulation to  com pute th e  Vickrey paym ent of 

any one agent in any com binatorial allocation  problem  instance. T he Vickrey paym ent
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to every agent can  then  be solved as a  sequence o f independent linear program s. Again, 

this leads to a  linear program  to com pute the Vickrey paym ent to  an  agent from a  set 

of su itab le  com petitive equilibrium  prices an d  knowledge of the  optim al allocation (but 

w ithout add itional inform ation abou t agent valuation functions or the  value of the  optim al 

allocation). Finally, I proposed procedure ADJUST*, a  slight varia tion  on ADJUST, as a 

m ethod to com pute Vickrey paym ents from the  price inform ation a t the end of an  iterative 

auction. C onsidering necessary and sufficient conditions on C E prices for ADJUST* to 

com pute m inim al Vickrey paym ents, the most im p o rtan t non-obvious condition can be 

s ta ted  as follows:

. . .  i j  an agent in  the optimal allocation is not in  one or more second-best allocations 

(w ithout one o f the agents in  the allocation) then the price on the bundle it receives in  the 

optimal allocation m ust equal its value.

T his condition will not necessarily hold a t the  end of C o m b A u c t io n , or a t the end 

of iBundle. However, I was able to derive a prim al-dual algorithm , VICKAUCTION, which 

com putes Vickrey paym ents w ith  ADJUST*, by proposing a  second phase to C o m bA uc - 

TION, called P h a se II. P h a se II continues to  ad just prices until the  conditions for Vickrey 

paym ents are m et. T he overall VICKAUCTION m ethod is com posed of C o m bA u c t io n (3)  

followed by P h a s e II. V ic k A u c t io n  im plem ents the  allocation com puted a t the end of 

C o m b A u c t io n , w ith ad justed  prices based on discounts com puted during  PHASEII.

I prove optim ality for VICKAUCTION:

Theorem 10.2 V ic k A u c t io n  is a primal-dual algorithm to com pute the Vickrey pay­

m ents and efficient allocation in  the combinatorial allocation problem, with only best- 

response inform ation from  agents.

C hapter 7 introduces an  experim ental auction  m ethod, iBundle Extend& A djust, to  im­

plem ent V ickA u c t io n  in a  decentralized system . T h e  auction introduces a  second phase 

to com pute Vickrey paym ents, collecting ju s t enough add itional inform ation from best- 

response agent strategies. T he m ain difficulty in  im plem enting the  prim al-dual m ethod, 

V ic kA u c t io n , as an  auction  arises because it is im portan t th a t  agents can not detect the 

transition  from phase I to phase II. T he experim ental m ethod  used to  drive price com pe­

tition  in the extended phase is to  introduce dum m y agents in to  th e  auction  as real agents
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drop out to:

(a) provide enough com petition to drive the  prices to  agents in the efficient allocation 

high enough to com pute Vickrey discounts to  every agent

(b) provide a  “com petitive effect” th a t  is hard  to d istinguish  from the bids of the  real 

agents they replace

T he valuation functions of the dum m y agents are configured by the  auctioneer dynam ­

ically to mimic continued bidding from the  real agents as they drop out

I proved th a t the ad justed  prices in tBundle E xtend& A djust are Vickrey paym ents 

when the auction term inates. T he ou tstand ing  open question is w hether the curren t rules 

for quiescence detection and dum m y agents are sufficient to generate conditions to be able 

to com pute Vickrey prices from com petitive equilibrium  prices.

In C hapter 8 presented encouraging experim ental results for iBundle Extend& A djust. 

T he extended auction is indeed able to com pute the Vickrey outcom e w ith myopic best- 

response agent strategies across a  suite of problem s. I make the following conjecture:

Conjecture 10.1 iBundle Extend& Adjust is an iterative Generalized Vickrey Auction.

Vickrey paym ents make myopic best-response becomes a Bayesian-Nash equilibrium  of 

the auction.

Theorem 10.3 Myopic best-response is a Bayesian-Nash equilibrium o f an iterative 

auction that myopically im plem ents the outcome o f the Generalized Vickrey Auction.

Finally, proxy bidding agents are suggested as a  m ethod to  boost the strategy-proofness 

provided by Vickrey paym ents. T he proxy agents ac t as an  interface between the  auction 

and the agents, receiving increm ental inform ation from agents abou t their preferences 

over allocations, and  following a  myopic best-response stra tegy  w ith th a t inform ation. 

T he proxy agents check consistency, the  inform ation provided in each round m ust all be 

consistent, and only bid when there is enough inform ation to  determ ine the best-response.

Proposition 10.1 Dynamic truth-revelation is a dom inant strategy to the proxy agents 

if: (a) the proxy agents can constrain agents to providing inform ation consistent with
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a single ex an te  fixed (but perhaps untruthful) valuation function; and (b) the auction 

im plem ents an iterative GVA with myopic best-response.

T he proxy agents cannot actually  lim it agents to  a  single valuation function, b u t check­

ing consistency across rounds should be quite effective a t constrain ing  any possible m anipu­

lation. T he only gap th a t  rem ains in the auction’s strategy-proofness is th e  ex tent to which 

consistency cannot be com pletely enforced w ithout falling back on com plete inform ation.

C hap ter 9 proposed a  new auction  property, bounded-rational compatibility, to char­

acterize auctions in which agents can com pute equilibrium  strateg ies w ith  approxim ate 

inform ation abou t th e ir preferences. For example, an  iterative auction  is myopic  bounded- 

rational com patible if an  agent can com pute its myopic best-response stra tegy  w ith an 

approxim ate valuation function, for exam ple bounds on its value, in some problems. 

(Bundle is (myopic) bounded-rational com patible, while the  G eneralized Vickrey Auction 

is not (dom inant-strategy) bounded-rational com patible. T h e  extended tBundle auction 

is Bayesian-Nash bounded-rational com patible in problem s in which it com putes Vickrey 

paym ents w ith myopic best-response strategies.

To begin to understand  the advantage of myopic best-response over com plete revela­

tion I com pared the efficiency and  com putation  in iterative and  sealed-bid auctions for 

a sim ple model of a bounded-rational agent. I modeled the  deliberation  decision of an 

agent explicitly, and  com puted m yopically-rational m etadeliberation  strategies for agents 

in iterative and  sealed-bid auctions. T he experim ental results showed th a t: (a) iterative 

auctions com pute more efficient solutions th an  sealed-bid auctions, w ith agents allocating 

lim ited com putational resources to more “im portan t" bundles; (b) itera tive auctions allow 

agents to avoid value com putation.

Finally, C hap ter 9 presented an  application o f auction-based m ethods to  a  d istribu ted  

tra in  scheduling problem . A uction m ethods are well su ited  to the  n a tu ra l inform ation 

and  control s tru c tu re  of m odern railroads. In  the m odel, tra in s  bid for tim es to enter 

and  exit the territo ries o f each dispatcher along their route. Each dispatcher operates an 

ascending-price auction, for the right to enter and  exit its te rr ito ry  a t a  particu lar time. 

iBundle style price-update rules are applied to  ad just the price on pairs of en try  and  exit 

tim es across rounds. O ne innovation in the  design is th a t tra in  agents can bid w ith an 

expressive constrain t-based bidding language to  represent indifference across times, e.g.
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“any arrival tim e before 12pm is fine” . T his is coupled w ith a  finite lattice of ask prices 

m aintained by each dispatch agent. C om putational results on a  simple linear network, for 

tra in  agents w ith myopic best-response bidding strategies dem onstrated  th a t the auction- 

based m ethod com puted b e tte r solutions th an  a  m onolithic centralized m ethod and  in less 

time, and  suggest th a t the auction m ethod has useful scaling properties.

10.2 Future Work

Let me outline some areas for concrete fu ture work.

10.2.1 Iterative Combinatorial Auction Extensions 

Expressive Bidding Languages

iBundle provides agents w ith a  com plete, b u t no t very expressive, “exclusive-or” bidding 

language. Expressive languages, for exam ple constrain t-based and  functional- 

approxim ation languages, can reduce the inform ational and  com putational dem ands on 

agents and lead to faster w inner-determ ination algorithm s.

One interesting approach to develop a  m echanism  for a  new language is understand  

to ad just prices via a transform ation of the  problem  into the tBundle price-adjustm ent 

scheme. It is possible to derive optim al rules for a  new language by compiling the following 

translation : from bids in the new language to  XOR-bundle bids in iBundle to  price updates 

in iBundle and  back to price updates in the new language. Ideally we would like to exploit 

s tru c tu re  in agents’ bids in w inner-determ ination and  price-updates.

C onsider XOR to OR as a  sim ple transform ation  example. Additive-or bids can be 

sim ulated in iBundle as bids from separate  agents, which illustrates th a t iBundle rules for 

this language are:

-  increase prices on  any  single b u n d le  in  a n  OR b id  for w hich a n  agent is unsuccessfu l in 

th e  cu rre n t ro u n d

-  never in troduce price-discrim ination

-  term inate  when every agent receives all bundles in its bid in the  provisional allocation

A utom ated  com pilation m ethods could also be introduced, to  allow a  user to define 

a  language sem antics from which optim al auction m ethods are generated on-the-fly.
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Application Study

O ne ou tstand ing  im portan t piece of experim ental work is to  perform  a  com putational 

com parison of agent w inner-determ ination w ith  a  Groves m echanism  and  iBundle in a 

sim ulated com binatorial allocation problem  dom ain w ith concrete m odels for local agent 

problem s. Here are some problem s w ith desirable properties (hard  agent valuation prob­

lems, well-formed central op tim ization problem s, n a tu ra l decentralization, existing problem  

sets, etc.).

•  Distributed traveling salesperson problem. Andersson & Sandholm  [AS98, AS99, 

ASOO] define a  m ultiagent T S P  in which agents have locations and  jobs have lo­

cations. T h e  goal is to allocate jobs to agents to m axim ize the  social welfare, which 

is m easured as the to ta l distance traveled by all agents. T he au thors report results 

for a d istribu ted  task allocation m ethod on 8x8 sim ulations, w ith random  agent and 

job locations selected on a  sim ple grid.

• Multiple project resource m anagement. P ro jects may involve dozens of firms and 

hundreds of people who need to be m anaged and coordinated. Exam ples include 

large construction  projects, opening a  new store, perform ing m ajor m aintenance, 

starting  up a  new m anufacturing facility [SBG94]. One well-form ulated m ulti-agent 

problem  is known as raultiple-project resource-constrained optim ization , in which 

individual projects com pete for the  sam e constrained resources and  m ust solve local 

scheduling problem s to  minimize costs given allocations. T he local problem  is hard, 

and  as Shutb  et al. [SBG94] note, it is not realistic to solve to optim ality  w ith  several 

hundred activities.

• M ulti-agent scheduling problems. A classic exam ple is the a irp o rt takeoff and  landing 

time-slot problem  [RSB82, GIP89]. Airlines com plete for takeoff and  landing slots 

a t a irports. For a  particu la r allocation of slots the airline m ust solve its local crew 

and  airp lane scheduling problem  to  com pute the  cost for using the slots.

Sequential Winner Determination

T he w inner-determ ination problem  in iterative auctions presents an  in teresting dynam ic 

com putational problem , because agents’ bids change only gradually  during the  auction
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as prices increase. In  addition  to  sim ple caching across rounds, and  h o t-s ta rt techniques, 

one m ight also look to  com pute and  re-use solutions to  subproblem s. As an  example, 

w ith b ranch-and-cut optim ization, in which new constra in ts are in troduced during linear- 

program  based branch-and-bound search, one can re-use cu ts to  p rune search in later 

rounds. A nother in teresting  approach is th a t of “continual com pu tation” , in which proba­

bilistic and  gam e-theoretic m ethods are used to  predict fu ture w inner-determ ination prob­

lems and  to precom pute solutions in the  down tim e betw een rounds.

The Agent Meta-deliberation Problem

Given th a t an agent has a hard  valuation problem , lim ited com putational resources, and 

many possible bundles of item s to value, how should an agent schedule deliberation across 

different bundles? T his is an  interesting dom ain for m etadeliberation  techniques, such as 

those th a t have found application in o ther tim e critical dom ains, e.g. medicine, etc. An 

iterative auction provides a  dynam ic and tim e-critical environm ent, w ith prices increasing 

across rounds, and  a  finite tim e delay between rounds. Values for bundles are nested w ithin 

an agen t’s algorithm  to com pute its best response, and th e  expected utility  of subm itting  

a correct best-response in the current round depends on beliefs ab o u t strategies of other 

agents and fu ture prices in the auction.

An Asynchronous iBundle Auction

It would be useful to  prove properties ab o u t iBundle w hen not every agent subm its a  bid 

in each round. For example, is it possible to  claim  efficiency in a  system  w ith some “slow” 

agents and some “fast” agents, where agents bid correctly whenever they bid?

10.2.2 Electronic Commerce Foundations

M u ltia ttrib u te  auctions and  com binatorial exchanges present ju s t two new em erging areas 

of com putational m echanism  design in electronic commerce.

Multiattribute Auctions

A m u ltia ttrib u te  auction allows agents to  negotiate over the  a ttr ib u te s  (size, terms-of- 

paym ent, delivery schedule, speed, etc.) of an  item  in add ition  to  the  price. M u ltia ttrib u te  

auctions can lead to  more efficient outcom es th an  fixed a ttr ib u te  auctions, in which sellers
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are restric ted  to price com petition  in an  ex ante  fixed space o f a ttrib u tes . M u ltia ttrib u te  

auctions prom ise to provide robust m ethods for efficient au tom ated  negotiation between 

m ultiple agents.

T here are three central challenges in the design of m u ltia ttrib u te  auctions: (1) trac tab le  

w inner-determ ination, which depends on an  agen t’s preferences over the  a ttrib u te s  of a 

good in addition  to price; (2) m inim ize the am ount of inform ation revelation required by 

agents; (3) handle issues of strategic m isrepresentation o f preferences.

Inform ationally, it will be im portan t to design iterative mechanisms th a t allow agents 

to reveal increm ental inform ation abou t their preferences. A nother m ethod to reduce the 

inform ational load on users is to  position a  sem i-autonom ous proxy bidding agent between 

a user and the auctioneer th a t will accept m any different types of inform ation, including 

ordinal, cardinal, hard  constrain ts, functional approxim ations, and  then  subm it optim al 

bids to the auctioneer based on th is inform ation.

It appears possible to reduce sim ple m u ltia ttrib u te  allocation problem s (for exam ple 

w ith one seller and m ultiple buyers) to a  com binatorial allocation problem , at least if 

a ttr ib u te s  are discrete. A bundle of a ttrib u te s  becomes a  bundle of items. T he preferences 

of the seller can be introduced via an  agent th a t  com petes w ith buyers not to  sell goods 

w ith particu lar a ttrib u te s  if the  price is too low, or if ano ther set of a ttrib u te s  are more 

desirable a t the curren t prices. However, the  M yerson-Satterthw aite im possibility theorem  

lim its w hat can be achieved in a  gam e-theoretic sense. We cannot expect to  im plement 

an efficient m ethod th a t is incentive-com patible for b o th  agents and  budget-balanced, bu t 

m ust sacrifice one of these conditions.

Reverse auctions, e.g. procurem ent auctions, provide a  sim ilar o p p ortun ity  for iBundle- 

based m ethods. In a  reverse com binatorial auction  there is a  single buyer and  m ultiple 

sellers, each able to provide bundles of item s. T h e  efficient allocation will depend on the 

value of the buyer for different bundles of item s and  on the  costs of each seller to  provide 

bundles. T he optim al solution selects bundles o f item s from m ultiple sellers to  maximize 

the difference between the value o f the buyer and  the to ta l cost over the  sellers. Again, I 

believe th a t it is possible to transform  this problem  into a  regular “forward” com binatorial 

auction  and  derive iBundle price u p d a te  rules.
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Combinatorial Exchanges

A com binatorial exchange allows m ultiple buyers to  trade w ith  m ultiple sellers, w ith all 

agents able to express logical conditions across bundles of item s. C om binatorial exchanges 

address an im portan t weakness in com binatorial auctions, which is the  assum ption th a t 

there a  single seller is able to  offer bundles com posed of m any different types of items. 

O n the contrary, wc might expect th a t a  more n a tu ra l m odel would allow m ultiple buyers 

to engage in com binatorial trades w ith m ultiple sellers. In teresting applications of such 

exchanges include: a  bandw idth  exchange th a t aggregates supply from geographically 

d isparate  sellers to m atch bids for “v irtual networks” , or a  travel exchange, th a t aggregates 

the supply of excess seats and  hotel rooms, to m atch bids for bundles of rooms and flights. 

T he winner determ ination  problem  in a  com binatorial exchange, to select bids to  maximize 

surplus, is a classic com binatorial optim ization problem .

T he pricing problem  is interesting, in particu lar because o f the M yerson-Satterthw aite 

im possibility theorem  th a t shows th a t it is not possible to  achieve efficiency, budget- 

balance, and incentive-com patibility. We m ust sacrifice one of these desirable properties. 

One approach would fix strategy-proofness, and  perhaps sacrifice efficiency in favor of 

budget-balance. T his is sim ilar to  an  approach of McAfee [McA92] for double auctions 

on homogeneous items. A nother approach would fix budget-balance, and  try  to achieve 

as much strategy-proofness and  efficiency as possible. In Parkes, K alagananam  and Eso 

[PKE01] I take this approach, allocating surplus when an  exchange is cleared to minimize 

the distance between agent paym ents and Vickrey paym ents. T h e  choice of distance m et­

ric has a  d istribu tional effect on surplus allocation and  changes the incentive properties of 

the exchange. A sim ple “threshold” rule appears to  perform  well, providing discounts to 

agents th a t would receive a  large discount in a  Vickrey-Groves scheme, providing discounts 

above a  certain  erro r threshold.

It also rem ains an  open problem  to identify special cases in which budget-balance is 

not a  problem , for exam ple w ith restricted models o f aggregation and bidding languages.

10.2.3 Approximations, Intractability, and Bounded-Rationality

Recent algorithm ic approaches to  mechanism design consider the  effect of approxim ation 

and  in trac tab ility  on the  economic properties of m echanisms. T he goal is to  understand  

b o th  w hat is possible and  w hat is impossible when trac tab le  com putation  is introduced as
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an add itional constrain t.

In one sense, bounded-rationality  and  in trac tab ility  can help; one m ight use NP- 

hardness results to  design “bounded strategy-proof” mechanisms th a t cannot be m anipu­

lated  w ithout an agent solving a  hard  problem  in polynom ial time.

In ano ther sense, bounded-rationality  an d  in trac tab ility  can be a  problem ; optim al 

gam e-theoretic mechanisms can require the network in frastructu re to  solve m ultiple in­

trac tab le  problem s and  approxim ate solutions can quickly break incentive-com patibility 

properties. In addition  to proving worst-case m anipulation  results for approxim ation algo­

rithm s, one m ight also use random ized m echanism s to  expand the  im plem entation space.

A nother th read  in this interface between in trac tab ility  and m echanism  design is the 

effect of agent bounded-rationality  on preference revelation. It is o ften  im possible for an 

agent to  com pute its com plete preference set, i.e. its value for all possible outcom es. T he 

direction sta rted  on in this d issertation  is to  design incentive-com patible mechanisms th a t 

can solve d istribu ted  problem s w ith approxim ate (bu t tru th fu l) inform ation revelation 

from agents, providing dynam ic feedback to  agents abou t inform ation collected from other 

agents and  abou t progress towards a  system -w ide solution. My curren t research results 

suggest th a t prim al-dual op tim ization  theory may provide a  su itable set of m athem atical 

tools to  develop iterative strategy-proof m echanisms w ith rich structu res.
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