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Abstract

ITERATIVE COMBINATORIAL AUCTIONS:
ACHIEVING ECONOMIC AND COMPUTATIONAL EFFICIENCY
David Christopher Parkes
Supervisor: Lyle H. Ungar

A fundamental problem in building open distributed systems is to design mechanisms
that compute optimal system-wide solutions despite the self-interest of individual users and
computational agents. Classic game-theoretic solutions are often prohibitively expensive
computationally. For example, the Generalized Vickrey Auction (GVA) is an efficient and
strategy-proof solution to the combinatorial allocation problem (CAP), in which agents
demand bundles of items, but every agent must reveal its value for all possible bundles
and the auctioneer must solve a sequence of NP-hard optimization problems to compute
the outcome.

I propose iBundle, an iterative combinatorial auction in which agents can bid for com-
binations of items and adjust their bids in response to bids from other agents. iBundle
computes the efficient allocation in the CAP when agents follow myopic best-response bid-
ding strategies, bidding for the bundle(s) that maximize their surplus taking the current
prices as fixed. iBundle solves problems without complete information revelation from
agents and terminates in competitive equilibrium. Moreover, an agent can follow a myopic
best-response strategy with approximate values on bundles, for example with lower- and
upper- bounds.

My approach to iterative mechanism design decompaoses the problem into two parts.
First, [ use linear programming theory to develop an efficient iterative auction under the
assumption that agents will follow a myopic best-response bidding strategy. Second, I

extend the approach to also compute Vickrey payments at the end of the auction. This

iv
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makes myopic best-response a sequentially-rational strategy for agents in equilibrium, in-
heriting many of the useful game-theoretic properties of the GVA.

iBundle implements a primal-dual algorithm, COMBAUCTION, for the CAP, computing
a feasible primal (the provisional allocation) and a feasible dual (the ask prices) that sat-
isfy complementary slackness conditions. An extended auction, iBundle Extend&Adjust,
interprets a primal-dual algorithm, VICKAUCTION, as an iterative auction. VICKAUCTION
computes the efficient allocation and Vickrey payments with only best-response informa-
tion from agents. Experimental results demonstrate that iBundle Extend&Adjust, which
keeps iBundle open for a second phase before adjusting prices towards Vickrey payments,

computes Vickrey payments across a suite of problems.
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Chapter 1
Introduction

The Internet embodies a new paradigm of distributed open computer networks, in which
agents—users and computational devices—are not cooperative, but self-interested, with
private information and goals. A fundamental problem in building these systems is to de-
sigh tncentive-compatible protocols, which compute optimal system-wide solutions despite
the self-interest of individual agents. This emerging area of study, called computational
mechanism design, is at the interface of game theory, artificial intelligence, and algorithmic
theory.

Examples of the many interesting applications of mechanism design in open systems
include: (a) network routing problems, with self-interested packets and routers; (b) pro-
curement problems in electronic commerce between businesses and suppliers; (c) logistics
problems, for example with delivery problems and multiple self-interested shipping com-
panies; (d) scheduling problems, for example to schedule time slots at airport gates across
self-interested airlines.

We can view these problems as distributed optimization problems. with an objective
function that depends on the private information of the agents in the system. It is often
necessary to assume that rational self-interested agents will choose reveal incomplete, and
perhaps untruthful, information about their goals and preferences when that can lead to
an individually preferable outcome. As such, the central goal in mechanism design is to
address this problem of agent self-interest, and design incentives to encourage agent be-
havior that leads to good system-wide solutions to distributed multi-agent optimization
problems. One classic approach is to design incentives for agents to provide truthful infor-
mation about their preferences, and compute an optimal system-wide solution with this

information.
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Given that market-based mechanisms have proved able to coordinate the activities of
many autonomous individuals in human societies, it is perhaps natural to look to eco-
nomic principles to design coordination mechanisms in computational systems. Indeed,
the explosion of Internet-based commerce creates a huge demand for efficient market-based
mechanisms, for example to support automated negotiation across and within groups of
individuals and businesses. Market-based mechanisms are a very natural way to respect
the autonomy and information decentralization in open systems, and promise to revolu-
tionize how we design and evaluate open computer systems. In particular, auction-based
mechanisms can often provide enough structure to enable strong theoretical claims about
the strategies that agents will select and the optimality properties of final solutions.

Exploring the interface between economic mechanisms and distributed computation
exposes a number of deep computational problems. Limited and/or costly computation,
both at the network and at the level of distributed computational agents, coupled with
the inherent combinatorial complexity of many interesting problem domains (e.g. those in
scheduling and resource allocation) quickly break naive implementations of classic game-
theoretic mechanisms. Yet, computation and self-interest interact in non-obvious ways:
while approximate solutions can destroy the incentive properties of a mechanism, agent
bounded-rationality can also be used to design mechanisms that cannot be manipulated

without solving an intractable problem.

1.1 Computational Mechanism Design

The challenge in computational mechanism design is to resolve the tensions between what
one might choose to do game-theoretically and what is desirable computationally. In some
cases the best game-theoretic solution also provides useful computational benefits. The
most obvious example is the concept of dominant strategy implementation, which implies
that each agent has an optimal strategy irrespective of the preferences or strategies of other
agents. This is useful computationally because agents do not need to model or deliberate
about the strategies of the other agents in the system. We are not always so lucky. To give
a counterexample, a direct-revelation dominant strategy implementation, in which every
agent must compute and reveal its complete preferences over all possible outcomes, is a

useful simplifying concept game-theoretically but often intractable computationally.
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A useful mechanisms must control both the computational costs of the auctioneer (or
in general, to the mechanism infrastructure) and the computational costs of the agents,
while retaining useful game-theoretic properties to handle agent self-interest.

In what follows [ introduce the mechanism design problem, and consider computational
problems with the classic game-theoretic approach, in particular in application to combi-
natorial problem domains. Then I briefly highlight some important computational costs
in mechanism implementation, and introduce a number of different approaches to make

mechanisms more computationally reasonable.

1.1.1 The Mechanism Design Problem

Consider a system with Z agents, indexed ¢ = 1,...,I, and a set of outcomes Q. Each
agent has private information about its utility for different outcomes, which is a quantitative
measure of its “happiness” given each outcome. It is useful to think of an agent having
a type, denoted §; € ©;, that determines its utility over different outcomes. The set ©;
represents all possible preferences available to agent i. We can write u;(o, ;) to denote the
utility of agent with type 6; for outcome o € O. With this, then outcome o; is preferred
to outcome o, by agent i, written o; > 09, if and only if u;(0y,6;) > ui(09,6;).

The implementation problem, illustrated in Figure 1.1, is to compute the solution to
a social choice function, f : (0, x,...,%,0;) — O, that selects an optimal outcome
o' = f(0) based on the types 8 = (6,,...,8;) of all agents.

A common social choice function selects an outcome to maximize total utility over
agents:

f(0) =argxgleaca)cZui(o,0‘-), forallfe®
H

This is the classic utilitarian objective, known as allocative-efficiency in allocation prob-
lems.

The mechanism design problem is to solve the implementation problem with self-
interested agents that have private information about their preferences. Essentially a
mechanism defines the “rules of a game”; i.e., the actions available to agents and the
method that is used to compute the outcome based on those actions.

Auctions are simple mechanisms for resource allocation, in which the actions available

to agents are to submit bids and the outcome is computed, for example, to maximize

revenue given bids.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



f(6,,656,...)

Figure 1.1: The Abstract Implementation Problem.

A game-theoretic approach is central to mechanism design. Game theory is a method
to study a system of self-interested agents in conditions of strategic interaction, with
rational agents modeled as expected-utility maximizers. Game-theoretic analysis computes
the equilibrium outcome in a mechanism, for particular agent preferences, in which every
agent plays an expected-utility maximizing best-response to every other agent. A number
of solution concepts are defined, each of which makes different assumptions about the
information available to agents and methods used by agents to select strategies.

With this, a mechanism is said to implement a particular social choice function, or
solve an implementation problem, if the solution to the social choice function is computed

by the mechanism in a game-theoretic equilibrium, with self-interested agents.

1.1.2 The Classic Vickrey-Clarke-Groves Solution

One particularly useful solution concept in mechanism design is dominant strategy imple-
mentation, in which each agent has the same optimal strategy whatever the strategies and
preferences of other agents. A mechanism that implements a desired social choice function
in dominant strategy is a robust solution to an implementation problem, because it makes

very few assumptions about the information available to agents, or about agents’ beliefs
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about the rationality of other agents. Informally, we might say that a dominant strat-
egy solution “removes game-theory” from the problem. Agents can participate without
modeling the preferences or strategies of other agents.

This dominant-strategy solution concept is achieved in the important Vickrey-Clarke-
Groves (VCG) family of mechanisms, in which an agent’s dominant strategy is to truthfully
reveal its preferences to the mechanisms, whatever the strategies or preferences of other
agents. This property of dominant-strategy truth-revelation is known as strategy-proofness.
Moreover, in the context of resource allocation problems the VCG mechanisms implement
the allocatively-efficient solution, or the resource allocation that maximizes value over all
agents. In fact, there is quite a strong sense in which any strategy-proof and efficient
mechanisms must compute the outcome of the VCG mechanism.

Unfortunately, the VCG mechanism provides an eztremely centralized solution to the
resource allocation problem. Every agent must provide complete information about its
preferences to the mechanism. There are many problems, for example the combinatorial
allocation problem, in which this is intractable for an agent. Agents often have difficult
local valuation problems [Mil00a]. Resolving this tension between computational concerns
and game-theoretic concerns, and moving towards an iterative implementation of the VCG

mechanisms, is a central contribution of this dissertation.

1.1.3 Computational Considerations

Computation occurs at two different levels within a mechanism:

e For the mechanism infrastructure: How much computation is required to compute

the outcome of the mechanism, for example given bids from agents?

o For agents:
(a) (strategic complezity) Is game-theoretic reasoning required to follow an optimal
strategy, or does an agent have a dominant strategy?

(b) (valuation complerity) Must an agent compute evaluate its preferences for all

possible outcomes to compute its optimal strategy?

Approaches to reduce the computational demands on the mechanism include: intro-
ducing approximations; identifying tractable special-cases; and distributing computation

to the agents in the system. The challenge in each case is to relax computational demands
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without losing useful game-theoretic properties. Perhaps one can identify a set of ax-
ioms that an approximation algorithm must satisfy to retain strategy-proofness, or restrict
problem instances to a smaller set of tractable special-cases. Section 3.2.1 in chapter 3
discusses some interesting approaches in more detail.

The strategic complezity of a mechanism is closely linked to its game-theoretic prop-
erties. In particular, a mechanism in which every agent has a dominant strategy— an
optimal strategy whatever the strategies and preferences of other agents —is useful game-
theoretically and computationally. From a computational perspective, with a dominant
strategy an agent can avoid costly modeling and game-theoretic reasoning about other
agents.

The valuation complezity of a mechanism is related to the amount of information rev-
elation that is required from agents, and the complexity of providing that information.
Agents must often compute their value for different outcomes, each of which might involve
solving a hard local optimization problem. This is an important problem that is essentially
ignored in classic mechanism design. For example, in a single-shot direct-revelation mecha-
nisms such as the VCG mechanism, agents must provide complete information about their
preferences to the mechanism.

Approaches to reduce valuation complexity include:

¢ Design dynamic mechanisms that solve problems with minimal information revelation

from agents.

e Provide structured bidding languages to allow compact representations of agent pref-
erences in high-dimensional problems, and exploit the structure computationally

throughout the mechanism.

An iterative mechanism can allows agents to provide incremental information, and
hope to solve the implementation problem without unnecessary information about agent
preferences.

Of course, to reduce the amount of valuation work required of an agent it is also
necessary that an agent can provide this incremental information without first evaluating
its complete preferences over every possible outcome. We must also allow an agent to
follow its optimal strategy in the mechanism without computing its complete preferences

over all outcomes. For example, it is useful if partial orderings over outcomes allow an
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agent to provide a response.

many interesting domains, where agents must solve local optimization problems to
understand their values for different outcomes.

Complete information is not required to solve many distributed optimization problems,
even when the central agent (the auctioneer) selects the final solution.

Dynamic mechanisms allow solutions to problems to be computed without complete in-
formation revelation, while any optimal single-shot mechanism clearly requires that agents

provide all information to the center.

1.1.4 A Challenge: Incentive-Compatible Iterative Mechanisms

One important challenge in computational mechanism design, given bounded-rational but

self-interested agents, and hard combinatorial domains, is:

. develop an iterative mechanism in which incremental revelation of truthful infor-
mation is a dominant strategy for every agent, and which computes an optimal solution to

the system-wide problem with minimal total information revelation.

Addressing this challenge requires a very careful synthesis of ideas from Al, for exam-
ple to handle high-dimensional bid spaces; from algorithm theory, for example to solve
intermediate allocation and pricing problems; and from game-theory to wrap all of this
within a strategy-proof system.

The goal is to allow agents to reveal information about their preferences, perhaps
approximate and perhaps incomplete, whenever that information is required to compute
the optimal system-wide solution and without concern for strategic effects. In this way
distributed agent computation on the value for different outcomes can be performed in
parallel within a joint search for a system-wide solution, with only as much information
computed about the local problems of each agent as is required to compute and verify an
solution.

The problem of designing payments to make truthful information revelation optimal for
an agent is orthogonal to the problem of designing appropriate representation languages.
The language should be allow an agent to accurately state information about its preferences
and/or respond to challenges, and also to allow an agent to represent this information in

a compact form.
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This dissertation proposes an iterative combinatorial auction, iBundle Extend& Adjust,
that makes significant progress towards this challenge for the combinatorial allocation prob-
lem (CAP), described in the next section. It is important to avoid complete information
revelation in solving the combinatorial allocation problem, because agents often have hard
valuation problems to compute their value for any single outcome, and there are an expo-

nential number of possible outcomes.

1.2 The Combinatorial Allocation Problem

The combinatorial allocation problem (CAP) is a resource allocation problem in which
a set of items are to be allocated across a set of agents. Agents are assumed to have
non-linear values for sets of items, e.g. “I only want A if I also get B”, and the goal is to
determine the allocation that maximizes the total value over all agents.

The CAP is relevant to many interesting and important real-world applications, in-
cluding scheduling, logistics and network computation domains. Indeed, it has attracted
considerable recent attention in the academic literature because of its application to the
FCC spectrum auctions. It is quite reasonable that there are geographical synergies across
licenses, for example with the value of a wireless license for the New York metropolitan
area contingent on also acquiring a license for the Philadelphia and Boston areas.

Moreover, the classic mechanism design solution to the CAP, the Vickrey-Clarke-Groves
mechanism, often requires the solution to a number of intractable problems. Not only must
agents report their values for a perhaps exponentially large number of different combina-
tions of items (and solve a perhaps NP-hard problem to compute their value for any one
combination), but the mechanism infrastructure must solve a number of NP-hard problems
to compute the outcome of the mechanism.

In the CAP there are a set G of discrete items and a set I of agents. Each agent has
a valuation function v; : 26 — R, that defines its value v;(S) > 0 for bundles of items,
S € G. The valuation function defines the agent’s type, i.e. its preferences over different
outcomes. Assume v;(@) = 0, and free disposal of items, implying that agents have weakly
increasing values for bundles, i.e. v;(S) < v;(S') forall §' D S.

An outcome defines an allocation S = (Si,...,S;) of items to agents, with agent ¢

receiving bundle S;. A feasible allocation assigns each item to no more than one agent.
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Figure 1.2: An Example Combinatorial Allocation Problem.

The social choice function, or objective, is allocative-efficiency, i.e. to select the allocation

that maximizes the total value over agents.

i(Si CAP
%) 2 (5 (CAP)

s.t. SiﬂSj=@, Vis#j

In words, the CAP problem is to compute an allocation of items to maximize the total
value over the agents, without assigning the same item to more than one agent.

Of course, in mechanism design we assume that the valuation functions are private
information to agents, and agent self-interest. A solution to the CAP must handle this
self-interest, for example providing incentives to promote truth-revelation.

A simple combinatorial allocation problem is illustrated in Figure 1.2. In this example
there are nine items (shown as disks) and three agents, with positive values for bundles of
itemns as shown (and zero values for smaller bundles, the same value for any bundle that
contains the indicated bundle). For example, agent 1 has value 4 for the bundle identified
A, and value 8 for the bundle identified B. The optimal solution, to maximize the total
value across all agents, is to allocate bundle A to agent 1 and bundle C to agent 2, with

no allocation to agent 3, for total value 10.

1.2.1 Application Domains

The combinatorial allocation problem arises in many domains. Consider the following

examples:
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o Dynamic resource allocation [FNSY96, Che00]. Consider a bandwidth allocation
problem. Slots of bandwidth are available, of a fixed size and duration, with network
tie-in points. Agents have value for bundles of slots, for example representing a

virtual circuit of a particular bandwidth in a particular time interval.

o Job shop scheduling. [WWWMMO01] Machine time in a flexible manufacturing envi-
ronment is to be allocated across competing jobs. Jobs require time slots across a

sequence of machines, and have deadlines and costs of delay.

e Course registration. [GSS93] A number of slots are available in different classes and
sections, and each student wants to register for a bundle of classes that fit their major

and have no time scheduling conflicts.

o Airport landing and takeoff scheduling. [RSB82] A number of take-off and landing
slots are available across major airports in the U.S. Competing airlines need pairs of
takeoff and landing slots that are compatible with flight-time and schedule require-

ments.

e Distributed vehicle routing. [San93, LOP*00] A number of delivery tasks are to be
assigned to a fleet of independent trucks. The marginal cost to pick-up a packet from
a location where a drop-off is to be performed is quite small, so the value to an agent
for performing one task is contingent on being able to perform other compatible

tasks.

o The FCC Spectrum allocation problem. [McM94] The FCC was mandated by Congress
to achieve an efficient (value-maximizing) allocation of new spectrum license to wire-
less telephone companies. The mobility of clients leads to synergistic values across
geographically consistent license areas, for example the value for New York City,
Philadelphia, and Washington DC might be expected to be much greater than the

value of any one license by itself.

o Collaborative planning. [HGO0O] Consider a system of robots that want to perform
a set of tasks, and have a joint goal to perform the tasks at as low a total cost as
possible. Roles in a team to be conditioned on various constraints, for example time

constraints, to protect the feasibility of local commitments.

10
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o Distributed Query Optimization. [SDK*94] Consider the problem of performing a
query that has a number of components. Each agent might have a different expertise,
and be able to efficiently answer different decompositions of the query. (e.g. consider

a tree structure).

o Supply-chain coordination. [WWYO00] Consider the problem of allocating compo-
nents to competing manufacturers. Each manufacturer needs a supply of the right
combination of components for its own product, without all the components the

supply is useless.

o Travel packages. [WWO%01] Consider the allocation of flights, hotel rooms, and
entertainment tickets to agents that represent clients with different preferences over
location, price, hotels, and entertainment. Moreover, a client has no value for an

outward flight without a matching return flight or a hotel room without a flight.

1.2.2 The Generalized Vickrey Auction

The Vickrey-Clarke-Groves [Vic61, Cla71, Gro73] provides a dominant-strategy solution
to the combinatorial allocation problem. Known as the Generalized Vickrey Auction (or
GVA) in this domain, the mechanism is a one-shot direct-revelation solution. In the first
stage the agents are asked to report their valuation functions. Then, the mechanism
computes an allocation based on that information, and computes payments to agents.
The payments make truth-revelation the dominant strategy for an agent, whatever the
information reported by other agents (and even if other agents are untruthful!). As such,
the mechanism successfully aligns the incentives of individual agents with the system-wide
objective of computing an efficient allocation.

The VCG mechanism is introduced in detail in the next chapter, but for now let us

note that it satisfies the following desirable properties:

Desiderata

o Allocative efficiency. The mechanism implements the efficient allocation, the al-

location that maximizes total value across agents, given rational agent strategies.

¢ Strategy-proofness. Truth-revelation is optimal for an agent whatever the strate-

gies of other agents, there can be no successful (unilateral) manipulation of the

11
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outcome.

¢ Individual-rationality. The expected utility from participation is non-negative

(with a rational strategy), whatever the strategies of other agents.

e (Weak) Budget-balance. Each agent makes a non-negative payment to the auc-

tioneer, so the net revenue collected by the auctioneer is non-negative.

In fact, in quite a strong sense (see the next chapter) the Vickrey-Clarke-Groves mech-
anism defines the only mechanism for the combinatorial allocation problem with these
properties.

However, as discussed in Section 1.1.3, the single-shot direct revelation characteristic
of the mechanism is quite unattractive computationally in many interesting application
domains. Consider for example the distributed vehicle routing application, in which each
truck would need to compute and report its value for all combinations of jobs that it has
positive value.

My dissertation develops an iterative combinatorial auction with provable efficiency
properties for agents that follow a myopic best-response strategy; i.e. taking prices as
fixed and bidding for the bundle that maximizes their surplus in each round. Combinatorial
auctions allow agents to bid explicitly for combinations of items. I also propose an extended
auction that provably terminates with Vickrey payments in a number of interesting special-
cases, and an experimental method to compute Vickrey payments in all problems.

An iterative combinatorial auction that terminates with Vickrey payments and the
efficient allocation shares many of the good game-theoretic properties of the GVA, but
relaxes the computational demands on agents— in particular the unrealistic demands on
information revelation. An agent can follow a myopic best-response strategy with an
approximate evaluation of its preferences over different outcomes, for example with lower-

and upper- bounds on its values of different bundles.

1.3 Iterative Combinatorial Auctions

Combinatorial auctions allow agents to bid for bundles of items directly, and express logical
constraints over items, such as “I only want A if I also get B.” Early combinatorial auctions

were proposed to solve distributed optimization problems with self-interested agents that
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have contingent values for items; e.g. an airport scheduling problem in which planes
need pairs of compatible takeoff and landing slots, or a course registration problem in
which students can bid to take sets of classes. Although combinatorial auctions can be
approximated by multiple auctions on single items, this often results in inefficient outcomes.

In an iterative combinatorial auction agents can adjust their bids in response to bids
from other agents, as the auctioneer updates a provisional allocation and bundle prices. It-
erative combinatorial auctions can compute optimal solutions to realistic problem instances
with less information than sealed-bid auctions, and without agents computing accurate val-
ues for all interesting sets of items. Despite a considerable research effort over the past
decade, in both artificial intelligence and economics, it was not known how to design an
optimal iterative combinatorial auction in general problems until my dissertation.

iBundle is an ascending-price combinatorial auction in which agents can bid for bundles
of items in each round. The auction computes a provisional allocation to maximize revenue
in each round, and increases prices on sets of items based on unsuccessful bids from agents.
It terminates as soon as soon as every agent still bidding in the auction wins a set of items
in the provisional allocation, with an efficient allocation (maximizing total agent value) for
agents that follow a myopic best-response bidding strategy. Myopic best-response assumes
that agents bid for sets of items that maximize their utility taking the current ask prices
as fixed.

The two most important contributions are:
(a) an iterative combinatorial auction that terminates with the efficient allocation for
agents that follow myopic best-response bidding strategies.
(b) an iterative combinatorial auction that terminates with the efficient allocation and
Vickrey-Clarke-Groves payments, provably in special-cases, and conjectured (with experi-
mental support) in all cases.

With this result the auction inherits much of the strategy-proofness of the VCG solu-
tion, and myopic best-response becomes a sequentially-rational strategy for an agent.

The central components of my solution are:

¢ iBundle. I introduce an ascending-price auction, iBundle, which is the first iterative
auction for the CAP that implements efficient allocations for a reasonable bidding
strategy, in this case with myopic best-response strategies. A myopic best-response

strategy is to bid for the bundle that maximizes surplus (value - price), taking the
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prices in the current round as fixed and ignoring the effect of bids on future prices and
future strategies of other agents. iBundle allows incremental information revelation
by agents and solves realistic problems without agents revealing, or even computing,

complete information about their local preferences.

o Extend and Adjust. I propose the EztendéAdjust methodology to extend iBundle
for a number of additional rounds, and compute a price discount to each agent at
the end of the auction. My conjecture,! is that the discounted prices are equal to
the payments in the Vickrey-Clarke-Groves (VCG) mechanism for the combinatorial
allocation problem. This is significant because it makes myopic best-response a
sequentially-rational strategy in equilibrium, inheriting a good degree of robustness-

to-manipulation from the VCG mechanism.

¢ Proxy Bidding Agents. Finally, [ propose prozy bidding agents, that sit between
real agents and the auction and restrict agents to myopic best-response strategies for
some (perhaps untruthful) valuation function. Agents provide proxy agents with in-
cremental value information, and the proxy agents submit best-response bids when-
ever there is enough information. The proxies enforce consistency of incremental
preference information across rounds. The effect is to further boost robustness-to-

manipulation, while retaining useful computational properties.

The combined system, of :Bundle Extend&Adjust and proxy bidding agents, provides
a quite compelling framework for an iterative and strategy-proof mechanism for the com-

binatorial allocation problem:.

1.3.1 Theoretical Underpinnings

The proof of optimality makes an interesting connection with linear programming theory.
iBundle implements a primal-dual algorithm for a linear program formulation of the combi-
natorial allocation problem. The provisional allocation in each round is a feasible solution
to the primal problem, and the ask prices in each round have a natural interpretation as

a feasible solution to the dual problem.

'This conjecture is proved in a number of special cases, and a general proof is limited only by the lack
of a technical lemma about termination.

14
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Myopic best-response strategies from agerts provide enough information to compute
and verify primal and dual solutions to CAP that satisfy complementary slackness condi-
tions. This is the basic methodology that allows optimal solutions to the combinatorial
allocation problem to be computed without complete information about agents’ valuation
functions. Simply announcing a feasible dual solution and computing a primal solution
that satisfies complementary slackness conditions is enough. A similar connection was
made by Bertsekas for the Assignment problem [Ber87], in which each agent wants at
most one item.

Perhaps the most significant technical contribution in this dissertation is to connect
this primal-dual auction-based methodology back to the Vickrey-Clarke-Groves mecha-
nism. Although previous authors have recognized that it is useful to compute Vickrey
payments at the end of an iterative auction, to the best of my knowledge this is the first
direct application of primal-dual techniques to compute Vickrey payments in the general
combinatorial allocation problem.

In its basic form, an agent can manipulate the outcome of iBundle, for example placing
jump bids, signaling false intentions, or waiting to bid until the end of the auction. A
concrete example is provided in chapter 7. By computing the Vickrey payments at the end
of the auction, myopic best-response becomes a sequentially rational strategy for an agent
in equilibrium. In addition, with the proxy bidding agents, incremental truth-revelation
becomes a dominant best-response to any value information provided by other agents,
so long as that information is not itself conditioned on information revealed dynamically
during the auction.

[ provide a linear program formulation to compute Vickrey payments, and derive a
primal-dual algorithm, VICKAUCTION, to compute the Vickrey payments and efficient al-
location. VICKAUCTION computes the outcome of the GVA without complete information
revelation from agents, instead requiring that agents provide myopic best-response to a
sequence of ascending prices on bundles. VICKAUCTION has a natural interpretation as an
iterative combinatorial auction, iBundle Extend&Adjust. The linear program formulation
for Vickrey payments computes the minimal “competitive equilibrium” (CE) price on the
bundle each agent receives in the efficient allocation. Although there are some problems
in which no single set of CE prices support Vickrey payments to every agent, I show that

it is always possible to compute the Vickrey payment as the minimal price to each agent
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over all CE prices.

The approach in iBundle Extend&Adjust is to:

(a) keep the auction open long enough to collect enough best-response information
from agents to compute Vickrey payments, as the minimal CE prices

(b) adjust prices towards Vickrey payments after the auction terminates, so that agents

pay less than what they finally bid.

1.3.2 Approximations and Special-Cases

The winner-determination problem in each round of :Bundle remains NP-hard. However,
each problem instance in iBundle is typically smaller and easier to solve than the problem
instances that an auctioneer must solve in the single-shot direct-revelation Vickrey-Clarke-
Groves mechanism. Agents only need to bid for the sets of bundles that maximize their
utility in each round of i{Bundle, while they must bid for all bundles with some positive
value in the VCG solution.

However, there is no escaping the NP-hardness of the top-level combinatorial allocation
problem, and it is necessary to introduce approximations and/or identify special-cases for
large problem instances. There are a number of interesting ways to introduce approxima-
tions within 1Bundle without changing the incentives for agents to follow the same myopic
best-response strategy.

First, we can increase the minimal bid-increment in the auction, which defines the rate
at which prices are increased across rounds. The number of rounds in the auction are
approximately inversely-proportional to the bid increment, so doubling the bid increment
halves the number of rounds to termination and the number of winner-determination
problems to solve. Empirical results demonstrate an order-of-magnitude speed-up over
the VCG mechanism with at least 99% allocative efficiency, with the same combinatorial
optimization algorithm to solve winner-determination problems in both mechanisms. Ad-
ditional significant speed-ups are achieved as the bid increment is increased and allocative
efficiency is traded for computational efficiency.

Second, we can introduce approximate winner-determination algorithms into {Bundle.
A simple property of “bid monotonicity” (see chapter 5) ensures that the same incentives
are present for agents to follow a myopic best-response bidding strategy. Empirical anal-

ysis demonstrates that the auction can often achieve quite high allocative-efficiency with
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negligible computation using a greedy winner-determination algorithm.

Third, we can identify tractable special-cases of the winner-determination, and restrict
agents to bidding languages that are compatible with these tractable special-cases. In
cases in which this restriction leaves agents with enough expressiveness to follow truth-
ful myopic best-response this gives a significant computational speed-up with no loss in
allocative-efficiency. In general the expressiveness of the language leads to a tradeoff be-
tween computational and allocative efficiency, and can also change the incentive properties

of an auction if an agent is forced to choose from a “second-best” set of bids.

1.3.3 Myopic Best-response vs. Direct Revelation

I would like to comment briefly about the complexity of myopic best-response, in compar-
ison with direct revelation. In addition to solving the CAP with incremental information
revelation, it is important that agents can follow myopic best-response strategies without
computing their exact value for all bundles.

Consider the simpler case of an ascending-price auction for a single item. Let us com-
pare the computation required of an agent in this auction to a sealed-bid second-price
Vickrey auction. We will assume that the agent has initial bounds on its value for the
item, and can refine those bounds by a multiplicative factor & < 1 for an additive cost
C > 0. I adopt this simple model of a bounded-rational agent in chapter 8. Consider now
the two auctions:

(a) ascending-price auction. In the ascending-price auction the agent can bid while the
price is less than its lower bound, and drop out when the price is greater than its upper
bound. It only needs to perform valuation work when the price is between its two bounds
and the auction is about to terminate. Intuitively, if the agent’s actual value is close to
the highest value over all other agents then it will need to compute a quite accurate value
to place optimal bids. However, if the agent’s actual value is quite far from the highest
outside value then it will be able to bid optimally with a quite rough approximation.

(b) sealed-bid auction. In the sealed-bid auction an uninformed agent, that has no infor-
mation about the bids from the other agents, must compute its exact value to submit an
optimal bid. As soon as it bids an approximate value it risks missing a good outcome, if

the second highest bid in the auction is between its true value true and its bid price.
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For now, I claim that the same arguments can be made for iterative auctions in com-
binatorial allocation problems. What becomes important in a combinatorial search space
is that an agent can prune that space effectively based on ask prices and its values for
bundles, for example making inferences about the value for a set of bundles based on its
exact value for one bundle, or the price for a set of bundles based on the price of one

bundle. This is discussed in more detail in chapter 8.

1.4 Bounded Rational Compatible Auctions

To capture the notion of an auction that allows an agent to bid without computing its exact
value for all possible outcomes, I define bounded-rational compatible auctions. A bounded-
rational compatible (BRC) auction allows an agent to compute its equilibrium bidding
strategy with only approximate information about its own preferences across outcomes.
This parallels the concept of a strategy-proof auction, in which an agent can compute its
optimal strategy without modeling the other agents. BRC auctions are useful in application
to domains with agents that have limited computation and hard valuation problems.
[terative auctions present a special case of bounded-rational compatible auctions. As
discussed above, in an iterative auction an agent can follow a myopic best-response strategy
in response to a sequence of prices with an approximate valuation functions. I say that an
iterative auction is myopic bounded-rational compatible. By comparison, a strategy-proof
single-shot sealed-bid auction, in which truth-revelation is an agent’s dominant strategy,
is not (dominant-strategy) bounded-rational compatible because an agent cannot reveal
complete information about its valuation function with an approximate valuation function.
A bounded-rational compatible auction need not be allocatively-efficient. For exam-
ple, a posted-price auction is bounded-rational compatible, but not efficient unless the
auctioneer is well-informed about the preferences of agents and able to set equilibrium
prices. Experimental results for a simple model of bounded-rational agents, with costly
and/or limited computation, demonstrate that iterative auctions can compute more effi-
cient allocations than sealed-bid auctions. Feedback in an iterative auction allows agents
to focus limited computational resources on computing values for those outcomes that are
important to find a good fit with the preferences of other agents. In addition to leading

to more efficient allocations, the results also demonstrate that it is possible to reduce the
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total amount of computation that agents must perform to compute an efficient allocation.

1.5 Important Related Work

I introduce related literature throughout my dissertation, in appropriate places. However,
let me briefly mention some work that is very closely related in motivation and methodol-
ogy.

Nisan & Ronen [NR0O, NRO1] have made some progress in connections between ap-
proximate algorithms, bounded-rational agents, and mechanism design. This work, that
they coin “Algorithmic mechanism design”, considers the following aspects:

(a) connections between approximate winner-determination algorithms and approximate
mechanisms

(b) a “challenge and response” mechanism to improve incentive-compatibility with approx-
imate winner-determination algorithms

(c) a “feasible dominance” concept, that describes an auction in which truth revelation is
optimal given a subset of possible strategies.

One thing that is absent from their work is any consideration of the costs of agent val-
uation and preference revelation. The focus instead is on the cost of winner-determination
and strategic behavior. Similarly, the work of Tennenholtz et al. [TKDMOO0] on the prop-
erties required for an approximate winner-determination algorithm to satisfy incentive-
compatibility within a Vickrey like mechanism focuses in on single-shot sealed-bid mech-
anisms.

Nisan [Nis00] has also considered the tradeoffs between the expressiveness and effi-
ciency of bidding languages, and proposed a language OR* with a good combination of
properties. Recently La Mura and Shoham [MS99] have considered the role of concise
bidding languages in auctions, for example using hierarchical tree structures to represent
preferences and reasoning in this abstract representation language.

Shoham & Tennenholtz’s [ST01] work on the communication complexity of auction
mechanisms does draw comparisons between iterative and single-shot sealed-bid auctions.
For example, the authors note that a Dutch (descending-price auction) is a minimal com-
putational complexity solution to a single-item allocation problem. This work does not

consider the valuation work required of agents, just the communication complexity.
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Feigenbaum et al. [FPS00] have proposed a decentralized mechanism design for routing
in a multi-cast tree, with self-interested users at the nodes interested in receiving optimal
streams of information. The mechanism design is innovative in that it decentralizes the
winner-determination work to nodes in the tree.

Wurman & Wellman propose a design for an iterative combinatorial auction, AkBA
(Wur99, WW00]. The main differences AkBA and :Bundle are in the structure of prices
and price updates. AKBA has only anonymous prices, and although it terminates in an
equilibrium (for agents, but not the auctioneer), the cost is a loss in allocative efficiency
in some CAP problem instances. Nevertheless, experimental results demonstrate high
allocative efficiency for myopic best-response agents across a set of problems. An analysis
of the incentive properties of minimal and maximal dual price solutions is also performed,
but no strong connection is made to Vickrey-Clarke-Groves payments.

Other important work in iterative auction design includes that of Gul & Stacchetti
[GS00], and particularly Ausubel [Aus97, Aus00]. Ausubel is able to achieve Vickrey pay-
ments even in some problems in which Vickrey payments are supported in no competitive
equilibrium. Recent analysis by Bikchandani et al. [BdVSVO01] provides a primal-dual
interpretation of his methods.

Recently, Bikchandani et al. [BdVSV01] and Bikchandani & Ostroy [BO00] have dis-
cussed a linear programming model for computing VCG payments, and also characterized
the tractable special-cases of the combinatorial allocation problem. However the authors
were not able to propose a primal-dual method or auction algorithm to compute the
Vickrey payments in the general problem. Similar connections were earlier made for the
Assignment problem by Leonard [Leo83] and Demange et al. [DGS86).

Sandholm [San93, SL95, SL96, SL97, San00] has proposed a number of methods to
handle agent bounded-rationality and game-theoretic concerns in a distributed system. In
contrast to my work on auction mechanisms, much of Sandholm'’s work relates to decentral-
ized task/resource allocation systems with no centralized auctioneer. Some contributions
that are relevant to my work include:

(1) a marginal-cost analysis of a contract-net style protocol, that demonstrates how agents
might bid with approximate solutions to local valuation problems.
(2) a leveled commitment protocol that allows agents to make initial contracts under un-

certainty and decommit if necessary at a later time.
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(3) a mechanism to allow coalition formation between bounded-rational self-interested
agents, that allows explicitly for the cost of computing the values of different coalitions
during negotiation.

In recent work, Larson & Sandholm [LS00] have studied a model of deliberation in

equilibrium, for bounded-rational agents in a strategic environment.

1.6 OQOutline

Chapter 2 introduces important ideas from game theory, economics, and mechanism design,
including concepts of Nash equilibrium and dominant strategy equilibrium, the Revelation
Principle, uniqueness and impossibility results, and the Vickrey-Clarke-Groves family of
mechanisms. A survey of possibility and impossibility results in the literature is also
completed.

Chapter 3 then introduces concerns in computational mechanism design, and consid-
ers a number of ways to handle computational complexity, at both the agent and the
infrastructure level.

Chapters 4 and 5 relate to the design of an iterative auction under the assumption that
agents follow myopic best-response bidding strategies, while Chapters 6 and 7 relate to
an extension to the design to justify myopic best-response with a connection back to the
Vickrey-Clarke-Groves mechanism.

Chapter 4 introduces a linear programming approach to iterative mechanism design,
and presents a primal-dual algorithm COMBAUCTION for the combinatorial allocations
problem. The algorithm corresponds with iBundle for myopic best-response agent strate-
gies. Chapter 5 also surveys the known tractable special-cases of the combinatorial allo-
cation problem. Chapter 4 also contains a survey of earlier iterative auction designs both
(implicitly at least) primal-dual based, and more ad-hoc. Chapter 5 presents iBundle, my
ascending-price combinatorial auction, along with experimental results relating to both
the economic and computational efficiency of the auction.

Chapter 6 introduces a linear programming approach to computing Vickrey payments
in the combinatorial allocation problem. A novel linear programming formulation is derived
to compute Vickrey payments from a suitable set of competitive equilibrium prices and

the efficient allocation. This leads to an adjustment procedure ADJUST* to take prices at
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the end of :Bundle and compute discounts to each agent, adjusting prices towards Vickrey
payments. I characterize necessary and sufficient conditions for the procedure to compute
Vickrey payments, and propose a complete primal-dual algorithm, VICKAUCTION to com-
pute Vickrey payments. This is significant, because it has a natural auction interpretation
as an extension to :Bundle.

Chapter 7 presents the Extend&Adjust method, which introduces a second phase to
iBundle. The purpose of the second phase is to collect enough additional information
from agents to compute Vickrey payments when the auction terminations, in addition
to the efficient allocation. Proxy bidding agents are introduced, to boost robustness-to-
manipulation in an iterative auction that terminates with Vickrey payments with myopic
best-response agent bidding strategies. Experimental results demonstrate the convergence
of auction prices in iBundle Extend&Adjust to Vickrey payments in general CAP problems.
Vickrey payments make myopic best-response a Bayesian-Nash equilibrium of the auction.

Chapter 8 focuses on agent computation in mechanisms, in particular on the agent
valuation work that is required across different solutions. Bounded-rational compatibility
is proposed to characterize auctions that allow an agent to compute an optimal strategy
with approximate information about its own preferences. Experimental results compare
the efficiency and agent computation in iterative and sealed-bid auctions, for a simple
model of agent bounded-rationality and myopic metareasoning. I also present a structural
analysis of the worst-case complexity of myopic best-response in combinatorial auctions, in
comparison with the worst-case complexity of complete revelation, and identify conditions
that provide an exponential speed-up for iterative mechanisms.

Chapter 9 considers a concrete application of an auction method to a distributed op-
timization problem, a distributed train scheduling problem. The problem is to compute
a shared schedule for trains over a network, such that trains run as close to on-time as
possible and the cost of early/late arrivals and departures is minimized. The structural
assumption is that trains are self-interested and autonomous, and would like to travel on-
time irrespective of the effect on other trains. In addition, individual dispatcher agents
control separate network territories. Trains bid for the right to enter and exit territories at
particular times, and dispatchers select bids to maximize revenue such that a safe schedule
exists to get trains across the region. The continuous quality of time is handled in the

auction with a constraint-based bidding language. The train-scheduling problem is not a
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combinatorial allocation problem, for example because the feasible combinations of items
(which we can think of as entry and exit times) are not statically defined, but depend
on the ability to construct feasible time-location schedules for trains. However, iBundle
price-update, winner-determination and termination semantics prove useful in this domain.

My conclusions are in chapter 10, together with a brief discussion of interesting areas

for future work.
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Chapter 2

Classic Mechanism Design

Mechanism design is the sub-field of microeconomics and game theory that considers how
to implement good system-wide solutions to problems that involve multiple self-interested
agents, each with private information about their preferences. In recent years mecha-
nism design has found many important applications; e.g., in electronic market design, in
distributed scheduling problems, and in combinatorial resource allocation problems.

This chapter provides an introduction to the the game-theoretic approach to mechanism
design, and presents important possibility and impossibility results in the literature. There
is a well-understood sense of what can and cannot be achieved, at least with fully rational
agents and without computational limitations. The next chapter discusses the emerging
field of computational mechanism design, and also surveys the economic literature on lim-
ited communication and agent bounded-rationality in mechanism design. The challenge
in computational mechanism design is to design mechanisms that are both tractable (for
agents and the auctioneer) and retain useful game-theoretic properties. For a more general
introduction to the mechanism design literature, MasColell et al. [MCWGY5] provides a
good reference. Varian [Var95] provides a gentle introduction to the role of mechanism
design in systems of computational agents.

In a mechanism design problem one can imagine that each agent holds one of the
“inputs” to a well-formulated but incompletely specified optimization problem, perhaps a
constraint or an objective function coefficient, and that the system-wide goal is to solve
the specific instantiation of the optimization problem specified by the inputs. Consider for
example a network routing problem in which the system-wide goal is to allocate resources
to minimize the total cost of delay over all agents, but each agent has private information

about parameters such as message size and its unit-cost of delay. A typical approach
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in mechanism design is to provide incentives (for example with suitable payments) to
promote truth-revelation from agents, such that an optimal solution can be computed to
the distributed optimization problem.

Groves mechanisms [Gro73] have a central role in classic mechanism design, and promise
to remain very important in computational mechanism design. Indeed, Groves mechanisms
have a focal role in my dissertation, providing strong guidance for the design of mechanisms
in the combinatorial allocation problem. Groves mechanisms solve problems in which the
goal is to select an outcome, from a set of discrete outcomes, that maximizes the total
value over all agents. The Groves mechanisms are strategy-proof, which means that truth-
revelation of preferences over outcomes is a dominant strategy for each agent— optimal
whatever the strategies and preferences of other agents. In addition to providing a robust
solution concept, strategy-proofness removes game-theoretic complexity from each individ-
ual agents decision problem; an agent can compute its optimal strategy without needing
to model the other agents in the system. In fact (see section 2.4), Groves mechanisms are
the only strategy-proof and value-maximizing (or efficient) mechanisms.

But Groves mechanisms have quite bad computational properties. Agents must report
complete information about their preferences to the mechanism, and the optimization
problem— to maximize value —is solved centrally once all this information is reported.
Groves mechanisms provide a completely centralized solution to a decentralized problem.
In addition to difficult issues such as privacy of information, trust, etc. the approach
fails computationally in combinatorial domains either when agents cannot compute their
values for all possible outcomes, or when the mechanism cannot solve the centralized
problem. Computational approaches attempt to retain the useful game-theoretic properties
but relax the requirement of complete information revelation. As one introduces alternative
distributed implementations it important to consider effects on game-theoretic properties,
for example the effect on strategy-proofness.

Here is an outline of the chapter. Section 2.1 presents a brief introduction to game-
theory, introducing the most important solution concepts. Section 2.2 introduces the
theory of mechanism design, and defines desirable mechanism properties such as efficiency,
strategy-proofness, individual-rationality, and budget-balance. Section 2.3 describes the
revelation principle, which has proved a powerful concept in mechanism design theory, and

introduces incentive-compatibility and direct-revelation mechanisms. Section 2.4 presents
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the efficient and strategy-proof Vickrey-Clarke-Groves mechanisms, including the Gener-
alized Vickrey Auction for the combinatorial allocation problem. Sections 2.5 and 2.6
summarize the central impossibility and possibility results in mechanism design. Finally,
section 2.7 is provides a brief discussion of optimal auction design and the conflict between

the goals of revenue-maximization and efficiency.

2.1 A Brief Introduction to Game Theory

Game theory [vNM47, Nas50] is a method to study a system of self-interested agents in
conditions of strategic interaction. This section provides a brief tour of important game-
theoretic solution concepts. Fudenberg & Tirole [FT91] and Osborne & Rubinstein [OR94]
provide useful introductions to the subject. Places to start for auction theory include

McAfee & McMillan [PMM87] and Wurman et al. [WWWO00].

2.1.1 Basic Definitions

It is useful to introduce the idea of the type of an agent, which determines the preferences
of an agent over different outcomes of a game. This will bring clarity when we discuss
mechanism design in the next section. Let 6; € ©; denote the type of agent ¢, from a set of
possible types ©;. An agent’s preferences over outcomes o € O, for a set O of outcomes,
can then be expressed in terms of a utility function that is parameterized on the type. Let
u;(0,6;) denote the utility of agent i for outcome o € O given type 6;. Agent ¢ prefers
outcome oy over o; when u;(01,6;) > u;(02,6;).

The fundamental concept of agent choice in game-theory is expressed as a strategy.

Without providing unnecessary structure, a strategy can loosely be defined as:

DEFINITION 2.1 ([strategy] A strategy is a complete contingent plan, or decision rule,
that defines the action an agent will select in every distinguishable state of the world.

Let s;(6;) € Si denote the strategy of agent i given type 6;, where S; is the set of all
possible strategies available to an agent. It is often useful to leave the conditioning on
an agent’s type implicit, and simply write s; for the strategy selected by agent 7 given its
type.

In addition to pure, or deterministic strategies, agent strategies can also be mized, or

stochastic. A mixed strategy, written o; € A(S;) defines a probability distribution over
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pure strategies.

Ezample. In a single-item ascending-price auction, the state of the world (p, z) defines
the current ask price p > 0 and whether or not the agent is holding the item in the
provisional allocation z € {0,1}. A strategy defines the bid b(p,z,v) that an agent will
place for every state, (p,z) and for every value v > 0 it might have for the item. A

best-response strategy is as follows:

) yifz=0and p<vw
ber(p,z,v) = , ,
no bid , otherwise

One can imagine that a game defines the set of actions available to an agent (e.g. valid
bids, legal moves, etc.) and a mapping from agent strategies to an outcome (e.g. the agent
with highest bid at the end of the auction wins the item and pays that price, checkmate
to win the game, etc.)

Again, avoiding unnecessary detail, given a game (e.g. an auction, chess, etc.) we can
express an agent’s utility as a function of the strategies of all the agents to capture the

essential concept of strategic interdependence.

DEFINITION 2.2 [utility in a game] Let ui(sy,...,s;,#;) denote the utility of agent i
at the outcome of the game, given preferences 6; and strategies profile s = (sy,...,s/)
selected by each agent.

In other words, the utility, u;(:), of agent ¢ determines its preferences over its own
strategy and the strategies of other agents, given its type 8;, which determines its base
preferences over different outcomes in the world, e.g. over different allocations and pay-
ments.

Ezample. In a single-item ascending-price auction, if agent 2 has value v = 10 for
the item and follows strategy bgr2(p,z,v2) defined above, and agent 1 has value v; and

follows strategy bgr(p, z,v1), then the utility to agent 1 is:

v - (10+¢€) ,ifv; > 10
uy (bgr,1(p, T,v1), bBR,2(P, 2, 10),10) = .
, otherwise

where € > 0 is the minimal bid increment in the auction and agent i's utility given

value v; and price p is u; = v; — p, i.e. equal to its surplus.
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The basic model of agent rationality in game-theory is that of an ezpected utility maz-
tmizer. An agent will select a strategy that maximizes its expected utility, given its pref-
erences f; over outcomes, beliefs about the strategies of other agents, and structure of the

game.

2.1.2 Solution Concepts

Game theory provides a number of solution concepts to compute the outcome of a game
with self-interested agents, given assumptions about agent preferences, rationality, and
information available to agents about each other.

The most well-known concept is that of a Nash equilibrium [Nas50], which states that
in equilibrium every agent will select a utility-maximizing strategy given the strategy of
every other agent. It is useful to introduce notation s = (s, ... ,sy) for the joint strategies
of all agents, or strategy profile, and s_; = (sy,... , 8i-1, Si+1,S7) for the strategy of every

agent except agent i. Similarly, let 6_; denote the type of every agent except 1.

DeriNiTioN 2.3 [Nash equilibrium] A strategy profile s = (sy,...,s/) is in Nash equi-

librium if every agent maximizes its expected utility, for every 1,

ui(si(0;), s-i(0~i), 0i) > ui(si(6:),s-i(0-:),6:), for all s} # s;

In words, every agent maximizes its utility with strategy s;, given its preferences and
the strategy of every other agents. This definition can be extended in a straightforward
way to include mixed strategies.

Although the Nash solution concept is fundamental to game-theory, it does make very
strong assumptions about agents’ information and beliefs about other agents, and also loses
power in games with multiple equilibria. To play a Nash equilibrium in a one-shot game
every agent must have perfect information (and know every other agent has the same
information, etc., i.e. common knowledge) about the preferences of every other agent,
agent rationality must also be common knowledge, and agents must all select the same
Nash equilibrium.

A stronger solution concept is a dominant strategy equilibrium. In a dominant strategy
equilibrium every agent has the same utility-maximizing strategy, for all strategies of other

agents.
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DerFiNiTioN 2.4 [Dominant-strategy] Strategy s; is a dominant strategy if it (weakly)

maximizes the agent’s expected utility for all possible strategies of other agents,

ui(8i, S—i,0;) > ui(s], s—i, 0i), for all s} # si, s_i € S_;

In other words, a strategy s; is a dominant strategy for an agent with preferences 6; if
it maximizes expected utility, whatever the strategies of other agents.
Ezample. In a sealed-bid second-price (Vickrey auction), the item is sold to the highest
bidder for the second-highest price. Given value v, bidding strategy
bi(vi) = v
is a dominant strategy for agent i because its utility is
v; =b Lifb; >

0 otherwise

ui(bi1b,1vi) =

for bid b; and highest bid from another agent b’. By case analysis, when ' < v; then any
bid b; > &' is optimal, and when &' > v; then any bid b; < &' is optimal. Bid b; = v; solves

both cases.

Dominant-strategy equilibrium is a very robust solution concept, because it makes
no assumptions about the information available to agents about each other, and does not
require an agent to believe that other agents will behave rationally to select its own optimal
strategy. [n the context of mechanism design, dominant strategy implementations of social
choice functions are much more desirable than Nash implementations (which in the context
of the informational assumptions at the core of mechanism design are essentially useless).

A third solution concept is Bayesian-Nash equilibrium. In a Bayesian-Nash equilibrium
every agent is assumed to share a common prior about the distribution of agent types,
F(8), such that for any particular game the agent profiles are distributed according to F(8).
In equilibrium every agent selects a strategy to maximize expected utility in equilibrium

with expected-utility maximizing strategies of other agents.

DEeFINITION 2.5 [Bayesian-Nash] A strategy profile s = (s1(-),... ,sr(-)) is in Bayesian-

Nash equilibrium if for every agent i and all preferences 6; € 9;
ui(s§(6:),5-:(-), 0:) = ui(si(6:), s-i(-),6;),  for all si(-) # si(-)
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where u; is used here to denote the ezpected utility over distribution F(8) of types.

Comparing Bayesian-Nash with Nash equilibrium, the key difference is that agent i's
strategy s;(f;) must be a best-response to the distribution over strategies of other agents,
given distributional information about the preferences of other agents. Agent i does not
necessarily play a best-response to the actual strategies of the other agents.

Bayesian-Nash makes more reasonable assumptions about agent information than Nash,
but is a weaker solution concept than dominant strategy equilibrium. Remaining problems
with Bayesian-Nash include the existence of multiple equilibria, information asymmetries,
and rationality assumptions, including common-knowledge of rationality.

The solution concepts, of Nash, dominant-strategy, and Bayesian-Nash, hold in both
static and dynamic games. In a static game every agent commits to its strategy simulta-
neously (think of a sealed-bid auction for a simple example). In a dynamic game actions
are interleaved with observation and agents can learn information about the preferences
of other agents during the course of the game (think of an iterative auction, or stages in
a negotiation). Additional refinements to these solution concepts have been proposed to
solve dynamic games, for example to enforce sequential rationality (backwards induction)
and to remove non-credible threats off the equilibrium path. One such refinement is sub-
game perfect Nash, another is perfect Bayesian-Nash (which applies to dynamic games of
incomplete information), see [FT91] for more details.

Looking ahead to mechanism design, an ideal mechanism provides agents with a dom-
inant strategy and also implements a solution to the multi-agent distributed optimization
problem. We can state the following preference ordering across implementation concepts:
dominant > Bayesian-Nash > Nash. In fact, a Nash solution concept in the concept of a
mechanism design problem is essentially useless unless agents are very well-informed about
each others’ preferences, in which case it is surprising that the mechanism infrastructure

itself is not also well-informed.

2.2 Mechanism Design: Important Concepts

The mechanism design problem is to implement an optimal system-wide solution to a
decentralized optimization problem with self-interested agents with private information

about their preferences for different outcomes.
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Recall the concept of an agent’s type, 6; € ©;, which determines its preferences over
different outcomes; i.e. u;(0,6;) is the utility of agent 7 with type 6; for outcome o € O.
The system-wide goal in mechanism design is defined with a social choice function,

which selects the optimal outcome given agent types.

DEFINITION 2.6 [Social choice function] Social choice function f : 09, x...x©0; - O
chooses an outcome f(6) € O, given types 8 = (6,,...,6;).

In other words, given agent types 8 = (6,,...,60;), we would like to choose outcome
f(8). The mechanism design problem is to implement “rules of a game”, for example
defining possible strategies and the method used to select an outcome based on agent
strategies, to implement the solution to the social choice function despite agent’s self-

interest.

DEFINITION 2.7 [mechanism] A mechanism M = (S),...,S51,9(:)) defines the set of
strategies S; available to each agent, and an outcome ruleg : Sy x...xSr — O, such that
g(s) is the outcome implemented by the mechanism for strategy profile s = (sy,...,s;).

In words, a mechanism defines the strategies available (e.g., bid at least the ask price,
etc.) and the method used to select the final outcome based on agent strategies (e.g., the
price increases until only one agent bids, then the item is sold to that agent for its bid
price).

Game theory is used to analyze the outcome of a mechanism. Given mechanism M
with outcome function g(-), we say that a mechanism implements social choice function
f(0) if the outcome computed with equilibrium agent strategies is a solution to the social

choice function for all possible agent preferences.

DeFINiTION 2.8 [mechanism implementation] Mechanism M = (Sy,...,S1,9(")) im-
plements social choice function f(6) if g(s1(61),...,57(0r)) = f(0), for all (6,,...,60;) €
©1 x ... x ©, where strategy profile (s},...,s}) is an equilibrium solution to the game
induced by M.

The equilibrium concept is deliberately left undefined at this stage, but may be Nash,
Bayesian-Nash, dominant- or some other concept; generally as strong a solution concept
as possible.

To understand why the mechanism design problem is difficult, consider a very naive

mechanism design, and suppose that the system-wide goal is to implement social choice
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function f(#). The mechanism asks agents to report their types, and then simply imple-
ments the solution to the social choice function that corresponds with their reports, i.e.
the outcome rule is equivalent to the social choice function, g(§) = f (6) given reported
types 6= (91, - ,91). But, there is no reason for agents to report their true types! In a
Bayesian-Nash equilibrium each agent will choose to announce a type §; to maximize its
expected utility, and solve:

max ui (8}, 5-:(-), 6:)

given distributional information about the types of other agents, and under the assump-
tion that the other agents are also following expected-utility maximizing strategies. This
announced type 8; need not equal the agent's true type.

Looking ahead, the mechanism design problem is to design a mechanism— a set of
possible agent strategies and an outcome rule —to implement a social choice function with
desirable properties, in as strong a solution concept as possible; i.e. dominant is preferred

to Bayesian-Nash because it makes less assumptions about agents.

2.2.1 Properties of Social Choice Functions

Many properties of a mechanism are stated in terms of the properties of the social choice
function that the mechanism implements. A good place to start is to outline a number of
desirable properties for social choice functions.

A social choice function is Pareto optimal (or Pareto efficient) if it implements outcomes
for which no alternative outcome is strongly preferred by at least one agent, and weakly

preferred by all other agents.

DeriviTioN 2.9 [Pareto optimal] Social choice function f(6) is Pareto optimal if for
every o' # f(6), and all types 8 = (64,...,6r),

ui(0,0i) > ui(0,6;) = 35 uj(d,0;) <uj(o,6;)

In other words, in a Pareto optimal solution no agent can every be made happier
without making at least one other agent less happy.

A very common assumption in auction theory and mechanism design, and one which I
will follow in my dissertation, is that agents are risk neutral and have quasi-linear utility

functions.
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DeFINITION 2.10 [Quasi-linear Preferences] A quasi-linear utility function for agent i

with type 6; is of the form:
ui(0,6;) = vi(z,6;) — p;

where outcome o defines a choice z € K from a discrete choice set and a payment p; by the
agent.

An agent’s type in this simpler case defines its valuation function, vi(z), which is its
value for different choices z € K. Set K is the choice set. In an allocation problem the al-
ternatives K represent allocations, and the transfers represent payments to the auctioneer.

Ezample. In an auction for a single-item, the outcome defines the allocation, i.e. which
item gets the item, and the payments of each agent. Assuming that agent i has value
v; = $10 for the item, then its utility for an outcome in which it is allocated the item is

u; = v; —p = 10 — p, and the agent has positive utility for the outcome so long as p < $10.

Risk neutrality follows because an expected utility maximizing agent will pay as much
as the expected value of an item. For example in a situation in which it will receive the
item with value $10 with probability 7, an agent would be happy to pay as much as $107
for the item.

With quasi-linear agent preferences we can separate the outcome of a social choice

function into a choice z(f) € K and a payment p;(#) made by each agent i:

f(8) = (z(8),p1(8),... ,p1(6))

for preferences 8 = (0y,...,6;).
The outcome rule in a mechanism with quasi-linear agent preferences, g(s), is decom-
posed into a choice rule, k(s), that selects a choice from the choice set given strategy profile

s, and a payment rule ¢;(s) that selects a payment for agent i based on strategy profile s.

DEFINITION 2.11 [quasi-linear mechanism] A quasi-linear mechanism
M = (S1,...,51,k(:),t1(-),... ,t1(+)) defines: the set of strategies S; available to each
agent; a choice rulek : Sy x...x S — K, such that k(s) is the choice implemented for
strategy profile s = (sy,...,37); and transfer rulest; : Sy x...x S = R, one for each

agent i, to compute the payment ¢;(s) made by agent <.
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Properties of social choice functions implemented by a mechanism can now be stated
separately, in terms of the choice selected and the payments.

A social choice function is efficient if:

DeriNiTioN 2.12 [allocative efficiency] Social choice function f(8) = (z(8),p(8)) is

allocatively-efficient if for all preferences 8 = (6,,... ,6r)
I
> vilz(0),0) > Y wi(a,6), forallz’ € K (Eff)
=1 i

It is common to state this as allocative efficiency, because the choice sets often define
an allocation of items to agents. An efficient allocation maximizes the total value over all

agents.

A social choice function is budget-balanced if:

DeFiNiTION 2.13  [budget-balance] Social choice function f(0) = (z(8),p(0)) is budget-

balanced if for all preferences 8 = (6,,... ,0;)

I
> pi(6)=0 (BB)
i=1

In other words, there are no net transfers out of the system or into the system. Taken
together, allocative efficiency and budget-balance imply Pareto optimality.

A social-choice function is weak budget-balanced if:

DeFINITION 2.14 [weak budget-balance] Social choice function f(6) = (z(9),p(8)) is
weakly budget-balanced if for all preferences 6 = (6y,... ,0;)

I
Y pi(0) 20 (WBB)
i=1

In other words, there can be a net payment made from agents to the mechanism, but

no net payment from the mechanism to the agents.

2.2.2 Properties of Mechanisms

Finally, we can define desirable properties of mechanisms. In describing the properties of

a mechanism one must state:
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- the solution concept, e.g. Bayesian-Nash, dominant, etc.

- the domain of agent preferences, e.g. quasi-linear, monotonic, etc.

The definitions follow quite naturally from the concept of implementation (see definition
2.8) and properties of social choice functions. A mechanism has property P if it implements
a social choice function with property P.

For example, here consider the definition of a Pareto optimal mechanism:

DEFINITION 2.15 [Pareto optimal mechanism] Mechanism M is Pareto optimal if it im-
plements a Pareto optimal social choice function f(6) for all agent profiles 8 = (8,,... ,8;).

Technically, this is ez post Pareto optimality— outcome is Pareto optimal for the specific
agent types. A weaker form of Pareto optimality is ez ante, in which there is no outcome
that at least one agent strictly prefers in expectation and all other agents weakly prefer in
expectation.

Similarly, a mechanism is efficient if it selects the choice z(#) € K that maximizes total

value for all agent preferences:

DEFINITION 2.16 [efficient mechanism] Mechanism M is efficient if it implements an
allocatively-efficient social choice function f(6) for all agent profiles 8 = (6y,... ,6;).

Corresponding definitions follow for budget-balance and weak budget-balance. In the
case of budget-balance it is important to make a careful distinction between ez ante and

ez post budget balance.

DEFINITION 2.17 [ez ante BB] Mechanism M is ez ante budget-balanced if the equi-
librium net transfers to the mechanism are balanced in ezpectation for a distribution over

agent preferences.

DEFINITION 2.18 [ez post BB] Mechanism M is ez post budget-balanced if the equilib-
rium net transfers to the mechanism are non-negative for all agent preferences.

Another important property of a mechanism is individual-rationality, sometimes known
as “voluntary participation” constraints, which allows for the idea that an agent is often
not forced to participate in a mechanism but can decide whether or not to participate.
Essentially, individual-rationality places constraints on the level of expected utility that
an agent receives from participation.

Let T;(6;) denote the expected utility achieved by agent i outside of the mechanism,

when its type is 6;. The most natural definition of individual-rationality (IR) is interim
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IR, which states that the expected utility to an agent that knows its own preferences but
has only distributional information about the preferences of the other agents is at least its

expected outside utility.

DeFiNITION 2.19 [individual rationality] A mechanism M is (interim) individual-rational

if for all preferences 6; it implements a social choice function f(8) with
ui(f(6i,6-:)) = @i(6:) (IR)

where u;(f(8;,6-;)) is the ezpected utility for agent i at the outcome, given distributional
information about the preferences 6_; of other agents.

In other words, a mechanism is individual-rational if an agent can always achieve as
much expected utility from participation in the mechanism as not participating, for any
preferences, given prior beliefs about the preferences of other agents.

In a mechanism in which an agent can withdraw once it learns the outcome ez post IR
is more appropriate, in which the agent’s expected utility from participation must be at
least its best outside utility for all possible types of agents in the system. In a mechanism
in which an agent must choose to participate before it even knows its own preferences
then ez ante IR is appropriate; ez ante IR states that the agent’s expected utility in the
mechanism, averaged over all possible preferences, must be at least its expected utility
without participating, also averaged over all possible preferences.

One last important mechanism property, defined for direct-revelation mechanisms, is
incentive-compatibility. The concept of incentive compatibility and direct-revelation mech-
anisms is very important in classic mechanism design, and discussed in the next section in

the context of the revelation principle.

2.3 The Revelation Principle, Incentive-Compatibility, and
Direct-Revelation

The revelation principle states that under quite weak conditions any mechanism can be

transformed into an equivalent incentive-compatible direct-revelation mechanism, such that

it implements the same social-choice function. This proves to be a powerful theoretic tool,

leading to the central possibility and impossibility results of mechanism design.

A direct-revelation mechanism is a mechanism in which the only actions available to
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agents are to make direct claims about their preferences to the mechanism. An incentive-
compatible mechanism is a direct-revelation mechanism in which agents report truthful
information about their preferences in equilibrium. Incentive-compatibility captures the
essence of designing a mechanism to overcome the self-interest of agents— in an incentive-
compatible mechanism an agent will choose to report its private information truthfully,
out of its own self-interest.

Ezample. The second-price sealed-bid (Vickrey) auction is an incentive-compatible (ac-

tually strategy-proof) direct-revelation mechanism for the single-item allocation problem.

Computationally, the revelation principle must be viewed with great suspicion. direct-
revelation mechanisms are often too expensive for agents because they place very high
demands on information revelation. An iterative mechanism can sometimes implement
the same outcome as a direct-revelation mechanism but with less information revelation
and agent computation. The revelation principle restricts what we can do, but does not

explain how to construct a mechanism to achieve a particular set of properties.

2.3.1 Incentive Compatibility and Strategy-Proofness

In a direct-revelation mechanism the only action available to an agent is to submit a claim

about its preferences.

DeFiNiTION 2.20 [direct-revelation mechanism] A direct-revelation mechanism M =
(©1,...,097,9(:)) in sets the strategy set S; = ©; for all ¢, and has outcome rule g
®; x ... x ©; — O which selects an outcome g(8) based on reported preferences § =
,,...,60;).

In other words, in a direct-revelation mechanism the strategy of agent ¢ is to report
type §; = s;(8;), based on its actual preferences 8;.

A truth-revealing strategy is to report true information about preferences, for all pos-

sible preferences:

DeFiNiTION 2.21 [truth-revelation] A strategy s; € S; is truth-revealing if s;(6;) = 6;
for all 6; € ©;.

In an incentive-compatible (IC) mechanism the equilibrium strategy profile s* = (s,

... ,S7) has every agent reporting its true preferences to the mechanism. We first define
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Bayesian-Nash incentive-compatibility:

DEFINITION 2.22 [Bayesian-Nash incentive compatible] A direct-revelation mechanism
M is Bayesian-Nash incentive-compatible if truth-revelation is a Bayesian-Nash equilib-
rium of the game induced by the mechanism.

In other words, in an incentive-compatible mechanism every agent’s expected utility
maximizing strategy in equilibrium with every other agent is to report its true preferences.

A mechanism is strategy-proof (or dominant-strategy incentive-compatible) if truth-

revelation is a dominant-strategy equilibrium:

DEFINITION 2.23 [strategy-proof] A direct-revelation mechanism M is strategy-proof if
it truth-revelation is a dominant-strategy equilibrium.

Strategy-proofness is a very useful property, both game-theoretically and computation-
ally. Dominant-strategy implementation is very robust to assumptions about agents, such
as the information and rationality of agents. Computationally, an agent can compute its
optimal strategy without modeling the preferences and strategies of other agents.

A simple equivalence exists between the outcome function g(f) in a direct-revelation
mechanism, which selects an outcome based on reported types 6 and the social choice

function f(8) implemented by the mechanism, i.e. computed in equilibrium.

ProposiTiON 2.1 (incentive-compatible implementation). An incentive-compatible
direct-revelation mechanism M implements social choice function f(6) = g(8), where g(6)

is the outcome rule of the mechanism.

In other words, in an incentive-compatible mechanism the outcome rule is precisely
the social choice function implemented by the mechanism. In section 2.4 we introduce the
Groves mechanisms, which are strategy-proof efficient mechanisms for agents with quasi-
linear preferences, i.e. the choice rule k(theta) computes the efficient allocation given

reported types § and an agent’s dominant strategy is truth-revelation.

2.3.2 The Revelation Principle

The revelation principle states that under quite weak conditions any mechanism can be
transformed into an equivalent incentive-compatible direct-revelation mechanism that im-

plements the same social-choice function. The revelation principle is an important tool for
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the theoretical analysis of what is possible, and of what is impossible, in mechanism design.
The revelation principle was first formulated for dominant-strategy equilibria [Gib73], and
later extended by Green & Laffont [GJJ77] and Myerson [Mye79, Mye81].

One interpretation of the revelation principle is that incentive-compatibility comes for
free. This is not to say that truth-revelation is easy to achieve, but simply that if a non
direct-revelation and /or non truthful mechanism solves a distributed optimization problem,
then we would also expect a direct-revelation truthful implementation.

The revelation principle for dominant strategy implementation states that any social
choice function than is implementable in dominant strategy is also implementable in a
strategy-proof mechanism. In other words it is possible to restrict attention to truth-

revealing direct-revelation mechanisms.

THeOREM 2.1 (Revelation Principle). Suppose there ezists a mechanism (direct or
otherwise) M that implements the social-choice function f(-) in dominant strategies. Then

f(-) is truthfully implementable in dominant strategies, i.e. in a strategy-proof mechanism.

Proor. If M =(S,,...,S51,9(-)) implements f(-) in dominant strategies, then there
exists a profile of strategies s*(-) = (s{(‘),... ,s7(-)) such that g(s*(8)) = f(6) for all 6,
and for all ¢ and all 9; € ©;,

ui(g(s{(6:),5-:),0:) 2> ui(g(3i,-:),6:)

for all §; € S; and all s_; € S-;, by definition of dominant strategy implementation.

Substituting s* ;(0-;) for s_; and s;(éi) for §;, we have:
ui(g(s7(8:), $24(6-0)), 8:) 2 uig(s; (6, s24(6-0)), 6:)
for all §; € ©; and all 6_; € ©_;. Finally, since g(s*(8)) = f(6) for all 8, we have:
ui(£(6:,0-),0:) > ui(f(8:,0-:),6:)

forall§; € ©; and alld_; € ©_;. Thisis precisely the condition required for f(-) to be truth-
fully implementable in dominant strategies in a direct-revelation mechanism. The outcome

rule in the strategy-proof mechanism, g : 6; x...x8; — @, is simply equal to the social
choice function f(:). |
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The intuition behind the revelation principle is as follows. Suppose that it is possible
to simulate the entire system— the bidding strategies of agents and the outcome rule —
of an indirect mechanism, given complete and perfect information about the preferences
of every agent. Now, if it is possible to claim credibly that the “simulator” will implement
an agent’s optimal strategy faithfully, given information about the preferences (or type)
of the agent, then it is optimal for an agent to truthfully report this private information
(or type) to the new mechanism.

This dominant-strategy revelation principle is quite striking. In particular, it suggests
that to identify which social choice functions are implementable in dominant strategies, we
need only identify those functions f(-) for which truth-revelation is a dominant strategy
for agents in a direct-revelation mechanism with outcome rule g(-) = f(-).

A similar revelation principle can be stated in Bayesian-Nash equilibrium.

TueoreMm 2.2 (Bayesian-Nash Revelation Principle). Suppose there ezists a mecha-
nism (direct or otherwise) M that implements the social-choice function f(-) in Bayesian-
Nash equilibrium. Then f(.) is implementable in a (Bayesian-Nash) incentive-compatible

direct-revelation mechanism.

In other words, if the goal is to implement a particular social choice function in
Bayesian-Nash equilibrium, it is sufficient to consider only incentive-compatible direct-
revelation mechanisms.

The proof closely follows that of the dominant-strategy revelation principle. One prob-
lem with the revelation principle for Bayesian-Nash implementation is that the distribution
over agent types must be common knowledge to the direct-revelation mechanism, in addi-

tion to the agents.

2.3.3 Implications

With the revelation principle in hand we can prove impossibility results over the space
of direct-revelation mechanisms, and construct possibility results over the space of direct-

revelation mechanisms.

However, the revelation principle ignores computational considerations and should not

be taken as a statement that it is sufficient to consider only direct-revelation mechanisms
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in practical mechanism design. The revelation principle states what can be achieved,
what cannot be achieved, but without stating the computational structure to achieve a
particular set of properties. In particular, in my dissertation I argue that iterative and
indirect mechanisms are important in many combinatorial applications, and can provide
tractable solutions to problems in which single-shot direct-revelation mechanisms fail.

Rather, the revelation principle provides a rich structure to the mechanism design
problem, focusing goals and delineating what is not possible. For example, if a particular
direct-revelation mechanism M is the only mechanism with a particular combination of
properties, then any mechanism, including iterative and indirect mechanisms, must imple-
ment the same outcome (e.g. allocation and payments) as mechanism M for the same
agent preferences.

For example:

e Suppose that the only direct mechanisms with useful properties P1, P2 and P3 are
in the class of mechanisms M’. It follows that any mechanism m with properties
P1l, P2 and P3 must be “outcome equivalent” to a direct mechanism in M’, in the
sense that m must implement the same outcome as a mechanism in this class for all

possible agent types.

e Suppose that no direct mechanism has properties P1, P2 and P3. It follows that

there can be no mechanism (direct or otherwise) with properties P1, P2 and P3.

2.4 Vickrey-Clarke-Groves Mechanisms

In seminal papers, Vickrey [Vic61], Clarke [Cla71] and Groves [Gro73|, proposed the
Vickrey-Clarke-Groves family of mechanisms, often simply called the Groves mechanisms,
for problems in which agents have quasi-linear preferences. The Groves mechanisms are
allocatively-efficient and strategy-proof direct-revelation mechanisms.

In special cases there is a Groves mechanism that is also individual-rational and satisfies
weak budget-balance, such that the mechanism does not require an outside subsidy to
operate. This is the case, for example, in the Vickrey-Clarke-Groves mechanism for a
combinatorial auction.

In fact, the Groves family of mechanisms characterize the only mechanisms that are

allocatively-efficient and strategy-proof [GJJ77].
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THEOREM 2.3 (Groves Uniqueness). The Groves mechanisms are the only allocatively-
efficient and strategy-proof mechanisms for agents with quasi-linear preferences and general

valuation functions.

This uniqueness property provides good motivation for the work in my dissertation.
Given the premise that iterative mechanisms often have preferable computational prop-
erties in comparison to sealed-bid mechanisms, then we can focus on iterative Groves
mechanisms because:

any iterative mechanism that achieves allocative efficiency in dominant-strategy imple-
mentation must implement a Groves outcome.

This necessary requirement follows from the revelation principle, although (see chapter
7) an iterative mechanism that implements the Vickrey outcome can have slightly weaker
properties than those of a single-shot Vickrey scheme.

Krishna & Perry [KP98] and Williams [Wil99] have recently proved the uniqueness of

Groves mechanisms among efficient and Bayesian-Nash mechanisms.

2.4.1 The Groves Mechanism

Consider a set of possible alternatives, X, and agents with quasi;linear utility functions,

such that
ui(k, pi, 0i) = vi(k, 6;) — pi
where v;(k,6;) is the agent's value for alternative k, and p; is a payment by the agent to

the mechanism. Recall that the type 8; € ©; is a convenient way to express the valuation
function of an agent.

In a direct-revelation mechanism for quasi-linear preferences we write the outcome
rule g(é) in terms of a choice rule, k : O x... x Oy — K, and a payment rule,
ti © O x...x0r — R, for each agent 1.

In a Groves mechanism agent i reports type 6; = s;(6;), which may not be its true type.

Given reported types § = (él, - ,0}), the choice rule in a Groves mechanism computes:
k*(6) = argr,gggzi:vi(k, 6:) (1)
Choice k* is the selection that maximizes the total reported value over all agents.
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The payment rule in a Groves mechanism is defined as:

ti(8) = hi(6-i) = Y v;(k*,6;) (2.1)

J#i
where h; : ©_; — R is an arbitrary function on the reported types of every agent except
t. This freedom in selecting h;(-) leads to the description of a “family” of mechanisms.

Different choices make different tradeoffs across budget-balance and individual-rationality.

2.4.2 Analysis

Groves mechanisms are efficient and strategy-proof:

THEOREM 2.4 (Groves mechanisms). Groves mechanisms are allocatively-efficient and

strategy-proof for agents with quasi-linear preferences.

PROOF.

We prove that Groves mechanisms are strategy-proof, such that truth-revelation is
a dominant strategy for each agent, from which allocative efficiency follows immediately
because the choice rule £*(8) computes the efficient allocation (1).

The utility to agent i from strategy 6; is:

uwi(6i) = vi(k*(6),6:) — t:(6)
= v;(k*(6),0:) + )_ v;(k*(6),6;) — hi(6-:)
J#i
Ignoring the final term, because hi(é_i) is independent of an agent i’s reported type,

we prove that truth-revelation éi = @; solves:

max |vi(k"(6;,0-0),0:) + Y v;(k*(6:,6-:),6;)
8,€0; J#i

= max vi(z, 6;) + Z Uj(z7 é]) (2)
0;€9; j#i
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where ¢ = k'(éi,é_;) is the outcome selected by the mechanism. The only effect of the
agent’s announced type 6; is on z, and the agent can maximize (2) by announcing 6; = 6;

because then the mechanism computes k*(6;,6_;) to explicitly solve:

max v;(k, 6;) + Z vj(k,65)
i#i
Truth-revelation is the dominant strategy of agent ¢, whatever the reported types 6_; if
the other agents. The effect of payment t;(8) = (-) — Z#i vj(k‘,éj) is to “internalize the
externality” placed on the other agents in the system by the reported preferences of agent
i. This aligns the agents’ incentives with the system-wide goal of an efficient allocation,

an agent wants the mechanism to select the best system-wide solution given the reports of
other agents and its own true preferences. |

-~

The first term in the payment rule, h;(f-;), can be used to achieve (weak) budget-
balance and/or individual rationality. It is not possible to simply total up the payments
made to each agent in the Groves scheme and divide equally across agents, because the
total payments depend on the outcome, and therefore the reported type of each agent.

This would break the strategy-proofness of the mechanism.

2.4.3 The Vickrey Auction

The special case of Clarke mechanism for the allocation of a single item is the familiar
second-price sealed-bid auction, or Vickrey [Vic61] auction.

In this case, with bids b, and b, to indicate the first- and second- highest bids, the item
is sold to the item with the highest bid (agent 1), for a price computed as:

by — (b1 — b2) = b2

i.e. the second-highest bid.

One can get some intuition for the strategy-proofness of the Groves mechanisms in this
special case. Truth-revelation is a dominant strategy in the Vickrey auction because an
agent’s bid determines the range of prices that it will accept, but not the actual price it
pays. The price that it pays is completely independent of its bid price, and even if an agent
knows the second-highest bid it can still bid its true value, because it only pay just enough

to out-bid the other agent. In addition, notice that weak budget-balance holds, because
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the second-highest bid price is non-negative, and individual-rationality holds because the
second-highest bid price is no greater than the highest bid price, which is equal to the

winner agent’s value in equilibrium.

2.4.4 The Pivotal Mechanism

The Pivotal, or Clarke, mechanism [Cla71] is a Groves mechanism in which the first time
in the payment rule, h,-(é..i), is carefully set to achieve individual-rationality, while also
maximizing the payments made by the agents to the mechanism. The Pivotal mechanism
also achieves weak budget-balance whenever that is possible in an efficient and strategy-
proof mechanism [KP98].

The Clarke mechanism [Cla71] computes the additional transfer term as:

hiB-i) =Y vj(k24(6-:),6;) (2.2)
J#t

where k*; is the optimal collective choice for with agent i taken out of the system:
KLi(0-i) = argmax 3 v;(k,6)
J#
This is a valid additional transfer term because the reported value of the second-best
allocation without agent 1 is independent of the report from agent i. The strategy-proofness
and efficiency of the Groves mechanisms are left unchanged.

The Clarke mechanism is a useful special-case because it is also individual rational in
quite general settings, which means that agents will choose to participate in the mechanism
(see section 2.2.2).

To keep things simple, let us assume that agent i's expected utility from not partici-
pating in the mechanism is %;(6;) = 0. The Clarke mechanism is individual rational when

the following two conditions hold on agent preferences:

DEFINITION 2.24 [choice set monotonicity] The feasible choice set available to the mech-

anism K (weakly) increases as additional agents are introduced into the system.

DEFINITION 2.25 [no negative externalities] Agent ¢ has non-negative value, i.e.
vi(k2;,6;) > 0, for any optimal solution choice, k£ ,(f_;) without agent ¢, for all ¢ and all
0;.
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In other words, with choice set monotonicity an agent cannot “block” a selection, and
with no negative ezternalities, then any choice not involving an agent has a neutral (or
positive) effect on that agent.

For example, the conditions of choice-set monotonicity and no negative externalities

hold in the following settings:

e In a private goods market environment: introducing a new agent cannot make existing
trades infeasible (in fact it can only increase the range of possible trades); and with
only private goods no agent has a negative value for the trades executed between

other agents (relative to no trades).

¢ In a public project choice problem: introducing a new agent cannot change the range
of public projects that can be implemented; and no agent has negative value for any

public project (relative to the project not going ahead).

ProposiTioN 2.2 (Clarke mechanism). The Pivotal (or Clarke) mechanism is (ex
post) individual-rational, efficient, and strategy-proof when conditions choice-set mono-

tonicity and no negative ezternalities hold and with quasi-linear agent preferences.

Proor. To show individual-rationality (actual ez post individual-rationality), we show
that the utility to agent ¢ in the equilibrium outcome of the mechanism is always non-

negative.

wi(8:,0-0) = vi(k*(6),6:) — | S vj(k2:(6-0),6) = Y v;(k"(6),6;)
j#i j#i
= zv,(k‘ )= v(k%(8-0),65) 3)
J#i
Expression (3) is non-negative because the value of the best solution without agent i,
2 j#i Vi(kZ;(6-:),8;), cannot be greater than the value of the best solution with agent i,

Y-, vi(k*(8),6;). Any choice with agents j # i is also feasible with all agents (monotonicity),
and has just as much total value (no negative ezternalities). |

The Clarke mechanism also achieves weak budget-balance in special-cases. A sufficient

condition is the no single-agent effect:
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DEFINITION 2.26 [no single-agent effect] For any collective choice k' that is optimal in
some scenario with all agents, i.e. k' = maxgex ) ; vi(k,6;), for some 6 € O, then for all
i there must exist another choice k_; that is feasible without 7 and has as much value to
the remaining agents j # .

In words, the no single-agent effect condition states that any one agent can be removed
from an optimal system-wide solution without having a negative effect on the best choice

available to the remaining agents. This condition holds in the following settings:

o In an auction with only buyers (i.e. the auctioneer holds all the items for sale), so
long as all buyers have “free disposal”, such that they have at least as much value

for more items than less items.

o In a public project choice, because the set of choices available is static, however many

agents are in the system.

ProposiTion 2.3 (Clarke weak budget-balance). The Pivotal (or Clarke) mechanism
is (ez post) individual-rational, weak budget-balanced, efficient and strategy-proof when con-
ditions choice-set monotonicity, no negative externalities hold, and no single-agent effect

hold, and with quasi-linear agent preferences.

Proor. Weak budget-balance requires that the total transfers are non-negative, such

that the mechanism does not require a subsidy:

Z ti(6) >0

for all § € ©. Substituting the expression for agent transfers, we have:

3o D vilkti(0-4),05) = Y vi(k*(6),65) | >0

i J#i J#i
This is satisfied in Clarke because the transfer is non-negative for every agent 1, i.e.:
3 vi(k2i(0-0),65) = Y _vi(k*(6),8;), Vi
#i J#i
This condition holds by a simple feasibility argument with the no single-agent effect,

because any solution to the system with all agents remains feasible and has positive value
without any one agent. |
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As soon as there are buyers and sellers in a market we very quickly lose even weak
budget-balance with Groves-Clarke mechanisms. The budget-balance problem in a combi-
natorial exchange is addressed in Parkes, Kalagnanam & Eso [PKEO1], where we propose
a number of methods to trade-off strategy-proofness and allocative efficiency for budget-

balance.

2.4.5 The Generalized Vickrey Auction

The Generalized Vickrey Auction is an application of the Pivotal mechanism to the combi-
natorial allocation problem. The combinatorial allocation problem (CAP) was introduced
in section 1.2. There are a set G of items to allocation to Z agents. The set of choices
K={(S5,...,581) : 5inS; =0,8; C G} where S; is an allocation of a bundle of items
to agent ¢. Given preferences (or type) 8;, each agent i has a quasi-linear utility function,
ui(S, pi, 0;) = vi(S,6;) — pi, for bundle S and payment p;. For notational simplicity we will
drop the “type” notation in this section, and simply write v;(S,8;) = v;(S).

The efficient allocation computes an allocation to maximize the total value:

S* =ar max v;(S;
gs:(sl,...,s,)z i(5:)

i

st. §iNS; =0, for all S;, S;

The Pivotal mechanism applied to this problem is a sealed-bid combinatorial auction,
often called the Generalized Vickrey Auction (GVA). The special case for a single item is
the Vickrey auction. In the GVA each agent bids a value for all possible sets of items, and
the mechanism computes an allocation and payments.

The GVA has the following useful properties:

THEOREM 2.5 (Generalized Vickrey Auction). The GVA is efficient, strategy-proof,
individual-rational, and weak budget-balanced for agents with quasi-linear preferences in

the combinatorial allocation problem.
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Description

Each agent i € T submits a (possibly untruthful) valuation function, ¢;(S), to the auc-
tioneer. The outcome rule in the Pivotal mechanism computes k°(6), the allocation that
maximizes reported value over all agents. In the GVA this is equivalent to the auctioneer
solving a “winner-determination” problem, solving CAP with the reported values and com-
puting allocation 8* = (57,...,S7) to maximize reported value. Let V'* denote the total
value of this allocation. Allocation S* is the allocation implemented by the auctioneer.
The payment rule in the Pivotal mechanism also requires that the auctioneer solves a
smaller CAP, with each agent i taken out in turn, to compute k*;(6_;), the best allocation
without agent i. Let (S_.;)* denote this second-best allocation, and (V_;)* denote its value.
Finally, from the Groves-Clarke payment rule ¢;(8), see (2.1) and (2.2), the auctioneer

computes agent ¢’s payment as:

Puic(d) = (V-i)* = Y 9;(S;)
J#i
In words, an agent pays the marginal negative effect that its participation has on the
(reported) value of the other agents. Equivalently, the Vickrey payment can be formulated
as a discount Ayick(2) from its bid price, 9;(S}), i.e. pvick(¢) = 9:(S]) = Avick(2), for Vickrey
discount:

Avik(?) = V* = (V)°

Analysis

Efficiency and strategy-proofness follow immediately from the properties of the Groves
mechanism. Weak budget-balance holds in this special-case. It is simple to show that each
agent pays a non-negative amount to the auctioneer. by a simple feasibility argument.
Similarly, individual-rationality holds and agents pay no more than their value for the
bundle they receive. It is simple to show that discounts are always non-negative, again
by a simple feasibility argument. Alternatively, one can verify that conditions choice-set

monotonicity, no negative externalities, and no single-agent effect hold for the CAP.
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Name  Preferences Solution Impossible Environment

concept
GibSat general dominant Non-dictatorial general
(incl. Pareto Optimal)
Hurwicz quasi-linear dominant Eff& BB simple-exchange
MyerSat quasi-linear Bayesian-Nash Eff& BB & IR simple-exchange
GrLaff quasi-linear coalition-proof Eff simple-exchange

Table 2.1: Mechanism Design Impossibility Results. Eff is ez post allocative efficiency, BB is ez
post (and strong) budget-balance, and IR is interim individual rationality.

2.5 Impossibility Results

The revelation principle allows the derivation of a number of impossibility theorems that
outline the combinations of properties that no mechanism can achieve (with fully rational
agents) in particular types of environments. The basic approach to show impossibility is
to assume direct-revelation and incentive-compatibility, express as a set of mathematical
conditions the desired properties of an outcome rule (including conditions for incentive-
compatibility), and then show a conflict across the conditions.

Table 2.1 describes the main impossibility results. Results are delineated by conditions
on agent preferences, the equilibrium solution concept, and the assumptions about the
environment. The “Impossible” column lists the combinations of desirable mechanism
properties that cannot be achieved in each case.

As discussed in section 2.2.2, ez post refers to conditions tested at the outcome of
the mechanism, while interim refers to a condition tested after agent i knows its own
preferences but with only distributional information about the preferences of other agents.

Impossibility for restricted preferences in an exchange is more severe than for general
preferences and general environments, because general conditions include these as special
cases. In addition, impossibility for weak solution concepts such as Bayesian-Nash is
more restrictive than impossibility for strong solution concepts like dominant strategy

implementation.

DEeFINITION 2.27 [dictatorial] A mechanism is dictatorial if one (or more) agents always

receives one of its most-preferred alternatives.

DeFINITION 2.28 [general preferences] Preferences §; are general when they provide a

complete and transitive preference ordering > on outcomes. An ordering is complete if for
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all 01,00 € O, we have 0; > 09 or 02 > o0 (or both). An ordering is transitive if for all
01,02,03 € O, if 0, > 09 and 02 > 03 then o, > o3.

DEFINITION 2.29 [coalition-proof] A mechanism M is coalition-proof if truth revelation

is a dominant strategy for any coalition of agents.

DEeFINITION 2.30 [general environment] A general environment is one in which there is

a discrete set of possible outcomes O and agents have general preferences.

DeFINtTION 2.31 [simple exchange] An simple ezchange environment is one in which
there are buyers and sellers, selling single units of the same good.

The Gibbard [Gib73] and Satterthwaite [Sat75] impossibility theorem shows that for
a sufficiently rich class of agent preferences it is impossible to implement a “satisfactory”
social choice function in dominant strategies. A related impossibility result, due to Green
and Laffont (GJJ77] and Hurwicz [Hur75], demonstrates the impossibility of efficient and
budget-balanced outcomes with dominant strategies, even in quasi-linear environments.

More recently, the Myerson-Satterthwaite impossibility theorem [Mye83] extends this
impossibility to include Bayesian-Nash implementation, if interim individual-rationality is
also required. Williams [Wil99] and Krishna & Perry [KP98| provide alternative deriva-
tions of this general impossibility theorem, using properties about the Groves family of
mechanisms.

Green & Laffont [GL79] demonstrate that no allocatively-efficient and strategy-proof
mechanism can also be safe from manipulation by coalitions, even in quasi-linear environ-

ments.

2.5.1 Gibbard-Satterthwaite Impossibility Theorem

A negative result due to Gibbard [Gib73] and Satterthwaite [Sat75] states that it is im-
possible, in a sufficiently rich environment, to implement a non-dictatorial social-choice

function in dominant strategy equilibrium.

TueoreMm 2.6 (Gibbard-Satterthwaite Impossibility Theorem). If agents can have ar-
bitrary individual preferences, and there are at least two agents, and at least three different
optimal outcomes over the set of all agent preferences, then a social-choice function is

dominant-strategy implementable if and only if it is dictatorial.
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Clearly all dictatorial social-choice functions must be strategy-proof. This is simple to
show because the outcome that is selected is the most preferred, or maximal outcome, for
the reported preferences of one (or more) of the agents— so an agent should report its
true preferences. For a proof in the other direction, that any strategy-proof social-choice
function must be dictatorial, I refer the reader to MasColell [MCWG95].

Impossibility results such as Gibbard-Satterthwaite must be interpreted with great care.
In particular the results do not necessarily continue to hold in restricted environments. For
example, although no dictatorial social choice function can be Pareto optimal or efficient,
this impossibility result does not apply directly to markets. The market environment natu-
rally imposes additional structure on preferences. In particular, the Gibbard-Satterthwaite
impossibility theorem may not hold if one of the following conditions are relaxed:

- additional constraints on agent preferences (e.g. quasi-linear)

- weaker implementation concepts, e.g. Bayesian-Nash implementation

In fact a market environment has been shown to make implementation easier. In the
next section on Possibility results, we introduce a number of non-dictatorial strategy-proof
mechanisms in restricted environments, e.g. McAfee [McA92| for quasi-linear preferences
in a double-auction, and Barbera & Jackson [BJ95] for quasi-concave preferences in a

classic exchange economy.

2.5.2 Hurwicz Impossibility Theorem

A related impossibility theorem is known for simple exchange economies, for agents with
quasi-linear preferences. In fact it is impossible to obtain both strategy-proofness and effi-
ciency and budget-balance in market settings, even without requiring individual-rationality
and with additional restrictions on agent valuation functions.!

Hurwicz [Hur72] first showed a conflict between efficiency and strategy-proofness in a
simple two agent model. The general impossibility result follows from Green & Laffont
(GJJ77] and Hurwicz [Hur75], and more recently Hurwicz and Walker [HW90]. Green &

Laffont and Hurwicz established that no member of the Groves family of mechanisms has

!'Schummer [Sch97] has recently shown that even for the case of two agents with linear preferences it is
not possible to achieve strategy-proofness and efficiency.
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budget-balance, and that the Groves family is the unique set of strategy-proof implemen-
tation rules in a simple exchange economy. I find it useful to refer to this result as the

Hurwicz impossibility theorem.

THEOREM 2.7 (Hurwicz Impossibility Theorem). It is impossible to implement an ef-

ficient, budget-balanced, and strategy-proof mechanism in a simple ezchange economy with

quasi-linear preferences.

This result is quite negative, and suggests that if allocative efficiency and budget-
balance are required in a simple exchange economy, then looking for dominant strategy

solutions is not useful.

2.5.3 Myerson-Satterthwaite Impossibility Theorem

The Myerson-Satterthwaite impossibility theorem [Mye83] strengthens the Hurwicz impos-
sibility result to include Bayesian-Nash implementation, if interim individual-rationality

is also required.

THEOREM 2.8 (Myerson-Satterthwaite). It is impossible to achieve allocative efficiency,
budget-balance and (interim) individual-rationality in a Bayesian-Nash incentive-compatible

mechanism, even with quasi-linear utility functions.

Myerson & Satterthwaite demonstrate this impossibility in a two-agent one-good ex-
ample, for the case that trade is possible but not certain (e.g. the buyer and seller have
overlapping valuation ranges). Williams [Wil99] and Krishna & Perry [KP98] provide al-
ternative derivations of this general impossibility result, using properties of the Groves
family of mechanisms.

An immediate consequence of this result is that we can only hope to achieve at most
two of Eff, IR and BB in an market with quasi-linear agent preferences, even if we look
for Bayesian-Nash implementation. The interested reader can consult Laffont & Maskin
[LM82] for a technical discussion of various approaches to achieve these properties pair-

wise.
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Name Pref Solution Possible Environment

Groves quasi-linear  dominant Eff & (IR or WBB) exchange VCG
dAGVA quasi-linear Bayesian-Nash Eff & BB exchange [dG79, Arr79)
Clarke quasi-linear  dominant Eff & IR exchange [ClaT71]
GVA  quasi-linear  dominant Eff, IR & WBB  comb auction VCG
MDP classic iterative Pareto exchange [DdIVPTL, Mal72
local-Nash Rob79)
BJ95 classic dominant BB & non-dictatorial  exchange [BJ95]
Quadratic  classic Nash Pareto & IR exchange [GL77b]

Table 2.2: Mechanism Design Possibility Results. Eff is ez post allocative efficiency, BB is er post
strong budget-balance, WBB is ez post weak budget-balance, /R is interim individual-rationality,
Pareto is er post Pareto-optimality.

In the next section we introduce the dAGVA mechanism [Arr79, dG79], that is able
to achieve efficiency and budget-balance, but loses individual-rationality. The dAGVA

mechanism is an “expected Groves mechanism.”

2.6 Possibility Results

The central positive result is the family of Vickrey-Clarke-Groves (VCG) mechanisms,
which are allocatively-efficient (but not budget-balanced) strategy-proof mechanisms in
quasi-linear domains. VCG mechanisms clearly demonstrate that it is possible to im-
plement non-dictatorial social choice functions in more restricted domains of preferences.
However, as expected from the impossibility results of Green & Laffont [GJJ77] and Hur-
wicz [Hur75], they are not efficient and strong budget-balanced.

Table 2.2 summarizes the most important possibility results. A quick check confirms
that these possibility results are all consistent with the impossibility results of Table 2.1!
By the revelation principle we effectively get “incentive-compatibility” for free in direct-
revelation mechanisms, and these are all incentive-compatible except the iterative MDP
procedure. Of course the Groves mechanisms are strategy-proof.

The Possibility results are delineated by agent preferences, the equilibrium solution

concept and the environment or problem domain.

DeFINITION 2.32 [classic preferences] Classic preferences are strictly quasi-concave, con-

tinuous and increasing utility functions.

DEFINITION 2.33 [exchange environment] Exchange simply refers to a bilateral trading

situation, with agents that have general valuation functions (including bundle values).
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Contrary to impossibility results, for possibility results a strong implementation con-
cept is more useful than a weak implementation, e.g. dominant is preferred to Bayesian-
Nash, and a general environment such as an exchange is preferred to a more restricted
environment such as a combinatorial auction (which can be viewed as a one-sided ex-
change).

The Groves, Clarke (Pivotal), and GVA mechanisms have already been described in sec-
tion 2.4. Groves mechanisms are consistent with the Gibbard-Satterthwaite impossibility
theorem because agent preferences are not general, but quasi-linear.> Groves mechanisms
are also consistent with the Hurwicz/Myerson-Satterthwaite impossibility theorems be-
cause it is not the case that the sum transfers from agents is zero. Groves mechanisms are
not strong budget-balanced. Note that this failure of strong budget-balance is acceptable in
some dormains; e.g., in one-sided auctions (combinatorial or otherwise) with a single seller
and multiple buyers it may be acceptable to achieve weak budget-balance and transfer net

payments to the seller.

2.6.1 Efficiency and Strong Budget-Balance: dAGVA

An interesting extension of the Groves mechanism, the dAGVA (or “expected Groves”)
mechanism, due to Arrow [Arr79] and d’Aspremont & Gerard-Varet [dG79], demonstrates
that it is possible to achieve efficiency and budget-balance in a Bayesian-Nash equilibrium,
even though this is impossible in dominant-strategy equilibrium (Hurwicz). However, the
dAGVA mechanism is not individual-rational, which we should expect by the Myerson-

Satterthwaite impossibility theorem.

THEOREM 2.9 (dAGVA mechanism). The dAGVA mechanism is ex ante individual-
rational, Bayesian-Nash incentive-compatible, efficient and (strong) budget-balanced with

quasi-linear agent preferences.

The dAGVA mechanism is a direct-revelation mechanism in which each agent an-
nounces a type §; € ©;, that need not be its true type. The mechanism is an “expected-
form” Groves mechanism [Rob87, KP98].

2MasColell also notes that there are no dictatorial outcomes in this environment.
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The allocation rule is the same as for the Groves mechanism:
k"(6) = max Z; vi(k, 6;)

The structure of the payment rule is also quite similar to that in the Groves mechanism:

t:(0) = hi(6-i) = Ba_, | Y_ vi(k*(6:,0-:),65)
J#i

where as before h(:) is an arbitrary function on agents’ types. The second term is the
expected total value for agents j # ¢ when agent ¢ announces type 6; and agents j # i
tell the truth. It is a function of only agent i’s announcement, not of the actual strategies
of agents j # i, making it a little different from the formulation of agent transfers in
the Groves mechanism. In effect, agent i receives a transfer due to this term equal to the
ezpected externality of a change in its own reported type on the other agents in the system.

The Bayesian-Nash incentive-compatibility with this transfer follows from a similar
line of reasoning as the strategy-proofness of the Groves mechanisms. A proof is in the
appendix to this chapter.

The interesting thing about the dAGVA mechanism is that it is possible to choose the
hi(-) functions to satisfy budget-balance, such that ), t;(8) = 0 for all 8 € ©;. Define the

“expected social welfare (or value)” of agents j # ¢ when agent ¢ announces its type 6; as

SW_i(6:) = Eo_, | >_ vj(k"(6:,0-:),05)

J#i
and note that this is not depend on announced types of agents j # i. The additional term
in the payment rule is defined, for agent i, as:

hi(0-:) = (1171) ) sw_;(4;)
Jj#i

which is the “averaged” expected social welfare to every other agent given the announced
types of agents j # i. This gives budget-balance because each agent also pays an equal
1/(I — 1) share of the total payments made to the other agents, none of which depend on

its own announced type. See the appendix of this chapter for a proof.
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Discussion

The incentive properties and properties of full optimality, i.e. efficiency and budget-
balance, make the dAGVA procedure very attractive. However, the dAGVA mechanism
has a number of problems:

(1) it may not satisfy the individual rationality constraint (even ez ante)

(2) the Bayesian-Nash implementation concept is much weaker than dominant-strategy
implementation

(3) it places high demands on agent information-revelation

Roberts [Rob87] provides a very interesting discussion of the conditions required for an
iterative method to implement the dAGVA mechanism with less information from agents.
In fact, he claims that it is impossible to find a successful iterative procedure because
an agent's announcement in earlier periods must also affect its payments in subsequent

periods, breaking incentive-compatibility.

2.6.2 Dominant-strategy Budget-balance but Inefficiency

A number of mechanisms have been proposed to achieve budget-balance (perhaps weak
budget-balance) in dominant strategy mechanisms, for some loss in allocative efficiency.
McAfee [McA92] presents a mechanism for a double auction (with multiple buyers and sell-
ers) that is strategy-proof and satisfies weak budget-balance, but for some loss in allocative
efficiency.

Barbera & Jackson [BJ95] characterize the set of strategy-proof social-choice functions
that can be implemented with budget-balance in an exchange economy with classic prefer-
ences. It is possible to implement non-dictatorial social choice functions in this restricted
set of preferences (even though preferences are not quasi-linear). In fact the authors
show that it is necessary and sufficient to implement “fixed-proportion trading rules”, in
which (loosely speaking) agents trade in pre-specified proportions, to achieve “non-bossy”
and “anonymous” outcomes (which are sufficient conditions for non-dictatorial outcomes).
Given Hurwicz's impossibility theorem, it is not surprising that the trading rules are not

fully allocatively-efficient. 3

*Barbera & Jackson also note that efficiency does not tend to 100% as the economy gets large, and
compare to the analysis of Roberts & Postlewaite [RP76], who show that standard clearing rules become
approximately incentive-compatible as the economy gets large.
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2.6.3 Alternative implementation Concepts

One method to extend the range of social-choice functions that can be implemented is
to consider alternative equilibrium solution concepts. In the context of direct-revelation
mechanisms (i.e. static games of incomplete information) we have already observed that
Bayesian-Nash implementation can help (e.g. in the dAGVA mechanism). One difficulty
introduced in Bayesian-Nash is that it requires more information and rationality assump-
tions of agents. Similarly, we might expect that moving to a Nash implementation concept
can help again.

Groves & Ledyard [GL77)] inspired much of the literature on Nash implementation.
The Quadratic mechanism is Pareto efficient in the exchange environment with classic
preferences, in that all Nash equilibria are Pareto efficient. In this sense, it is demon-
strated that it is possible to implement budget-balanced and efficient outcomes with Nash
implementation, while (Myerson-Satterthwaite) this is not possible with Bayesian-Nash.

However, the Nash implementation concept is quite problematic. An agent’s Nash
strategy depends on the strategies of other agents, and on complete information about
the (private) types of each agent. Clearly, it is quite unreasonable to expect agents to
select Nash strategies in a one-shot direct-revelation mechanism. The solution concepts
only make sense if placed within an iterative procedure, where agents can adjust towards
Nash strategies across rounds [Gro79).

Moore & Rupullo [MR88] consider subgame-perfect Nash implementation in dynamic
games, and show that this expands the set of social-choice functions that can be im-
plemented in strategy-proof mechanisms. Of course, introducing a new solution concept
requires a new justification of the merits of the subgame-perfect refinement to Nash equi-
librium in a dynamic game. A fascinating recent idea, due to Kalai & Ledyard [KL98]
considers “repeated implementation”, in which the authors consider the implementable
social-choice functions in a repeated game, with strong results about the effect on imple-
mentation.

Although the mechanism design is almost exclusively focused on direct-revelation mech-
anisms, and ignores the costs of information revelation and centralized computation, one
exception is the MDP planning procedure, proposed by Dréze & de la Vallée Poussin
(DdIVP71] and Malinvaud [Mal72]. MDP mechanism is an iterative procedure, in which
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in each round each agent announces “gradient” information about its preferences for dif-
ferent outcomes. The center adjusts the outcome towards a Pareto optimal solution in
an exchange environment with classic agent preferences. If the agents report truthful
information the MDP procedure is Pareto optimal (i.e. fully efficient).

Dréze & de la Vallée Poussin [DdIVP71] also consider the incentives to agents for
reporting truthful information in each round, and showed that truthful revelation is a
local maximin strategy (i.e. maximizes the utility of an agent given that other agents
follow a worst-case strategy). Truth revelation is also a Nash equilibrium at termination.

In addition, Roberts [Rob79] proved that if agents play a local Nash equilibrium at
each stage in the procedure, to maximize the immediate increase in utility of the project,
then the mechanism will still converge to a Pareto optimum even though the agents do
not report truthful information. Roberts retains a myopic assumption, and studied only a
local game in which agents did not also consider the effect of information on future rounds.

Champsaur & Laroque [CL82] departed from this assumption of myopic behavior, and
assumed that every agent considers the Nash equilibrium over a period of T periods. The
agents forecast the strategies of other agents over T periods, and play a Nash equilibrium.
The MDP procedure is still Pareto optimal, but the main difference is that the center has
much less control over the final outcome (it is less useful as a policy tool). The outcome
for large T approaches the competitive equilibrium.

Modeling agents with a Nash equilibrium, even in the local game. still makes the
(very) unreasonable assumption that agents have complete information about each others’
preferences, for example to compute the equilibrium strategies. Roberts [Rob79] discusses
iterative procedures in which truthful revelation locally dominant at each stage. Of course,
one must expect some loss of efficiency if strategy-proofness is the goal.

iBundle [Par99, PU0Oa] is an efficient ascending-price auction for the combinatorial al-
location problem, with myopic best-response agent strategies. The auction is weak budget-
balanced, and individual-rational. Although myopic best-response is not a rational sequen-
tial strategy for an agent, it is certainly a more reasonable implementation concept than
a local Nash strategy, requiring only price information and information about an agent’s
own preferences. As discussed in chapter 7, an extended auction, iBundle Extend& Adjust,

provably computes VCG payments in many problems. Computing the outcome of a Groves
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mechanism with myopic best-response strategies makes myopic best-response a Bayesian-

Nash equilibrium of the iterative auction.

2.7 Optimal Auction Design

In a seminal paper, Myerson [Mye81] adopted a constructive approach to mechanism design
for private-values auction, in which an agent’s value is independent of that of other agents.
Myerson takes considers the problem of revenue mazimization, instead of the focus on
efficiency that has been a common thread through most of the mechanism design literature.
Myerson formulates the mechanism design problem as an optimization problem, where the
goal is to design an outcome function for a direct-revelation mechanism that maximizes
the expected payment by agents subject to constraints on: (a) feasibility (no item can be
allocated more than once); (b) individual-rationality (the expected utility for participation
is non-negative); and (c) incentive-compatibility.

Focusing on direct-revelation mechanisms (following the revelation principle), Myerson
derives conditions on the allocation rule & : © — K and the payment rules¢t; : © — R
for an auction to be optimal. Without solving for explicit functional forms k(-) and ¢;(-)
Myerson is able to derive the revenue equivalence theorem, which essentially states that any
auction which implements a particular allocation rule k(-) must have the same expected
payments.

In general the goals of revenue-maximization and efficiency are in conflict. Myerson
constructs an optimal (revenue-maximizing) auction in the simple single-item case, and
demonstrates that the seller should use distributional information about the values of
agents to implement an inefficient allocation-rule to maximize its revenue. The seller
announces a non-zero reservation price, which increases its revenue in sowmne cases, but also
introduces a slight risk that the seller will miss a profitable trade (making it inefficient).

However, amongst the class of efficient and dominant-strategy mechanisms, Krishna &

Perry [KP98] develop a generalized revenue-equivalence principle:

THEOREM 2.10 (generalized revenue-equivalence). In quasi-linear environments, all
Bayesian-Nash incentive-compatible mechanisms with the same choice rule k(-) are expected

revenue equivalent up to an additive constant.
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This is essentially a statement that all mechanisms to implement a particular allocation
rule are essentially equivalent in their transfer rules. We have already seen a similar result,
i.e. that the Groves mechanisms are unique among efficient & strategy-proof mechanisms
[GL87].

Krishna & Perry also show that the GVA maximizes revenue over all efficient and

Bayesian-Nash incentive-compatible mechanisms:

TueoreyM 2.11 (Revenue-optimality of GVA). The GVA mechanism mazimizes the
ezpected payments of each agent amoangst all efficient, (Bayesian-Nash) incentive-

compatible, and individual-rational mechanisms.

It is interesting that the GVA mechanism, although strategy-proof, maximizes rev-
enue over all Bayesian-Nash incentive-compatible and efficient mechanisms. The revenue-
maximization property of the GVA, along with the uniqueness of the GVA amongst effi-
cient and incentive-compatible mechanisms, provides an alternative proof of the Myerson
& Satterthwaite [Mye83] impossibility result.

Ausubel & Cramton [AC98] make a simpler argument for efficient mechanisms in the
presence of after-markets. Intuitively, in the presence of an after-market that will allow
agents to achieve an efficient allocation outside of the auction, the auctioneer maximizes
profits by providing agents with an allocation that they find most desirable and extracting
their surplus. A similar argument can be made in the presence of alternate markets. If

the auctioneer does not compute efficient allocations then agents will go elsewhere.

Appendix

Proof of dAGVA properties

The intuition behind the Bayesian-Nash incentive-compatibility of the dAGVA mechanism
follows a similar line of reasoning to that for the strategy-proofuness of Groves. Suppose that
the other agents announce their true types, the expected utility to agent i for announcing

its true type (given correct information about the distribution over the types of other
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agents) is:

Eg_, [vi(k*(6:,6-:),6:)] + Eq_, [2 :”j(k'(oi,e—i)ﬁj)]
J#
1

=Ep_, | Y _v;(k*(6),6;)

Jj=1

and this is greater than
1
D" vi(k*(6:,0-1),6;)
j=t

for all §; € ©; because by reporting its true type the agent explicitly instructs the mech-
anism to compute an allocation that maximizes the inner-term of the expectation for all
possible realizations of the types 8_; of the other agents.

Finally, we show that the dAGVA mechanism is budget-balanced:

Zt, _( )ZZSW_, ESW_.

( ) i:l— 1)SW_i(6; ZSW_,

0

I

Intuitively, each agent i receives a payment equal to SW_;(6;) for its announced type,
which is the expected social welfare effect on the other agents. To balance the budget each
agent also pays an equal 1/(I — 1) share of the total payments made to the other agents,

none of which depend on its own announced type.
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Chapter 3

Computational Mechanism Design

The classic mechanism design literature largely ignores computational considerations. It
is common to assume that agents can reveal their complete preferences over all possible
outcomes (the revelation principle), and that the mechanism can solve an optimization
problem to select the best outcome (e.g. the Groves mechanisms).

It is useful to take a “markets as computation” view of computational mechanism
design. Our goal is to use a market-based method, or in particular an economic mechanism,
to compute a social-welfare maximizing outcome to a distributed problem. This markets
as computation view has received attention in computer science for a number of years, and
in particular within artificial intelligence. Influential early work is the Market Oriented
Programming (MOP) paradigm of Wellman [Wel93], which adopted economic equilibrium
concepts as a technique to compute solutions to distributed optimization problems. Other
classic early work includes that of Huberman & Clearwater [HC95] on a market-based
system for air-conditioning control, Sandholm [San93] on economic-based mechanisms for
decentralized task-allocation amongst self-interested agents.

Early motivation for the market-based approach recognized that markets can provide
quite efficient methods to solve distributed problems, prices for example can summarize
relevant information about agents’ local problems [Wel96]). The game-theoretic considera-
tions of mechanism design were secondary to computational considerations. In recent years
there has been increasing focus on game-theoretic issues, at first without much concern
to computational tractability [RZ94], but later with attempts to integrate game-theoretic
concerns and computational concerns [SL96, PU0Ob, Par01].

The tensions between classic game-theoretic solutions and tractable computational so-

lutions soon become evident as one considers the application of mechanisms to difficult
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distributed optimization problems, such as supply-chain procurement or bandwidth allo-
cation.

Here is an outline of this chapter. Section 3.1 considers the different computational
concerns in an implemented mechanism, looking at computation both at the agent and the
mechanism infrastructure level. I consider the consequences of the revelation principle for
computational mechanism design. Section 3.2 focuses on the Generalized Vickrey Auction,
and introduces methods to address both the cost of winner determination, the cost of
complete information revelation, and to reduce communication costs. Each is addressed in
turn, through sections 3.3 - 3.5. Section 3.5 also reviews work in the economics literature

on mechanism design with limited communication structures.

3.1 Computational Goals vs. Game Theoretic Goals

Much of classic mechanism design is driven by the revelation principle 2.3, which states
informally that we only ever need to consider direct-revelation mechanisms. In a direct-
revelation mechanism agents are restricted to sending a single message (the agent’s prefer-
ences) to the mechanism, where that message makes a claim about the preferences of the
agent over possible outcomes.

The revelation principle provides a very important theoretical tool, but is not useful
in a constructive sense in difficult domains. The transformation assumed in the revelation
principle from indirect mechanisms (e.g. an iterative auction) to direct-revelation mech-
anisms (e.g. a sealed-bid auction) assumes unlimited computational resources, both for
agents in submitting valuation functions, and for the auctioneer in computing the outcome
of a mechanism [Led89]. In particular, the revelation principle assumes:

- agents can compute and communicate their complete preferences

- the mechanism can compute the correct outcome with complete information about
all relevant decentralized information in the system.

[t can soon become impractical for an agent to compute and communicate its complete
preferences to the mechanism, and for the mechanism to compute a solution to the central-
ized optimization problem. Direct-revelation mechanisms convert decentralized problems
into centralized problems.

Yet, the revelation principle does have a vital role in the design of all mechanisms,
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both direct and indirect, sealed-bid and iterative. The revelation principle provides focus
to the design of iterative mechanisms. Taken along with the uniqueness of the Groves
mechanisms amongst all efficient and strategy-proof mechanisms (section 2.4), then any
efficient and strategy-proof iterative mechanism must compute the outcome of a Groves
mechanism for the underlying preferences of agents. This is to avoid the existence of an
equivalent direct-revelation mechanism for the mechanism that is outside of the class of
Groves, which would be impossible.

It is useful to characterize the computation in a mechanism within two distinct levels:

1. At the agent level:

(a) Valuation complezity. How much computation is required to provide preference

information within a mechanism?

(b) Strategic complezity. Must agents model other agents and solve game-theoretic

problems to compute an optimal strategy?

2. At the infrastructure level:

(a) Winner-determination complezity. How much computation is expected of the
mechanism infrastructure, for example to compute an outcome given information

provided by agents?

(b) Communication complezity. How much communication is required, between

agents and the mechanism, to compute an outcome?

Dominant strategy mechanisms, such as the Groves mechanisms, are efficient and
strategy-proof mechanisms, giving them excellent strategic complexity. An agent can com-
pute a dominant-strategy without modeling the other agents and without game-theoretic
reasoning. However, the direct-revelation property of Groves mechanisms provides very
bad (in fact worst-case) agent valuation complexity. An optimal bidding strategy requires
that an agent determines its complete preferences over all possible outcomes. Complete
information is required in all instances, even though it is often possible to solve a par-
ticular instance with incomplete information, with an interactive solution such as that
provided in equilibrium solutions. The winner-determination complexity of Groves mech-
anisms in combinatorial domains also limits their applicability as problems get large; e.g.

winner-determination in the combinatorial allocation problem is NP-hard.
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Approaches to resolve this tension between game-theoretic and computational proper-

ties include:

e Dynamic mechanisms. Instead of requiring single-shot direct-revelation, allow agents
to provide incremental information about their preferences for different outcomes and

solve easy problem instances without complete information revelation.

e Distributed computation. Move away from a centralized model of mechanism imple-
mentation towards models of decentralized computation to compute the outcome of

a mechanism, based on information about agent preferences.

o Compact preference representation languages. Provide agents with expressive and
compact methods to express their preferences, that avoid unnecessary details, make
structure explicit, perhaps introduce approximations, and make the problem of com-

puting optimal outcomes more tractable.

e Approzimation methods. Compute approximate outcomes based on agent strategies,
and make connections between the accuracy of approximation and game-theoretic

properties of the mechanism.

e Special cases. Identify tractable special cases of more general problems, and restrict

the implementation space to those tractable special cases.

The challenge is to make mechanisms computationally feasible without sacrificing useful

game-theoretic properties, such as efficiency and strategy-proofness.

3.2 Computation and the Generalized Vickrey Auction

The Generalized Vickrey Auction (GVA) is a classic mechanism with many important
applications in distributed computational systems ((NRO1, WWWMMO1]). As described
in section 2.4, the GVA is a strategy-proof and efficient mechanism for the combinatorial
allocation problem, in which there are a set of items, G, and a set of agents, Z, and the
goal is to compute a feasible allocation of items to maximize the total value across all
agents. Agents report values 9;(S) for each bundle § C G, and the GVA computes an
optimal allocation based on reported values and also solves one additional problem with

each agent taken out of the system to compute payments.
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From a computational perspective the GVA presents a number of challenges:

o Winner determination is NP-hard. Winner determination in the GVA is NP-hard,
equivalent to the maximum weighted set packing problem. The auctioneer must
solve the winner-determination problem once with all agents, and then once more

with each agent removed from the system to compute payments.

o Agents must compute values for an ezponential number of bundles of items. The
GVA requires complete information revelation from each agent. The valuation prob-
lem for a single bundle can be hard [Mil00a), and in combinatorial domains there are

an exponential number of bundles to consider.

o Agents must communicate values for an ezponential number of bundles of items.
Once an agent has determined its preferences for all possible outcomes it must com-
municate that information to the auctioneer. In addition to the network resource

cost, this might be undesirable from a privacy perspective.

A number of proposals exist to address each of these problems, surveyed below. The
first problem, concerning the computational complexity of the auctioneer’'s winner de-
termination problem, has received most attention. In comparison, the second problem,
concerning the complexity on participants to determine their preferences has received
considerably less attention. Exceptions include the brief discussion of bidding programs
in Nisan [Nis00], and the recent progress that has been made on dynamic mechanisms
(WWO00, Par99, PUOOD].

This dynamic approach includes my iBundle mechanism, and recent extensions to
compute Groves payments. iBundle is an iterative combinatorial auction mechanism, able
to compute efficient allocations without complete information revelation from agents. The
information savings follow from an equilibrium-based interactive solution concept, in which
the efficient allocation is computed based on an equilibrium across information announced
by the auctioneer (allocation, prices) and information announced by agents (best-response
bids). In addition to terminating without complete information revelation in realistic
problem instances, agents i iBundle can compute optimal strategies without solving their

complete local valuation problems.
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3.2.1 Winner-Determination: Approximations and Distributed Meth-
ods

Possible ideas to address the complexity of winner-determination in the GVA include intro-
ducing approximation, identifying and restricting to special-cases, and distributed methods
that seek to involve decentralized agents in the mechanism’s computational problem.

In each case, as new methods are used to compute the outcome of a Groves mechanism,
it is important to consider any effects on the strategy-proofness of the mechanism. There
are two reasons to be concerned about the loss of strategy-proofness with an approximate
Groves mechanism:

- agents can now benefit from game-theoretic reasoning, which makes their strategic
bidding problem more difficult

- the effect of agents misrepresenting their preferences might, contrary to their de-
sires, make the outcome worse than if they had simply reported their private information

truthfully.

Approximations

Simply replacing the optimal algorithm in the GVA with an approximation algorithm does
not preserve strategy-proofness. Recall that the utility to agent ¢ in the GVA for reported

preferences #6;, is:

ui(8) = vi(k"(6:,0-0),6:) + Y_ v5(k* (6, 0-1),85) — ha(6-)
J#i
where h;(-) is an arbitrary function over the reported preferences §_; = @1,...,6i-1, 601,
,é[) of the other agents.

Agent i chooses to announce preferences 6; to make k*(8;,6_;) solve:
max vi(k, 6;) +_vj(k,6;) (*)
J#i
In the GVA because k‘(éi,é_i) solves this problem with 6; = 6;, then truth-revelation
is the agent’s dominant strategy.
With an approximate winner-determination algorithm the auctioneer selects outcome
I}(ég,é_g), which might not equal k‘(éi,é_i). The agent’s optimal strategy is not to an-

nounce a type 6; to try to make the approximation algorithm solve (*):
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k(6:,0-:) = k*(6:,0-:)

In other words, the agent would like to make the approximation algorithm select the
best possible outcome, given its true preferences and the announced preferences of the other
agents, and this might perhaps be achieved by manipulating its inputs to the algorithm to
“fix” the approximation in the algorithm. Truth-revelation is a dominant strategy within
a Groves mechanism if and only if an agent cannot improve on the outcome computed
by the mechanism’s algorithm by misrepresenting its own preferences. This observation
leads to useful characterizations of necessary properties for an approximation algorithm to
retain strategy-proofness within a Groves mechanism.

Tennenholtz et al. [TKDMO0] introduce a set of sufficient (but not necessary) axioms
for an approximation algorithm to retain strategy-proofness. The most important axiom,
Axiom 2, essentially introduces the following requirement (which the authors also refer to

as “l-efficiency”):
vi(£(8i,6-:),0:) + > v;(k(0:,0-4),6;) > vi(k(6:,0-:),6:) + > v;(k(B:,6-:),6;),
J#i i
for all 6; # 6;, 6_;, 6;.

In words, an agent cannot improve the solution with respect to a particular set of inputs
(9i,é_i) by unilaterally misrepresenting its own input 6;. Strategy-proofness follows quite
naturally from this condition, given that a rational agent will only misrepresent its prefer-
ences to improve the quality of the solution (for reported preferences from other agents and
the agent’s true preferences) computed by the mechanism. An interesting open question
is the degree to which these axioms restrict the efficiency of an approximation algorithm,
for a particular class of algorithms (e.g. constant factor worst-case approximations, etc.).

Nisan & Ronen [NROO] take a different approach and define conditions on the range
of an approximation algorithm, and require the algorithm to be optimal in its range— a
condition they refer to as mazimal in its range. for truth-revelation in a Groves mechanism
with approximate winner-determination algorithms. The conditions are necessary and
sufficient. In essence, the mazimal in range condition states that if X' C K is the range
of outcomes selected by the algorithm (i.e. k& € K' implies there is some set of agent

preferences for which the approximation algorithm k(@) = k), then the approximation
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algorithm must compute the best outcome in this restricted range for all inputs.
k() = g&xzj, vi(k, 6:)

for all § € ©, and for some fixed X' C K. Intuitively, strategy-proofness follows because
the Groves mechanism with this rule implements a Groves mechanism in the reduced
space of outcomes K'. An agent cannot improve the outcome of the allocation rule by
submitting a corrupted input because there is no reachable outcome of better quality. Nisan
& Ronen partially characterize the necessary inefficiency due to the dual requirements
of approximation and strategy-proofness, and claim that all truthful mechanisms with
approximate algorithms have “unreasonable” behavior for an appropriate definition of
unreasonableness.

Lehmann et al. [LOS99] consider strategy-proof and approximate implementations for
a special case of the combinatorial allocation problem- with single-minded bidders that
care only about one bundle of items. Perhaps surprisingly, winner-determination remains
NP-hard even in this very restricted problem by reduction from weighted set packing.
Lehmann et al. allows the payment rules to change from those in a Groves scheme, and
propose a set of sufficient axioms for strategy-proofness in their problem. The axioms
apply to properties of the allocation rule and the payment rule. The most important
condition for strategy-proofness is the “critical” condition, which states that an agent’s
payment must be independent of its bid and “minimal”, closely following the intuition
behind the incentive-compatibility of the Vickrey-Clarke-Groves scheme. Lehmann et al.
propose a greedy allocation rule and a payment scheme that satisfies their axioms, which
together comprise a strategy-proof mechanism. Extending to “double-minded” agents, the
authors prove that there are no strategy-proof payment rules compatible with their greedy
allocation method.

Nisan & Ronen [NRO1] present an interesting algorithmic study of mechanism design
for a task allocation problem, with a non efficiency-maximizing objective (and therefore
outside of the application of Groves mechanisms). The objective in the task allocation
problem is to allocate tasks to minimize the makespan, i.e. the time to complete the final
task. Individually, each agent wants to minimize the time that it spends performing tasks.
Nisan & Ronen present sufficient conditions for the strategy-proofness of a mechanism,

and consider the class of approximation algorithms that satisfy those conditions. The
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important axioms are independence, i.e. the payment to agent i does not depend on its
own bid, and mazimization, i.e. the mechanism must compute an outcome that maximizes
the benefit when each agent reports its true ability to perform tasks. For a particular class
of constant-factor approximation algorithms, the authors compute a lower-bound on the
degree-of-approximation for which strategy-proofness is possible. Nisan & Ronen continue

to show that a randomized mechanism can improve this best-case approximation factor.

Distributed Methods

Nisan & Ronen [NRQO|] propose an innovative “second chance” mechanism, which aims
to combine distributed challenges by agents with an approximate winner-determination
algorithm. The second-chance mechanism builds on the intuition that agents will manip-
ulate an Groves mechanism built around an approximation algorithm if they can improve
the solution by misrepresenting their own preferences, given the announcements of other
agents.

The second-chance mechanism provides a method to allow agents to improve the out-
come of the algorithm that does not also risk agents making the solution worse, for ex-
ample if they either make bad predictions about the algorithm or about the announce-
ments from other agents. Agents submit a claim 6; about their preferences, as in the
standard Groves mechanism, and also an appeal function, which can be viewed as an
additional heuristic algorithm for the winner-determination problem. The appeal func-
tion provides an alternative set of inputs for the auctioneer’s existing algorithm, i.e.
l : @ x...x0; = O x...x 0y, such that {(f) provides a new set of preferences
for each agent. Given reported types 6, the mechanism solves the optimization problem
with its approximation algorithm once with the inputs 6, and once with each appeal set
of inputs, e.g. l,-(é) for the appeal function of agent i, evaluating the outcomes in terms of
the reported types 6.

Intuitively, providing an appeal function provides each agent with a mechanism to try
to fix the approximate nature of the auctioneer’s winner-determination algorithm without
needing to adjust its reported preferences away from its true preferences. Each agent will
try to submit an appeal function to improve the system-wide (reported) value of the chosen
solution. “Feasible truthfulness” of the second-chance mechanism is demonstrated, for a

suitable restriction on the rationality of agents (see below).
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The appeal functions are very complex and require a high degree of insight on the part
of agents. Nisan & Ronen note that the agents themselves could be required to compute
the results of their appeal function. The mechanism therefore can be viewed as a method
to use decentralized computation to improve the performance of an approximate winner-
determination algorithm. It is also suggested that agents be given the chance to learn the
characteristics of the approximation algorithm, to enable them to generate good appeal
functions. Another idea is to integrate successful appeals progressively into the heuristic,
to improve its base performance.

Rothkopf et al. [RPH98] had earlier proposed decentralized computation approaches,
with “challenges” issued to agents to improve the quality of the auctioneer’s solution.
Brewer [Bre99] also proposes a market mechanism to decentralize computation to agents.

Returning to the concept of feasible truthfulness, there is one one sense in which
bounded-rationality can help in mechanism design. Perhaps we can design mechanisms
that cannot be manipulated unless an agent can solve an NP-hard computational prob-
lem.

Nisan & Ronen [NROO] provide some initial suggestions in this direction. The authors
introduce the concept of a feasible best-response and a feasible dominant action. A feasible
best-response is an agent’s utility-maximizing action across a restricted set of all possible
actions, known as the agent’s knowledge set. The knowledge set is a mapping from the
actions of other agents to a subset of an agent’s own possible actions. An action is then fea-
sible dominant if it is the best-response in an agent’s knowledge set for all possible actions
of other agents. This is a very similar concept to the maximal-in-range idea introduced as
an axiom for strategy-proofness with approximate winner-determination algorithms.

Given this concept of feasible dominance, one might design mechanisms in which the
strategies that perform better than truth-revelation are in small measure compared to all
possible strategies, to make an agent require a lot of “knowledge” to have a non truth-
revealing dominant strategy, or perform a lot of computation.

One could also interpret the myopic best-response strategy, adopted in my own work
([Par99, PU0Oa], from the perspective of a bounded-rational agent. Certainly the assump-
tion of myopia considerably simplifies an agent’s problem, as it does not need to reason
about the effect of its bids in the current round on future prices or on the strategies of

other agents.
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Special-Cases and Structure

Finally, let us consider the role of tractable special-cases of winner-determination. Rothkopf
et al. [RPH98], Nisan [Nis00] and de Vries & Vohra [dVV00] characterize tractable special-
cases, identifying restrictions on the types of bundles that can receive bids and/or the
types of valuation functions agents can express over bundles. The approach is to restrict
an agent’s bidding language to induce only tractable winner-determination problems.

Ideally the restricted bidding language supports tractable winner-determination with-
out preventing agents reporting their true valuation functions. In this case the GVA
mechanism can be applied without any loss in either strategy-proofness or efficiency. How-
ever, as soon as one imposes a restriction on agents’ bids there is a risk that efficiency and
strategy-proofness will be compromised. If an agent cannot represent its true valuation
function with the restricted bidding language, then it will try to report an approximate
value that leads to the best outcome for its true preferences, i.e. to force the mechanism
to select the best solution from the set reachable from the restricted range of inputs. This
ability to improve the outcome through non-truthful bidding leads to a loss in strategy-
proofness, for example because the agent will now need to predict the strategies of other
agents. The tradeoff between approximate bidding languages, incentive-compatibility, and
efficiency appears to have received little attention.

Graphical tree representations, such as the Expected Utility Networks [MS99], allow
an agent to capture independence structure within its preferences in much the same way as
Bayes-Nets provide compact representations of conditional probabilities in suitable prob-
lems. In addition to providing quite compact and natural representations for participants,
these structured approaches may allow tractable winner-determination and payment rules,
that exploit the structure to solve problems without explicitly computing values for indi-

vidual bundles.

3.2.2 Valuation Complexity: Bidding Programs and Dynamic Methods

The Groves mechanisms are direct-revelation mechanisms, requiring that every agent re-
ports its complete preferences over all possible outcomes. In application to large combina-
torial problems Groves mechanisms can fail because of the bounded-rationality of agents,
and the complezity of local valuation problems. The valuation problem for a single bundle

can be hard, and in combinatorial domains there are an exponential number of different
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bundles to consider.

Consider an application to a distributed package delivery problem, with agents com-
peting for the delivery jobs. Agents represent delivery companies, and may need solve
hard local optimization problems to compute their costs to perform different bundles of
jobs; each bundle may require that the agent computes an optimal schedule for its fleet of
vehicles.

In these types of combinatorial problems a mechanism must not require an agent to
report its complete valuation function. In addition, an agent must be able to compute its
optimal strategy without computing its complete valuation function. It is not helpful to
require less information if the agents must still compute values for all bundles to provide
that information. In Chapter 8 I introduce a bounded-rational compatible characterization
of auctions. The theory of bounded-rational compatibility precisely captures the concept of
allowing an agent to participate in an auction without performing an unnecessary amount
of valuation work. In a bounded-rational compatible auction an agent can compute its
equilibrium strategy with an approximate valuation function, and least in some problem
instances.

Two interesting approaches to reduce information revelation in mechanisms for combi-
natorial allocation problems are:

(1) Retain the direct-revelation structure, but provide a high-level bidding language (or
*bidding program”) to allow an agent to “represent and define” its local problem without
explicitly solving its local problem in all possible scenarios.

(2) Implement a dynamic mechanism, which requests information incrementally from
agents and computes the optimal allocation and Vickrey payments without complete in-
formation revelation.

The first method may be helpful if specification is easier than valuation, i.e. it is
easier for an agent to define how it determines its value for a bundle of items than it is to
explicitly compute its value for all possible bundles. The second method may be helpful if
the iterative procedure terminates without complete information revelation by agents, and
if an agent can provide incremental information without computing its complete valuation

function. Let us consider each in turn.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bidding Programs and High Level Bidding Languages

In choosing a bidding language for a mechanism there is a tradeoff between the ease with
which an agent can represent its local preferences, and the ease with which the mechanism
can compute the outcome of the mechanism. Nisan [Nis00] describes the ezpressiveness of
a language, which is a measure of the size of a message for a particular family of valuation
functions, and the simplicity of a language, which is a measure of the complexity involved
in interpreting a language and computing values for different outcomes.

A natural starting point in combinatorial auctions is the XOR bidding language,
(S1,p1) XOR (S, p2), which essentially allows an agent to enumerate its value for all possi-
ble sets of items. This bidding language is simple to interpret, in fact given a bid b in the
XOR language, the auctioneer can compute the value b(S) for any bundle in polynomial
time [Nis00]. However, this bidding language is not very expressive. An obvious example is
provided with a linear valuation function, v(S) = 3__.sv(z). XOR bids for this valuation
function are exponential in size (explicitly enumerating the value for all possible bundles)
[Par99]. In comparison, an OR bidding language (S),p,) OR (S2,p2), which states that the
agent wants S| or S; or both, has a linear-space representation of this valuation function.

Nisan observes that other combinations, such as XOR-of-OR languages and OR-of-
XOR languages, allow compact representations of certain preference structures and make
tradeoffs across expressiveness and compactness. Nisan proposes an OR* bidding language,
which is expressive enough to be able to represent arbitrary preferences over discrete items,
and as compact a representation as both OR-of-XOR and XOR-of-OR representations.
However, Nisan provides an example with no polynomial-size representation even with the
OR* language.

The expressiveness of a bidding language, or the compactness of representations that it
permits, becomes even more important when one considers the agent’s underlying valuation
problem.

Suppose that an agent must solve an NP-hard constrained optimization problem [P]
to compute its value for a set of items, with objective function g and constraints C. In the
XOR representation the agent must solve this problem [P] once for every possible input
S C G, i.e. requiring an exponential number of solutions to an NP-hard problem. Now
consider an alternative bidding language, that allows the agent to send the specification of

its optimization problem, i.e. [P] = (g, C) directly to the auctioneer. Strategy-proofness
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is not affected (assuming the agent can trust the mechanism to interpret this bidding
language faithfully), but the agent saves a lot of value computation.

In general, we might consider a language in which the agent can send a “bidding
program” to the auctioneer, which the auctioneer will then execute as necessary to compute
an agent’s value for different subsets of items [Nis00]. This is really just the extreme limit
of the revelation principle: rather than requiring an agent to solve its local problem and
compute its value for all possible outcomes, simply allow the agent to send the local
problem specification directly to the auctioneer.

From the perspective of the bidding agent this approach simplifies its valuation problem
whenever the specification of its local problem is simpler than actually computing its value
for all possible outcomes. A bidding program allows an agent to feed that specification
directly to the auctioneer.

From the perspective of the auctioneer, this is an even more centralized solution than
providing a complete valuation function, and has worse-still privacy implications. The
bidding program approach shifts the valuation computational burden from agents to the
auctioneer. Notice for example that if the bidding program provides only “black box”
functionality, e.g. b : 2 — R, the mechanism must compute b(S) for all S C G (unless
other consistency rules such as free disposal apply to an agents’ values) to compute the
efficient solution. In this case the auctioneer needs to perform just as much computa-
tion as would be required by an agent within the XOR bidding language. However, if
the bidding program, or language, provides a richer functionality— for example allowing
efficient pruning “the value b(S’) on all bundles §’ < S is less than 5(S)"; or computing
approximate values “the value of b(S) is between [a, b]”; or best-response “the bundle that
maximizes b(S) — p(S) at those prices is S);” —then the total valuation work performed by
the auctioneer can be less than that required by agents with the XOR bidding language.
Savings of this kind can be realized within an algorithm that makes explicit use of these
types of query structures.

Let me outline some serious limitations of the bidding program model in some domains:

¢ The specification problem can be as difficult as the valuation problem in some do-
mains. In particular, the assumption above is that a single specification allows an
agent to compute its value for all bundles. In many problems the agent might need

to collect additional information, consult human experts etc., to form a model with
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which to determine the value of each bundle. As a concrete example, consider the
FCC spectrum auction. For any particular set of licenses a bidder might need to
construct a new business model, to determine its value, and this can require costly
and time-consuming information gathering, conference calls, and modeling efforts
[Milo0a].

e Local valuation problems might not be well formed, the agent might not be able to
provide a clear description of the method with which the value of each alternative is
determined. This is a particular concern in systems in which human experts must

be consulted to determine values.

e The size of the specification of a problem might be too large to transmit to the
mechanism. Perhaps computing the value for a bundle requires access to a large

database of information?

e Value and sensitivity of information. In a supply-chain example, will IBM really
be happy to release the methods that it uses to take procurement decisions? This

information has considerable value to a competitor.

o Trust. Can the agent trust the auctioneer to faithfully execute its bidding program?
There might be a role for verification mechanisms to enable an agent to verify the
value computation performed by a mechanism. Harkavy et al.[HTK98| and Naor et
al. [NPS99] provide an introduction to some ideas from secure distributed computa-

tion that can be used in auction environments.

Dynamic Methods.

An alternative approach is to “open up” the algorithm for computing the outcome of the
GVA, and involve agents dynamically in the computational process. It is easy to construct
examples in which it is not necessary to have complete information about agents’ valuation
problems to compute and verify the outcome of the auction. A few simple examples are
described at the end of this section. A well structured dynamic method might ask agents
for just enough information to enable the mechanism to compute and verify the outcome.

A dynamic mechanism may elicit the following types of approximate information from

agents:
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ordinal information, i.e. “which bundle has highest value out of S}, S; and $3?”

approzimate information, i.e. “is your value for bundle S; greater than 1007”

best-response information, i.e. “which bundle do you want at prices p(S)?”

- equivalence-set information, i.e. “is there an item that is substitutable for A?”

In addition to solving realistic problem instances without complete information reve-
lation, it is also important that dynamic methods allow an agent to respond to requests
for information with an approximate solution to its own valuation function. Notice that
in each of the preceding examples an agent can respond without first computing its exact

value for all bundles.

Examples: Complete Information is Not Necessary

Examples 1-3 are simple problems instances in which the optimal allocation and the Vick-
rey payments can be computed without complete information from agents. Although there
is no consideration of agent incentives at this stage, a well structured iterative auction can
compute optimal outcomes without complete information from agents and provide incen-

tives for agents to reveal truthful information.

Example 1. Single-item auction with 3 agents, and values v; = 16,v9 = 10,v3 = 4. The
Vickrey outcome is to sell the item to agent 1 for agent 2’s value, i.e. for 10. Instead of
information {v|,v2,v3} it is sufficient to know {v; > 10,v2 = 10,v3 < 10} to compute this

outcome.

Example 2. Consider a combinatorial auction problem in which we ask every agent for
the bundle that maximizes their value. If the response from each agent is non-overlapping,
as illustrated in Figure 3.1 then we cam immediately compute the outcome of the GVA.
The efficient allocation is to give each agent its favorite bundle, every agent gets its value-
maximizing bundle so there can be no better solution. The Vickrey payments in this
example are zero, intuitively because there is no competition between agents. We do not
need any information about the value of an agent for any other bundles, and we do not

need even need an agent’s value for its favorite bundle.

Example 3. Consider the simple combinatorial allocation problem instance in Table 3.1,
with items A, B and agents 1, 2, 3. The values of agent 1 for item B and bundle AB are

stated as a < b and b < 15, but otherwise left undefined. Consider the following cases:

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



E/

. @[@j\z

Figure 3.1: A simple combinatorial allocation problem. Each disc represents an item, and
the selected bundles represent the bundles with maximum value for agents 1, 2, 3 and 4.
In this exarmple this is sufficient information from agents to compute the efficient solution
(and the Vickrey payments).

[@ < 5] In this case the GVA assigns bundle AB to agent 3, with V* =15, (V_3)* =
max[10+a, b], so that the payment for agent 3 is pyick(3) = 15— (15— max[10+a, b))

max(10 + a, b]. It is sufficient to know {a < 5,b < 15, max[10 + a, b]} to compute the

outcome.

[@ > 5] In this case the GVA assigns item B to agent 1 and item A to agent 2, with
V* =10 +a, (V_;)* =15, and (V_2)* = 15. The payment for agent 1 is pyik(l) =
a—(10+a-15) = 5 and the payment for agent 2 is p,ick(2) = 10—(10+a—15) = 15—a.

It is sufficient to know {a,b < 15} to compute the outcome.

Note that it is not necessary to compute the value of the optimal allocation S*; we only
need to compute the allocation to each agent. Consider Example 1. We can compute the
optimal allocation (give the item to agent 1) with information v, > {v2,v3}, and without
knowing the exact value of v;.

Also, it is not even necessary to compute V* and (V_;)* to compute Vickrey payments
because common terms cancel. In Example 1, it is enough to know the value of vs to
compute agent 1's Vickrey payment because the value of v, cancels: pyik(l) = v, -

Avick(1) = v1 = (v1 — v2) = va.
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A B AB
Agentl 0 a b
Agent2 10 0 10
Agent3 0 0 15

Table 3.1: Agent values in Example 3.

Useful Properties of Iterative Auctions

[terative price directed auctions, such as ascending-price auctions, present an important
class of dynamic mechanisms. In each round of the auction the auctioneer announces prices
on the items, or bundles of items, and a provisional allocation (which agent is currently
receiving which items). A reasonable bidding strategy for an agent is myopic best-response,
which is simply to bid for the items that maximize its utility at the prices. Although myopic
best-response is in general not the optimal sequential strategy for an agent, it can be made
a Bayesian-Nash equilibrium of an iterative auction by computing Vickrey payments at
the end of the auction (see chapter 7).

Useful properties of iterative auctions include:

o [terative auctions can solve realistic problems without complete information from
agents. Consider an ascending-price auction for a single item. It is sufficient that the
two agents with the highest value bid in each round, the other agents do not need
to bid and can sit back and watch the price rise, without providing any information.

Implicit information is provided by not responding to prices.

e Agents can follow myopic best-response without computing exact values for all bun-
dles. For example, an agent can follow a best-response bidding strategy in a price-
directed iterative auction with lower and upper bounds on its values for bundles.
Myopic best-response only requires that an agent bids for the bundle(s) with maxi-
mum utility (value - price) in each round. This utility-maximizing set of bundles can
be computed by refining the values on individual bundles until the utility of one or

more bundles dominates all other bundles.

e The information requested dynamically in each round of an auction (implicitly, via
the new prices and the bidding rules of the auction) is quite natural for agents (and

people) to provide. The auction does not ask agents to make mysterious comparisons
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across different bundles, but rather lets agents consider their best-response (local

utility-maximizing strategy) given the new prices.

iBundle [Par99, PU00a], introduced in chapter 4, is an ascending-price combinatorial
auction. Agents can adjust their bids in response to bids placed by other agents, and the
auction eventually terminates in competitive equilibrium. iBundle solves the problem in
Figure 3.1 in one round with myopic best-response agent strategies, because every agent
will bid for its value-maximizing bundle in response to zero prices and every agent will
receive a bundle in the provisional allocation. In fact, iBundle is provably efficient with
myopic best-response agent strategies, and an extended auction, :Bundle Extend&Adjust,
inherits many of the useful game-theoretic properties from the Generalized Vickrey Auc-

tion.

3.2.3 Addressing Communication Costs: Distributed Methods

Shoham & Tennenholtz [STO01] explore the communication complexity of computing simple
functions within an auction-based algorithm (i.e., with self-interested agents with private
information). Essentially, the authors propose a method to compute solutions to simple
functions with minimal communication complexity. Communication from the auctioneer
to the agents is free in their model, while communication from agents to the auctioneer is
costly. Given this, Shoham & Tennenholtz essentially provide incentive schemes so that
each agent 7 announces its value v; by sending a single bit to the mechanism whenever the
price in an auction is equal to this value. Maz and min functions can be computed with a
single bit from agents, and any function over n agents can be computed in n bits, which
is the lower information-theoretic bound.

Feigenbaum et al. [FPS00] investigate cost-sharing algorithms for multicast transmis-
sion, in which a population of consumers sit on the nodes of a multicast tree. Each user
has a value to receive a shared information stream, such as a film, and each arc in the
multicast tree has an associated cost. The mechanism design problem is to implement the
multicast solution that maximizes total user value minus total network cost, and shares
the cost across end-users. Noting that budget-balance, efficiency, and strategy-proofness
are impossibility in combination the authors compare the computational properties of a
Vickrey-Clarke-Groves marginal cost (MC) mechanism (efficient and strategy-proof) and
a Shapley value (SH) mechanism (budget-balanced and coalitional strategy-proof).
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A distributed algorithm is developed for MC, in which intermediate nodes in the tree
receive messages, perform some computation, and send messages to their neighbors. The
method, a bottom-up followed by a top-down traversal of the tree, computes the solution
to MC with minimal communication complexity, with exactly two messages sent per link.
In comparison, there is no method for the SH mechanism with efficient communication
complexity. All solutions are mazimal, and require as many messages per link as in a naive
centralized approach. Hence, communication complexity considerations lead to a strong
preference for the MC mechanism, which is not budget-balanced. The study leaves many
interesting open questions; e.g. are all budget-balanced solutions maximal, and what are
the game-theoretic properties of alternative strategy-proof minimal mechanisms?

The economic literature contains a few notable models of the effect of limited commu-
nication and agent bounded-rationality in mechanism design, and in systems of distributed
decision making and information processing. This work is relevant here, given the focus
in my dissertation on computational mechanism design and in particular on the costs of
complete information revelation.

In the theory of teams [MR72], Radner and Marschak provide a computational account
of the organization of management structures and teams, considering in particular the ef-
ficient use of information within a decentralized organization. The goal is to compare the
efficiency (decision quality) of different information structures under the assumption that
each structure will be used optimally. The theory of teams proposes a two-step method
to measure the effectiveness of a particular organizational structure: (1) find the optimal
mode of functioning given a structure and compute the efficiency; (2) subtract the costs of
operation. The second step in this methodology has not been done because there has tra-
ditionally been no good way to assess the cost of communication. One method suggested
to side-step this problem is to compare the performance of different communication struc-
tures for a fixed number of messages. The work of Feigenbaum et al. [FPS00] certainly
starts to integrate communication complexity analysis into mechanism design.

One important assumption made in the theory of teams is that all agents share a
common goal (e.g. profit), and no attention is given to the incentives of agents. Radner
[Rad87] compares the efficiency of four classic models of resource allocation, and asks which
is the minimal sufficient structure to compute efficient solutions. Extensions to consider

agent incentives are also discussed.
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Recently, Radner [Rad92, Rad93] has considered a decision-theoretic model of a firm,
in which managers are modeled as bounded-rational decision makers, able to perform
some information processing and communicate. The model considers distributed decision
problems in which agents must perform local computation with local information because
of bounded-rationality and limited computation. One useful concept proposed by Radner
is that of a “minimally efficient” network, which is the minimal communication network
(e.g. in terms of the number of links) that does not introduce delay the decentralized
decision making of agents.

Green & Laffont [GL87] consider the impact of limited communication on the perfor-
mance of incentive-compatible mechanisms. Starting with direct-revelation mechanisms,
which assume that agents can transmit information messages that are sufficiently detailed
to describe fully all their private information, Green & Laffont consider the effect of reduc-
ing the “dimensionality” of an agent's message space. In their abstract model the decision
problem is to select an z € R", an agent’s preferences are § € R™, and the communication
space is R € R'. The authors characterize the effect of reducing the message dimension [,
while trying to maintain incentive-compatibility and decision optimality.

There is a well developed theory on the minimal communication complexity required
to implement efficient allocations [Hur72, MR74, Rei74]. Mount & Reiter compare the
communication requirements at the equilibrium of different market structures, in which
communication cost is measured in terms of the size of the message space that is used in
a mechanism. However, most models compare the costs in equilibrium, without consider
communication costs along the adjustment process, and without any attention to the
computation cost on agents and on the mechanism infrastructure [Mar87]. A central
question in the literature is: what is the minimal equilibrium message size required to
implement a particular social choice function? Classic results argue that the “competitive
mechanism”, which implements allocations in equilibrium (the mechanism announces a
set of prices and agents self-select which bundles they will consume), is informationally
efficient. The theory of minimal message spaces provides a good theoretical background to
the attention to equilibrium solutions to distributed combinatorial optimization problems

in this dissertation.
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Chapter 4

Linear Programming and Auction Design

Mechanism design proposes the Vickrey-Clarke-Groves mechanism as a solution for the
combinatorial allocation problem. In fact, this mechanism is essentially the only mechanism
with the critical properties of strategy-proofness and allocative-efficiency. However, we

have identified a number of inherent computational problems with Groves mechanisms:

e Every agent must provide its value for every bundle to the auctioneer.

e The auctioneer must solve multiple NP-hard problems to compute the outcome of

the auction.

The Groves mechanisms are centralized solutions to a decentralized computational prob-
lem. They address the incentive issues in systems with distributed agents with private
information but fail to address important computational issues.

Naive approaches to address the auctioneer’s computational problem will often break
the strategy-proofness of the mechanism, in addition to reducing the allocative-efficiency of
the solution. One method discussed in Chapter 3 suggests computing an approximate solu-
tion to the winner-determination problem, and the winner-determination problem without
each agent, and computing Vickrey payments with the approximate solutions. Strategy-
proofness is lost as soon as the mechanism does not compute the efficient allocation, the
allocation that maximizes the reported values of agents. Instead an agent should try to
misrepresent its valuation function in just the right way to make the auctioneer compute
the optimal winner-determination solution despite its approximate algorithm. In other
words agents should try to compensate for the approximation within the mechanism.

Similarly, while it is possible to restrict a bidding language such that the mechanism’s
winner-determination problem is tractable (see Table 4.4). However as soon as the re-

stricted expressiveness of the language forces the agent to submit an approximate report
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of its valuation function, the agent must reason about which approzimation will lead to
the auctioneer computing a solution to the winner-determination problem that is optimal
for the agent’s true valuation function.

The motivation for iterative combinatorial auctions is to address the first computational
problem, that of agent valuation work, and retain the useful game-theoretic properties of
strategy-proofness and efficiency. In many problems it is quite unrealistic to assume that
an agent can compute its value for all possible combinations of items, as is required in
the single-shot VCG mechanism. Iterative combinatorial auctions provide interactive so-
lutions, hopefully requesting just enough information from agents to compute the efficient
allocation and the Vickrey payments. The uniqueness of Groves mechanisms (amongst
direct-revelation mechanisms) implies via the revelation principle that any iterative solu-
tion to the combinatorial allocation problem with these desirable game-theoretic properties
must compute the payments in the Vickrey-Clarke-Groves mechanism.

My approach is to first assume a simple bidding strategy for agents in each round of
an iterative auction. The strategy, myopic best-response, need not be game-theoretically
rational for an agent. However, this assumption allows a strong connection between linear
programming theory, in particular primal-dual algorithms, and iterative auction design.
Chapters 3 and 4 introduce primal-dual algorithm COMBAUCTION, and its auction equiv-
alent :Bundle, which compute efficient allocations with myopic best-response agent strate-
gies. The prices computed in the dual solution have an economic interpretation, as the com-
petitive equilibrium prices. Later, in Chapters 5 and 6, I present an extended primal-dual
method, VICKAUCTION, and an experimental auction design, iBundle Extend&Adjust, to
compute Vickrey payments and the efficient allocation with myopic best-response agent
strategies. Vickrey payments make myopic best-response a sequentially rational strategy
for an agent in equilibrium with myopic best-response from other agents— justifying my
earlier assumption. This “LP + Myopic Best-Response + Vickrey” approach appears
to provide a compelling methodology for the design of iterative mechanisms with useful
game-theoretic properties.

Bertsekas [Ber87] had earlier proposed a primal-dual algorithm AUCTION for the assign-
ment problem, which is a special case of the combinatorial allocation problem. AUCTION
has a natural interpretation as an ascending-price auction, but does not compute Vickrey

payments and does not have any useful incentive-compatibility properties. As discussed
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in section 4.7, authors such as Demange et al. [DGS86] and Ausubel [Aus97, Aus00], have
proposed alternative iterative auction designs. These auctions are able to compute both
the efficient allocation and Vickrey payments, and have recently been given primal-dual in-
terpretations by Bikchandani et al. (BdVSV01] and others, but only for special cases of the
combinatorijal allocation problem (CAP). I adopt Bertsekas’ methodology to design primal-
dual algorithm COMBAUCTION, and an efficient iterative combinatorial auction, iBundle,
without placing any restrictions on agent preferences. iBundle implements a primal-dual
algorithm with myopic best-response agent strategies for linear program formulations of
the CAP introduced in Bikchandani & Ostroy [BO99).

The extended auction, :Bundle Extend&Adjust, implements a primal-dual algorithm,
VICKAUCTION for a new linear program formulation of the Vickrey payments. VICKAUC-
TION provably computes the efficient allocation and Vickrey payments with best-response
information from agents. Computational results in Chapter 7 demonstrate that the experi-
mental auction, :Bundle Extend&Adjust, which is an interpretation of primal-dual method
VICKAUCTION, computes Vickrey payments over a suite of problem instances. A full proof
of the extended auction awaits a proof of termination of its final phase (see Chapter 7).

The outline of this chapter is as follows. Section 4.1 presents a brief description of
:Bundle. Section 4.2 provides background on linear programming theory and primal-dual
algorithms. Section 4.3 relates primal-dual methods with allocation problems, and consid-
ers price-adjustment methods and competitive equilibrium. The English auction provides
a simple primal-dual example. Section 4.4 provides a hierarchy of linear programming for-
mulations for the combinatorial allocation problem. Section 4.5 also outlines the tractable
special-cases of the combinatorial allocation problem, and to provide practical interpreta-
tions as much as possible. This falls naturally within this chapter because the tractable
special cases can all be understood within linear programming theory.

Section 4.6 describes COMBAUCTION, a primal-dual algorithm for the combinatorial
allocation problem. :Bundle, introduced in the next chapter, is a straightforward auction
interpretation of CoOMBAUCTION. Finally, section 4.7 compares the characteristics and

properties of COMBAUCTION and :Bundle with earlier iterative auction mechanisms.
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4.1 Overview: The :Bundle Auction

iBundle [Par99, PUQOa] is an ascending-price combinatorial auction, in which prices are
maintained on bundles of items and agents can bid for bundles of items directly. In this
section I give only a high-level description of the auction. Full details are presented in the
next chapter. The description here is included to give some context to the primal-dual
method, COMBAUCTION, introduced to solve the CAP.

Allowing bids on bundles of items allows an agent to express a “I only want A if I
also get B” type of constraint, that is observed to be important in many applications (see
Chapter 1). Bundle terminates with an efficient allocation and terminates in competitive
equilibrium for agents that follow myopic best-response bidding strategies, i.e. bid for
all bundles that maximize utility in each round given the prices. The extended auction,
iBundle Extend&Adjust, remains open for a second phase and computes discounts from
the bid price of each agent to implement Vickrey payments.

iBundle maintains an ask price, p;(S) 2 0 for every bundle § C G and every agent
1 € Z. This is the minimal price that an agent must bid for that bundle in the current
round of the auction. The prices may be non-linear, p;(S) # Eje sPi(7), and may be non-
anonymous, p;(S) # p;(S). In practice it is not necessary to explicitly price every bundle,
prices are explicitly maintained on a subset of bundles (those which receive unsuccessful
bids) and can be computed on any bundle as necessary. The auction also maintains a
provisional allocation, § = (S),...,Sr) in each round. This is adjusted across rounds in
response to agents’ bids until the auction terminates, when it is implemented as the final
allocation.

The key components of the auction are the bidding language, the winner-determination
rules, the price-update rules, and the termination conditions. Agents place exclusive-or
bids for bundles, e.g. S; XOR Ss, to indicate than an agent wants either all items in
Sy or all items in S2 but not both S} and S>. Each bid is associated with a bid price,
which must be at least the ask price for the bundle. The auctioneer collects bids and
computes a provisional allocation to maximize revenue given the bids. If every agent that
placed a bid receives a bundle the auction terminates. Prices are initially anonymous, with
Pask,i(S) = Pask ;(S) = p(S). The price on a bundle is increased to € > 0 above the highest
bid price for the bundle from any unsuccessful agent in the current round (an agent not in

the provisional allocation). A simple rule introduces price discrimination dynamically, as
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necessary to terminate with competitive equilibrium prices and an efficient allocation.

4.2 Linear Programming Theory

First, I provide a brief review of basic results in linear programming. See Papadimitriou
& Steiglitz [PS82] for a text book introduction, and Chandru’s excellent survey papers
[CR99b, CR99a] for a modern review of the literature on linear programming and integer
programming.

Consider the linear program:

max ¢’z (P]

s.t. Az <b

z>0

where A is a m x n integer matrix, z € R" is a n-vector, and c and b are n— and
m-vectars of integers. vectors are column-vectors, and notation ¢ indicates the transpose
of vector c, similarly for matrices. The primal problem is to compute a feasible solution
for z that maximizes the value of the objective function.

The dual program is constructed as:

min b7y (D]
st. ATy >e¢
y20
where y € R™ is a m-vector. The dual problem is to compute a feasible solution for y
that minimizes the value of the objective function.
Let Vip(z) = cT'z, the value of feasible primal solution z, and VoLp(y) = b7y, the
value of feasible dual solution .

The weak duality theorem of linear programming states that the value of the dual always

dominates the value of the primal:

THEOREM 4.1 (weak-duality). Given a feasible primal solution z with value Vi p(z)

and a feasible dual solution y with value VprLp(y), then Vip(z) < VpLp(y).
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Proor. Solution z is feasible, so Az < b. Solution y is feasible, so ATy > c
Therefore, £ < AThand y > Ac, and Tz < T ATb =bTAC < b7y, and P< D. |

The strong duality theorem of linear programming states that primal and dual solutions

are optimal if and only if the value of the primal equals the value of the dual:

THEOREM 4.2 (strong-duality). Primal solution z* and dual solution y* are a pair of
optimal solutions for the primal and dual respectively, if and only if * and y* are feasible

(satisfy respective constraints) and Vip(z®) = VprLp(y®).

The strong-duality theorem of linear programming can be restated in terms of
complementary-slackness conditions (CS for short). Complementary-slackness conditions
cxpresses logical relationships between the values of primal and dual solutions that are

necessary and sufficient for optimality.

DeFiNiTION 4.1 [complementary-slackness] Complementary-slackness conditions con-
strain pairs of primal and dual solutions. Primal CS conditions state z7(47y —c) =0, or

in logical form:

;> 0= Ajy =Cj (P-CS)

where A’ denotes the jth column of A (written as a row vector to avoid the use of

transpose). Dual CS conditions state y7 (Az — b) = 0, or in logical form:

y; >0=> Aizc=b; (D-CS)

where A; denotes the ith row of A.

The strong-duality theorem can be restated as the complementary-slackness theorem:

THEOREM 4.3 (complementary-slackness). A pair of feasible primal, z, and dual solu-
tions, y, are primal and dual optimal if and only if they satisfy the complementary-slackness

conditions.
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Proor. P-CSiff z7(ATy—c) = 0, and D-CS iff y7 (Az —b) = 0. Equating, and observ-
ing that zT ATy = yT Az, we have P-CS and D-CS iff z7¢ = y7b, or ¢Tz = bTy. The LHS
is the value of the primal, Vi p(z), and the RHS is the value of the dual, Vprp(y). By the

strong duality theorem, Vi p(z) = VpLp(y) is a necessary and sufficient condition for the so-
lutions to be optimal. |

4.2.1 Primal-Dual Algorithms

Primal-dual is an algorithm-design paradigm that is often used to solve combinatorial
optimization problems. A problem is first formulated both as a primal and a dual linear
program. A primal-dual algorithm searches for feasible primal and dual solutions that
satisfy complementary-slackness conditions, instead of searching for an optimal primal (or
dual) solution directly. Primal-dual can present a useful algorithm-design paradigm for
combinatorial optimization problems. Instead of solving a single hard primal solution, or
a single hard dual solution, a primal-dual approach solves a sequence of restricted primal
problems. Each restricted primal problem is often much simpler to solve than the full
primal (or dual) problem [PS82].

Primal-dual theory also provides a useful conceptual framework for the design of it-
erative combinatorial auctions. Prices represent a feasible dual solution, and bids from
agents allow a search for a primal solution that satisfies complementary-slackness con-
ditions. If the current solution is suboptimal there is enough information available to
adjust dual prices in the right direction. Complementary-slackness conditions provide the
key to understanding how it is possible to compute and verify optimal solutions with-
out complete information: it is sufficient to just verify that a feasible solution satisfies
CS conditions. Primal-dual algorithms are consistent with the decentralized information
inherent in distributed agent-based systems. Optimality reduces to a test of feasibility
and complementary-slackness, which is available from agent bids, rather than the direct
solution of a primal problem, which requires information about agent valuation functions.

A standard primal-dual formulation maintains a feasible dual solution, y, and computes
a solution to a restricted primal problem, given the dual solution. The restricted primal is
formulated to compute a primal solution that is both feasible and satisfies CS conditions

with the dual solution. In general this is not possible (until the dual solution is optimal),
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and a relaxed solution is computed. The restricted primal problem is typically formulated

to compute this relaxed solution in one of two ways:

1. Compute a feasible primal solution z’ that minimizes the “violation” of complementary-

slackness conditions with dual solution y.

2. Compute a primal solution z’ that satisfies complementary slackness conditions with

dual solution y, and minimizes the “violation” of feasibility constraints.

Method (2) is more useful in the context of iterative auction design because it main-
tains a feasible primal solution, which becomes the provisional allocation in the auction,
i.e. a tentative allocation that will be implemented only when the auction terminates.
The restricted primal problem can be solved as a winner-determination problem. I show
that the feasible allocation that maximizes revenue given agent bids (solution to winner-
determination) achieves one set of CS conditions in {Bundle and the other set of CS condi-
tions for all agents in the provisional allocation. Prices in each round of an auction define
the feasible dual solution, and agent best-response bids provide enough information to test
for complementary-slackness and adjust solutions towards optimality.

As discussed earlier, we will assume for now myopic best-response, and later handle
agent strategies by computing Vickrey payments, in addition to the efficient allocation.
[ introduce a linear program formulation for Vickrey payments, and characterize its so-
lution within a primal-dual framework. Vickrey payments make myopic best-response a
sequentially-rational strategy for an agent, in equilibrium with other myopic best-response
agents. Further discussion of this method to use linear programming, assume myopic
best-response, and handle agent strategies is delayed until Chapter 6.

A primal-dual based auction method has the following form (see Figure 4.1):

1. Maintain a feasible dual solution (“prices”).

2. Compute a feasible primal solution (“provisional allocation”) to minimize violations

with complementary-slackness conditions given agents’ bids.
3. Terminate if all CS conditions are satisfied (“are we in competitive equilibrium?”)

4. Adjust the dual solution towards an optimal solution, based on CS conditions and

the current primal solution (“increase prices based on agent bids”)
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Figure 4.1: A Primal-Dual Interpretation of an Auction algorithm.

4.3 Allocation Problems

Let us consider the particular form of an allocation problem, in which there are a set of
discrete items to allocate to agents, and the goal is to maximize value. The primal and

dual allocation problems can be stated as follows:

DeFiNITION 4.2 [allocation problem: primal] The primal allocation problem is to al-
locate items to agents to maximize the sum value over all agents, such that no item is

allocated to more than one agent.

DeFiNiTION 4.3 [allocation problem: dual] The dual allocation problem is to assign
prices to items, or bundles of items, to minimize the sum of (i) each agents’ maximum
utility given the prices, over all possible allocations; and (ii) the maximum revenue over
all possible allocations given the prices.

Clearly, without information on agents’ values the auctioneer cannot compute an op-
timal primal or an optimal dual (because of term (i) in the dual). However, under a
reasonable assumption about agents’ bidding strategies (myopic best-response, see below)
the auctioneer can verify complementary-slackness conditions between primal and dual
solutions, and adjust prices and the allocation towards optimal solutions.

An auction interpretation of the complementary-slackness conditions can be stated as

follows:

DeFINITION 4.4 [allocation problem: CS conditions] The CS between a feasible primal
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solution to an allocation problem, z, and a feasible dual solution, prices p, are:

(CS-1) Agent 17 receives bundles S; in the provisional allocation if and only if the bundle

maximizes its utility given the prices, and has non-negative utility.

(CS-2) The provisional allocation § = (Sy,...,Ss) is the revenue-maximizing allocation

given the prices.

Left deliberately vague at this stage is the exact structure of the prices. In a combi-
natorial allocation problem these might need to be non-linear and non-anonymous prices
to support the optimal allocation. Similarly, the revenue-maximization concept must be
defined with respect to a particular linear program formulation. Note also that CS-2 is
not automatically satisfied with a provisional allocation computed to maximize revenue
given agents’ bids. CS-2 makes a stronger claim, that the provisional allocation must
maxirmize revenue over all possible allocations given the current ask prices, not just over
all allocations consistent with bids.

Primal-dual auction analysis requires the following assumption about agent strategies:

DEFINITION 4.5 [myopic best-response] A myopic best-response bidding strategy is to

bid for all items or bundles of items that maximize utility at the current prices.

Best-response bids provide enough information to test CS-1, because the best-response
of an agent is precisely those bundles that maximize an agent’s utility given the current
prices. For any feasible primal solution, the auctioneer can test CS-2 because that only
requires price information.

The restricted primal has a natural auction interpretation:

DEFINITION 4.6 [auction restricted-primal problem] Given best response bids from each
agent allocate bundles to maximize revenue, breaking ties in favor of including more agents
in the provisional allocation.

Note well that a bundle is only allocated to an agent in the restricted primal prob-
lem if the agent bids for that bundle. This restriction ensures that CS-1 is satisfied for
that agent, given the definition of myopic best-response. CS-2 is satisfied with careful
price-adjustment rules, such that prices are increased “slowly enough” that the revenue-

maximizing allocation can always be computed from agent bids.
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Given myopic best-response, the termination condition, which tests for complementary-
slackness between the provisional allocation and the prices, must check that CS-1 holds
for every agent. This is achieved when every agent to submit a bid receives a bundle in
the provisional allocation, i.e. in competitive equilibrium.

Our interest is in solving the CAP, which is most immediately formulated as an integer
program (see section 4.4). In order to apply primal-dual methods it is essential that we
have a linear program formulation of the CAP. We must be careful enough to use a strong
enough formulation, such that the optimal solution is integral (0-1) and not fractional. The
ideal situation is illustrated in Figure 4.2. The auction implements a primal-dual algorithm

for a linear program that is strong enough to compute the optimal integer solution.

Complementary-
\‘) slackness conditions
LP satisfied.

Value
H
:
H
:
'
¢
:
=S

Ve

Auction Round

Figure 4.2: Auction-based Primal-Dual Algorithm in which the Linear program model of the
optimization problem is strong enough to preclude all fractional solutions.

In comparison, consider Figures 4.3 (a) and (b), which illustrate a primal-dual algo-
rithm and iterative auction method for a linear program that is not strong enough, and
admits optimal fractional solutions. The primal-dual algorithm algorithm terminates with
a fractional primal solution and value greater than the value of the best possible inte-
ger solution. The auction always maintains an integral primal solution (solving winner-
determination to compute the provisional allocation), but can terminate with a primal
solution that does not satisfy complementary-slackness conditions. Although the primal

solution is perhaps optimal, its optimality cannot be assessed without CS information.

4.3.1 Price Adjustment

Left undefined at the moment, and the challenging part of primal-dual auction design, are

the precise rules used to define price updates. The goal is to use information from agents’
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Figure 4.3: Primal-dual algorithm (a) and Primal-dual auction method (b) in which the linear
program relaxation is too weak, and V’pg > Vip.

bids, and the current provisional allocation, to adjust prices towards an optimal dual
solution- that will support an optimal primal solution. Primal-dual methods traditionally
use the dual of the restricted primal to adjust the dual solution across iterations. A simpler
method in allocation problems is to increase prices on over-demanded items, or bundles of
items. The method can be explained both in terms of its effect on complementary-slackness
conditions and in terms of its effect on the value of the dual solution.

The idea is to increase prices to: (a) maintain CS-2 in the next round and (b) move

towards satisfying CS-1 for all agents.

ProposiTiON 4.1 (progress). Progress is made towards satisfying CS-1 and CS-2 with
the provisional allocation and the ask prices if: (1) the auctioneer increases prices on one
or more bundles that receive bids in each round; and (2) the auctioneer increases prices
by a small enough increment that best-response bids from agents continue to mazimize

revenue in the nezt round.

CS-1 holds whenever every agent that bids receives a bundle in the provisional alloca-
tion. This is trivially achieved for high enough prices because no agent will bid, but we
need to achieve this condition in combination with CS-2. The trick is to increase prices
to achieve convergence, but increase them just enough to maintain revenue-maximization
from bids CS-2 across all rounds. This is achieved by ensuring that agents continue to bid
for bundles at the new prices, i.e. increasing price on over-demanded bundles.

An alternative interpretation is that increasing prices on over-demanded items will
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reduce the value of the dual, making progress towards the optimal solution, see Figure 4.4.
Recall that the value of the dual is the sum of the auctioneer’s maximal revenue and each
agent’s maximal utility at the current prices. A price increase will decrease the value of
the dual if the increase in maximal revenue from the price increase is less than the decrease
in total maximal utility summed across agents.

The auctioneer can achieve this effect of increasing revenue by less than the decrease in
agent utility by selecting over-demanded items, or bundles of items, on which to increase
the price. Suppose that two agents bid for bundle S, and that both agents have at least
€ > 0 more utility for that bundle than any other bundle at the current prices. Increasing
the price on bundle S by e will decrease the maximal utility of both agents by ¢, for a
decrease in dual value of 2¢. However, increasing the price on this one bundle by € can
increase the auctioneer’s maximal revenue by at most . The result is that the net change

in utility must a decrease of at least e.

Complementary-
\{)LP slackness holds

Value

= Ve

Auction Round

Figure 4.4: Primal-Dual Interpretation of an Ascending-Price Auction.

4.3.2 Competitive Equilibrium

The optimal primal and dual solutions in an allocation problem correspond to a classic

statement of competitive equilibrium.

DEFINITION 4.7 [competitive equilibrium] Allocation S and prices p are in competitive
equilibrium when:
(a) every agent receives a bundle in its best-response (utility maximizing) set.

(b) the allocation maximizes the revenue for the auctioneer at the prices.
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The allocation in competitive equilibrium is efficient, by equivalence between compet-

itive equilibrium and primal-dual optimality:

THEOREM 4.4 (competitive equilibrium efficiency). An allocation S is efficient if and
only if there ezists competitive equilibrium prices p, for an appropriate type of prices (e.g.

linear, bundle, non-anonymous).

In the context of the combinatorial allocation problem Bikchandani & Ostroy [BO99]
have characterized the structure on prices required for the existence of competitive equi-
librium (and equivalently for integral solutions to linear program formulations of CAP).
These formulations are introduced in section 4.4 and discussed at length.

In some problems it is necessary that prices are both non-linear (bundle prices) and
non-anonymous (different prices for the same bundle to different agents) to support a
competitive equilibrium solution.

Wurman & Wellman [WW99, WWQ0| propose an alternative definition of competitive
equilibrium, which is essentially complementary slackness condition CS-1 without CS-2.
This relaxed condition is sufficient for the existence of equilibrium prices even without

non-anonymous prices, but too weak to be able to claim that equilibrium prices imply an

efficient allocation.

4.3.3 Example: The English Auction

The standard English auction illustrates the primal-dual framework for auction design. The
English auction is an ascending-price auction for single items, where the price increases as
long as more than one agent bids at the current price.

Let v; denote agent i's value for the item. The single-unit resource allocation problem

is:

max Z ViT; [Ipsingle]
H

s.t. Zzi <1
i

z; € {0,1}
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where z; = 1 if and only if agent 7 is allocated the item, i.e. the goal is to allocate the
item to the agent with the highest value. This can be solved as a linear program, [LPgiqge],

relaxing the integral constraint

max 2 ViT; [LPsingle]

and V[’p = Vjp, i.e. there is always an integral optimal solution to the relaxed problem.
The dual formulation, [DLPginge], is

st. w2, Vi

>0

The complementary-slackness conditions are

The English auction maintains price p on the item, initially p = 0. Agent i bids
whenever p < v;, and the provisional allocation sets z; = 1 for one of the agents that bids
in each round, and increases the price p whenever more than one agent bids.

Let the provisional allocation define a feasible primal solution, and the price define
dual solution 7 = }; max{0,v; — p} + p. This is feasible, # > max{0,v; — p} + p > v; for
all agents 7.

Assume that agents follow a myopic best-response bidding strategy, bidding for the item
at the ask price whenever the price is below their value. The optimality of the English

auction can be understood in two different ways:

e The English auction terminates with primal and dual solutions that satisfy CS-1 and
CSs-2.
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Clearly, CS-2 is satisfied throughout the auction because the item is always allocated
to one of the agents. CS-1 is satisfied when the auction terminates. Let j indicate
the only agent that bids at price p. Therefore v; — p < 0 for all agents 7 # j and
vj —p 2 0 for agent j (because agents follow best-response bidding strategies), and

7 =3 ;max{0,v; — p} + p = max{0,v; — p} +p = v;.

e The value of the dual strictly decreases in each round of the auction. Let m > 1
equal the number of agents that bid in each round of the auction except the final
round. For price increment ¢, the sum maximal utility to the agents decreases by me
and the maximal revenue to the auctioneer increases by ¢, for a net change in 7 of

—(m - 1)e.

In fact, the English auction is a incentive-compatible, individual-rational and allocatively-
efficient mechanism for the single-item allocation problem because the final price is equal
to the Vickrey payment (to within €).

The outcome (allocation and price) in a single-item auction is in competitive equilib-
rium when:
(i) the item is sold to an agent, that agent bids for the item at the price, and no other
agent bids for the item at the price.
or (ii) the item is sold to no agent, the price is zero, and no agent bids for the item.

In both these cases the allocation is efficient. In (i) the agent with the highest value

receives the item. In (ii) no agent has a positive value for the item.

4.4 Linear Program Formulations for the Combinatorial Al-

location Problem

Primal-dual based auction methods require linear programming formulations of allocation
problems. Bikchandani & Ostroy [BO99] have formulated a hierarchy of linear programs for
the problem, introducing additional constraints to remove fractional solutions. Although
it is always possible to add enough constraints to a linear program relaxation to make the
optimal solution integral [Wol81a, Wol81b, TW81], the particular formul~tions proposed by
Bikchandani & Ostroy are interesting because the constraints have natural interpretations

as prices in the dual.
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The hierarchy of linear program formulations, [LP;], [LP;], and [LPj], all retain the
set of integer allocations but prune additional fractional solutions. Each formulation in-
troduces new constraints into the primal, with the dual problems [DLP;], [DLP;], and
[DLP3] containing richer price structures. For example, in [DLP,] the prices on a bundle
are linear in the price of items, i.e. p(S) = Zjesp(j), where p(j) is the price of item j
in bundle S. Moving to [DLP], the price on a bundle can be non-linear in the price on
items, and in [DLP3] the price on a bundle can be different to different agents. Bikchan-
dani & Ostroy prove that LPj solves all CAP instances, and demonstrate the existence of
competitive equilibrium prices, even though they must sometimes be both non-linear and
non-anonymous.

Solving the CAP with the high-level linear program formulations is likely to be less
efficient computationally than direct search-based methods applied to the integer program
formulation. Formulations [LP] and [LP3] introduce an exponential number of additional
primal constraints, and dual variables, effectively enumerating all possible solutions to the
CAP. In comparison, search methods, such as branch-and-bound with LP-based heuristics,
solve the problem with implicit enumeration and pruning.

However the formulations are very useful in the context of mechanism design and decen-
tralized CAP problems. In section 4.6 I present COMBAUCTION, a primal-dual algorithm
for the CAP, which

(a) computes optimal primal and dual solutions without complete information about
agent valuation functions.

(b) computes optimal primal and dual solutions without complete enumeration of all
primal constraints and/or dual variables.

In fact most of the computation within COMBAUCTION occurs in winner determination,
which solves the restricted primal problem in each round, and winner-determination itself

is solved with a branch-and-bound search method.

4.4.1 Integer Program Formulation

Introducing z;(S) to indicate that agent i receives bundle S the straightforward integer

program, (IP], formulation of the combinatorial allocation problem is:

max Y _ D z{S)u{S) [IP]
i

z,(S) S

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



st. ) z{S) <1, Vi (IP-1)

S
2.2 =(S) <1, V) (IP-2)

$3j i
z{S) € {0,1}, Vi,S
where S 3 j indicates a bundle S that contains item j. The objective is to compute the
allocation that maximizes value over all agents, without allocating more than one bundle

to any agent (IP-1) and without allocating a single item multiple times (IP-2). Let V|p

denote the value of the optimal allocation.

4.4.2 First-order LP Formulation

LP, is a direct linear relaxation, which replaces the integral constraints z;(S) € {0, 1} with

non-negativity constraints, z;(S) > 0.

max ) Y z{S)u{(S) [LP,]
S 5T
st. Y z(S) <1, Vi (LP;-1)
S
PIDIEICIES R (LPy-2)
S35 i
z{S) >0, Vi,$
min_ Zp(i) + ijp(j) [DLP,]
st p(i)+Y_p() 2v(S), Vi,S (DLP;-1)
JE€S

p(i),p(j) 20,  Vi,j

Prices p(j) on items j € G define a feasible dual solution, with the substitution p(i) =
maxs {v(S) - T,es2() }-

ProposiTioN 4.2 (first-order dual). The value of the first-order dual is the sum of the

mazimal utility to each agent plus the total price over all items (this is the auctioneer’s

mazimal revenue).
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A B AB
Agent1( 0 0 3
Agent2 |2 0 2
Agent3 | 0 2¢ 2

Table 4.1: Problem 1.

The dual variables define linear prices, the price for bundle S C G is p(S) = 3,5 p(j)-
The optimal dual solution defines competitive equilibrium prices if and only if a partition
of items at exists at the prices that allocates each agent a bundle in its utility-maximizing
set and allocates every item with positive price exactly once.

Problem 1 in Table 4.1 can be solved with [LP,]; Vip, = Vie = 4. The optimal
allocation is z2(A) = 1 and z3(B) = 1, indicated by *. To see that Vi p, < 4, notice that
dual prices p(A) = p(B) = 1.6 gives a dual solution with value Vprp, =0+0.4+0.4+3.2 =
4. Remember that Vs, < Vprp, for all dual solutions by the weak-duality theorem of
linear programming.

However, in general the value V{p > V|1 and the optimal primal solution makes frac-
tional assignments to agents. Kelso & Crawford [KC82| prove that gross-substitutes (GS)
preferences are a sufficient condition for the existence of linear competitive equilibrium
prices, i.e. Vp = Vjp. Recently, Gul & Stacchetti [GS99] show that GS is the largest
set of preferences that contain unit-demand for which the existence of linear competitive
equilibrium prices can be shown.

Let D;(p) define the demand set of agent i at prices p, i.e. the set of bundles that

maximize its utility (value - price).

DEFINITION 4.8 [gross-substitutes (GS)] For all price vectors p,p’ such that p’ > p, and
all § € Di(p), there exists T € D;(p') such that {j € S:p; =p}} CT.

Condition GS states that if the prices were increased from p to p’ then the agent would
continue to demand any item whose price did not increase. Gul & Stacchetti [GS99] show
that under reasonable monotonicity conditions is v(-) satisfies GS then v(:) is submodular.
In turn, GS implies subadditive valuation functions, such that the value for any bundle is

no greater than the minimal sum of values for a partition of the bundle.

DeFINITION 4.9 [submodular preferences] Valuation function v;(S) is submodular if for
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A B C AB BC AC ABC
Agent1 60 50 50 200° 100 110 250
Agent2 50 60 50 110 200 100 255
Agent3 50 50 75 100 125 200 250

Table 4.2: Problem 2.

all §,T C G,
vi(S)+vi(T) 2 vi(SUT) +v(SNT)

The equivalence of submodularity and decreasing returns is well-known in the literature
[(GS99].

DEFINITION 4.10 [decreasing returns] Valuation function v;(S) has decreasing marginal
returns if forall SCT C G and all j € G,

vi(T) — vi(T\ {7}) S vi(S) - v(S\ {5})

As an example of when [LP)] fails, consider Problem 2 in Table 4.2.

In this problem V{’p = 300 > Vjp = 275. The primal allocates fractional solution
z1(AB) = 0.5,z2(BC) = 0.5 and z3(AC) = 0.5, which satisfies constraints (LP;-1) be-
cause 3.5 3 7Y, zi(S) < 1 for all items j € G. Prices p(A) = p(B) = p(C) = 100 solve
the dual problem DLP;.

The rest of this section introduces two alternative linear program formulations of CAP,
[LP2] and [LPj3], due to Bikchandani & Ostroy [BO99).

4.4.3 Second-order LP Formulation

Introducing new constraints to the first-order linear program relaxation [LP] of [IP] gives
a second-order linear program [LP2] with dual {DLP;]. The corresponding dual variables
to the new primal constraints are interpreted as bundle prices within an auction-based

primal-dual algorithm.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



L ; X.: z{S)v{S) (LP]

st. > z(S) <1, Vi (LP,-1)
S
Y dS) <Y yk), VS (LP2-2)
i k3S
PRTOES! (LP2-3)
k

z{S),y(k) 20,  Vi,5k

min 1) +7 DLP,

p(i).p(S) 7 Z p) [DLP2]

s.t. p(d) +p(S) > v{S), Vi,S (DLP,-1)

T—Y p(S)=0, Vk (DLP,-2)
Sek

p(i),p(S),m 20,  Vi,§

where k € K is a partition of items in set K, and £ 3 S indicates that bundle S is repre-
sented in partition k. A partition is a feasible “bundling” of items, e.g. (4, B,C] or [AB,C],
etc., and K is the set of all possible partitions, e.g. K = {[A, B,C|,[AB,C],[A, BC],...,
[ABC}} in Problem 2 (Table 4.2).

Constraints (LP2-2) and (LP2-3) replace constraints (LP;-1), and ensure that no more
than one unit of every item is allocated. The dual [DLP;] has variables p(i), p(S) and ,
which correspond to constraints (LP2-1), (LP2-2) and (LP2-3), and constraints (DLP2-1)
and (DLP3-2) correspond to primal variables z{S) and y(k).

Dual variables p(S) can be interpreted as bundle prices, and with substitution p(i) =
max {vi(S) - p(S)}, i.e. the maximal utility to agent ¢ at prices p(S), and

T = maXgek ) sex P(S), i-e. the maximal revenue to the auctioneer at prices p(S).

ProrosiTioN 4.3 (second-order dual). The value of the dual is the sum of the mazimal
utility to each agent with bundle prices p(S) plus the auctioneer’s mazimal revenue over

all feasible (and non-fractional) allocations at the prices.
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A B AB
Agent1] 0 0 3
Agent2 2 2 2

Table 4.3: Problem 3.

The dual variables correspond to bundle prices, p(S), and the optimal dual solution
defines competitive equilibrium prices if there is an allocation that gives each agent a
bundle in its utility-maximizing set at the prices, and maximizes revenue to the auctioneer
over all possible allocations.

With the additional constraints [LP;] solves Problem 2. Allocation z,(AB) = z2(BC) =
r3(AC) = 0.5 is not feasible in [LP] because it is not possible to allocate y(k;) =
y(k2) = y(k3) = 0.5 for k, = [AB,C),k; = [AC,B] and k3 = [AB,C| without vio-
lating constraint (LP2-3) and without this we violate constraints (LP2-2). [LPj] solves
Problem 2, with V%, = Vip = 275. An optimal dual solution is given by bundle prices
p = (50,60, 75, 190, 200, 200, 255), with total agent maximal utility 10+ 0+ 0 and maximal
auctioneer revenue 75 + 190 = 265, i.e. Vp, = 275.

However, Problem 3 is an example that [LP2] does not solve. The value of the optimal
primal solution is V{’p, = 3.5, which is greater than the value of the optimal feasible
allocation, Vjp = 3. The primal allocates fractional bundles z|(4B) = 0.5 and z5(A) =
z2(B) = 0.5, which satisfies constraints (LP2-2) and (LP3-3) with y(k;) = y(k2) = 0.5 for
partitions k| = [AB,0] and k; = [A, B]. Prices p(A) = 1.5,p(B) = 1.5,p(AB) = 3 solves
the dual problem DLPs.

4.4.4 Third-order LP Formulation

Introducing new constraints to the second-order linear program relaxation [LP,] of [IP]
gives a third-order linear program [LP3] with dual [DLP;]. The corresponding dual vari-
ables to the new primal constraints are interpreted as non-anonymous, or discriminatory

bundle prices, with different prices for the same bundle to different agents.
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LA 2:, Z z{S)v{S) [LP3]

st. Y z{S) <1, Vi (LP;-1)
S
z(S) < D u(k), Vi.S (LP3-2)
k3[i,S]
Y uk <t (LP3-3)
k

z{S),y(k) 20, Vi, 5k

omin Z pli) + [DLP;]

s.t. p(i) +pi(S) 2 v(S), Vi,§ (DLP;3-1)

T— Y pi(S) 20, Vk (DLP3-2)
[¢,5)ek

P(i)aPi(S)ﬂ" 2 Oy VI,S

where k£ 3 [i, S] indicates that agent-partition k € K’ contains bundle S designated
for agent i. Variable y(k) in [LP3] corresponds to an agent-partition k, where the set
of agent-partitions in Problem 3 is K' = {[(1. A), (2, B)],[(1, B), (2, 4)},[(1, AB).(2,0)},
((1,9),(2,AB)]. It is important to note that each agent can receive at most one bundle in
a particular agent-partition.

The dual variables p;(S) that correspond to primal constraints (LP3-2) are interpreted
as non-anonymous bundle prices, price p;(S) is the price to agent 7 for bundle S. As before,
substitutions p(i) = max {vi(S) — pi(S)}, i.e. the maximal utility to agent ¢ at individual
prices p;(S), and 7 = maxgex’ ZIi,Slek pi(S), i.e. the maximal revenue to the auctioneer

at prices p;(S) given that it can allocate at most one bundle at prices p;(S) to each agent

1.

ProprosiTioN 4.4 (third-order dual).  The value of the dual to [LP3] is the sum of
the mazimal utility to each agent with bundle prices p;(S) plus the auctioneer’s mazimal
revenue over all feasible allocations at the prices. In this case an allocation is feasible if it

allocates no more than one bundle to each agent.
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The dual variables correspond to non-anonymous bundle prices, p;(S), and the optimal
dual solution defines competitive equilibrium prices if there is an allocation of items that
simultaneously gives each agent a bundle in its utility-maximizing set and maximizes the
auctioneer’s revenue, over all possible allocations sell at most one bundle to each agent.

Bikchandani & Ostroy {BO99)] prove this important theorem:

THEOREM 4.5 (integrality). The optimal solution to linear program [LP3] is always

integral, and therefore an optimal solution to CAP, with Vip = V5p. = Vjp.

Therefore, there are always competitive equilibrium bundles prices for CAP, although
these prices must be non-anonymous in some problems.

Consider Problem 3. Allocation z;(AB) = 0.5 and z9(A) = z3(B) = 0.5 is not feasible
in [LP3] because y(ki) = y(k2) = y(k3) = 0.5 for k, = [(1, AB), (2,0)], k2 = [(1, 4), (2, B)]
and k3 = [(1, B), (2, A)] violates constraint (LP3-3), but without this constraints (LP3-
2) are violated. In this problem Vs, = Vjp = 3. To see this, consider bundle prices
p1 = (0,0,2.5) and p2 = (2,2,2), for which the value of the dual is 0.5 + 0 + 2.5 = 3. This
proves that Vi p, < 3 by the weak-duality theorem of linear programming.

4.5 Tractable Combinatorial Allocation Problems

The CAP is equivalent to the set packing problem (SPP), a well-studied problem in the
operations research literature. In SPP there are a set of items, and a set of subsets
each with non-negative weights, and the goal is to pack as sets to maximize total value,
without using any item more than once. CAP can be reduced to SPP by introducing an
additional “dummy item” for the XOR bids from each agent. de Vries & Vohra [dVVQ0]
also note that two closely related problems, the set partitioning problem (SPA), in which
the goal is to select a set of subsets with minimal cost that include all items at most once,
and the set covering problem (SCP), in which the goal is to select a set of subsets with
minimal cost that include all items at least once. Set covering problems find applications in
railway crew-scheduling and airline scheduling, where items are flights/trains, and bundles

represent possibility sets for individual workers.
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A classic technique in combinatorial optimization theory is to relax an integer program
to a linear one. Many tractable special cases follow by considering the conditions on the
natural relaxation of the integer program that provide integer solutions. For example, one
sufficient condition is that the linear program is integral, such that all extremal feasible
points are integral, i.e. 0-1. In this case the integrality requirement can be dropped and the
problem solved as a linear program in linear time. Restrictions on the constraint matrix,
corresponding to restrictions on the kinds of subsets permitted in CAP, can provide this
integrality property [dVV00].

Additional restrictions, for example on the size of bids, or on the valuation structure of
bids, can also lead to tractable special cases. Given the connection with linear programming
relaxations this is a good place to review known tractable special-cases in the literature.
The results here are drawn from Rothkopf et al. [RPH98], de Vries & Vohra [dVV00],
Nisan [Nis00], and earlier work due to Kelso & Crawford [KC82).

Restrictions on Structure of Bundles

Table 4.4 presents tractable instances of CAP that follow from restrictions on the types
of bundles on which agents can submit bids. de Vries & Vohra note that the linear-
ordering (or consecutive ones) condition implies that the constraint matrix satisfies total
unimodularity,' and that the nested-hierarchical structure implies that the constraint ma-
trix is balanced.? Nisan [Nis00] provides a proof-by-induction that the linear program has
integral solutions in these cases. Nisan [Nis00] also describes a method to combine two bid

structures with the integral property into a single structure that retains the property.

Restrictions on Values on Bundles

Table 4.5 presents tractable instances of CAP that follow from restrictions on the value
structure of agents bids. de Vries & Vohra [dVV00] note that the non-decreasing and su-
permodular preferences condition again provides the linear program relaxation of the CAP
with integral solutions. Gross-substitutes were defined earlier in Definition 4.8 and have

an intuitive interpretation as decreasing-returns, and also imply submodular preferences.

'A matrix satisfies total unimodularity if the determinant of every square submatrix is 0, 1, or -1.
?A 0-1 matrix is balanced if it has no square submatrix of odd order with exactly two 1's in each row
and column.
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linear-order ordering G = (91,92,--- 19n) [RPHOg]
every bid is for a contiguous sequence

circular ones also allow bids of form g,,g, 9., etc. [RPH98]

nested-hierarchical for every two subsets of items Sy, S» [RPHI8]
that appear as part of any bid they are either
disjoint or one contains the other

or-singletons bids for single-items -
single-item bids one item -
bids for pairs of items cardinality constraint on size of bids [RPH98)

multi-unit, decreasing returns identical items, each agent has decreasing value for [Nis00]
each additional item

Table 4.4: Tractable structure on bids

non-decreasing and supermodular “increasing returns” ([dVVO00]
two-types of agents

gross-substitutes “decreasing-returns” (KC82|
unit-demand agents only want one item (Kuh33]
linear-additive agents have linear values across items [CK81]

Table 4.5: Constraints on valuation functions

DEeFINITION 4.11 [supermodular preferences] Bid function b;(S) is supermodular if for
all S, T C G,

bi(S) + b6:(T) < vi(SUT) +vi(SNT)

The equivalence of supermodularity and increasing returns is well-known in the litera-
ture [GS99)].

DEFINITION 4.12 [increasing returns] Bid function b;(S) has increasing marginal returns
ifforalSCTCGandalljeg,

bi(T) — wi(T \ {j}) 2 b:(S) — v(S\ {5})
Note carefully that we can have any number of different types of submodular valua-
tion functions, one from each agent, but only at most two different types of supermodular
functions if the CAP problem is to be tractable. It is easier to solve a maximization prob-

lem, such as the CAP, with submodular (convex) objective functions than supermodular

(convex) objective functions.
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Exact Solutions

Rothkopf et al. [RPH98] also suggest a dynamic programming algorithm for CAP, which
has run-time complexity independent of the number of bids actually placed, but quickly
becomes intractable for large numbers of items, with scaling property O(3™) in the number
of items m. Branch-and-bound search methods, either with Al-based heuristics [San99,
FLBS99], or with linear-program based heuristics [ATY00] have also been studied for

general CAP instances.

Approximate Solutions

The CAP is difficult to approximate, at least within a worst-case multiplicative factor.
There is no polynomial time algorithm with a reasonable worst-case guarantee [Has99).
Approximate algorithms in the literature include a local-search approach [HB00], a sim-
ple “relax and round” method [Nis00], and iterative methods [FLBS99]. COMBAUCTION,
and :Bundle, can itself be viewed as an approximate algorithm for CAP. iBundle provides
a worst-case bound on the difference between the value of its solution and the value of the
optimal solution. The error-term increases linearly with the minimal bid increment, which
defines the rate at which prices are increased across rounds, while the number of rounds in
the auction is inversely-proportional to the minimal bid increment. A larger bid increment
reduces the number of rounds in the auction, reducing the number of winner-determination

problems the auction must solve, in return for a loss in worst-case efficiency.

4.6 CoMBAUCTION: A Primal-Dual Method for CAP

COMBAUCTION is a primal-dual algorithm for the linear program models of CAP intro-
duced above. The algorithm terminates with optimal primal and dual solutions to one of
the linear-program formulations, selecting prices dynamically during the algorithm with a
rich enough structure to support the optimal allocation in equilibrium . In the next chap-
ter we describe the iBundle auction in detail, which is a an auction-based implementation
of COMBAUCTION for agents that follow myopic best-response bidding strategies.

In COMBAUCTION the prices are linear and anonymous in special cases, non-linear
and anonymous (bundle prices) in many problems, and non-linear and non-anonymous

when that is necessary to strengthen the dual formulation of the CAP. The decision about
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COMBAUCTION
input: agent values v;(-)
stop = false; S=0; p(-)=0; anon=7T;
vhile (! stop) {
compute best-response set BR;(p;) for every agent i;
compute partition of items S = (5'1,... ,5’1) to maximize revenue,
subject to S e B&(Qi).;
if ( (BRi(pi) =0) or (S;#0) ) for every i
stop = true;
else {
for every j with ((BRj(p;) #0) and (§;=0)) {
if ( (safe(BR;(p;))) and ( j € anon))
P = anon.update(BR;,p);
else {
p; = nonanon.update(BR;,p);
anon = anon \ {j} ;

}
}
}
}

output: final allocation S, final prices p;(S;).

Figure 4.5: The CoMBAUCTION Algorithm. Special cases: COMBAUCTION(2) sets safe(BR;(p;))
true in every iteration; COMBAUCTION(3) sets safe(BR;(p;)) false in every iteration.

anonymous vs. non-anonymous pricing is made dynamically during the algorithm, while
non-linear prices are introduced whenever an agent bids for a bundle of items instead of

individual items.

4.6.1 Description

Let p(S) > 0 define anonymous ask prices on bundles S C G. Set the initial ask prices to
zero, and use only anonymous prices at the start of the auction. The prices represent a
feasible dual solution in each round of the algorithm.

Figure 4.5 describes COMBAUCTION. The basic variation, also known as COMBAUC-
TION(D), introduces non-anonymous prices whenever agent bids are not “safe”. Two other
important variations include COMBAUCTION(2), in which the safe condition is always as-
sumed true, and COMBAUCTION(3), in which the safe condition is always assumed false.
Labels (D), (2), and (3) correspond to “dynamic” non-anonymous pricing, second-order

pricing (i.e. non-linear), and third-order pricing (i.e. non-linear and non-anonymous).
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Prices are initially zero on all bundles, and identical across all agents such that p;(S) =
p;j(S) for all 4,5 and all S. At the start of each iteration every agent reports its best-
response set BR(p;), which are all bundles that maximize utility to within € > 0 at the

current prices:

BRi(pi) = {S | vi(S) — pi(S) + € > max(u (pi),0) }

where u] (p;) = maxs v;(S) — pi(S), i.e. the maximal utility over all bundles at the current
prices. Constant € > 0 is the minimal bid increment, and controls the rate at which prices

are increased across rounds.

The provisional allocation § = ($),... , §/), is computed from agents’ bids to maximize

revenue at the current ask prices:
max i(S; WD problem
(sl....,s,)gp‘( ) (WD p )
s.t. S; € BRi(pi)
COMBAUCTION terminates when the following is true:
Vi  BRi(pi) #0 = Si#0

i.e., when every agent with a non-empty best-response set receives a bundle in the provi-
sional allocation.

Prices are increased based on bids from agents not in the current provisional allocation.
The price-update step depends on whether an agent’s bids are safe with respect to the

provisional allocation. The safe condition is defined on a set of bundles S as follows:

safe(S) = ~disjoint(S) or (|S| = 1)

where disjoini(S) is true if there is at least one pair of bundles S,T € S that are
non-overlapping, such that SNT = 0.

Initially anon = Z. In any round anon C T is the set of agents facing anonymous
prices. As soon as an agent is unsuccessful with its bids and its bids fail safety the agent
is removed from the anonymous set. Failed bids from any agent in anon increase prices in
future rounds on all agents in anon. The prices on agents that face individual prices are

only increased in future rounds by their own unsuccessful bids.
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If the bids from an unsuccessful agent in anon are sefe then the anon_update is called,
which increases anonymous prices p(S) by € > 0 on all bundles S € BR;(p). Alternatively,
for an unsuccessful agent that is either in anon or submits unsafe bids, the nonanon_update
price-update rule is called. Separate ask prices are initialized for the agent if necessary,
equal to the current anonymous prices. Prices to that agent are then increased by € > 0 on
all bundles in the agent’s best-response bid set. Constant ¢ is the minimal bid increment.

CoMBAUCTION(2) is the special-case of COMBAUCTION for which the safety condi-
tion is assumed true in all rounds and all agent remain in the anonymous set. COM-
BAUCTION(D) is the regular version of COMBAUCTION, described above, in which non-
anonymous prices are introduced dynamically. COMBAUCTION(3) is a variation in which
the safety condition is assumed false in all rounds and all agents face individual prices in

every round.

4.6.2 Optimality Result

We can first state an optimality result for the variations on COMBAUCTION with non-

anonymous prices.

THEOREM 4.6 (COMBAUCTION optimality). (Optimality) COMBAUCTION(D) and
COMBAUCTION(3) compute an allocation with value within 3 min{|G|,|Z|}e of optimal.

for |G| items, |Z| agents, and € bid increment.

CoroLrary 4.1 COMBAUCTION(D) and COMBAUCTION(3) compute the efficient allo-

cation and competitive equilibrium prices for a small enough bid increment e.

Clearly as e gets smaller than the smallest finite difference in agents’ values for bundles
this converges to the optimal solution. Table 4.6 provides a sketched proof, while a full
proof is provided below.

Recall that within COMBAUCTION it is assumed that agents provide best-response
information in response to prices in each iteration. Corresponding statements of the effi-
ciency of :Bundle, the auction interpretation of COMBAUCTION, make assumptions about

agent behavior explicit (see Chapter 5).
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(CSla) Agents maximize utility:
S;#0 = S} =arg uga.xvi(si) - pi(Si)
true in every round because of best-response

(CS1b) Agents not in allocation happy:
5i =0 = maxvi(S;) - pi(S:) <0

true in final round because of termination condition
(CS2)  Auctioneer maximizes revenue:

S* =ar ax i S'i
g(sg{”s’)zp( )

true in every round because of price-update

Table 4.6: Proof outline for COMBAUCTION

We can also state a restricted theorem, for the COMBAUCTION algorithm without the

safety check, i.e. with only anonymous prices.

THEOREM 4.7 (anonymous optimality). COMBAUCTION(2) is an optimal primal-dual
algorithm for CAP with anonymous prices in the following special-cases:
(a) agents have additive or superadditive values, i.e. v(SUS') > v(S) + v(S’) for non-
conflicting bundles S and S'
(b) agents demund bundles from the same partition of items, e.g. all bids are for pairs of
meatching shoes, or single items
(c) the demand set of bundles for agent i, the bundles it bids for over the auction, is
disjoint from the demand set of agent j, for all agents i # j.
(d) bids from each agent are always overlapping

(e) bids from each agent are always for a single bundle

A proof of conditions (a—c) follow quite easily from the proof of the optimality of
CoMBAUCTION(D). When these conditions hold the auctioneer is sure to maximize revenue
from bids in the next round of the auction without introducing non-anonymous prices, even
in the case that bids from agents break the “safety” condition.? In case (b) the auction

reduces to a simultaneous ascending-price auction on bundles in a fixed partition of items.

3For example, in the case of superadditive values whenever an agent bids for a compatible pair of bundles
S and S’ that violate the safety condition it must be the case that p(SUS’) > p(S) + P(S’). This condition
is sufficient to show that the auctioneer can continue to maintain (CS2) and maximize revenue from agent
bids in the next round.
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The assignment problem, in which agents have unit-demand for items, is a special case of
(b).

Conditions (d-e) follow trivially from the main result, because the safety condition
holds in all rounds under these conditions. Single-minded bidders [LOS99] satisfy (e).
Bidders that demand a core set of items with a selection from an additional set of items
satisfy (d); consider for example a bidder in the FCC spectrum auction that needs New

York, and then would like as many of the geographically neighboring licenses as possible.

4.6.3 Proof: COMBAUCTION(2)

The optimality proof of COMBAUCTION is inspired by a proof due to Bertsekas [Ber87]
for AUCTION, an iterative primal-dual algorithm with an auction interpretation for the
assignment problem. '

I first prove optimality for COMBAUCTION(2), in the special-case that the best-response
bid sets are safe in all rounds of the auction. The proof of optimality for COMBAUCTION(D)
and COMBAUCTION(3) follows from an equivalence between COMBAUCTION(2) with a
dummy item introduced for each agent and appended to its bids, and COMBAUCTION(3).

In outline, I show that COMBAUCTION implements a primal-dual algorithm for [LP3]
and {DLP,], and computes integral solutions to {LPs] when agents follow myopic best-
response bidding strategies and bids are safe.

First, I show that the allocation and prices in each round of the auction correspond to
feasible primal and dual solutions. Then, I show that the primal and dual solutions satisfy
complementary-slackness conditions when the auction terminates.

Let S; denote the provisional allocation to agent , and p,q(S) denote the ask price for
bundle §.

Feasible primal. To construct a feasible primal solution assign z;(S;) = 1 and
ri(§') = 0 for all 8" # §;. Partition y(k*) = 1 for k* = [Sy,..., Sz}, and y(k) = 0

otherwise.

Feasible dual. To construct a feasible dual solution assign p(S) = pasi(S). Constraints
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(DLP-1) and (DLP-2) are satiP(?) = M {0' max{v(S) - P(S)}}

p(0) = max {0, max(u4) - p(S)} } (1)
= [’?ea%s% p(S) (4.2)

The value p(i) can be interpreted as agent i's maximum utility at the prices, and 7
can be interpreted as the maximum revenue that the auctioneer can achieve at the prices
(irrespective of the bids placed by agents).

The auctioneer does not explicitly compute the value of p(z), rather I prove that the
allocation and prices in the auction satisfy complementary-slackness conditions with these
assignments when the auction terminates, based on the bids placed by agents. This is just

as well, because the values v;(S) remain private information to agents during the auction.

Complementary-slackness conditions. The first primal CS condition, CS-1 is:
z{S) >0 = p(i) + p(S) =v{(S), Vi,S (CS-1)

Given (4.1) it states that all agents must only receive bundles that maximize utility at
the current prices. CS-1 is maintained throughout the auction because bundles are only
allocated according to bids from agents, and agents place best-response bids.

Formally, for any bundle S bid by agent #: (i) pasi{S) — € < Pbia,{S) < pasi{S); (ii)
vi(S) —puid,{S)+€ > maxg {vi(S')—prig,{S')} because agents bid for bundles that maximize
utility within ¢; (iii) vi(S) — poia,{S) = 0, because agents only bid for bundles with positive
utility. Since z;(S;) = 1 implies agent ¢ bid for bundle §;, I have:

zi(S) > 0 = vi(S) — pasi{S) +2¢ 2
max {0, max{vi(S') - pask(S')}}
Substituting for p(i) and pasS) = p(S), we prove e-CS-1:

z;(S) > 0 = p(i) + p(S) < vi(S) + 2¢, Vi, S (e-CS-1)

The second primal CS condition, CS-2, is:

yk)>0=>m-) p(S)=0, Vk (CS-2)
Sek
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Given (4.2) it states that the allocation must maximize the auctioneer’s revenue at
prices p(S), over all possible allocations and irrespective of bids received from agents.

We prove CS-2 is maintained in all rounds because it is not binding that the auction-
eer must allocate bundles according to agents’ bids. Through the price-update rules the
auctioneer is able to maximize revenue given prices in every round.

Formally:

(i) all bundles with strict positive prices* receive bids in every round. Agent i with one
of the highest losing bid for bundle S in round ¢ will continue to bid for bundle S in rounds
t+ 1. Let u}(S) denote agent 's utility for bundle S in round ¢. Then, ui*(S) = u}(S) —¢
because the ask price for S increases by €. Also, uf(S) > uf(S’) for all bundles S’ the agent
did not bid in round ¢. Hence, with u(S’) > u!*%(S') because the price of S' can only
increase in round ¢ + 1, I have u{*}(S) > ul*Y(S’) — € and a bid for S’ can never exclude
a bid for S from agent i's best-response bids in round ¢ + 1. A similar argument can be
made for the utility of bundles that the agent did bid in round t.

(ii) all bundles in revenue-maximizing allocations receive bids from different agents,
because bids are safe. No single agent causes the price to increase to its current level on a
pair of compatible bundles. This follows because price updates are due to safe bids from
agents.5

Therefore, for partition k* such that y(k*) = 1, 3 g ck- Pask(Si) = 25 ck- PriadSi),
because pasi(S) > Puid (S), and Y g ek~ PoidSi) = maxkek Y5 ek Poid {Si) because of (i)
and (ii), i.e. the constraints to allocate to agents’ bids are not binding. Finally, with (4.2)
we have maxker )5 ¢k Poid {Si) 2 7 —min{|G|,|Z]|}¢ because pyig (S) > Pasi{S) —€ and an

allocation can include no more bundles than there are agents or items. We prove ¢-CS-2:

y(k) >0= 7 - p(S) < min{|Gl,|Zl}e, VK (e-CS-2)
Sek

The first dual CS condition, (CS-3), is:

*An ask price pa(S) is strictly positive if the price is greater than the ask price for every bundle
contained in S, i.e. pasi{S) > pasi(S’) for all ' C S.

*It is clear that this cannot happen in a single round. Furthermore, it can be shown by induction across
rounds that an agent with a myopic best-response bidding strategy cannot increase the price of compatible
bundles over a sequence of rounds without submitting unsafe bids in a single round.
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pi) >0= > z{S) =1, Vi (CS-3)
sce

Given (4.1) it states that every agent with positive utility for some bundle at the current
prices must receive a bundle in the allocation. (CS-3) is only satisfied during the auction
for agents that receive bundles in the provisional allocation, but we prove (CS-3) for all
agents when COMBAUCTION terminates.

In termination case [T2] every agent that bids receives a bundle, so we immediately
have (CS-3) with myopic best-response agents. In case [T1] some agents may bid and
receive no bundles. However, these agents must bid at € below the ask price and have
values just below ask prices, otherwise prices would increase and their bids would change.

Finally, the last pair of dual CS conditions, (CS-4) and (CS-5), are:

p(S)>0=Y z{S)= Y  wyk), VS (Cs-4)
ieT kEK,Sek
T>0=) ylk) =1 (CS-3)
keK

The assignment y(k*) = 1 for the partition k* = [S) ... §)z)| trivially satisfies the RHS
of both conditions.

Termination. By contradiction, assume the auction never terminates. Informally,
[T1] implies that agents must submit different bids in successive rounds, but with myopic
best-response bidding this implies that prices must increase, and agents must eventually
bid above their values for bundles. We prove a contradiction with myopic best-response

bidding strategies.

Putting it all together.
Finally, we prove the worst-case error term in Theorem 4.6 when the auction terminates.

Summing e-CS-1 over all agents in the final allocation, and with p(i) = 0 for agents not in
the allocation by (CS-3),

Y p() <D wilSi) - Y p(Si) + 2min{|G], |Z]}e

i€l i€l i€l
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because an allocation can include no more bundles than there are items or agents.
Introducing €-CS-2, because y(k*) = 1 for the bundle-set that corresponds to the final
allocation Sj, then m < 37,7 p(Si) + min{|G|, |Z|}e.

Finally, adding these two equations, we have

®+ Y p(i) <Y vi(Si) +3min{|G], |Z|}e
el €T
The LHS is the value of the final dual solution, VpLp, and the first-term on the RHS is
the value of the final primal solution, Vip. We know V[ < Vprp, where V% is the value
of the optimal primal solution by the weak duality property of linear programs. Thus,

because VprLp < Vip + 3min{|G|, |Z|}¢, it follows that
Vip 2 Vi’p — 3min{|G|, |Z|}e

Finally, because the primal solution is integral (by construction during COMBAUCTION,

it is a feasible and optimal solution to the combinatorial resource allocation problem [tp]. |

4.6.4 Proof: CoMBAUCTION(D) and COMBAUCTION(3)

A simple transformation of agents’ bids reduces any problem in COMBAUCTION(D) or
CoMBAUCTION(3) to a safe problem in COMBAUCTION(2). Bertsekas [Bet92| proposes a
similar transformation method to derive an AUCTION method for combinatorial optimiza-
tion problems such as max-flow and the transportation problem, reducing problems to the
Assignment problem.

In COMBAUCTION a simple transformation of agents’ bids allows COMBAUCTION(3)
to be implemented within COMBAUCTION(2) without price-discrimination, and ensures
that agents’ bids remain safe throughout the auction.

Whenever bids from agent ¢ are not safe in COMBAUCTION(2) we can simulate the
price-update rule by introducing a new dummy item that is specific to that agent, call it
z;. This item is concatenated by the auctioneer to all bids from agent ¢ in this round and

all future rounds. It has the following effects:
1. The outcome of winner-determination, or the allocative efficiency of the auction, is

unchanged because no other agent bids for item z;.
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0o

Agent ¢'s bids are always safe because every bid includes item z;, and no pair of bids

is compatible.

3. The price increases due to bids from agent i are isolated to that agent in all future

rounds because all price increases are for bundles that include item z;.

The optimality of COMBAUCTION(3) follows immediately from the optimality of COM-
BAUCTION(2) without price discrimination.

4.7 Earlier Primal-Dual Auction Methods

Table 4.7 relates the progress in iterative auction design over the past two decades. Each
contribution relaxes assumptions on agent preferences and/or strengthens the equilibrium
analysis of the auction. Myopic best-response agent strategies is a uniform assumption
across all auction designs.

Bidding languages differ in terms of whether agents can bid on items or bundles,
whether agents can submit single or multiple bids, and the logic used to combine mul-
tiple bids. Prices differ in terms of whether individual items or bundles are priced, and
whether prices are anonymous or non-anonymous.

All auctions terminate with efficient allocations, and achieve different levels of
robustness-to-manipulation. In basic terms, Vickrey provides more robustness than min-

imal competitive equilibrium (min CE) prices, than competitive equilibrium (CE) prices.

Termination with Vickrey payments makes myopic best-response a Nash equilibrium
of the auction [GS00]. Termination with competitive equilibrium prices provides some
incentive-compatibility, at least in the last round of the auction. Minimal CE prices often
coincide with Vickrey payments, but otherwise might be imagined to provide “intermedi-
ate” incentive-compatibility properties between that of any CE outcome and the Vickrey
outcome. This connection between final prices and incentive-compatibility is discussed in
detail in Chapters 6 and 7.

Prior to {Bundle there was no method to terminate in even competitive equilibrium in
the general problem. Computing adjusted prices after termination, (Adjust) in the table,
achieves minimal CE prices, which support Vickrey payments in all cases for which an iter-

ative Vickrey auction was previously known. I believe that the extended auction, :Bundle
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Name Assumptions Price Bid Update outcome
structure structure method
CK81 linear-additive items OR-items greedy CE
KC82 GS items one bundle greedy CE
Ber79-87 unit-demand items one item greedy CE
DGS86 unit-demand items XOR-items minimal Vickrey
Aus97 homog sub-additive ~ one price one bundle clinch Vickrey
Aus00 GS items one bundle clinch & unclinch Vickrey
n + 1 auctions
GS00 GS items XOR-bundle minimal min CE
Wur(00 monotone bundles XOR-bundle minimal -
iBundle(2) safe bundles XOR-bundle greedy CE
iBundle(d) monotone bundles XOR-bundle greedy CE
non-anonymous
Adjust monotone bundles XOR-bundle greedy min CE
non-anonymous
Extend&Adjust monotone bundles XOR-bundle greedy (Vickrey)

non-anonymous

Table 4.7: Primal-Dual Auction Methods.

Extend&Adjust, is significantly more powerful. Label (Vickrey) indicates a conjecture (see
Chapter 7) that the auction is an iterative Vickrey auction for all combinatorial allocation
problem instances.

The methods of Bertsekas [Ber79, Ber81, Ber88] and Demange et al. [DGS86] assume

unit-demand preferences, in which each agent demands at most one item:

DEFINITION 4.13 [unit-demand] Agent i's valuation

i(5) = maxu(j)

The allocation problem for unit-demand preferences is known as the assignment prob-
lem, with the goal to assign a single item to each agent to maximize value.

Crawford & Knoer [CK81] assume linear-additive agent preferences.

DeFINITION 4.14 [linear-additive] Agent #’s valuation

u(S) =Y u(j)

J€S

Kelso & Crawford {KC82], Gul & Stacchetti [GS00], and Ausubel [Aus00] assume

that agents have gross-substitutes (GS) preferences. Gross-substitutes states that if the
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prices were increased from p to p’ then the agent would continue to demand any item
whose price did not increase (see definition 4.8). Unit-demand preferences and linear-
additive preferences are special cases of GS. Each auction makes stronger claims about the
properties of final prices, i.e. CE prices, then min CE prices, then Vickrey prices.
Ausubel’s [Aus97] ascending-price auction for multiple identical (homogeneous) items

and sub-additive preferences.

DEeFINITION 4.15 [sub-additive] Valuation function v; : N — R, is subadditive if the
marginal value for each additional item is (weakly) decreasing, i.e. if (vi(n+2)-vi(n+1)) >
(vi(n + 1) = v;(n)) for integer n > 0, with v;(0) = 0.

Finally, in iBundle, and in AkBA [WWO00], the only restriction on agent preferences is

that they are monotone:

DEFINITION 4.16 [monotone] Valuation function v; : N = R, is monotone if v;(S)) >
v;(S2) for all §; 2 Ss.

Bertsekas appears to be the first to make an explicit connection between primal-dual
algorithms and auction mechanisms [Ber79, Ber81, Ber88]. AUCTION is a primal-dual based
method to solve the assignment problem. AUCTION algorithm has a natural interpretation
as an auction, with agents bidding for their favorite item in each round, but there is no
consideration of agent incentives in Bertsekas’ work. His motivation was to develop new
algorithms to solve problems in parallel environments, although experimental analysis
showed good performance on single processors.

The work of Demange et al. [DGS86] is important, as it is the first to consider agent
incentives and demonstrate an iterative procedure to compute Vickrey payments. The
procedure was derived in the context of a linear program formulation for Vickrey payments
in the assignment problem due to Leonard [Leo83]. Sankaran [San94] appears to be the first
to make a connection between DGS and a primal-dual method for the assignment problem.
Recently, Bikchandani et al. [BAVSVO01] give a complete primal-dual interpretation of the
DGS [DGS86] auction mechanism, for a new formulation of [LP3] [BO99] that uses fewer
variables.

Recent advances in linear programming models for the combinatorial allocation prob-
lem, and new primal dual approaches to combinatorial auction design (such as my iBundle
approach) have led to new primal-dual analysis of earlier auctions. Although primal-
dual analysis is not explicit in the work of [CK81, KC82, DGS86, Aus97, Aus00, GS00]
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a primal-dual explanation can be provided for an appropriate linear programming model
(BAVSVOl).

The main structural differences across auctions are in the bidding-languages, the prices,
and the price-update rules. Beyond that, with the exception of Ausubel [Aus97, Aus00],
the auctions share the following essential steps:

(a) announce prices and a provisional allocation

(b) receive best-response bids from agents

(c) look for a provisional allocation that satisfies every agent

(d) increase prices on over-demanded items (or bundles) if no equilibrium solution is found.

The auctions differ in the method used to adjust prices across rounds, i.e. the choice of
overdemanded set. Price update methods are either greedy or minimal. In a greedy update
rule the price is increased on all over-demanded items (or bundles). In a minimal update
rule the price is increased on the smallest set of over-demanded items (or bundles). Prior
to the Extend&Adjust method in :Bundle (see Chapters 5 and 6), the usual approach to
compute Vickrey payments was to implement minimal price-updates in each round [DGS86,
GS00] of the auction. Minimal price updates are designed to adjust towards minimal CE
prices, which are equivalent to Vickrey payments in many problems [GS99]. The dual
solution that maximizes agent utility and minimizes auctioneer revenue corresponds to the
minimal competitive equilibrium solution.

Ausubel’s auctions [Aus97, Aus00] are quite innovative. In Ausubel [Aus97] the auction
maintains one explicit price, but is able to compute multiple prices, one for each agent,
that equal the Vickrey payments. Ausubel describes a “clinching” process, whereby the
price for items is locked-in during the course of the auction. Bikchandani & Ostroy [BOQO]
give a primal-dual algorithm and linear program for Ausubel’s [Aus97] homogeneous good
auction. Bikchandani et al. [BdVSV01] have proposed an alternative derivation based on
a network path planning formulation. The clinching rule is reinterpreted as a discount
from a final clearing price in the auction.

Recently Ausubel [Aus00] proposes a complex auction procedure to compute Vickrey
payments with GS agent preferences. Ausubel maintains one price for each item, but
actually must run I + | auctions (a main auction, and one without each agent in turn) to
compute Vickrey payments. The auction's theoretical contribution is significant because

it has been observed [GS00] that no single set of linear competitive equilibrium prices can
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support Vickrey payments with GS agent preferences. Note however that there is a set of
non-linear (and perhaps non-anonymous) competitive equilibrium prices that support the
Vickrey payments with GS preferences [BAVSVO01].

Gul & Stacchetti [GS00] state that no dynamic mechanism can reveal sufficient infor-
mation to implement the Vickrey mechanism with GS preferences. Ausubel’s method is
outside the spirit of their negative result because of its reliance on multiple auctions. Simi-
larly, my work on iBundle dodges this negative result with non-linear and non-anonymous
prices on items. The final price adjust step might also be outside of the spirit of their focus
on “monotonic” price adjustment.

Wurman's Ascending k-Bundle Auction (AkBA) [WWOQ0] family of iterative combina-
torial auctions also maintain explicit prices on bundles of items, and were designed with
a generalization of the DGS auction in mind. In each round of AkBA Wurman uses a
linear program to increase (and sometimes decrease) prices. A1BA, thought to be the
most promising of the family, compute prices to solve a minimal restricted dual problem
in each round.

Bertsekas has proposed variants of his AUCTION algorithm for other combinatorial opti-
mization problems, including the transportation problem [BC89), a variation of assignment
with multiple identical items, the minimal cost flow problem [Ber86]. Bertsekas [Bet92]
has recently provided a unified framework of this large body of work, transforming each
optimization problem into the assignment problem. Bertsekas [Ber87] provides a text book

introduction to the AUCTION algorithm, while [Ber90] provides a tutorial.
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Chapter 5

:Bundle: An Iterative Combinatorial

Auction

In this chapter I introduce the iBundle ascending-price combinatorial auction, which fol-
lows quite directly from the primal-dual solution method for the combinatorial allocation
problem described earlier. The best-response information provided by agents in CoMm-
BAUCTION has a natural interpretation as a utility-maximizing bidding strategy for a
myopic agent, i.e. an agent that takes the current prices as fixed and does not look beyond
the current round.

Even without the added incentive properties that are inherited from the Vickrey-Clarke-
Groves mechanism via Extend&Adjust (see chapter 7) the contribution of :Bundle is sig-
nificant. It is the first iterative auction to provably terminate with an efficient allocation
for a reasonable agent bidding strategy, without any restrictions on agents’ valuation func-
tions. We make no assumptions about agent valuation functions, other than monotonicity

(or free-disposal). The main design decisions in iBundle are:
o Exclusive-or bids over bundles of items.

e A simple price-update rule with minimal consistency requirements on prices across
different bundles.

e A dynamic method to determine when non-anonymous prices are required to price

the efficient allocation in competitive equilibrium.

Myopic best-response need not be an agent’s optimal sequential strategy in {Bundle,
and the basic auction design is not strategy-proof like the GVA. This is addressed in
Chapter 7 with Extend&Adjust, a method to keep iBundle open for a second phase and
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compute Vickrey payments.

The basic auction procedure is described for an exclusive-or bidding language over
items. However, as described in section 5.6, there are natural extensions to more expressive
languages for particular domains

Experimental results confirm the efficiency of iBundle across a set of combinatorial
allocation problems from the literature. The auction computes efficient solutions, even
with quite large bid increments. Results also demonstrate that non-anonymous prices
are only important above 99% allocative efficiency. Information revelation in {Bundle
is measured for a simple metric, that considers the degree to which agents reveal their
complete valuation function via their bids during the auction. Bundle is shown to have
scalable performance, only requiring agents to reveal a small amount of information in easy
problems.

The auctioneer in ‘Bundle solves one winner-determination problem in each round,
compared to one for each agent in the final allocation in the GVA. Although the problem
of computing a provisional allocation in each round remains NP-hard the problem instances
in /Bundle are much smaller than in the GVA because the agents only bid for a small subset
of bundles in each round. In addition, a number of tricks allow speed-ups:

(a) we can use cached solutions across rounds to speed-up solving a sequence of related
winner-determination problems;

(b) we can make trade-offs between allocative efficiency and winner-determination time
through the speed with which prices are increased in the auction;

(c) we can introduce approximation algorithms with a simple bid monotonicity property,
that still maintains incentives for the same myopic bidding strategy.

Computational results demonstrate an order-of-magnitude speed-up over the VCG
mechanism at 99% allocative efficiency, with the same combinatorial optimization al-
gorithm to solve winner-determination problems in both mechanisms. An approximate
winner-determination algorithm also proves useful; iBundle can often achieve greater than
90% efficiency with negligible computation using a simple greedy algorithm in each round.

The outline of this chapter is as follows. The first section gives a full description of
iBundle, including the bidding language, price update rules, and winner-determination

rules. Section 5.2 states the main theoretical results, which follow from the optimality
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proofs for COMBAUCTION. Section 5.3 introduces the experimental methods: agent mod-
els, problem sets, winner-determination algorithm, etc. The experimental results are split
over two sections. Section 5.4 is concerned with the efficiency and information revelation
properties of iBundle, and based around Parkes [Par99]. Section 5.5 is concerned with the
winner-determination complexity and communication properties, and based around Parkes
& Ungar [PUO0Oa]. Section 5.6 outlines special cases of iBundle for restricted bidding lan-

guages. Finally, section 5.7 compares iBundle with earlier iterative combinatorial auction

designs.

5.1 Auction Description

iBundle has three variations, iBundle(2), iBundle(d) and :Bundle(3), which differ in their
price update rules.! The iBundle(d) variation introduces price discrimination dynamically,
only as required to support the efficient allocation in competitive equilibrium. It has prov-
able allocative efficiency for myopic best-response strategies. Each variation implements
the associated COMBAUCTION variation with best-response agent strategies. The rules
make :Bundle as robust as possible against non-myopic agent strategies. For example, one
rule states that an agent must repeat its bid (at the same or greater price) in the next
round for any bundle it receives in the provisional allocation. This rule only restricts non-
myopic strategies because an agent with a myopic best-response strategy would always
want to repeat its bid for a bundle that does not increase in price, because the prices only
increase on other bundles and never decrease.

Recall that G denotes the set of items to be auctioned, T denote the set of agents, and
S C G denote a bundle of items. The auction proceeds in rounds, indexed ¢t > 1. We
describe the types of bids that agents can place, and the allocations and price updates
computed by the auctioneer.

Bids. Agents can place exclusive-or bids for bundles, e.g. S; XOR Ss, to indicate
than an agent wants either all items in S; or all items in S; but not both S| and S,.
Agent ¢ associates a bid price pf,id_i(S) with a bid for bundle S in round ¢, non-negative by
definition. The price must either be within € of, or greater than, the ask price announced

by the auctioneer (see below). Parameter ¢ > 0 defines the minimal bid increment, the

'I will sometimes use {Bundle both to refer to the family of auctions in general, and iBundle(d) in
particular.
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minimal price increase in the auction. Agents must repeat bids for bundles in the current
allocation, but can bid at the same price if the ask price has increased since the previous
round. An agent can also bid € below the ask price for any bundle in any round— but
then it cannot bid a higher price for that bundle in the future. This allows an agent to bid
for a bundle priced slightly above its value.

Winner-determination. The auctioneer solves a winner-determination problem in
each round, computing an allocation of bundles to agents that maximizes revenue. The
auctioneer must respect agents’ XOR bid constraints, and cannot allocate any item to
more than one agent. The provisional allocation becomes the final allocation when the
auction terminates. Ties are broken in favor of assigning bundles to more agents, and then
at random, except when the same bids are received in two successive rounds when the

auctioneer selects the same allocation (and the auction terminates).

Prices. The price-update rule generalizes the rule in the English auction, which is
an ascending-price auction for a single item. In the English auction the price is increased
whenever two or more agents bid for the item at the current price. In :Bundle the price on
a bundle is increased when one or more agents that do not receive a bundle in the current
allocation bid at (or above) the current ask price for a bundle. The price is increased to €
(the minimal bid increment) above the greatest failed bid price. The initial ask prices are
zero.

The auctioneer announces a new ask price, p.,(S) in round ¢, for all bundles S that
increase in price. Other bundles are implicitly priced at least as high as the greatest
price of any bundle they contain, i.e. pasi(S’) > pasi(S) for S’ 2 S. These ask prices are

anonymous, the same for all agents.

Price discrimination. In some problems the auctioneer introduces price discrimi-
nation based on agents’ bids, with different ask prices to different agents, when this is
necessary to achieve an optimal allocation. A simple rule dynamically introduces price-
discrimination (or non-anonymous prices) on an agent-by-agent basis, when an agent sub-

mits bids that are not safe:

DeriniTION 5.1 [safe bids] An agent’s bids are safe if the agent is allocated a bundle
in the current allocation, or it does not bid at or above the ask price for any pair of

compatible bundles S;, S2, such that $; NSy = 0.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Suppose agent i bids unsuccessfully for compatible bundles S and S, in round ¢. It is
still possible that bids for bundles S) and S; from two different agents can be successful
at the prices, while the XOR bid constraint prevents the auctioneer accepting both bids
from agent 1.

When an agent’s bids are not safe the agent receives individual ask prices, p,sk {S), in
future rounds. Individual prices are initialized to the current general prices, pgsk,i(S ) =
Pl (S), and increased to € above the agent's bids in future rounds that the agent receives

no bundle in the provisional allocation.

Termination. The auction terminates when: [T1] all agents submit the same bids in

two consecutive rounds, or [T2] all agents that bid receive a bundle.

5.1.1 A Myopic Best-Response Bidding Strategy

iBundle computes an optimal allocation with myopically rational agents that play a best
(utility-maximizing) response to the current ask prices and allocation in the auction. The
agents are myopic in the sense that they only consider the current round of the auction.

Let v;(S) denote agent ¢’s value for bundle S, and assume v;(0) = 0 and free disposal
of items, so that v;(S') > vi(S) for all §' D S. Consider a risk-neutral agent, with a
quasilinear utility function u;(S) = v;(S) — p(S) for bundle S at price p(S). Further,
assume that agents are indifferent to within a utility of +e, the minimal bid increment.
This is reasonable as ¢ — 0.

By definition, a myopic agent bids to maximize utility at the current ask prices (taking
an € discount when repeating a bid for a bundle in the provisional allocation or bidding for
a bundle priced just above its value). The myopic best-response strategy is to submit an

XOR bid for all bundles S that maximize (to within €) utility u;(S) at the current prices.

This maximizes the probability of a successful bid for bid-monotonic WD algorithms.

5.1.2 Discussion

Unlike earlier auction designs for the combinatorial allocation problem, iBundle permits
both non-linear prices (i.e. prices on bundles not equal to the sum of prices on items) and
non-anonymous prices (i.e. different price for the same bundle to different agents). Given
that competitive equilibrium is a central solution concept in efficient auction design, and

that both non-linear and non-anonymous prices are required for competitive equilibrium
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in some CAP problem instances, this appears essential to the efficiency of iBundle. Wur-
man & Wellman [WWQO0] propose an iterative combinatorial auction with non-linear but
anonymous prices, but are unable to design a price update rule with general efficiency
across all problem instances. iBundle is the first iterative auction to terminate with the
efficient allocation, and in competitive equilibrium, in the general CAP problem with any
reasonable agent bidding strategy— in this case myopic best-response (see Table 4.7).
The other main feature of the price-update rules in iBundle is that only weak con-
sistency is enforced across prices. Prices may be subadditive or superadditive, the only

requirement is that they satisfy a simple monotonicity requirement:
pi(S1) 2pi(S2) LS 28,

for bundles S; and S;. Additional consistency rules fail to characterize competitive equi-
librium prices in some CAP problem instances.

Allowing agents to bid for bundles of items avoids the ezposure problem identified
in [BCLOO] for auctions that do not allow combinatorial bids, for example simultaneous
ascending-price auctions. The exposure problem occurs when an agent loses its bid on
one-or-more items in a bundle and is left with an incomplete bundle. Bundle bids allow
agents to make explicit statements about contingencies, for example a bid on bundle AB
states “I only want A if [ also get B”.

Exclusive-or bids are not compact representations of an agent’s demand in some prob-
lems, for example when an agent has a linear-additive valuation function. We can derive
price-update rules for other bid languages [Par99]. For example, the auctioneer can convert
OR bids into equivalent XOR bids by creating a new “dummy” agent to submit an XOR
bid for each bundle that receives an OR bid from an agent (see section 5.6).

Non-linear prices can require enforcement, for example to prevent the possibility of
arbitrage in which a third-party profits from subadditive prices on bundles (p(S; U S2) <
p(S1) + p(S2)) by purchasing bundles to be “disassembled” and sold for profit. Similarly,
with subadditive prices a bidding cartel can form to take advantage of bundle discounts,
and this can also distort the efficiency of the mechanism. A single agent might try to
avoid superadditive prices, with p(S; U S2) > p(S1) + p(52), by entering the auction under
multiple pseudonyms and purchasing smaller bundles for “assembly” after purchase.

In addition, the variations of iBundle with discriminatory prices, e.g. pi(S) # p;(S) for

agents 7, j, may require an auctioneer to prevent agents entering under multiple pseudonyms.
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Figure 5.1: Auction Scenarios.

Methods of enforcement include: (1) prevent the transfer of items between agents (e.g. the
airline industry); (2) prevent agents from entering an auction under multiple pseudonyms,
for example through cryptographic message authentication and signature techniques; (3)

reduce opportunities for aftermarkets.

5.1.3 [Example Auction Scenarios

Figure 5.1 shows four different auction scenarios that illustrate winner-determination and
price-updates. In each scenario bundles ABC, CD, D and AB each receive a bid from
some agent, but the scenarios differ in the agents that submit the bids. The ‘boxes’
indicate XOR bids from the same agent, and the ‘circles’ indicate the allocation selected
by the auctioneer to maximize revenue. Price increases are indicated with an ‘arrow’. The
minimal bid increment ¢ = 5. Notice that the bid prices for bundles are consistent, such
that p(ABC) > p(AB) and p(CD) > p(D). This must be maintained in iBundle.

The auctioneer selects the same revenue-maximizing allocation in scenarios (a), (b)
and (d), allocating bundles ABC and D to two different agents. In (c) the same agent
bids for bundle ABC and D and the auctioneer must select another allocation, because
it must respect the XOR bid constraint. Allocation D and AB is chosen in preference to
ABC because it includes more agents.

In (a) the auction terminates because the revenue-maximizing allocation includes a bid

from every agent that bids. In (b) the auction does not terminate because the agent that
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bids (AB, $5) is not happy. The ask price for AB is increased to 5 + ¢, the minimal bid
increment, in the next round. Scenario (c) is similar, except that the provisional allocation
is different, and the price is increased on CD in the next round. In (d) the bids from the
agent that receives no bundle in the provisional allocation are not safe because bundle CD
and AB are compatible. The auctioneer introduces price-discrimination in the next round.
The ask price remains unchanged for the 2 agents in the provisional allocation, while the

ask price to the third agent is increased to 5 + ¢ for both bundles CD and AB.

5.1.4 Worked Examples

Table 5.3 illustrates the ask prices, allocation, and bids from agents in each round of
iBundle(2) for Problem 4. Agent 1 wants either A or B, and has value 2 for each. Agent
2 wants only 4 and B, and has value 3 for AB. The bid increment is ¢ = 0.5. Notice
that agent 1 bids € below the ask price in round 4 because it repeats a bid for a bundle
in the current allocation, and agent 2 takes a discount in round 11 because the ask prices
are greater than its values. The allocation selected in each round (indicated *) maximizes
revenue to the auctioneer. The auction terminates in round 11 because it receives the same
bids as in round 10, with the optimal allocation [1, AB] and subadditive prices for bundle
AB. There are no prices on items (with the price of bundle AB equal to the sum of the

price of A and B) that support this allocation.

A B AB
Agentl 0 0 3
Agent2 2 2 2

Table 5.1: Problem 4

A B AB
Agent1 0 0 3
Agent2 2* 0 2
Agent3 0 2* 2

Table 5.2: Problem 5

Non-linear prices are required to support the optimal allocation in Problem 4, e.g.
p(AB) = p(4) = p(B) = 2.1, while linear prices are sufficient to support the optimal
allocation in Problem 5, e.g. p(AB) = p(A) + p(B) = 1.6 + 1.6 = 3.2. The price-update
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Round Prices Bids Allocation | Revenue
A B AB| Agent1l Agent 2
1 0 0 0 [ (AB,0)* (A, 0) (B, 0) (AB, 0) (1, AB] 0
2 0.5 05 0.5 |(AB,0) (A, 05)° (B,0.5) (AB,0.3) |[2, 4] 0.5
3 0.5 0.5 0.5 | (AB,05) | (A, 05) (B,0.5) (AB,0.5)|[2,A] 0.5
4 1 1 1 [ (AB,0.5) [ (A1) (B,1)* (AB,1) (2, B] 1
5 1 1 1 | (AB,1) (A, 1) (B, 1)* (AB,1) (2, B] 1
6 1 1 1.5 ] (AB,1.5)* | (A, 1) (B, 1) (AB, 1.5) | [1, AB] 1.5
7 1.5 15 2 | (AB,15) |(A,15) (B,13) (AB,2)* |[2, AB] 2
8 1.5 1.5 2 | (AB,2)° (A, 1.3) (B, 1.5) (AB,2) (1, AB] 2
9 2 2 25| (AB,2) (A, 2)° (B, 2) (AB, 2) (2, A] 2
10 2 2 25| (AB,25) | (A, 2) (B, 2) (AB, 2 (1, AB] 2.5
11 25 25 25| (AB,235) | (A, 2) (B, 2) (AB, 2) terminates.

Table 5.3: {Bundle(2) on Problem 4, Bid incr. € = 0.5. Provisional allocations indicated *.

rules generate appropriate prices in both problems.

The auction generates subadditive prices for bundle AB. Indeed, as ¢ — 0, the final
ask prices approach p(A) = p(B) = 2. A successful bid for AB does not need to be
greater than the sum of bids for A and B because the same agent bids for both A and
B, and the auctioneer cannot sell both A and B for the bid price without violating the
bid_consistent constraint. Another agent needs to bid the maximum price of A and B
to be successful. The ask price for AB is only increased when an agent that bids for AB at
the current ask price is unsuccessful, explaining why the ask price for AB remains within
¢ of the ask price for A and B throughout the auction— and subadditive with respect to
the price of A and B.

Table 5.4 shows iBundle(2) for Problem 5. The final prices in this case are approxi-
mately linear, and as ¢ — 0, the ask prices approach p(A) = p(B) = 1.5 and p(AB) = 3.
In this case a successful bid for AB must be at least the sum of the bid prices for A and
B. because different agents— agents 2 and 3 —bid for A and B. This explains why the

ask price for AB remains within e of the sum of the ask prices for A and B throughout

the auction.

5.2 Theoretical Results

We can make an immediate claim about the efficiency of i:Bundle with agents that fol-
low myopic best-response strategies, based on the analysis of the primal-dual algorithm

COMBAUCTION in the previous chapter.
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Round Prices Bids Allocation [Revenue
A B AB{Agentl Agent 2 Agent 3

1 0 0 0 |(AB,0) (A,0)* (AB,0) [(B,0)* (AB,0) [[2, A],[3,B] 0
2 0 0 0.5({(AB,0.5)*|(A,0) (AB,0.5)|(B,0) (AB, 0.5)[[1, AB] 0.5
3 (0505 1 |(AB,0.5) |(A,05)* (AB,1) |[(B,0.5)* (AB,1) [[2, A], (3, B] 1
4 (0505 1 |(AB,1) (A, 05)" (AB,1) |(B,0.5)* (AB,1) |[[2, A], (3, B]

5 [0.50.5 1.5{(AB, 1.5)*|(A, 0.5) (B, 0.5) {1, AB] 1.5
6 1 1 15|(AB,15) |[(A,1)* (AB,15)|(B,1)® (AB, 1.5)|[2, A], [3, B] 2
7 1 1 2 |(AB,2) (A, 1) (B, 1)° [2, A], [3, B] 2
8 1 1 235|(AB,2.5)* (A, 1) (B, 1) (1, AB] 2.5
9 |[1.5 1.5 2.5|(AB, 2.5) |(A, 1.5)" (AB,2) |[(B,1.53)" (AB,2) |[[2, A], (3, B] 3
10 |15 1.5 3 {(AB,3) (A, L5)* (B, 1.5)* (2, A], {3, B] 3
11 |1.5 1.5 3.5|(AB,3) [(A,15) (B, 1.5)* terminates.

Table 5.4: iBundle(2) on Problem 35, Bid incr. € = 0.5. Provisional allocations indicated *.

Recall that |G| is the number of items, |I| is the number of agents, and e is the minimal

bid increment.

THEOREM 5.1 (optimality). iBundle terminates with an allocation that is within

3min{|G|,|I|}e of the optimal solution, for best-response agent bidding strategies.

The auction is optimal as the bid increment approaches zero because the error-term
goes to zero.

As described earlier, the optimality follows from a primal-dual analysis: the provisional
allocation is always a feasible primal solution, the prices a feasible dual solution, and
complementary-slackness conditions hold on termination.

In a simpler variation, iBundle(2), the auctioneer never tests for bid-safety and never

introduces price discrimination.

THEOREM 5.2 (anonymous optimality). iBundle(2) terminates with an allocation that
is within 3min{|G|, |I|}€ of the optimal solution when bids are safe, for best-response agent

bidding strategies.

As noted in the context of COMBAUCTION (Theorem 4.7), special cases on agent pref-
erences for which iBundle(2) remains efficient, include the following:

(1) Every agent demands different bundles
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(2) Agents have additive or superadditive values, i.e. v(SU S’) > v(S) + v(S') for non-
conflicting bundles S and S’
(3) The bundles that receive bids throughout the auction are from a single partition of

items, e.g. bids are for pairs of matching shoes or individual items.

5.3 Experimental Methods

Experimental results support the theoretical claims about the allocative efficiency of
iBundle. Results also demonstrate that :Bundle continues to perform well with quite large
bid increments, and without price discrimination. The performance of iBundle is tested on

randomly generated problems sets and with myopic best-response agent bidding strategies.

5.3.1 Metrics

Given allocation S = (S),...,Sr) we compute the following metrics:

[Efficiency] Allocative efficiency, eff (S), is measured as the ratio of the value of the
final allocation S to the value V* of the optimal allocation that maximizes total value
across the agents: eff (S) = Z vi(Si)/ V* where v;(S;) is agent i’s value for bundle S;.

[Correctness] Correctne;s, corr(S), is measured as the average number of times that
an auction finds the optimal allocation. Correctness can provide a more sensitive measure
of performance than efficiency.

[Revenue] Revenue, rev(S), is measured as auctioneer’s final revenue, as a ratio of
the value of the optimal solution: rev(S) = 3 pi(S:)/ V* where p;(S;) is the final payment
made by agent ¢ for bundle S;. ‘

A simple metric is used to assess information revelation in the auction.

[Information Revelation] Information revelation, inf (i), for agent i is measured as
the sum of the final price bid by the agent for all bundles in its valuation function, as a

fraction of the sum of the true value of each bundle:

pi"(S)
Sébid,

> u(S)

Sé€val_fun,

inf(i) =

where p["**(S) is the maximum bid from agent i for bundle S during the auction; bid;
is the set of bundles that receive bids from agent ¢; and val_fun; is the set of bundles with

positive value in agent ¢’s valuation function.
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The overall information revelation, inf, is computed as the average information reve-
lation over all agents. Asymptotically, if the auction terminates after the first round, as
is would in the example in Figure 3.1 in chapter 3, inf = 0%, while if the auction termi-
nates only after every agent has revealed its complete value for all bundles in its valuation
function, inf = 100%. The information revelation in the GVA is clearly 100%.

In addition to reducing information revelation, we would also like an agent to be able
to follow a myopic best-response strategy in an iterative auction without computing its
exact value for all bundles. Chapter 8 considers the complexity of an agent’s best-response
bidding problem. In simple terms, best-response is possible without exact values on all
bundles because an agent must only determine the bundle with a utility (value - price) that
dominates the utility of the other bundles at the current prices. This can be determined
with appropriate upper- and lower- bounds on the value of each bundle. In this chapter I
take information revelation as a proxy for agent valuation. This is reasonable in the limit,
complete information revelation certainly requires that an agent computes exact values for
all bundles.

[Communication Cost] The communication cost is a measure of the number and
size of messages sent between agents and the auctioneer during an auction. A bundle is
defined with |G| bits, an item with log, |G| bits, and a value with log, Vinax, where Viay is
the largest possible value (for integer values). In iBundle each bid from an agent and each
price increase announced by the auctioneer requires |G| bits, because agents follow myopic
best-response and the bid price and new ask price information is implicit. As a fraction of
the communication cost in the GVA, we measure the total cost to an agent in :Bundle as:

| G|(nbid + Tprice)
comm; =
' 7 |VillG|logs Vinax

where there are npig bids, nprice increases, and |V;| bundles with non-zero value in the
agent’s valuation function. In some implementations the price messages may be broadcast,

in which case this communication cost is atomized across all agents.

5.3.2 Problem Sets

iBundle is tested on several problem sets from the literature. The problem set charac-
teristics are summarized in Table 5.5. The CalTech problem set [LPR97] is designed to
represent a hard spatial fitting problem, and has been used to test the AUSM and RAD
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bundle auctions [DKLP98]. Problem sets PS1 and PS2 are resource allocation problems
that have been used to test the performance of a sequential auction mechanism (SEQ)
with adaptive agent bidding strategies [BGS99).

Problem sets 4-8 are designed to represent different levels of subadditivity and super-
additivity over items. I refer to these problem sets as k-comp(g). Agents have subadditive
values for combinations of items when k < 1, and superadditive values when k£ > 1. The
parameter g indicates how many items are covered by bundles with positive value in each
agent’s valuation function.

Problem sets 9-16 are generated from bid distributions used to test a new winner deter-
mination algorithm for bundle auctions [San99]. Agent valuation functions are generated
by partitioning the bid distributions across the agents. In problem sets 9-12 we give agents
XOR values over the bundles, in problem sets 13-16 agents have OR values. In the “decay”
bid distribution we choose parameter a = 0.55.

Larger problem sets than those in Table 5.5 are constructed from Sandholm’s decay,
random, uniform, and weighted-random distributions, increasing the number of agents
and/or the number of items. In Parkes & Ungar [PU00Oa] we consider problems Decay,
Weighted-random (WR), Random and Uniform from Sandholm [San99)]. Each problem de-
fines a distribution over agents’ values for bundles of items, with XOR valuation functions,
such that agents want at most one bundle. In our main experiments the number of items,
|G| = 50, and we scale the problems by increasing the number of agents from 5 to 40, with
values for 10 bundles per agent. I set Sandholm’s parameter a = 0.85 in Decay, and select
bundles of size 10 in Uniform.

Table 5.5 states the number of items |G| in each problem set, the number of agents |I|,
the average number of bundles with positive value for each agent, and whether the agents
have OR or XOR values over bundles. Table 5.5 also records the average percentage of
agents in the optimal allocation. All other things being equal, we would expect a greater
proportion of agents to receive bundles as the number of items increases, the number of
agents decreases, and the level of superadditivity decreases. For example, the number of
agents in the optimal solution falls as k increases in the k-comp problem sets (4-8). I
also computed the performance of a naive central algorithm naive for each problem set, to
provide a baseline for the performance of the auction-based solutions. The naive algorithm

repeatedly selects an agent at random (without replacement) and tries to allocate bundles
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Problem |Gl |I] Number (X)or Num  Naive Naive Num
# Name bundles |/ agentsin eff corr trials
per agent (O)r sol (%) (%) (%)

1 CalTech 6 5 5 X 40.0 63.2 2 50
2 PS1 12 4 3.97 X 89.0 821 20 50
3 PS2 12 5 4.07 X 58.4 79.3 20 50
1| O-comp(4d) | 5 5 15 X 86 612 0 30
5| 0.5-comp(4)| 5 5 15 X 80.8 63.2 0 50
6 | I-comp(4) [ 5 5 15 X 71.2 63.0 0 50
7| 2comp(4) | 5 5 15 X 49.2 65.3 4 50
8| 4-comp(4) { 5 5 15 X 43.6 63.5 6 50
9 random 10 5 10 X 84.8 64.9 8 25
10| w-random |10 35 10 X 38.4 828 20 25
11 uniform 20 5 10 X 60.0 73.0 8 25
12 decay 20 5 10 X 96.0 802 12 25
13| random-or | 10 3 10 (0] 74.4 35.3 0 25
14 | w-random-or| 10 3 10 0] 39.2 82.4 20 25
15| wuniform-or {20 3 10 0 48.8 69.6 4 25
16 decay-or 20 35 10 0 92.8 72.5 0 25

Table 5.5: Problem characteristics.

to the agent until it is happy, choosing bundles in order of decreasing value.

5.3.3 Comparison Auction Mechanisms

[ compared the performance of iBundle with reported results for other auctions. AUSM
and RAD are iterative auctions that allow agents to bid for bundles [LPR97, DKLP98],
and SEQ is a sequential auction for items with agents that have adaptive bidding strategies
(BGS99].

[ also implemented a simple simultaneous ascending price auction, with and without
bid withdrawal (SAA-w and SAA). In SAA-w agents can withdraw a bid in any round.
When an agent withdraws a bid b the ask price is set to the price of the bid. If the
item remains unsold the agent must pay its bid price, but otherwise there is no penalty.
This approximates the rule used in the FCC spectrum auction {P1o97]. The best-response
bidding strategy in SAA is to bid for items that maximize utility, assuming they will
win every bid. Without budget constraints agents write-off incomplete bundles with this
strategy, in a phenomena described by Bykowsky et al. as mutually destructive bidding
[BCLOO].

The best-response strategy in SAA-w is similar, except that agents assume that they

can decommit for free. Once an agent has withdrawn a bid, the penalty represents a sunk
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cost. There is continued debate about the effect of bid withdrawal on auction performance
(BCLOO, Por99].

5.3.4 Experimental Platform

iBundle is coded in C++, with a branch-and-bound depth-first search used to solve the
auctioneer’s winner determination problem in each round [San99]. Modules to generate
random problem sets, and simulate agent bidding strategies were also coded in C++. I
have also experimented with the GAMS/CPLEX platform as a method to solve winner-
determination in each round of the auction.

A variation on Sandholm's depth-first branch-and-bound search algorithm [San99]
solves winner-determination (WD) in each round, and computes the allocation and prices
in the GVA. A new heuristic is introduced to make search more efficient for XOR bids.
The heuristic computes an overestimate of the possible value of a partial allocation based

on allocating at most one bundle to each remaining agent without a bundle.

5.3.5 Normalized Bid Increment

In some tests it is useful to normalize the minimal bid increment across problem distribu-
tions, to give some consistency in comparisons of allocative efficiency, etc. The minimal bid
increment € is adjusted to normalize for the number of bundles in an average solution and
the average value of an optimal solution; i.e. an increment of £% represents an actual bid
increment € = zV*/(100W*) where W* is the average number of bundles in the optimal

allocation and V* is the average value of the optimal allocation.

5.4 Results I: Efficiency and Information Revelation

Table 5.6 compares the performance of iBundle(2) with reported results for AUSM and
RAD [DKLP98, LPR97] on problem set 1 in Table 5.5. The experiments reported in
DeMartini et al. [DKLP98] are with human participants, and it is possible that software
agents could perform better (or worse). This aside, iBundle(2) achieves a higher efficiency
than RAD and AUSM, and is competitive in revenue. [ also compared the performance of
Bundle with SEQ [BGS99] on problem sets 2 and 3. iBundle(2) generates almost perfect

allocations, significantly outperforming SEQ (results on corr and rev are not available for
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Problem | Performance | SEQ RAD AUSM | iBundle(2)
# | Name measure € (%)
20 ]

1 | CalTech eff 90.4 94 96.4 99.7
corr 80 36 80

rev 79 71 70.6 77.7

2 PS1 eff 87 924 994
3 PS2 eff 80 92.8 99.7

Table 5.6: Performance comparison with SEQ, RAD and AUSM on problems 1, 2 and 3. Bid
increment e (%); Efficiency eff (%); Correctness corr (%); Revenue rev (%).

SEQ). The empirical results reported for SEQ are with agents that follow sophisticated

bidding strategies, learned over many repeated trials of the same problem instance. In

comparison, iBundle agents follow simple best-response bidding strategies.
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Figure 5.2: Performance of SAA-w ‘X', iBundle(2) ‘+’, and a naive central resource allocation
algorithm ‘o’. Bid increment € = 5%. (a) Efficiency. (b) Correctness.

Figure 5.2 plots the efficiency (a) and correctness (b) of iBundle(2) and SAA-w (with
e = 5%) for each problem set, together with the naive performance as a baseline. The
SAA auction fails in many problem sets (1, 3, 8, 10-16), in the sense that agents lose
utility through participation when the best-response bidding strategy leaves them with
incomplete bundles. The efficiency of SAA is somewhat misleading in these problems
because it indicates a significant problem with myopic best-response as an agent bidding
strategy. SAA-w allows bid withdrawal, and mitigates the exposure problem in problem
sets 12 and 13.
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Problem Perf iBundle(2) iBundle(d) iBundle(3)

#| Name |measure

1 | CalTech € 5 2 1 05{5 2 1 055 2 1 05
eff |100 100 100 100|100 100 100 100100 100 100 100
corr |94 96 98 100/ 94 98 100 100( 94 98 100 100
inf |87.6 89.8 90.4 91 {87.6 89.8 90.4 91 |87.6 89.8 90.4 91

2| PSI € 5 2 1 053{5 2 1 03!5 2 1 035
eff 198.3 99.7 99.9 99.8|98.3 99.8 100 100 {98.3 99.8 100 100
corr |65.8 91.1 98.7 97.5/65.8 92.4 100 100(65.8 92.4 100 100
inf |49.2 42.4 40.8 39.9{49.2 43.5 41.7 40.9|49.2 43.6 41.9 41.1

Table 5.7: Achieving Optimal Solutions with iBundle; Problems 1 and 2. Bid increment ¢; Effi-
ciency eff (%); Correctness corr (%); Information revelation inf (%).

It is useful to consider average performance across all problem sets. For the sake of
analysis [ substitute the efficiency and correctness of naive, and the revenue from the
Generalized Vickrey Auction (GVA), in problem sets where SAA and SAA-w fail. The
naive central algorithm provides a useful lower bound on efficiency and correctness, but
revenue is undefined. The GVA provides a lower bound on revenue, for agents that follow
rational bidding strategies in an auction that generates efficient solutions.

iBundle(2) (with ¢ = 5%) achieves an efficiency of 99%, compared to 83.3% efficiency for
SAA-w, 81.6% for SAA, and 70.1% for naive. SAA-w performs well in problem set 2 (where
there is little competition for resources), and sets 4, 5 and 6, where agents have subadditive,
linear-additive or slightly superadditive values on bundles. Average correctness is 67.2%
for Bundle(2), 23.9% for SAA-w, and 7.8% for naive. Finally, iBundle(2) generates 75.6%
revenue, compared to 70.8% for SAA-w and 62.9% for the GVA.

5.4.1 Effect of Price Discrimination

Figure 5.3 (i) compares the efficiency and correctness with each auction variation for prob-
lem set 0.5-comp(3), which is a problem with 5 agents, 5 items, and 7 bundles/agent. Al-
though price discrimination is required for 100% correctness in this problem, the efficiency
improvement is negligible. The increase in efficiency with iBundle(d) and iBundle(3),
compared to iBundle(2) is marginal. With ¢ = 5%, ‘Bundle(3) achieves 99.1% efficiency,
compared to 99% efficiency for iBundle(2). Table 5.7 presents similar results for Problems
1 and 2.

Price discrimination only makes a difference for very small bid increments, when the
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Figure 5.3: Performance of iBundle as the bid increment ¢ decreases. ‘+' iBundle(2); '+’ iBun-
dle(d); ‘A’ iBundle(3). Problem 0.5-comp(3).

communication cost begins to increase rapidly. For bid increment ¢ > 0.5% the perfor-
mance is almost identical. The relationship between average number of rounds to termi-
nation and bid increment is approximately linear, with ¢ = 5%, 0.5%, 0.05% corresponding
to 6, 49, and 480 rounds respectively. An auctioneer may choose not to operate below
0.5% because of high communication costs, computation costs, and indirect costs due to
elapsed time.

Figure 5.3 (ii) plots the information revelation; (iii) the auctioneer’s computation cost;
and (iv) the agent’s communication cost. The computation cost in this experiment is as-
sumed to scale exponentially with the worst-case size of the winner-determination problem
solved in iBundle, and with the size of the winner-determination problem with all agents
in the GVA. Size is measured as the product of the number of bids received {(or bundles
with values in the GVA) and the number of items. Finally, the cost is normalized on a
log-scale, with the cost of the GVA equaling 100%. We might expect the worst-case run-
time in tBundle to be dominated by the time on the largest problem in any round because

winner-determination is NP-hard. Similarly, the cost of solving WD for all agents should
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dominate in the GVA.

The results show that iBundle can tradeoff performance for communication, compu-
tation, and information revelation costs. iBundle(2) achieves allocations that average
91.7% efficiency across all problem sets and terminates after 5.7 rounds with bid incre-
ment ¢ = 20%, down from 99% efficiency after 18 rounds with bid increment ¢ = 5%.
Price discrimination only helps for bid increments less than around ¢ = 0.5, at which point
the communication cost begins to increase rapidly. It is likely that an auctioneer would
choose not to operate in this region anyway. The performance of all auction variations
is approximately identical in the region with reasonable communication cost. As the bid
increment decreases we can achieve a continuous tradeoff between performance (efficiency
and correctness), information revelation, and communication cost. Notice also that the
dynamic and third-order iBundle auctions require more information revelation and auc-
tioneer computation than the second-order i:Bundle auction in this problem domain, but

have less communication cost.

5.4.2 Information Revelation

iBundle(2) requires an average of 57.5% information revelation at ¢ = 20% (when the allo-
cations are 91.7% efficient), and an average of 71% information revelation at e = 5% (when
the allocations are 99% efficient). The (sealed-bid) GVA requires 100% information reve-
lation from agents to achieve 100% efficiency. I would expect information revelation to be
smaller in real-world problems. The agents in the problem sets have sparse valuation func-
tions, which limits the size of the worst-case information revelation, i.e. the denominator in
the information-revelation metric. In addition, information revelation would be smaller in
“easier” problems, for example with significant over-demand or significant under-demand.
In the former only a few agents need to drive the price adjustment, while in the latter we
would expect iBundle to terminate quickly.

One of the main claims for iterative auctions vs. sealed bid auctions is that they provide
major computational advantages in easy problem instances, terminating quickly with little
information revelation and computation. To test this claim I studied the Decay problem
set, with the number of agents increased from 2 to 50. Table 5.8 summarizes the statistics
for the problems. The problem is relatively “easy” with a few agents, but as the number of

agents increases the level of competition increases and it is more difficult to compute the
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Problem |G| |I| Number (X)or Num  Naive Naive Num
# Name bundles / agents in  eff corr trials
peragent (O)r sol (%) (%) (%)
17 | decay(2) | 20 2 25 X 100 93.0 64 25
18 | decay(10) } 20 10 5 X 77.2 75.5 4 25
19 | decay(25)| 20 25 2 X 374 61.2 0 25
20 | decay(50) | 20 50 1 X 20.6 62.8 0 25

Table 5.8: Problems for the easy-hard scalable performance test.

optimal solution. For example, all agents are in the optimal allocation with a few agents,
and the efficiency and correctness of the naive algorithm is high.

Figure 5.4 illustrates the performance of iBundle as the “difficulty” of the combinatorial
allocation problem is increased. In each trial I select a bid increment to make iBundle
compute a solution with the same quality, i.e. with a similar efficiency and correctness,
see Figure 5.4 (i).

As the instances get more difficult the auctioneer’s computational cost steadily in-
creases, see Figure 5.4 (iii). As described above, this is a measure of the size of the largest
winner-determination problem the auctioneer must solve, measured as a fraction of the
size of the problem in the GVA (with full valuation functions from each agent). In easy
problems the largest winner-determination problems in iBundle are about half the size of
the problems in the GVA, which could be significant for an NP-hard problem.

Communication cost in iBundle(2) and iBundle(d) is a linear function of the number
of agents, essentially because a cost is accounted to send price updates to all agents. This
is not a very accurate measure, as simple methods that allow agents to drop out of the
auction will give similar communication costs across :Bundle(2), (d) and (3). Essentially,
the communication scaling properties are strongly sub-linear in the number of agents,
because many agents quickly drop out as prices get too high.

The most interesting effect on information revelation can be observed between 0 and
10 agents. For less than 10 agents the problem is solved with very little information from
agents. The peak information revelation occurs for problems of intermediate size, when
every agent in the system must report quite accurate and complete information. As the
number of agents increase the average information revelation falls because information

from some agents becomes irrelevant.
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Figure 5.4: Performance of iBundle as the problem difficulty is increased. ‘+' iBundle(2); **'
iBundle(d); ‘A’ iBundle(3). Decay problem set, for 2, 10, 25, and 50 agents.

5.5 Results II: Winner Determination and Communication
Cost

The auctioneer must solve one WD problem in each round, and a naive worst-case analysis
gives O(BVax/€) rounds to converge, for a total of B bundles with positive value over all
agents, maximum value Vi« for any bundle, and minimal bid increment €. In the worst-
case the price of a single bundle must increase by at least € in each round the auction
remains open, and prices are bounded by the maximum value over all agents. The number
of rounds to termination is inversely proportional to the minimal bid increment. The
auctioneer can solve less WD problems by increasing the minimal bid increment, for some
loss in economic efficiency.

The winner-determination (WD) problem that the auctioneer solves in each round of
iBundle is N'P-hard, itself a small instance of the CAP problem. Each problem is smaller
than the problems in the GVA, because the winner-determination problem is revenue-

maximization given agents’ best-response bids, while in the GVA the problem is to compute

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



an efficient allocation from valuation functions. However, the problem instances might
also be hard instances because all agents bid at similar prices for bundles (Andersson et
al. [ATY00]), which can restrict the ability of search-based methods to prune the search
space.

A number of methods are available within {Bundle to speed-up computation. First,
the provisional allocation from the previous round provides a good initial solution to the
WD problem, because agents must re-bid bundles received in the previous round. This
allows pruning of the search for a revenue-maximizing allocation. An additional saving in
computation time is achieved by limiting search to an allocation at least € better than the
value of the allocation in the previous round.

The auctioneer announces only price increases in each round, and does not maintain
explicit prices for all possible bundles. Instead, bid prices are verified dynamically in each
round, to check that bids are at least as large as the ask price of all contained bundles.
The total work in checking each bid is linear in the number P of bundles that have explicit
ask prices, with a naive linked-list data structure. Similarly, price monotonicity can be
maintained in linear time in P for each new price increase. In addition, P < B, with
agents that have values for B bundles, because only bundles that receive bids can receive

explicit ask prices.

5.5.1 Minimal Bid Increment Approximations

One method to introduce approximations is via the minimal bid increment. Figure 5.5
plots the total auctioneer winner-determination and price-update time? in {Bundle in the
Decay problem set. Performance is measured for different bid increments, with the bid
increment selected to give allocative efficiency of 80%, 85%, 95% and 99% (+1%). Figure
5.5 also plots performance for the GVA, and for a sealed-bid auction in which agents are
assumed to bid truthfully. The GVA proved intractable for 30 and 40 agents. In those
problems the run time is estimated as the time to compute the optimal solution in a single
WD problem multiplied by the number of agents in the optimal allocation. Results are
averaged over 10 trials. First, note that the curves are sublinear on the logarithmic value

axis as the number of agents increases, indicating polynomial computation time in the

*Time is measured as user time in seconds on a 450 MHz Pentium Pro with 1024 MRAM, with Bundle
coded in C++.
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Figure 5.5: Total computation time in iBundle(2), the GVA, and a sealed-bid auction with truthful
agents, in problem set Decay. The performance of iBundle is plotted with different bid increments
¢, selected to give allocative efficiency of 80%, 85%, 95% and 99%.

number of agents.

The performance improvement of iBundle over GVA is striking, achieving at least one
order of magnitude improvement with 99% allocative efficiency and three orders of mag-
nitude with 85% allocative efficiency. For up to 95% efficiency I essentially get the myopic
truth-revelation properties of 1Bundle for free, because :Bundle’s run-time is approximately
the same as for the sealed-bid auction with truthful agents.

Table 5.9 compares iBundle with the GVA for all Sandholm’s problems, for problems
with 30 agents. These WR and Uniform problem instances are quite easy because the
optimal allocation sells large bundles to a few agents, which allows considerable pruning
during search. In comparison, The Random and, in particular, Decay problems tend to
be harder because the optimal allocation requires coordination across a number of agents,
see also Sandholm [San99] and Andersson et al. [ATY00]. In all problems iBundle has less
WD time at 95% allocative efficiency than the GVA.

Note that the price-update step is relatively expensive in the otherwise easy weighted-
random (WR) problem, because bid prices for large bundles must be checked for price

consistency against the price of all included bundles.
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Problem GVA iBundle Approx-
~90% ~95% =~99% | Bundle
Decay Eff (%) 100 | 91.5 949 983 85.1
67.3%% WD-time® (s) |41700| 831 2400 5650 0
13.4¢  Pr-time® (s) -~ 26 34.5 44 39.2
Comm°© (kBit) | 18.8 | 221 306 394 377
WR Eff (%) 100 | 90.7 949 99.2 79.4
71.5% WD-time (s) 3 0.6 1.7 6 0
1 Pr-time (s) - 5.4 11.5 40.9 12.2
Comm (kBit) | 18.1 20.5 52.1 144 53.1
Rand Eff (%) 100 | 89.3 97 99 95.8

37.8% WD-time(s) | 68 | 44 74 11 0
11.2  Pr-time (s) - 65 97 121 | 129
Comm (kBit) | 18.7 | 49.5 664 826 | 85.6
Unif Eff (%) 100 - 95.6 99.1 | 76.2
58%  WD-time (s) | 25 - 66  18.7 0
3 Pr-time (s) - - 147 420 46
Comm (kBit) | 182 | - 56.5 120 124

Table 5.9: Performance in the Decay, WR, random, and uniform problems. * Auctioneer WD
time. ® Price-update time. ¢ Communication cost. ¢ Alloc. eff. of a sealed-bid auction with a
greedy WD algorithm and truthful agents. © Average number of agents in the optimal solution.

5.5.2 Approximate Winner-Determination

Another method to introduce approximation is via a greedy winner-determination algo-
rithm in each round of the auction.
The auctioneer can maintain the same incentives for myopic agents to follow the same

bidding strategy for any approximation algorithm with the bid-monotonicity property:

DeriNiTION 3.2 [bid-monotonicity] An algorithm for winner-determination satisfies bid-
monotonicity if whenever an agent 1 is allocated a bundle with bids B;, it is also allocated
a bundle with bids B; U B that include a bid for an additional bundle B.

It is straightforward to prove that optimal winner-determination algorithms are bid-
monotonic. One simple algorithm with the bid-monotonicity property is due to Lehmann
et al. [LOS99], which allocates bundles in order of decreasing value-per-item.

Table 5.9 presents the efficiency in iBundle with this approximation algorithm for
winner-determination. The auction solves each problem with negligible computation, and
achieves a high allocative efficiency. For example, iBundle performs well in the hard Decay

problem set, with allocative efficiency 85.1%, giving at least a 1000-fold reduction in WD
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Problem WD Time % Cache
0 1 T ! Correct

Decay 50/15/150° | 415 371 355 291 |0 28 47 59
WR  50/50/1000 | 253 243 231 163 |0 11 57 57
Rand 50/30/600 | 1823 1616 1491 864* |0 6 30 78
Unif 50/40/800 | 343 337 336 110 |0 14 29 49

Table 5.10: Winner-determination time with caches of size 0, 1 (last round), and T (all previous
rounds). In cache T! revenue maximizing cached solutions from previous rounds are assumed
optimal. Eff > 99% in all problems except °, where Eff = 96.8%. 2 |G| / |I| / # bundle values.

time. I believe that other, slightly less greedy, approximate algorithms will give even

further performance improvements.

5.5.3 Methods to Speed-up Sequential Winner-Determination

The sequential nature of winner-determination in {Bundie suggests that cache-based meth-
ods can speed-up winner-determination. I experimented with a cache of all provisional
allocations computed in previous rounds. The auctioneer first checks the cache when new
bids are submitted, which provides an initial solution for winner-determination and is used
to prune search. A simple linear program is used to select the best allocation from the
cache, and requires negligible computation. In our main trials I use a cache size of 1, i.e.
take the solution from the previous round as an initial solution to the WD problem.

Table 5.10 compares the WD time in each problem with and without caching of previous
allocations. Although a full cache can provide an additional speed-up over using no cached
solutions, or just the allocation from the previous round, the effect is not very dramatic.
The reason is that it remains expensive to verify that a cached solution is optimal. For
example, although an extended cache in the Decay problem provides the correct allocation
in 47% of problems, the speed-up is limited to around 14%.

In an attempt to leverage the correct solutions from the cache, I tested the performance
of iBundle under an additional assumption that if a cached solution from before round
t — 1 generates more revenue than the solution from round ¢t — 1, this is adopted as the
new provisional allocation without further computation. The rule is designed to capture
“flip-flop” competition between a number of good allocations during an auction.

Labeled T, the rule proves useful in Decay, WR and Uniform, reducing computation

by 30%, 36% and 68% from the time with no cache for a negligible drop in allocative
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efficiency. However, one must be careful: although we also see a speed-up in Random, the
allocative efficiency falls from 99% to 96.8%. Further analysis shows that cached solutions
prove optimal in 54%, 97% and 49% of rounds in Decay, WR and Uniform, but only
optimal 34% of rounds in Random.

Further optimizations should be possible, for example using cached solutions once a
large enough cache is constructed, and solving WD when an auction is about to terminate
with cached solutions. Another useful approach is e-scaling, that adjusts the bid increment

during an auction [Ber90].

5.5.4 Communication cost

Communication cost is computed using the metric specified in Section 5.3.1, with 10 bits
to specify a value in the GVA. Cost is measured as |G|npigs for each agent plus |G|ngrices-
The communication cost in these experiments is measured for broadcast of prices to agents,
and therefore the communication cost of price transmission is independent of the number
of agents. The situation with non-anonymous prices is even simpler. Price changes in
iBundle(3) are implicit in the provisional allocation, because the prices increase to ¢ above
an agent’s bid price whenever an agent’s bids are unsuccessful.

There is a communication cost penalty in using i:Bundle compared with the GVA in
these problems (Table 5.9) because of repeated bids across a number of rounds. This would
change in problems with agents that have values for many bundles because all values must
be reported in the GVA, or in easier problems because iBundle will terminate quickly with

less bids.

5.6 Special Cases for Expressive Bid Languages

It is possible to derive fast special cases of iBundle for restrictions on agent bidding lan-
guages, which solve the combinatorial allocation problem for assumptions about agent
preferences. The advantage of identifying special cases is that the winner-determination
problem is tractable for particular structures on bundles and price functions over bundles

(see section 4.5).
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5.6.1 Unit-Demand Preferences (Assignment Problem)

In problems where agents have single-unit demands (the standard assignment problem) we

can restrict ‘Bundle in two ways (leading to two different auction mechanisms):

* Restrict agents to placing OR bids on items. In this case iBundle(2) reduces to a si-
multaneous ascending-price auction, that was shown to be optimal for the assignment
problem by Crawford & Knoer [CK81].

¢ Restrict agents to placing XOR bids on items. In this case the winner-determination
problem in i:Bundle(2) can be formulated as a max-flow problem, and solved effi-
ciently.The auction only generates prices on items, and is a variant on the auction

proposed by Demange et al. [DGS86).

5.6.2 Linear-Additive Preferences

In problems where agents have linear-additive demands on items we can restrict agents
to OR bids on items. The auction reduces to a simultaneous ascending-price auction,

equivalent to Crawford & Knoer’s [CK81] auction for the problem.

5.6.3 Gross Substitutes Preferences

Gross substitutes (GS) preferences implies that an agent that demands bundle S in round
t will continue to demand items in S that do not increase in price as the price of other
items increases [KC82]. Linear-additive and unit-demand preferences are special-cases of
gross substitutes. Kelso & Crawford prove GS are a sufficient condition for the existence
of linear competitive equilibrium prices. Again, we can restrict agents to OR bids in this

special case:

o Restrict agents to placing OR bids on items. Agents bid for all the items in the single
bundle that maximizes their utility in each round. Gross substitutes implies that an
agent will continue to demand any subset of the items as the price of other items
increases, and be happy to continue to bid for items it receives in a partial allocation.
In this case iBundle(2) reduces to a simultaneous ascending-price auction, that was
shown to be optimal for GS by Kelso & Crawford [KC82].
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5.6.4 Multiple Homogeneous Goods

In this problem we define a bundle as the number of goods demanded, because all goods
are homogeneous. We assume that every equivalent bundle must be priced identically in
the final allocation, and maintain one price for each bundle of size n. Essentially, a single
bid for a bundle of size n represents a set of XOR bids for all sets of items of size n.
An unsuccessful bid for size n increases the price on bundles of size n in the next round.

Again, the iBundle auction would increase the price on all bundles in the exclusive-or set.

5.7 Earlier Iterative Combinatorial Auctions

Rassenti et al. [RSB82] propose a simpler sealed-bid bundle auction for the problem of
allocating airport slots, where airlines value take-off and landing slots in pairs. Agents
submit sealed XOR bids for bundles of take-off and landing slots. The auction computes
linear prices that approximately clear the market, given agent bids. Finally, agents can
place bids and asks for individual slots in a secondary market, to cleanup their final allo-
cation. Although the auction design is fairly ad-hoc, empirical results with human bidders
suggest that the market can achieve high efficiency with experienced bidders.

The recent FCC spectrum auction generated a lot of debate among economists about
combinatorial auction mechanisms. Spectrum licenses have non-additive value in bundles
because of network synergies from spatially-coherent geographical regions. The final FCC
auction design was a variant on a simultaneous ascending-price auction that allowed agents
limited decommitment rights, and placed participation constraints on agents to enable
information exchange via prices during the auction [MM96]. The goal was to allow agents
to find a good “fit” between their demand sets and the demand sets of other bidders, and
win coherent bundles of spectrum licenses.

Bykowsky et al. [BCLOO] demonstrate the ezposure and ezistence problem with linear
prices for the combinatorial allocation problem, and study the AUSM auction [BLP89]
as an example of a bundle auction to address the problem. AUSM allows agents to bid
for arbitrary bundles of items, and maintains a revenue-maximizing allocation. There
are no pricing rules, and agents must coordinate their own bids. Theoretical analysis
is difficult because of the flexible auction rules, but see Milgrom [Mil00b]. AUSM has
reasonable performance empirically, see Ledyard et al. [LPR97|. Bykowsky et al. identify
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the “threshold problem” for bundle auctions, where smaller bidders must coordinate bids
to outbid a larger bidder. Although iBundle solves this problem for agents that follow
best-response bidding strategies, the effect of alternate agent bidding strategies on the
threshold (or coordination) problem is unknown.

Recently, DeMartini et al. [DKLP98] proposed RAD, an auction that allows agents to
place XOR bids on bundles but generates prices on items. Although promising empirical
results have been presented, there are no theoretical results on its allocative efficiency.
RAD also borrows from the FCC auction design, agents must re-submit winning bids,
and there are activity rules to encourage information revelation early in the auction and

encourage coordinate bidding.

Appendix: Worked Price Discrimination Example

Problem 6 in Table 5.11 illustrates the importance of iBundle(d) and iBundle(3). The value
of agent 2 for bundle BC, va(BC) can take integer values between 5 and 10. The values for
bundles not explicitly listed are consistent with free disposal of items, i.e. v(S’) > v(S) for
all §' O S. The optimal allocation is ({1, AC], (2, B]) for all valid v2(BC). The problem is
a hard coordination problem because: agent 1 values B more highly than agent 2, but the
optimal solution allocates B to agent 2; and both agents value BC more than any other

bundle but receive another bundle in the optimal allocation.

A B AC BC
Agent1 2 9 8 10
Agent 2 2 5° 3 w(BC)

Table 5.11: Problem 6. Agent values, with 5 < v,(BC) < 10. Efficient allocation indicated *.

In this problem first- and second-order CE prices exist for vo(BC) < 7, but only third-
order CE prices exist for vo(BC) > 7. For example, when v2(BC) = 6 and vo(BC) =7,
then p(A) = 2,p(B) = 5, and p(C) = 2 are CE prices. However, when v2(BC) = 8,
no first- or second-order CE prices exist, and v(LP,) = v(LP;) = 13.5 > v(IP) = 13.
It is not possible to price BC high enough (so that agent 2 demands B but not BC)
without making the auctioneer’s revenue from selling A and BC together greater than its
revenue from selling B and AC together. Third-order CE prices for va(BC) = 8 include
n = (2,9,8,10) and p; = (0,3,1,6) for bundles A, B, AC and BC, with other prices set
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high enough to satisfy pi(S’) > p;(S) for all &' O S.

Although iBundle(2) solves the problem when v3(BC) = 6, the auction fails when
v2(BC) > 7, terminating with allocation ([1, BC],[2, A]). Auction iBundle(d), with price
discrimination, solves the problem. The auction switches to price discrimination, and
separates the effect of agent 1's bids from ask prices to agent 2. Agent 2 continues to bid
for B and the auction terminates with the optimal allocation ({1, AC], [2, B]).

Table 5.12 (a) shows iBundle(2) for Problem 6 in Table 5.11, for vo(BC) = 7. The
auction fails even though second-order CE prices exist. Price-updates are not safe, for
example in rounds ¢ + 1 and ¢ + 3, so we might expect the auction to terminate with a
suboptimal allocation. Agents 1 and 2 compete on bids for BC, and agent 1 also drives up
the price on B and AC and prevents agent 2 from bidding for B because vy (BC)—v,(B) <
v2(BC) — va(B). The auction terminates with the suboptimal allocation ([1, BC], [2, 4]),
because agent 2 bids for item A but not B.

Table 5.12 (b) shows the auction for Problem 6 with vo(BC) = 6. In this case the
auction solves the problem. Agent 2 can bid B in all rounds of the auction because
v2(BC) — v2(B) < v (BC) - v;(B), and the revenue to the auctioneer from allocation
([1, AC],[2, B]) eventually exceeds the revenue from ([1, BC]) or ({2, BC]). The auction
terminates with optimal allocation ([1, AC], 2, B]).

Table 5.13 shows the performance of iBundle(d) in Problem 6 (Table 5.11) for vo(BC) =
7. I use '/ to indicate the prices for each agent. The effect of price discrimination is to
separate the price increases caused by bids from agent 1 from the price increases to agent
2. In particular, agent 1's bids for B do not increase the price of B to agent 2, and agent 2
can continue to bid for B (unlike in iBundle(2) on this problem). The auction terminates
with the optimal allocation ({1, AC], [2, B}).

[t is interesting to examine the final prices in the auction, to check how well the auction
minimizes CE prices. In Problem 6, when v2(BC) = 7, the auction terminates with ask
prices are p; = (0,3,2,4) and p; = (0,2,0,4) for bundles A, B,AC and AB. Agent
values are v1(2,9,8,10) and v, = (2,5,3,7). These are minimal CE prices because any
lower prices that maintain best-response changes the revenue-maximizing allocation from
([1, AC], [2, B]) to an allocation of BC to one of the agents. In fact, the auction increases

prices to agents while the allocation BC is revenue-maximizing (see Table 5.13).
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Round Prices Bids Revenue
A B AC BC Agent 1 Agent 2
-1 (BC, 4.4)° 4.4
i 0 34 24 44((B,3.4) (AC,24) (BC,4.4)*[(BC, 44) 4.4
t+1 |0 3.4 24 4.6((B,3.4) (AC,24) (BC,4.4) |(BC, 4.6)° 4.6
i+2 10 3.6 26 4.6|(B,3.6) (AC,2.6) (BC,4.6)*|(BC, 4.6) 4.6
i+3 10 3.6 26 48|(B,3.6) (AC,26) (BC,4.6) |(A,0) (BC, 4.8)° 4.8
i+4]0 3.8 2.8 4.8((B,3.8) (AC,2.8) (BC, 4.8)*|(A,0)* (BC, 4.8) [4.8
(a) v2(BC) = 7. iBundle(2) fails.
Round Prices Bids Revenue
A B AC BC Agent 1 Agent 2
i-1 (BC, 2.4)° 2.4
i 0 14 04 24((B,1.4) (AC,04) (BC,2.4)*{(B,14) (BC,24) |24
i+1]0 1.6 04 26|(B,1.6) (AC,04) (BC,24) |(B,1.6) (BC,26)" |26
i+2 !0 1.8 06 26((B,1.8) (AC,0.6) (BC,26)"{(B,1.8) (BC,2.6) [2.6
i+3 |0 20 0.6 2.8((AC, 0.6) (BC, 2.6) (B,2.0) (BC,2.8)*|2.8
i+4 |0 20 0.8 2.8((B,2) (AC, 0.8)° (BC,28) |(B,2)" (BC, 2.8) |28

(b) v2(BC) = 6. Bundle(2) works.

Table 5.12: iBundle(2) on Problem 6. Bid incr. e = 0.2. Provisional allocations indicated *.

Round Prices Bids Rev
A B AC BC Agent 1 Agent 2

i-1 (BC, 1.8)° 1.8

i 0 0.8 0 1.8 (B, 0) (AC,0.8) (BC, 1.8)"}(BC, 1.8) 1.8
i+1]| 0 0.8 0 2.0 (B,0) (AC,0.8) (BC, 1.8){(BC, 2.0)° 2.0
i+2|0/0{L0/0.8{0.2 /0{2.0 / 2.0|(B, 1.0) (BC, 2.0)° (BC, 2.0) 2.0
i+3 (0/0]1.0 /0.8[0.2 / 0]2.0 / 2.2|(B, 1.0) (BC, 2.0) (BC, 2.2)* 2.2
j-1 (BC, 3.6)° 3.6

Jj l0/0{2.6/1.6|1.6 /0/3.6 / 3.6/(B, 2.6) (AC, 1.6) (BC, 3.6)"| (B, 1.6) (BC, 3.6) 3.6
J+1]0/0/2.6/1.8|1.6/0]3.6 /3.8/(B, 2.6) (AC, 1.6) (BC, 3.6)| (B, 1.8) (BC, 3.8)" 38
j+210/0]2.8/1.8|1.8/0|3.8/3.8|(B,28) (AC, 1.8) (BC, 3.8)°| (B, 1.8) (BC, 3.8) 38
j+310/012.8/20|1.8/0|3.8/4.0|(B, 2.8) (AC, 1.8) (BC, 3.8)| (B, 2.0) (BC, 4.0)° 4.0
Jj++41]0/03.0 /2.0{2.0 / 0[4.0 / 4.0{(B, 3.0) (AC, 2.0)° (BC, 4.0)| (B, 2.0)° (AC,0) (BC, 4.0)|4.0

Table 5.13: iBundle(d) on Problem 6, with vo(BC) = 7. Bid incr. € = 0.2. Provisional allocations
indicated *.
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Chapter 6

Linear Programming and Vickrey

Payments

We have assumed up to this point that agents follow myopic best-response bidding strate-
gies. This assumption proved useful, as it allowed the construction of a primal-dual based
auction for the Combinatorial Allocation Problem (CAP). iBundle is the first auction to
compute efficient allocations in general CAP problem instances, even under an assumption
of myopic agent rationality.

In this chapter we relax this assumption. I retain myopic best-response, but develop a
primal-dual based method to compute Vickrey payments at the end of the auction. When
successful this makes myopic best-response a sequentially rational strategy for an agent,
given that every other agent also follows myopic best-response. Myopic best-response be-
comes a sequential Bayesian Nash equilibrium of the auction, for all priors over agent pref-
erences. Connecting primal-dual theory back to the Groves mechanisms, and in particular
in this case to the Generalized Vickrey auction, allows us to inherit powerful incentive-
compatibility and robustness-to-manipulation.

This approach of “Vickrey + Primal-Dual” appears to be a provide a powerful con-
structive tool for useful iterative mechanism design. Indeed, Bikchandani et al. [BdVSV01]
have recently demonstrated that many of the successful iterative Vickrey auctions known
in the literature, such as Demange et al. [DGS86] for unit-demand and Ausubel {Aus97)
for multi-item decreasing returns have interpretations as primal-dual algorithms for ap-
propriate linear program formulations of the top-level allocation problem.

This chapter develops a primal-dual algorithm, VICKAUCTION, to compute Vickrey
payments. Chapter 7 then interprets the algorithm as Extend&Adjust, which introduces

a second phase at the end of the auction.
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Earlier iterative Vickrey auctions, with the exception of Ausubel’s designs [Aus97,
Aus00] compute Vickrey payments through careful price adjustment (see Table 4.7). Prices
are increased on the minimal overdemanded set of bundles in each round, in order to
terminate in minimal competitive equilibrium prices, which are Vickrey payments in many
problems.

The main innovations in my extended i:Bundle approach are:

o Prices are adjusted after the auction terminates towards Vickrey payments. This
relaxes the requirement of “minimal” price increases during the auction, because it

is not necessary to terminate in the minimal competitive equilibrium solution.

e The adjusted prices need not be in competitive equilibrium, which allows Vickrey
payments to be computed even when there is no competitive equilibrium solution

that supports all Vickrey payments simultaneously.

Conceptually, it is useful to consider two distinct phases in VICKAUCTION, and in the
extended iBundle auction presented in chapter 7. The purpose of Phase I is to compute the
efficient allocation from myopic best-response bids. The purpose of Phase II is to compute
Vickrey payments from myopic best-response bids. The transition from Phase I to Phase
I is designed to be hidden from bidders. Prices continue to increase monotonically across
the two phases, and the auction rules are unchanged. The provisional allocation continues
to change from round-to-round in Phase I, although the final allocation is that computed

at the end of Phase L.

e Phase I is iBundle(3), the auction variation with separate prices for each maintained
explicitly from the first round. The allocation at the end of Phase I becomes the

final allocation.

e Phase II continues from the prices at the end of Phase I, but injects additional com-
petition into the system in the form of “dummy” agents simulated by the auctioneer
to mimic continued bidding from real agents as they drop-out. Phase II terminates
as soon as enough additional information has been collected from agents to compute

Vickrey payments.

The bids from an agent in Phase II do not change the allocation or the price that it
finally pays. The only effect of bids is to decrease the final price paid by other agents
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in the efficient allocation. One possible weakness of this experimental auction design is
the separation of concerns between Phase I and Phase II. In other auction designs the
allocation design is made simultaneously with the payment decision. In section 7.8 in
the next chapter I discuss whether this decomposition of the problem across Phase [ and
Phase II might make collusion and other well-known vulnerabilities of Vickrey solutions
more likely.

The outline of this chapter is as follows. First I present a linear program formulation of
the Vickrey outcome, based on the third-order dual linear program for the CAP introduced
in section 4.4 of chapter 5. The optimal dual solution that minimizes revenue to the
auctioneer will compute Vickrey payments to all agents in some problems. In addition, I
show that the minimal price to each agent over all optimal dual solutions computes the
Vickrey payment in all problems. The linear program formulation leads to primal-dual
method, ADJUST, to compute minimal CE prices from a suitable set of CE prices, which
is introduced in section 6.2. I prove that the prices computed at the end of iBundle are
sufficient to compute minimal CE prices with ADJUST.

Section 6.3 introduces primal-dual method ADJUST*, which extends ADJUST, to com-
pute Vickrey payments from a suitable set of CE prices. ADJUST* is useful in an auction
context because it computes Vickrey payments without explicit information about agent
valuation functions. I characterize necessary and sufficient conditions for ADJUST* to
compute Vickrey payments.

Finally, section 6.4 presents primal-dual algorithm, VICKAUCTION, which computes
Vickrey payments and the efficient allocation from only best-response agent information.
VICKAUCTION extends COMBAUCTION with a second phase, PHASEII, that is designed
to collect enough additional information from agents to adjust prices to Vickrey payments
after termination. In the next chapter I introduce iBundle Extend&Adjust, which is an
extension of ‘Bundle, designed to implement VICKAUCTION as an auction. The main
difficulty is making sure that an agent cannot detect the transition from iBundle into the
extended phase. Bids in the second phase affect only the prices paid by other agents, and
an agent that knows it is in this bidding phase would choose to drop out, or perhaps even

act collusively with other agents.
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6.1 Minimal Competitive Equilibrium Prices

In chapter 4 we introduced a hierarchy of linear program formulations for CAP. The third-
order dual problem, DLPj3, characterizes all non-linear and non-anonymous competitive
equilibrium prices.

This formulation is repeated below, with z;(S) = {0,1} to denote whether bundle
S C G is allocated to agent i, and v;(S) > 0 denote agent i's value for bundle S. As
before, k € K denotes a possible allocation, allocating a particular bundle to a particular
agent and without giving any agent more than one bundle or allocating any item more

than once. The variable y(k) € {0,1} indicates which solution is implemented.

. ‘gﬁk);‘;xxsma [LP3]
st. Y z(S)< 1, Vi (LP3-1)
S
={$) < Y ylk), Vi, (LP3-2)
k3(i.S]
GRS (LP3-3)
k

z{S),y(k) 20, Vi, 5k

i ) + DLP

p(i)f;}‘_l(gmzi:p(t) ™ [DLP;]

st. p) +p:(S) 2 u(S), Vi,§ (DLP3-1)

m- ) pi(8) 20, Vk (DLP3-2)
{i,Slek

p(i)api(s)vﬂ 209 Vz,S

The dual variable p(i) associated with constraint ) ¢zi(S) < 1 can sometimes be

interpreted as agent i's marginal product [BAVSV01].

DerFiNiTION 6.1 [marginal product] The marginal product of agent i, MP(i) is the

difference in total value of the optimal allocation with and without agent i.
MP(z) = V* — (V_y)°
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where V'* is the value of the optimal allocation, and (V_;)* is the value of the optimal
allocation with agent i taken out of the problem.

This interpretation of p(z) as the marginal product follows from considering the effect
of reducing the right-hand side on the constraint for agent ¢ to zero. The dual price conveys
information about an the effect of an incremental change in the right-hand side value on
the value of the optimal primal solution. In problems for which the price remains valid for
a reduction from one to zero, p(¢) = MP(z).

This provides a tie-in with Vickrey payments, because an agent’s marginal product is

precisely its utility in the dominant strategy equilibrium of the GVA.

ui(vi, v=i) = vi(S]) = Pvick (4)
=v(8]) = (V=) = V)
= MP(i)

where V; denotes the value V* minus the value of the optimal solution with all agents in
the problem to agent i, and S is the bundle allocated to agent i in the efficient allocation.

Thus, when p(i) = MP(i) then p;(S;) = pyick(Z) because dual variable p;(S}) is inter-
preted as the price to agent i for bundle S?. In general the optimal dual solution to {DLP3]
is not unique. The value of the dual is computed as the sum of the utility over all agents
>_;p(?) and the auctioneer’s revenue 7. This provides some flexibility in prices p;(S) on
bundles in the dual solution.

Bikchandani & Ostroy [BO99] show that the dual solution computes Vickrey payments
to every agent when:

(a) the solution is a minimal competitive equilibrium, and

(b) agent valuation functions satisfy the agents-are-substitutes condition.

Minimal competitive equilibrium (CE) prices are defined as:

DeFiNiTioN 6.2 [minimal CE prices| The minimal CE prices are computed in the opti-
mal dual solution that minimizes the revenue to the auctioneer, 7, or alternatively mazi-
mizes the marginal product (or utility) of the agents, }; p(i).

The equivalence between minimal CE prices and the Vickrey payment is easy to under-
stand for a single item Vickrey auction. For a single item the price to the winning agent

must be greater than the maximum price that any other agent is prepared to pay, i.e. the
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value of the second-highest bid, if the solution is to be in competitive equilibrium. The
English auction selects this price by increasing prices by a minimal amount across rounds.

The agyents-are-substitutes condition is stated in terms of agent marginal products:

DEFINITION 6.3 [agents-are-substitutes] Vickrey payments are computed at the minimal

competitive equilibrium prices if and only if

VIN-VK)2 Y (V) -VI\j)] VKCI
JEI\K

where V(K') denotes the value of the optimal solution to CAP with agents K C Z.

Intuitively, the marginal product of a group of agents is required to be greater than
the sum marginal product of each agent in isolation. One can imagine factory workers,
where each additional worker at the margin has a small effect on the productivity of the
factory but the cumulative effect of having many people not turn up for work (a strike) is
significant.

The minimal CE prices can be computed as a restricted dual problem, denoted [minCE],

which selects the optimal dual solution that minimizes the auctioneer’s revenue =:

min T [minCE]
p(3).pi(S)7w
s.t. p(2) +pi(S) 2 v{(S), Vi, S (minCE-1)
- Y pi(S) 20, Vk (minCE-2)
[i,S]ek
T+ pli) = V(1) (minCE-3)
i

p(i)vpi(s)vﬂ’ 207 VI$S

The restricted dual is different from the regular dual problem in that the objective
function is min~ instead of minw + Y, p(i) and constraint (minCE-3) is new. Constraint
(minCE-3) ensures that the value of the dual solution p(¢), 7, pi(S) computed by [minCE]
is equal to the value of the optimal primal, and therefore an optimal dual solution. A

similar approach was earlier proposed by Leonard [Leo83] for the assignment problem.
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6.1.1 A Primal-Dual Formulation

At this stage my approach departs from that in Bikchandani & Ostroy [BO99] and Bikchan-
dani et al. [BdVSVOl]. Bikchandani & Ostroy close their paper with a note that the
existence of a linear program formulation for Vickrey payments might lead to an iterative
Vickrey auction for CAP. Bikchandani et al. [BdVSVO01] provide primal-dual auction in-
terpretations of the Demange et al. [DGS86] and Gul & Stacchetti [GS00] auctions, noting
that the price updates adjust prices on a “minimal overdemanded set” of items, which
selects the optimal dual solution with minimal auctioneer revenue. Constructive meth-
ods to compute minimal dual solutions with primal-dual methods are also demonstrated
for Ausubel [Aus97] and Ausubel {Aus00]. However, the authors make no constructive
progress towards an iterative Vickrey mechanism for the general CAP.

[ develop a primal-dual based formulation of [minCE] that does not require the value of
V(I). This value is not available in the competitive equilibrium at the end of an iterative
auction. Similarly, the formulation should not require explicit information about agents’
values v;(S) for bundles, beyond that which is available from best-response bids.

Given primal solution z;(S) and y(k) and dual solution p(z), =, and p;(S), the comple-

mentary slackness conditions are:

z{S) > 0= p(i) + pi(S) = v{(S) (CS-1)
y(k) >0=>7- Y pi(S) =0 (CS-2)
(i,S)ek

p(i) >0= Y z(5) =1 (CS-3)
scg

pi(S)>0=) z(S)= Y k) (CS-4)

i€Z keK [i,S]ek

T>0= ) yk)=1 (Cs-5)

keK

[ formulate an alternative to restricted dual problem [minCE]}, which replaces constraint
(minCE-3) with complementary-slackness conditions with the efficient allocation. It is safe

to ignore conditions (CS-3), (CS-4) and (CS-5) because these are all trivially satisfied.
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min w
p(i).pi(S)x

s.t. p(i) +pi(S) > v{S), Vi, S (D1)

m— Y, pi(S) 20, Vk (D2)
[i,Slek

p(i) +pi(S7) = vi(S])Vi € Loy (Cs1)

=Y pi(S]) =0 (CS2)

p(¢),pi(S),m 20, Vi,§

Shorthand S} is used to denoted the bundle allocated to agent i, i.e. the bundle
corresponding with z;(S) = 1, and Iy C 7 is the subset of agents with a non-empty
bundle, such that i € Iy & Y ¢zi(S) = 1. It is straightforward to see that constraints
(CS1) and (CS2) enforce complementary slackness with the optimal primal solution, while
the other constraints are the standard constraints for dual feasibility.

Combining (CS1) and (D1), we require:

p(1) = vi(5{) = pi(S7) 2 max(vi(S) - pi(S))
Combining (CS2) and (D2), we require:

W—Ep; >m€a-x Z pi(S)

(i,S]ek
With this the restricted dual [minCE] can be reformulated in terms of complementary-

slackness conditions as [minCE-CS]:

:x(u; z pi(S]) [minCE-CS]
st vilS7) ~ pi(S7) 2 max(vi(S) - pi(S)) (BR)
Zm(s >max Y pi(S) (REV)

[t Slek
pl(s) Z 01 V'l,s
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Unlike [minCE], formulation [minCE-CS] will compute minimal CE prices without
explicit information about the value of the efficient allocation. Given CE prices, the first
condition (BR) can be achieved by reducing the price to an agent i on bundle S} by at
least as much as the reduction in the price it faces on all other bundles. The second
condition (REV) only requires information about the prices, which is readily available to
the auctioneer.

In summary, we might state the following result:

LemMa 6.1 Linear program [minCE-CS] will compute the Vickrey payment to each
agent, as pi(S;) when the agents-are-substitutes condition holds. The prices minimize
revenue such that: (BR) every agent in the optimal allocation continues to demand bundle
S;; and (REV) the revenue from the optimal allocation continues to dominate the best

possible revenue to the auctioneer over all possible allocations.

In the next section I derive an adjustment procedure to compute minimal competitive
equilibrium prices, and Vickrey payments in the agents-are-substitutes case, at the end of

the primal-dual algorithm COMBAUCTION(3).

6.2 ADJUST: Discounts for Minimal CE Prices

In this section I propose a concrete algorithm ADJUST to solve [minCE-CS] implicitly,
without enumerating all (REV) constraints.
It is useful to introduce the concept of prices that are a negative translation of an

agent’s valuation function, written p;(-) = v;(:) 8 C.

DEFINITION 6.4 [negative translation] Vector x is a negative translation of y by C > 0,
written x = y © C if £; = max(0,y; — C) for all jin{l,... ,dim(z)}.

Given that the objective in [minCE-CS] is to minimize ), p;(S;), while constraint
(REV) requires this sum to be greater than the maximal revenue over all allocations, the
problem can be solved by setting values on p;(S;) and computing values for the other
prices that are as small as possible without violating (BR).

For an agent i in the final allocation, with price p;(S}) on bundle S}, the smallest price
on bundle §; # S} that also satisfies (BR) is:
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pi(Si) = max(0,v(S) — vi(S}) +pi(S7)), forallSCG

For an agent 7 not in the final allocation we require

pi(S) = vi(S), forallSCG

Prices that are negative translations of agent valuation functions, i.e. p; = v; - C, for
C = vi(5]) = pi(S}), satisfy these conditions. The restricted dual can now be restated

with only as many decision variables, Cy, ... ,Cy, as there are agents:

max C;
(CyrCr) Z,: !

s.t. pi(S)=v,-(S)eC,- vi, S

Ci=0 Vigly
pi(S;)-Ci>20 Vi *)
;pi(s:) > max ) pi(S)

(4,S]ek
C; 20, Vi

The final adjusted prices p;(S;) — C; are non-negative by constraint (*). The negative

translation, p;(S) = v;(S)© Ci, can be expressed with the following additional constraints:

pi(S7) Svi(S]) - Ci Vi€ Iy
pi(S) 2 vi(S) - Ci V(i,S) s.t. zi(S) =0
pi(S) 20 Vi, S
Dropping information about agent valuation functions, we can rewrite this in terms of
prices p7 (S) that denote prices to agent i that are both competitive equilibrium prices, i.e.
that satisfy (BR) and (REV), and negative translations of agent i's valuation function.
Linear program [minCE-Adjust] computes minimal CE prices, as p7 (S) — A, to each

agent.
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ax A; minCE-Adjust
(AE...A,)E,.: ' [ just]

s.t. pi(S)=pl(S)oA; Vi,§ (BR)
Ai=0 Vigly
pr(S)-4A;>0
Zp, ) 2 max [;EL];I: pi(S) (REV)
A0, Vi

Formulation [minCE-Adjust] is useful because the prices computed at the end of CoM-
BAUCTION(3), and equivalently at the end of Bundle(3) with myopic best-response agent

strategies, are CE prices and negative translations of an agent valuation functions.

6.2.1 An Efficient Implementation

The following lemma allows a solution to be computed without enumerating all £ € K and
checking the (REV) constraints explicitly.

Given discounts A = (A, ... ,Ar), i.e. such that p;(S) = p;r(S)eA,-, let P3 denote the
value of the revenue-maximizing allocation, and (Ps,~;)* denote the value of the revenue-

maximizing allocation without agent 1.

LEmMA 6.2 The mazimal discount, A;, to agent i without breaking (REV) is A =
min(p] (S7) — &, (P} - (Pa,-i)")).

Proor. A simple feasibility argument shows that the only allocations that might pro-
vide more revenue to the auctioneer as prices are decreased on bundles to agent  are alloca-
tions that do not assign a bundle to agent i. Any allocation that still contains agent i would
have also provided more revenue before prices are reduced. Therefore, prices can be reduced

until the adjusted revenue from allocation S* equals the best alternative, i.e. Py — A; =
(Pa-d)" 1

This suggests the following algorithm:
ADJUST computes agent discounts, taking each agent in §* in turn. Price reductions to

each agent in the allocation are considered incrementally and not independently; discounts
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ADJUST: input p?(-),S", output A
P=PpP* ;
for each i € I* {
A; = min{P - (Pa-i)",p] (57)};
P=P-A;
b}

Figure 6.1: The ADJUST algorithm

already allocated to agents ¢ < j are considered when computing a discount for agent j.
This is relaxed in ADJUST*, introduced in the next section.

Although the optimization problem in each round, to compute the revenue maximiz-
ing allocation given current discount, (Pa,—;)*, is NP-hard (equivalent to the CAP), and
therefore worst-case exponential, search-based algorithms have been demonstrated to per-
form well on average [San99, FLBS99, ATY00]. The advantage of ADJUST over a direct
linear program implementation of [minCE-Adjust] is that it is not necessary to explicitly
enumerate all constraints (REV). Essentially, ADJUST computes a solution to the linear
program [minCE-Adjust] through implicit enumeration, pruning many possible allocations
from consideration.

A fast approximate method to compute the solution to ADJUST without solving the
revenue-maximization problem (Py ~;)* is suggested in the next section. The ADJ-PIvoT

method uses computation performed during the auction to compute the minimal CE prices.

LEMMA 6.3 Procedure ADJUST computes minimal CE prices from CE prices p7 that

are negative translations of agent veluation functions.

Combining with the agents-are-substitutes condition, we have the following theorem.

THEOREM 6.1 (Vickrey payments). Procedure ADJUST computes Vickrey payments
when the agents-are-substitutes condition holds and prices pT(-) are CE prices and negative

translations of agent valuation functions.

The condition in the lemma on prices is sufficient but not necessary. A weaker necessary

and sufficient condition, e-CS1-tightness is:
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DeriviTionN 6.5 [CSl-tightness] (i) For every agent j in the optimal allocation, all
bundles it receives in any second best allocation are in its best-response set at prices p (-);
(ii) For every agent j not in the optimal allocation, its price must be within ¢ if its value
for any bundle it receives in a second-best allocation.

The e-CS1-tightness condition implies that it is not possible to reduce the price on any
bundle that is in a binding second-best revenue-maximizing solution without violating the

best-response complementary slackness condition, CS1.

LEMMA 6.4 Procedure ADJUST computes minimal competitive equilibrium prices from
CE prices pT(-) if and only if agent best-response bids satisfy e-CSl-tightness, as bid in-

crement € — 0.

6.2.2 A Primal-Dual Algorithm to Compute Minimal CE Prices

Recall that COMBAUCTION(3) refers to the variant of the primal-dual algorithm for the
third-order linear program formulations, [LP3] and [DLP3), in which separate prices p;(S)
are maintained for each agent in every iteration. Also, the final prices satisfy (BR) and
(REV), and satisfy the price-indifference property because of agent best-response bidding
strategies and the price-update rules.

From Lemma 6.3 we can state the following result:

THeOREM 6.2 (min CE). COMBAUCTION(3) followed by ADJUST computes minimal

CE prices and the efficient allocation, as the bid increment € — 0.

From Theorem 6.1 we can also make a claim about the ability to compute Vickrey

payments with COMBAUCTION(3) followed by ADJUST:

THeoreM 6.3 (vickrey). COMBAUCTION(3) followed by ADJUST computes Vickrey

payments and the efficient allocation when the agents-are-substitutes condition holds, as

the bid increment € = 0.
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6.2.3 Speeding-Up: Pivot Allocations

Procedure ADJUST is NP-hard because it computes the value of the revenue-maximizing
allocation once with all agents, and then for the system with each agent removed.

In Parkes & Ungar [PUOOb] we propose a fast approximate method, ADJ-PIVOT to
compute minimal competitive equilibrium prices. The algorithm uses computation already
performed during earlier rounds of the auction to approximate the value of second-best
allocations. Section 7.7 in the next chapter demonstrates that the method is very accurate
and very fast. The experimental success of the method provides useful insight into the
nature of minimal competitive equilibrium prices.

To compute the revenue-maximizing allocation (Pa,-;)* without agent i, ADJ-PIvoT

computes the value of the best allocation over all pivotal allocations.

DerINITION 6.6 [pivotal allocations] The pivotal allocations are the set of partitions
that have formed provisional allocations in one or more iterations of COMBAUCTION.

It is perhaps reasonable that these pivot allocations are the allocations likely to repre-
sent allocations with high value at the final prices.

The approximate method to compute minimal CE prices from pivotal allocations is

formulated and solved as a linear program:

max A [minCE-Pivot]
(Al yee- vAI ) i

st. pi(S)=pl(S)eA; Vi,S

A;=0 VYig Iy
pl(S}) - 4i 20
LA 2 max p(S) (*)
A; 20, Vi

where the right-hand side of (*) computes the best allocation consistent with the set Pivot
of pivot allocations.

When matching against the pivot set in ADJ-PIVOT it is useful to allow matches against
permutations of pivot allocations, where the particular set of agents that receive bundles

in a partition can be different from that in an intermediate round of the auction.
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Experimental results in the next chapter show that ADJ-PIVOT is very fast, and appears
as accurate as ADJUST for small bid increments.

The experimental success of ADJ-PIVOT provides an intuitive understanding of minimal

CE prices:

PROPOSITION 6.1 Minimal competitive equilibrium prices, and often Vickrey payments,
are approrimately the smallest prices that the agents in the final “winning coalition” had
to bid with hindsight to beat the best provisional allocation that dropped at least one agent

in the coalition and included at least one outside agent.

Essentially the price adjust method ADJ-PIvoT allows agents that are in the winning
allocation and important provisional allocations to pay less than an agent that is very

dependent on the winning coalition to receive a bundle.

6.3 ADJUST*: Discounts for Vickrey Payments

The key to VICKAUCTION is to recognize that although there are problems for which the
agents-are-substitutes condition does not hold, the Vickrey payment for any agent can
always be computed as the minimal price for its bundle over all competitive equilibrium
prices. Recall that the minimal CE prices are prices in the optimal dual solution that
minimize the revenue to the auctioneer, or equivalently maximize the sum marginal product

over all agents.

LemMa 6.5 If the agents-are-substitutes condition holds there is a unique set of minimal
CE prices (in terms of the prices for bundles in the allocation), and those prices equal

Vickrey payments.

LesmMa 6.6 If the agents-are-substitutes condition does not hold there are multiple min-
imal CE prices (in terms of the prices for bundles in the allocation), and the Vickrey pay-

ment for any agent i is computed as the minimal price on its bundle S} over all minimal

CE prices.
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Consider the following linear program, [VDLP(i)], which maximizes the utility, p(), to
agent 1 (or alternatively minimizes the price agent ¢ pays for its optimal bundle S}). This

linear program is the restricted Vickrey dual for agent 7.

amax o) [VDLP(i)]

s.t. p(i) +pi(S) > v{S), Vi,S (VDLP-1)

T— Y p(S) 20, Vk (VDLP-2)
[i,S]ek

T+ Y p(i) = V() (VDLP-3)

P(i)vpi(s)ﬂf 201 V"')S

I prove that [VDLP(i)] computes agent i’s marginal product, p(i) = V(I) — V(I \ 1),
and sets pi(S7) = pyick(?):

TueoREM 6.4 (vickrey dual problem). The solution to [VDLP(i)] computes p;(S;) =

Pvick (1) for all agent preferences.

In other words, the Vickrey payment p (i) for agent i is computed in the optimal
dual solution that minimizes the dual price p;(S;) on the bundle agent i receives in the

efficient allocation.
PROOF.

The proof is constructive, based on Corollary 6.3 and an inspection of the ADJUST
procedure.

Corollary 6.3 states that ADJUST computes minimal competitive equilibrium prices for
input prices p” (-) that (a) are negative translations of agent valuation functions; and (b)
satisfy (BR), such that agent i's optimal allocation is in its best-response set; and (c)
satisfy (REV), such that the auctioneer maximizes revenue at the prices with the value-
maximizing allocation.

Consider prices p;(S) = v;(S) for all agents ¢ € Z, and all bundles S C G. Clearly these
prices satisfy conditions (a), (b) and (c). To complete the proof notices that agents can

be selected in any order in ADJUST, and we will still compute a valid set of minimal CE
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prices. Without loss of generality, suppose agent i is selected first. The discount A; to

agent ¢ is computed as:

A; = min{P — (Pa,_;)*,pF (S})}
= min{V"* - (V_;)*,v(S])}
=V - (V_y)*

and agent i's adjusted price, the price for its bundle in this optimal dual solution, is:

pi =pi(S]) - A
=v;(87) = (V* = (V-i))

= Pvick(%)

which is agent i’s Vickrey payment. Therefore, because any agent can be selected first, and
because there is always a set of minimal CE prices consistent with the adjusted price com-

puted for the initial agent, the Vickrey payment to any agent i can be computed as the mini-
mal price over all CE prices. |

The significance of this result is that it is always possible to compute Vickrey payments
to each agent with “enough” primal dual information, solving |I| restricted Vickrey dual
problems- one to maximize the marginal product for each agent.

We can state the following corollary:

CoroLLARY 6.1 The Vickrey payment for agent i can be computed as the minimal price
for bundle S} in the efficient allocation over all minimal CE prices, i.e. over all optimal

dual solutions that minimize the auctioneer’s revenue.

The obvious next step is to propose the following slightly modified price-adjustment
procedure, ADJUST*, to solve the restricted Vickrey dual (VDLP(:)] for all agents.

ADJUST* computes the discount to each agent separately, and independently of the dis-
counts assigned to other agents. Whenever p;(-) = v;(-) we compute the Vickrey discount
for each agent. In other cases, the discounted price remains a competitive equilibrium
price in some dual solution, and is no less than the agent’s Vickrey payment.

The next lemma follows immediately from Corollary 6.3.
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ADJUST*: input p!(-),S*, output A
P=pP ;

for each 1 € I* {

\ }Ai = min{P — (P-;)*,p] (5})}:

Figure 6.2: Procedure ADJUST*.

LEMMA 6.7 ADJUST* computes a discounted price p! (S})—A; to agent i that is no less
than its Vickrey payment for prices pT(:) that are negative translations of agents’ valuation
functions, and also satisfy (BR) and (REV).

We also have the following result, from Theorem 6.4.

LEMMA 6.8 ADJUST* computes a discounted price equal to agent i’s Vickrey payment
for prices that are negative translations of agents’ valuation functions, satisfy (BR) and

(REYV), as the prices approach agents’ valuation functions.

[t is interesting to consider the following question:

what conditions are required on prices to be able to compute Vickrey payments; i.e. how
far away can we be from complete information revelation but still compute the outcome of
the GVA?.

Remember, we want to compute Vickrey payments without complete information about
agent valuation functions.

As before, consider initial prices p?(') that are negative translations of agent valuation
functions, and satisfy (BR) and (REV) at the optimal allocation S*. Linear program
(VDLP-CS(z)] is a complementary slackness formulation of the restricted Vickrey dual
[VDLP(4)] that does not require explicit information about V'(I) and v;(-).
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(Agﬁ') i [VDLP-CS(1)]
st. pi(S)=pf(S)eA; Vi,§ (BR)
D=0 Vigly
Pi(S7)—0:20
D_pi(S]) 2 max 3 pilS) (REV)
i (i.S)ek
A; >0, Vi

Procedure ADJUST* solves this linear program. Let us consider the necessary and suf-
ficient conditions on initial prices p7 (-) for [VDLP-CS(%)] to compute the Vickrey payment
to agent 1.

Prices pl() are negative translations of agents’ valuation functions, ie. p/(S) =
vi(S) © Ci, for some C; > 0. In proving Theorem 6.4 we showed that C; = 0 for all agents
i is a sufficient condition. Necessary and sufficient conditions on C = (C\,...,Cy) for

p{(s:) - A = pyiek(i), are:

(a) For agents j ¢ Iso. We already have C; < 0 by myopic best-response and (CS-1).
If agent j receives a bundle in the second-best allocation without agent i we need

C;j =0, or the discounted price for agent i is already zero, i.e. P*—(P-;)* > p/(S}).

(b) For agents j € Is,. We already have C; > 0 by myopic best-response and (CS-1). If
agent j does not receive a bundle in the second-best allocation without agent i we

need C; = 0, or the discounted price for agent i is already zero, i.e. P* — (P_;)* >

pl(S})-

The second clause on the discounted price for agent ¢ relaxes the requirement of C; = 0
for an agent j # 1 if agent 7 already has enough discount to set its adjusted price to zero.
Putting this all together, and ignoring this additional clause, we can state joint suffi-
cient conditions on prices p[ (S) for procedure ADJUST* to compute Vickrey payments to

every agent.

THEOREM 6.5 (ADJUST* optimality). Procedure ADJUST* computes Vickrey payments

from CE prices pT (-) that are (a) negative translations from agent valuation functions; and
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(b) equal to value vi(-) for every agent i in the optimal allocation but not in a second-best

allocation for some agent j # 1, j € Igq).

where the second-best allocation without agent i is the allocation that maximizes
revenue without agent 7 at the prices, i.e. the value of (P—;)*. Condition (b) extends what
was required in Lemma 6.3 for procedure ADJUST to compute minimal CE prices.

[t is useful to define the dependents of an agent, the active agents, and a needy agent.
This allows a simple restatement of Theorem 6.5.

Let P* denote the value of the revenue maximizing allocation at current prices, with
W* C T the set of agents in that allocation. Also, let (P-;)* denote the value of the revenue
maximizing allocation without agent ¢ at the current prices, the second-best allocation, and
(W_i)* denote the agents in that allocation.

The dependents of agent ¢ are used to check whether ADJUST* computes Vickrey

payments at current prices.

DeriNiTiON 6.7 [dependent agents] The dependents a(i) of agent ¢ are:
a(t) =W\ ((W_)*Ui),ifie W*
a(t) = 0, otherwise.
The dependents of agent ¢ are agents that receive a bundle in allocation S* but do not
receive a bundle in the second-best allocation without agent i at the current prices.
I also define an active agent, which is an agent still requesting bundles at the current

prices.

DErFINITION 6.8 {active agents| Agent i is active at prices p;(-) if its best-response set
of bundles (those bundles that maximize its utility) is non-empty, i.e. the agent continues
to demand one or more bundles.

Finally, we define a needy agent as an agent in the efficient allocation that still has a

non-zero adjusted price in the algorithm.

DeriNiTION 6.9 [needy] An agent ¢ is needy if its adjusted price is non-zero.
With this, I restate the sufficient conditions in Theorem 6.5 for Vickrey payments as
the Vickrey test:

DeriNiTiON 6.10 [Vickrey test] CE prices satisfy the Vickrey test condition when they

are negative translations of agents’ valuation functions, and no needy agent i in the efficient
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allocation has any active dependent agents.

Procedure ADJUST* computes Vickrey payments from CE prices whenever the prices
satisfy the Vickrey test. Note that the auctioneer can compute the needy, active and
dependent agents from best-response bids.

Finally, we can define necessary and sufficient conditions, in terms of the e-CSl-

tightness condition introduced in section 6.2:

PROPOSITION 6.2 Procedure ADJUST* computes Vickrey payments from CE prices pT (-)
if and only if best-response bids satisfy e-CS1-tightness; and no needy agent i in the efficient

allocation has any active dependent agents.

6.3.1 Example

Consider Problem 7 in Table 6.1. The optimal allocation is S* = (A4, B,0), i.e. with items
are allocated to agents 1 and 2. The Vickrey prices are pyick,; = 30 — (70 — 40) = 0 and
Dvick.2 = 40 - (70 - 50) = 20.

A B AB
Agent1 30 0 30
Agent2 0 40° 40
Agent3 0 20 40

Table 6.1: Problem 7. Optimal allocation indicated *. Vickrey payments: pyick(1) = 30 - (70 -
40) =0, pvick(2) =40 — (70 — 50) = 20.

First, let us check the “agents as substitutes” condition, to determine whether Vickrey
payments are supported in competitive equilibrium. The marginal products are MP(1) =
V(I)-V(I\1)=70-40 = 30, MP(2) = 70 — 50 = 20, and MP(3) =70 - 70 = 0. We
must check:

V(I -V(K)> Y. [V(D-V(I\i)], VKCI
i€(Z\K)
This condition does not hold, because for K = {3}, we have V'(123) -V (3) < MP(1) +

MP(2), because 70 — 40 < 30 + 20. Therefore the Vickrey payments are not supported in
competitive equilibrium. Indeed we might suspect this because pyick (1) +pvick(2) < v3(AB).
Consider using ADJUST and ADJUST* in two scenarios. Prices are in competitive

equilibrium in both cases, and are negative invariants of agent valuation functions. By
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Corollary 6.3 we expect to compute minimal CE prices with ADJUST in both scenarios.
Vickrey payments will depend on the conditions of Theorem 6.5, i.e. on the prices and

second-best allocations of agents 1 and 2.

e Scenario 1. Prices are pl = {25,0,25}, p} = {0,25,25} and p} = {0,20,40}.
ADJUST computes discounts A; = 50 — 40 = 10 and A; = 40 - 40 = 0, or
Ay =50 -45 =5 and A; = 45 — 40 = 5, depending on which agent is selected
first. The adjusted, minimal CE prices are p; = {15,0,15} and p, = {0, 25,25},
or py = {20,0,20} and p; = {0,20,20}, with p3 = {0,20,40} in both cases. AD-
JUST* computes A; = 50 — 40 = 10 and A = 50 — 45 = 5, for final adjusted prices
pi(A) = 15 and po(B) = 20. Agent 2 gets its Vickrey payment because agent 1 is
in the second-best allocation without agent 2. However, agent 1 does not gets its
Vickrey payment because agent 2 is not in the second-best allocation without agent
1, and does not bid its full value for B.

e Scenario 2. Prices are p! = {25,0,25} as before, but now p; = {0, 40,40}, i.e. equal
to its valuation function. We know immediately that ADJUST* now computes the
Vickrey payments (even though agent 1 does not reveal complete information about
its valuation function). ADJUST now computes either A = (25,0,0) or A = (5,20,0),

both discount sets give minimal CE prices but not Vickrey payments to every agent.

This example indicates how it is possible to compute (and verify) Vickrey payments

from CE prices, even when Vickrey payments are not supported in any single set of prices.

6.4 VICKAUCTION: A Primal-Dual Vickrey Algorithm

In this section I present a primal dual algorithm, VICKAUCTION, that provably computes
Vickrey payments and the efficient allocation with best-response agent bids. In the next
chapter [ develop an extended iBundle auction, iBundle Extend&Adjust, which is designed
to implement VICKAUCTION as an ascending-price auction.

VICKAUCTION is a sequential composition of COMBAUCTION(3), as described in chap-
ter 4, with a new algorithm PHASEII:

VicKAUCTION = COMBAUCTION(3) - PHASEII
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VICKAUCTION has a natural interpretation as an ascending-price combinatorial auction
because it has the following features:

(1) the only interaction with agents is via myopic best-response requests;

(2) prices are ascending throughout the algorithm;

(3) there is always a feasible allocation, the provisional allocation in an auction.

CoMBAUCTION(3) terminates with the efficient allocation S* and competitive equilib-

rium prices p?(S ) that are negative translations of agent valuation functions.

price(2)

N
a(1) csy Pricel))

Figure 6.3: PHASEIIL: Collecting Additional Primal-Dual Information to Compute Vickrey Pay-
ments

Figure 6.3 illustrates the role of PHASEII. The Figure plots the complementary-slackness
constraints with the efficient allocation in a simple problem with only two agents in the
efficient allocation. On the x-axis is the price on the bundle that agent 1 receives in the
efficient allocation. On the y-axis is the price on the bundle that agent 2 receives in the
efficient allocation. To the left of vertical line CS1 the prices satisfy CS1 for agent 1 (i.e.
it is less than its value). Below line horizontal line CS1 the prices satisfy CS1 for agent 2
(i.e. it is less than its value). To the up-right side of diagonal line CS2 the prices satisfy
CS2 (i.e. the efficient allocation continues to maximize revenue for the auctioneer). Inside
the triangle are all optimal dual (or competitive equilibrium) prices on the bundles. The

minimal price to agent 2, indicated p(2) is its Vickrey payment. The minimal price to
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PHASEII
Input: prices p!(S) and allocation S* from COMBAUCTION
active = active(BR(p7));
compute dependents(i) = W* - (W_;)* —1 for all i;
Ainiv = ADJUST*(p¥, §%);
needy(i) = true if Aini(i) < pf(S;), false otherwise;
Ai = Ainie()); pi(r) =pF();
while ( 3i : needy(i) & (dependents(i) N active #0)) {
for i € active
if (35 : needy(j) & i € dependents(j) )
pi(-) = nonanon._update(BR;,p;);
compute best-response set BR;(p;) for every agent i;
active = active(BR(p));
A; = A; + |dependents(i) Nactive| ¢;
if (A; > pl(S7)
needy(i) = false;
else {
compute (W_;)*;
compute dependents(i) = W* —(W_;)* —1;
}i
}

output: adjusted prices max(0,pf(S7) — A;) to each agent.

Figure 6.4: The PHASEII algorithm.

agent 1, indicated p(1) is its Vickrey payment.

At the end of COMBAUCTION(3), of Phase I, the primal-dual algorithm might be in
the state indicated by the first solid circle, closest to the origin. At this point ADJUST*
will adjust prices to the points shown, but there is not enough information to compute
minimal prices over the simplex of optimal dual prices. The purpose of PHASEII is to get
enough additional information to move to a point like the second solid circle, from which
ADJUST* drops down to the two extremal values and computes Vickrey payments. In this
problem agents 1 and 2 both needed to reveal their complete value for their bundle in the
efficient allocation, but this is not the case in general. The path from I to II on the plot
represents the “valuation (or information) cost of achieving incentive-compatibility”.

Module PHASEII continues to increase prices and request best-response information
from agents until the prices satisfy the Vickrey test conditions. As soon as this condition

holds there is enough primal-dual information to adjust prices to Vickrey payments.
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The combined algorithm, COMBAUCTION(3) - PHASEII, which we call VICKAUCTION,

is optimal.

THEOREM 6.6 (VICKAUCTION optimality). VICKAUCTION is a primal-dual algorithm
to compute the efficient allocation and the Vickrey payments for the combinatorial alloca-

tion problem.

Proor. COMBAUCTION(3) computes competitive equilibrium prices p}(-) that are
negative translations of agent valuation functions and the efficient allocation S*. By
Lemma 6.9 the revenue-maximizing allocation in every round of PHASEII remains allo-
cation S* computed at the end of COMBAUCTION(3). Prices remain negative translations
of agent valuation functions, and CE prices, because the prices continue to be increased
on the basis of best-response bids from agents. PHASEII terminates with the Vickrey
test conditions (definition 6.10) because there are no needy agents that also have active
dependents.

Instead of computing the adjusted price with ADJUST* explicitly, the discount A(i) is
initialized explicitly with ADJUST* at the start of PHASEII and them maintained across
rounds. The difference between P* and (P-;)* for agent i increases in each round by the
number of active dependents of agent i, multiplied by the minimal bid increment, plus an
additional € if the agent’s own prices also increase; the effect is to increase the discount to
agent ¢ by |dependents(i) Nactive| ¢ with respect to its price at the start of PHASEIL.

The final adjusted price max(0, p7 (S7) — A(3)) for every agent i is equal to its Vickrey
payment as € —+ 0. |

The proof uses the following lemma.

LemMa 6.9 The revenue-mazimizing allocation S* does not change as prices are in-
creased in PHASEIL. The value of the revenue-mazimizing allocation therefore increases by

€ every time the price is increased to one of the agents in S*.

Proor. The prices are not increased to any agent not in S*. No solution with agents
W* (agents in §*) can have more value because the price on bundles S} increases by

at least as much as the price on all other bundles (including bundles currently with
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zero price). This is because of myopic best-response and the price update rule. A
simple feasibility argument shows that no solution that combines different bundles to

agents in W* with some bundles to agents outside of W* can become value-maximizing
without the same allocation having more value than solution S* at the original prices. |

6.4.1 Speeding-up: Pivot Allocations

Just as ADJ-PIVOT is a fast but accurate method to compute minimal CE prices at the end
of COMBAUCTION, a similar technique ADJ-PIVOT* can be used to speed-up ApJusT*
and VICKAUCTION.

The inner-loop of ADJUST*, called from INITIALADJUST, computes the value of the
second-best allocation (P-;)* at the prices. ADJ-PIVOT* computes this with the following

approximation:

(W.i)* = " srlrégm pi(S)

where Pivot is the set of provisional allocations computed during COMBAUCTION. The
idea is to restrict attention to allocations that have proved to be interesting during the
auction, and avoid having to solve a large combinatorial optimization problem.

The same method can be used to approximate the computation of (W_;)* during
the execution of PHASEII, again computing the approximation based on pivot allocations

computed during the COMBAUCTION phase of the VICKAUCTION algorithm.
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Chapter 7

:Bundle Extend & Adjust

Much of my dissertation addresses a fundamental problem with the GVA, which is that
it requires agents to compute and reveal their values for all combinations of items. This
can be very difficult for bounded-rational agents with limited or costly computation. The
complete information requirement arises because of the single-shot nature of the auction:
every agent submits a sealed-bid to the auctioneer from which the allocation is computed.
Without an option to ask an agent for more information a mechanism can only compute
the efficient allocation in every problem instance with complete information up-front about
agents’ valuation functions.

In comparison, an iterative GVA can terminate with the same outcome (allocation and
payments) but with less information revelation. An iterative auction can elicit information
from agents dynamically, as required to determine the efficient allocation. Terminating
with the Vickrey outcome provides an iterative procedure with much of the same strategy-
proofness as the sealed-bid GVA. The design of an iterative GVA is stated as an important
open problem in the auction design literature [BO99, Mil00b]. However, iterative Vickrey
auctions are only known for special cases [KC82, DGS86, GS00, Aus00] with restrictions
on agent valuation functions (at least prior to this dissertation). See Table 4.7 for a survey
of known results.

Previous attempts to design iterative auctions have (implicitly at least) relied on in-
creasing prices across rounds to compute minimal competitive equilibrium prices, which
equal Vickrey payments in special cases (see Table 4.7). This approach must fail in general
problems because there are often no single set of minimal CE prices that compute Vickrey
payments to every agent. In addition, this approach requires careful price-adjustment, on

the “minimal overdemanded set of bundles™.
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My approach in VICKAUCTION, and the extended iBundle auction, iBundle Extend&
Adjust, is to retain the greedy price-updates of Bundle and adjust the prices after the
auction terminates to compute minimal competitive equilibrium prices. With this approach
the adjustment process does not need to terminate with minimal CE prices. The method
also extends to problems in which a single set of minimal CE prices that compute Vickrey
payments fail to exist, because we can compute the Vickrey payment to an agent as the
minimal price on its bundle over ¢!l minimal CE prices.

iBundle Extend&Adjust is a simple interpretation of VICKAUCTION, introduced in
chapter 6. The extended iBundle auction collects additional information from agents in
order to adjust prices to Vickrey payments. The goal is to implement the Vickrey outcome
with best-response agent strategies. The first phase is identical to :Bundle(3), and the
allocation implemented at the end of the extended auction is that computed at the end of
the first phase, which is the efficient allocation when agents follow myopic best-response
strategies. The purpose of the second phase is to compute Vickrey payments.

The iterative auction has better information properties than the sealed-bid GVA. In
each round agents must only bid for the set of bundles that mazimize their utility given
current ask prices, which does not require agents to compute their exact values for every
bundle. Further discussion of agent computation is provided in chapter 8.

As far as [ know, iBundle Extend&Adjust is the first auction with the following prop-
erty:

Tueorem 7.1 (min CE). iBundle with Ertend€Adjust terminates with Vickrey pay-
ments whenever Vickrey payments are supported in competitive equilibrium, for myopic

best-response agent strategies as the minimal bid increment € — 0.

This result is proved in section 7.6. Special cases of this theorem capture all known
iterative Vickrey auctions, including linear-additive, unit-demand, and gross-substitutes
preferences (see Table 4.7). In all of these cases the agents-are-substitutes condition
holds (Definition 6.3), and Vickrey payments can be computed as minimal CE prices.
Bikchandani et al. [BdVSVO01] show that gross-substitutes is sufficient for the agents-are-
substitutes condition.

I also make the following conjecture:
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CoNJECTURE 7.1 (iterative generalized Vickrey auction). iBundle Eztend€Adjust is
an iterative Generalized Vickrey Auction, terminating with Vickrey payments and the ef-
ficient allocation for myopic best-response agent strategies as the minimal bid increment

¢ — 0.

While a full proof has yet to be completed, experimental results presented in section 7.7
provide very strong support for the conjecture. I have a proof (see section 7.6) that if the
ertended auction terminates the adjusted prices are Vickrey payments. This follows quite
directly from the properties of VICKAUCTION. What is left to prove is that the method
for quiescence detection and the introduction of dummy agents in the second phase of the
auction is sufficient to push the final phase of the auction to a state in which the Vickrey
test (Definition 6.10) holds.

7.1 Overview

The extended auction has two distinct phases. The first phase is used to determine the
efficient (value-maximizing) allocation, while the second-phase is used to determine Vick-
rey payments. This transition from Phase I to Phase II is designed to be hidden from
participants. The basic auction rules across both phases are as in iBundle, and prices
increase monotonically between Phase I and Phase II. The novelties in the auction design

are as follows:

e Agents’ payments are adjusted after the auction terminates, and agents do not pay
their final bid prices. This allows the implementation of non-equilibrium solutions,
which is important because the GVA outcome cannot always be supported in equi-

librium.

¢ Additional competition is introduced during the second phase of the auction, to make
the winning agents continue to bid and reveal more information, enabling final prices

to be adjusted to Vickrey payments.

Best-response bids from agents provide information about the complementary-slackness
conditions in a primal-dual formulation, and can be used to adjust towards an optimal

solution.
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The extended {Bundle auction implements the second phase of VICKAUCTION with the
introduction of dummy agents to provide continued competition for agents in the efficient
allocation. The dummy agents are designed to make agents in the efficient allocation con-
tinue to bid higher prices until there is enough information to compute Vickrey payments.
The method to introduce dummy agents, although experimental at this stage, does seem
to succeed in forcing the auction to the Vickrey state (Definition 6.10).

This dummy agent method is adopted instead of the straightforward price-update rules
in the second phase of VICKAUCTION because it is important that bidders cannot not detect
the transition from Phasel to Phasell. An agent’s bids in Phasell decrease the final price
paid by other agents, but have no other effect on the outcome of the auction. Thus, if
an agent knows it is in Phasell it might decide to drop out of the auction because of
participation costs from continued bidding. Another possibility is that an agent might
attempt collusive manipulation with another agent. This is discussed below in section
7.8.1.

Phase II is designed to force active agents to bid higher prices for bundles received in
the optimal allocation. With myopic best-response agent strategies the ask prices to all
agents remain valid competitive equilibrium prices during Phase [I. Phase II terminates
precisely when there are no active agents, or at least no active agents still bidding in the
auction (which indicates that the ask price to those agents cannot be any higher). The
tricky part of the proof is to show that the competition from the dummy agents is sufficient
to make Phase II terminate, i.e. to push the bid prices for all active agents high enough
to satisfy conditions to compute Vickrey payments. This remains a conjecture.

At the end of the chapter I discuss a number of refinements that may boost computa-

tional performance with little loss in incentive and efficiency properties.

7.2 Manipulation of i:Bundle

Up to this point I have assumed that agents follow myopic best-response strategies, truth-
fully revealing their demand in response to ask prices in each round of :Bundle. The as-
sumption allowed a connection between agent bids, complementary-slackness conditions,
and primal-dual optimality.

However, :Bundle leaves open the possibility of agent manipulation. iBundle terminates
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A B AB
Agentl 0 a b
0
0

Agent 2 10 10
Agent3 0 15

Table 7.1: Problem 8.

with competitive equilibrium (CE) prices, often minimal CE prices, but this is not always
enough to prevent successful manipulation. Alternative strategies available to agents in-
clude: placing jump bids, signaling false intentions, or waiting to bid, all of which can
reduce economic efficiency and require quite complex game-theoretic reasoning by agents.
Let us consider Problem 8 in Table 7.1, with ¢ = b = 10. Suppose that agents 2 and 3
follow a myopic best-response strategy and consider the options available to agent 1.

The efficient allocation is S* = (B, A,0), for value V* = 20. Let (p;,p2,p3) =
(p1(B),p2(A),p3(AB)). In competitive equilibrium, the prices must satisfy: p, < 10,
p2 < 10, p3 2 15, and p + p; 2 p3. One set of competitive equilibrium prices are:
p1 =8,p2 = 8,p3 = 15.

Agent 1 might choose to follow myopic best-response. In this case iBundle terminates
with one agent paying 7 and the other paying 8, and agent 3 unwilling to pay 16 for bundle
AB.

Agent 1 can do better by waiting while agent 2 bids against agent 3, and then bidding
for B to stop agent 3 winning AB when agent 2 has bid 10 for A and can bid no higher.
This “slow straightforward” bidding strategy [Mil00a] allows agent 1 to reduce the price
that it pays from 7 to 5, while agent 2 pays 10. Agent 1 is said to free-ride off the bids of
agent 2 and ends up sharing less of the cost of out-bidding the third agent.

The Vickrey payments in this problem are $5 for each agent, i.e. pyick,1 = v1(B)—(V* -
(V-1)*) = 10—(20—15) = 5, and pyick2 = v2(A)—(V*—(V-2)*) = 10~(20-15) = 5. These
prices are precisely what agents 1 and 2 might hope to achieve with a slow straightforward
bidding strategy if the other agent follows its myopic best-response strategy.

Computing Vickrey payments at the end of the auction for every agent when agents
follow myopic best-response strategies, then each agent does as well as it could hope to
do with any strategy given that the other agents follow myopic best-response strategies.
Muyopic best-response becomes a Bayesian-Nash equilibrium of the iterative auction.

Milgrom [Mil0Oa] has earlier observed that in cases in which the minimal CE prices
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are not unique an agent’s optimal strategy is this “slow straightforward” bidding. A slow
straightforward strategy submits a bid only when the auction will terminate otherwise,
and the agent is not currently receiving a bundle in the provisional allocation. The cases
without unique minimal CE prices are precisely those in which Vickrey payments are not

supported in CE.

7.3 iBundle Extend & Adjust

iBundle Extend&Adjust has two distinct phases: Phase I, in which the final allocation
is determined, followed by Phase II, in which final payments are determined. Phase I is
identical to iBundle(3), the variation of iBundle that maintains separate ask prices for
each agent throughout the auction. Phase I ends when iBundle terminates, at which point
the auctioneer stores the provisional allocation. This allocation is implemented at the end
of the auction.

The purpose of Phase II is to collect enough additional information to be able to
compute Vickrey payments. At the end of Phase II payments to agents are computed as
the bid prices at the end of Phase I minus a discount, which is computed during Phase II.
Both phases follow the price update rules, bidding rules, and winner-determination rules
of :Bundle. The termination condition in Phase II, and additional steps performed during
each round in Phase II to compute discounted prices equal to Vickrey payments are new.

Let 8* = (S7,...,5]) denote the allocation at the end of Phase I, P* denote the
auctioneer’s revenue, W* C Z denote the set of agents that receive a bundle in 8*, (P_;)*
denote the value of the revenue maximizing allocation without agent ¢ at the current ask
prices, and (W_;)* denote the agents in this second-best allocation. Also, let ply;(S)
denote agent i's bid price for bundle S at the end of phase I.

As in Chapter 6, I will refer to the dependents of agent i as the agents that receive a
bundle in allocation §* but not in the second-best allocation without agent 7 at the current
ask prices. A needy agent is an agent that is in allocation S* and has a non-zero adjusted
price for its bundle. Finally, an active agent is an agent that is still bidding at the current

prices.

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Phase I: iBundle(3)

Phase I is iBundle(3), with termination under the same conditions and unique prices for
each agent in every round of the auction. The allocation at the end of Phase I is stored,

and finally implemented at the end of Phase II.

Phase II: Eztend

Phase II of iBundle Extend&Adjust shares many features with PHASEII of the primal-
dual algorithm VICKAUCTION to compute Vickrey payments with best-response agent
bids. The purpose of Phase II is to compute the discount from agent prices at the end of
Phase I to adjust to Vickrey payments.

The final price for agent 1 at the end of Phase II is discounted from its final bid price
at the end of Phase I by the sum of its initial discount Ajn;: (i), computed at the start of
Phase II, and an additional discount Aj,;;(7) computed during Phase II.

At the start of Phase II the initial discount, Ajnic (), is computed as:

P — (P, ,ifieW"

, otherwise

Dininli) =

and Aexra(i) = 0 for all agents. The dependents for agents i € W* are computed as
a(z) = W*\ (W)t ), with a(i) = @ otherwise. The needy agents are those agents in
W* for which p{,id',.(sg) = (Qinie(2) + Aextra(i)) > 0.

The auctioneer introduces dummy agents to drive competition with agents past the end
of Phase I, and push prices into the state where the Vickrey test (Definition 6.10) holds.
The auctioneer simulates the dummy agents, generating bids in each round. These bids
are not visible to agents.

The auctioneer first introduces a dummy agent for any agent that dropped out of the
auction in the last round of Phase I. Additional dummy agents are introduced dynamically
at the end of each round.

A simple rule is used to construct the valuation of a dummy agent:

DeFINITION 7.1 [dummy agent] The valuation function of a dummy agent for agent j is
based on the ask prices of agent j: set v(S) = pask,j(S)+ L for bundles S with pasx j(S) > 0,

and v(S) = 0 for all other bundles, for some large constant L > 0.
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The auctioneer updates the set of active agents, and performs the following steps at
the end of each round of Phase II:

1. Compute the new second-best allocation without each needy agent in turn, restricting
attention to only the real agents (ignoring the dummy agents). Update (W_;)*,
and compute the new dependents of each needy agent, comparing the agents in the

second-best allocation with the agents in the efficient allocation.

)

For each needy agents with active dependents, increment Aey.ra(?) by Zj@(i) Ainer ()
where Ajner(7) 2 0 is the increase in bid price by agent j for bundle S; (the bundle

it receives in the allocation at the end of Phase I) since the previous round.
3. Remove agent i from the set of needy agents if p{,id‘i(S’i‘) — (Ajnild) + Aexera(t)) < 0.

Test for termination: Phase II terminates when there no needy agents has any active
dependents. Special cases of this termination condition hold where there are: (1) no needy
agents, (2) no active agents, (3) no dependent agents, etc.

Otherwise, the auctioneer introduce dummy agents according to the following rules:

(1) for any agent that has just dropped out of the auction, i.e. that was active in the
previous round but is no longer active, and replace any dummy agent that already exists
for this agent with a new one.

(2) in a state of quiescence for the active agents,! in which case a dummy agent is
introduced for: (1) an agent with no dummy that is not active; or failing that (2) an active
agent with no dummy; or failing that (3) an active agent that already has at least one
dummy agent.

After termination allocation $*, as computed at the end of Phase I is implemented,

and the final adjusted prices are:
Padjust (1) = max [0, plia;(S7) = (Binie(i) + Bexerali))]

7.3.1 Discussion

The precise definition of quiescence is not too important. I consider that the auction is in

quiescence if: (1) the same active agents have participated in the auction for the past three

'It is possible that there is a bidding war between the dummy agents and non-active agents without
displacing the allocations of active agents.
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rounds; and (2) all participating active agents have been allocated the same (non-empty)

bundle in the provisional allocation in the past three rounds, and for the same price.

7.3.2 Variation: iBundle(2) and Phase II

Ore problem with the extended iBundle auction is that the first phase is iBundle(3), which
maintains separate prices for each agent, and can take longer to converge than iBundle(2),
which has more direct feedback between agents.

In order to apply Phase I and the ADJUST* method to iBundle(2), with anonymous
prices, we might first build a set of individual ask prices for each agent, p;(S), for bundle
S. One approach is to initialize them to the anonymous prices, and then try to adjust
the prices towards a set of non-anonymous competitive equilibrium prices, in particular
reducing the price on bundles than an agent does not bid in the final allocation as far as
possible. The goal is to compute individual prices for each agent that are approximately
a negative translation of its valuation function, so that the ADJUST* technique computes
Vickrey payments.

Information in bids placed in earlier rounds of the auction can be used to adjust prices.
For example, if an agent bids for bundle S, at price p, in an earlier round, but not for bundle
Sy at price pa, then this indicates that v(S))—p; > v(S2) —p2, and v(S,) —v(S2) > p; —p2.
Now, if the agent bids for bundle S; but not S, at the final prices, then the final price
p(’Sg) on bundle S5 can be reduced at least until p(’Sg) =p/(S)) - (p1 - p2).

Similarly, we can reduce prices to an agent not in the final allocation to the prices in

the first round in which the agent placed no bids.

7.3.3 Worked Examples

It is useful to demonstrate iBundle Extend&Adjust on Problem 8 in Table 7.1, for different
values of a and b. In each case the auction terminates with Vickrey payments for myopic

best-response agent strategies.

e Case (a = b =3). Phase I: S* = (0,0,AB), P* =13, W* = {3}, p{,4 = (0,0,13).
Phase II: First, compute: (S_3)* = (B, 4,0), (P-3)" =13, (W_3)* = {1,2}, a(3) =
0, Aini(3) = 13 — 13 = 0. Terminates immediately because agent 3 is the only agent

in the efficient allocation, and therefore there are no dependents. The outcome is
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to allocate bundle AB to agent 3 for p3 = 13 — (0 + 0) = 13, which is the Vickrey
payment (pyick(3) = 15 - (15 — 13) = 13).

o Case (a = b =10). Phase I: S* = (B, A,0), P* =15, W" = {1,2}, p{;y = (8,7,0).
Phase II: First, compute: (S_;)* = (0,0, AB), (P-1)* = 15, (W_;)* = {3}, (1) =
{12} \ {3,1} = {2}, Anifl) = 15 =15 =0, (S_2)* = (0,0,AB), (P-2)* = 15,
(W_a2)* = {3}, a(2) = {1,2}\ {3,2} = {1}, Aini(2) = 15-15 = 0. Agents I and 2

are active agents.

Do not terminate because agents 1 and 2 are needy, and both have the other agent
as an active dependent. Instead, introduce a dummy agent for agent 3, with values
vy = (0,0,15 + L) for a large L > 0. As prices increase agent 1 drops out first,
when p;(B) > 10. At this time Aeyra(2) = 2 because agent 1's bid has increased by
2 since the end of Phase I. A dummy agent is introduced for agent 1, with values
vs = (0,10 + L, 10 + L). Finally, agent 2 drops out when p2(A) > 10, at which time
Aextra(1l) = 3 because agent 2’s bid has increased by 3 since the end of Phase I. Phase

IT terminates because there are no active agents.

The outcome is to allocate item B to agent 1 for py = 8 — (0 + 3) = 5 and item A
to agent 2 for po = 7 — (0 + 2) = 5. These are the Vickrey payments: pyik(l) =
Pvick(2) = 10 — (20 - 15) = 5.

e Case (a = b = 20). Phase I'is the same as in case a = b = 10. Phase II As in case
a = b = 10, introduce a dummy agent for agent 3, with values vy = (0,0,15 + L)
for a large L > 0. This time, as prices increase agent 2 drops out first, when
p2(A) > 10 and Aexira(l) = 3. Introduce a dummy agent for agent 2 with value
vs = (10 + L,0,10 + L). Finally, agent 1 enters (S_2)*, when p;(B) = 15 and
Dextra(2) = 7. At this stage agent 2 is no longer needy, because its total discount
Ainit(2) + Aextra(2) is equal to its bid price at the end of Phase I.

The outcome is to allocate item B to agent 1 for py = 8 — (0 +3) = 5 and item A
to agent 2 for po = 7 — (0+ 7) = 0. These are the Vickrey payments: pyik(l) =
20 — (30 — 15) = 5 and pyick(2) = 10 — (30 — 20) = 0.
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7.4 Iterative Vickrey Auctions

Earlier, in chapter 4, I surveyed previous results in the design of iterative Vickrey auctions
(see Table 4.7). Iterative Vickrey auctions are known for linear-additive, unit-demand,
and gross-substitutes agent preferences. All auction designs achieve Vickrey payments
with myopic best-response agent strategies, i.e. agents that bid to maximize utility in
the current round, taking prices as fixed. iBundle Extend & Adjust is also provably an
iterative Vickrey auction in all these cases because the agents-are-substitutes condition
holds.

It is useful to define the concept of myopic-implementation of the Vickrey outcome (the

efficient allocation and the Vickrey payments) in an iterative auction:

DEFINITION 7.2 [myopic-implementation] Auction A myopically-implements the Vick-
rey outcome if the auction terminates with the Vickrey outcome for agents that follow
myopic best-response bidding strategies.

Let BR(v;,p) denote the best-response bid for agent 7 with value v;(S) for bundles
S C G, given prices p(S) on bundles. The best-response can define a set of bundles if the
agent is indifferent across a number of bundles. Call this a truthful best-response bidding
strategy. Also, let BR(4;, p) denote an untruthful best-response bidding strategy for agent
i, for some valuation function 9; # v;.

One might imagine that an iterative auction that myopically-implements the Vickrey
outcome would share the same strong incentive-compatibility properties as the Vickrey-
Clarke-Groves mechanisms, i.e. strategy-proofness such that myopic best-response is a
dominant strategy for an agent, optimal whatever the strategies of other agents. In fact,
manipulation remains possible in such an auction, because agents have other strategies
available.

Gul & Stacchetti [GS00] propose an iterative Vickrey auction with gross-substitutes
agent preferences that computes Vickrey payments in cases in which they can be computed
in the minimal linear-price competitive equilibrium. The authors prove that Vickrey pay-

ments make truthful myopic best-response a Bayesian-Nash equilibrium of the auction.

LemMa 7.1 Truthful myopic bidding is a sequentially rational best-response to truthful
myopic bidding by other agents in an iterative auction with linear-prices that myopically-

implements the Vickrey outcome.
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Proor. The proof follows quite directly from the strategy-proofness of the GVA. Basi-
cally, for any other strategy the agent selects a GVA outcome for some non-truthful valua-

tion function, which is less preferable than the GVA outcome for its true valuation function.
See Gul & Stacchetti [GS00] for details. |

In other words, Gul & Stacchetti show that if every other agent follows a myopic best-
response strategy in their auction, end if minimal CE prices compute Vickrey payments,
then myopic best-response is the optimal strategy for agent 1.

Although the connection between Vickrey payments in an iterative combinatorial auc-
tion and incentive-compatibility appears to be widely accepted in the literature, I have not
found a general proof.? Bikchandani & Ostroy [BO0O)], for example, state:

“we explore the extent to which the above approach [using a primal-dual algorithm
to design an iterative Vickrey auction] ... can be extended to yield incentive compatible
ascending-price auctions for multiple objects... [in] an ascending-price auction [that] finds
the smallest market clearing (Walrasian) prices ... buyers get their marginal product and
therefore have the incentive to bid truthfully.”

Assuming for the moment that :Bundle Extend&Adjust does indeed implement the
outcome of the GVA with myopic best-response agent strategies, I prove the Bayes-Nash

incentive-compatibility of the auction:

THEOREM 7.2 (incentive-compatibility). Truthful myopic bidding is a sequentially ra-
tional best-response to truthful myopic bidding by other agents in iBundle Eztend€Adjust

as bid increment € — 0, if the auction myopically-implements the Vickrey outcome.

Proor. Suppose agent i € I follows a strategy other than truthful myopic best-
response, while the other agents follow truthful myopic best-response. Let p/(S) denote
the prices at the end of Phase I, p//(S) denote the prices at the end of Phase II, but
before prices are adjusted, pagjus,i(S) denote the adjusted prices at the end of Phase II,
and S = (5’{, - ,5‘1) denote the allocation computed at the end of Phase I.

The first step in the proof is to construct a valuation function ¥; for agent i, for

*The connection between Vickrey payments and incentive-compatibility is implicit in Ausubel’s [Aus97,
Aus00] auctions. Ausubel does provide careful proofs of the incentive properties of his dynamic auctions,
but it is not clear how his analysis can be adapted to my mechanism.
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which (padjust',-(g,-),pi_li(g_i)) are in competitive equilibrium with allocation $ given agent
preferences (9;, v—;).

Consider the valuation function 9; defined by:

pll(S) ,ifS=S5;
5:(S) =< pll(S;) ,ifSDS;
0 , otherwise

Prices (p/ (S'i),pf_’i(g-i)) form a competitive equilibrium with allocation § and agent
preferences (9;,v—;). (CS1) holds for agent ¢ with preferences ¥; because p{ (5',-) <pl (5',') =
0i(S), and pf(8') > p¥(S:), V¥S' 2 §i. (CS1) holds for agents j # i at the end of Phase
I, and at the end of Phase II because the agents continue to follow myopic best-response
strategies and prices pf’ are negative translations of agent’s valuation functions. (CS2)
holds because allocation § maximized revenue to the auctioneer at the end of Phasel, and
continues to maximize revenue at prices (p/,p’%) because the price pJ” (S) on all bundles
S # S'j increases by less than the price on bundle S'j during Phase II.

By the analysis of the ADJUST procedure in the previous chapter (see section 6.2.1),
prices (p{(S',-) (P - (P_g)‘),p’_’i(S'_g)) are also in CE with allocation S for agent prefer-
ences (9;,v—;); where P* is the revenue from allocation $ at prices (p!(S:),p’%(5-,)), and
(P-;)*) is the value of the revenue-maximizing allocation without agent i at prices p’’.

The adjusted price Padjus:.i(s'i) at the end of Phase II is equal to p{(S’i) —(P* - (P-))"
because it is computed as p//(5;) — A(), where A(i) = P* +4§ — (P-;)*, for § = p!{($;) -
p,-’ ($;). Thus, (padjust,g(g,-), pf_"-(S'_,-)) are in CE with allocation § for agent preferences
(Ui, v—).

The second-step in the proof is to show that agent i’s utility with truth-revelation in
the GVA is greater than its utility at the outcome of the auction, i.e. v;(S;) —padjust‘i(Si).
First consider its GVA payment with a report of 9;, when the other agents report truthful
values v_;. The Vickrey outcome in this case is allocation S, as computed in the auction,

and agent i's utility is
i) = vi(Si) = Puick,i(Bi, v—i)
> vi($:) — Padjust.i

The inequality follows because the Vickrey payment is smaller than the minimal price over

all minimal CE prices.
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Finally, it follows from the strategy-proofness of the GVA that
ui(v;) 2 ui(9:), for all 9; # v;

and therefore agent i’s utility from truth-revelation in the GVA is greater than its utility
from outcome (pagjust is S;) in the auction. This establishes that for agent 7 truthful myopic
bidding is a sequentially-rational best-response in equilibrium with truthful myopic bidding

from other agents, under the assumption that the auction myopically-implements the Vick-
rey outcome. |

In other words, terminating in Vickrey payments provides quite a high degree of
incentive-compatibility, but not full strategy-proofness. A method is introduced in the
next section to restrict agent strategies and make a slightly stronger claim about the

robustness-to-manipulation of an iterative Generalized Vickrey Auction.

7.5 Proxy Agents: Boosting Strategy-Proofness

Moving from single-shot Vickrey mechanisms to iterative Vickrey mechanisms make it
necessary to accept a loss in full strategy-proofness. Full strategy-proofness requires that all
agents simultaneously commit to a (possibly untruthful) valuation function, which conflicts
with the desire to allow agents to reveal incremental information.

Ideally, we would like to restrict agents to follow a (possibly untruthful) best-response
strategy, for some ez ante fixed valuation function. Such a restriction, if possible, would

allow the following strong claim about strategy-proofness:

Lemma 7.2 Truthful myopic bidding is a dominant strategy in an iterative Vickrey
outcome if agents are restricted to follow a myopic best-response strategy for some ex ante

fized (but perhaps untruthful) valuation function 0(-).

One sure way to enforce this restriction is to introduce a proxy-bidding agent interface
into the auction, which requires a bidding agent to provide a complete valuation function
up-front, and then follows a myopic best-response strategy with that value information in
the auction. As noted above this would transform the iterative auction into a single-shot

mechanism, and lose the incremental information revelation properties.
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Figure 7.1: Proxy Bidding Agents.

A middle ground, which provides some additional strategy-proofness over-and-above
Bayesian-Nash incentive-compatibility, but without providing complete strategy-proofness,
is to restrict an agent to follow a myopic best-response strategy that is at least consistent
with a single valuation function across all rounds.

One might imagine two ways to restrict agent i to a best-response strategy for some

consistent valuation function 9;(-).

¢ Introduce additional bidding rules, for example preventing “jump bids” by making
an agent bid at the current ask price; and check that an agent’s bids across multiple
rounds in the auction as prices change are consistent with a best-response strategy

for a particular valuation function.

e Provide semi-autonomous proxy bidding agents, one for each agent, that receive
incremental value information from agents and follow a myopic best-respounse strategy

consistent with that information.

In Parkes & Ungar [PUOOb] we pursued the idea of semi-autonomous proxy bidding
agents, that sit between agents and the auctioneer, and submit best-response bids whenever
they have enough information about an agent’s (possibly untruthful) valuation function
to determine the utility-maximizing bundle(s) at the current prices (Figure 7.1). Essen-
tially the proxy agents transform the iterative auction into an iterative direct-revelation

mechanism, in which agents report incremental information about their values for different
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bundles. In comparison, the classic mechanism design literature has typically considered
only single-shot direct-revelation mechanisms.

Semi-autonomous proxy agents retain the computational advantages of iterative auc-
tions because agents can provide incremental information about value; looking ahead to
the next chapter, an iterative auction with proxy bidding agents remains bounded-rational
compatible— an agent can follow its optimal strategy with an approximate valuation func-
tion.

The restriction to best-response strategies does not itself strengthen the incentive-
compatibility properties of an iterative Vickrey auction. The following result is a direct
consequence of Theorem 7.2, the Bayesian-Nash incentive-compatibility of an iterative

combinatorial auction that myopically-implements the Vickrey outcome:

THEOREM 7.3 Truthful dynamic information revelation is a sequentially rational best-
response to truthful dynamic information revelation by other agents in an iterative auction

A with best-response prozy bidding agents that myopically-implements the GVA.

In one extreme (and unachievable) case, if the proxy agents are able to force agents
to provide incremental value information ronsistent with a single er ante fixed valuation

function then we can make the following claim:

ProposITION 7.1 (dominant strategy). Truthful dynamic information revelation is a
dominant strategy in an iterative auction A with best-response prozry bidding agents that
myopically-implements the GVA, when agents provide information consistent with an ex

ante fized (but perhaps untruthful) valuation function.

In other words, incremental truth-revelation is a dominant strategy so long as the
decisions made by other agents about how to misrepresent their values for bundles are
not conditioned on observed information during the auction. This is a stronger claim
than Bayesian-Nash (Theorem 7.2), which states that myopic best-response is sequentially-
rational in equilibrium with myopic best-response from other agents, but weaker than the
full strategy-proofness of the GVA.

One might imagine a method in which an agent is made to commit to a particular

“manipulation function”, a particular mapping from values to reported values, before it
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computes its actual values for different bundles. This manipulation function could also
reside in the proxy agent. However, this manipulation function would only provide the
required property of an ez ante fixed valuation if used in combination with a method
to validate that incremental information provided by an agent to its proxy was truthful
information, which flies in the spirit of mechanism design.

A middle ground can be achieved with proxy bidding agents that:

(a) enforce self-consistency in information reported across rounds

(b) require an agent to provide enough value information in each round to enable
the proxy agent to determine a bundle(s) that maximizes utility for all possible future
refinements, given prices in the current round.

One reasonable proposition about the incentive properties of such a proxied iterative

Vickrey auction:

ProposiTiON 7.2 Given auction A, that myopically-implements the Vickrey outcome,

introducing prozy bidding agents and consistency checks “limits” the opportunities for suc-

cessful manipulation.

Intuitively, in every round that an agent reports more value information it commits
itself to a smaller set of possible reported valuation functions, and restricts its ability to
condition future announcements on information revealed by other agents. Providing a

theoretical and/or empirical measure of “limits” is left for future work.

7.5.1 Consistency Checking and Best-response

Formally, let us consider what is required for a proxy agent to: (a) have enough information
to compute a best-response bid; and (b) check information consistency across rounds.

Let 0§ppmx'i,f)§ppmx'i,... , denote the sequence of approximate valuation information
provided by agent 1, in rounds 1, 2, etc.

Given an approximate valuation function @approx,is let C(Gapprox) € V denote the set of
completely specified valuation functions that are compatible with approximate information
Uapprox: Where V is the set of all possible valuation functions. The particular definition
of compatible is that which is natural given the type of approximation, for example if the

approximation states upper- and lower- bounds on values, then a compatible value is any
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value between the bounds.
An approximation is consistent with an earlier approximation if the only compatible

valuations were also compatible before:

DEFINITION 7.3 [consistent] Approximation vy, is consistent with approximation

! . . .
Vapproxs WFitten viporoe € Vanorexs if the set of compatible values C(vypprox) € C(Vapprox)s
i.e. if vjp;c0¢ Places a stronger condition on the compatible valuation functions.

The consistency check by the proxy agent across rounds is defined as follows:

DerFINITION 7.4 [consistency check] For consistency from round ¢ to round ¢ + 1, the
proxy agent requires

~t+1 ~t
vapprox,i g Vapprox,i

such that the approximation in round ¢ + 1 is consistent with the approximation in round
t.
In words, the information in round ¢ + 1 must be a refinement of the information in
round ¢, and therefore consistent with the information in all previous rounds by transitivity.
Given prices pf(S) to agent i for bundles § C G in round ¢, the auctioneer requires
enough information from agent i to compute a best-response that is optimal for all future

refinements.

-~ =

DerFiNITION 7.5 [best-response information requirement] In round ¢ agent i must provide
enough information 9}, ; for a single bundle S, to solve maxs %(S) — p}(S) (to within
minimal bid increment €) for all # € C(9prqx,:)- for current prices pf(S).

In other words, the agent’s best-response strategy is the same for ail valuation functions
consistent with its current approximate value information at the current prices.

I have provided on definitions for a worse-case framework; i.e. a new approximation
is only consistent with an old approximation if there are no new compatible valuations—
not even one. Similarly, the best-response condition states that there must be a single
best-response for every future set of consistent approximations.

These definitions are not suitable with some stochastic approximations, such as “the
value for obundle S is Normally distributed with mean u and standard deviation o”. More
suitable definitions would replace the worst-case guarantees with “with high probability”

guarantees. For example, a new approximation might be said to be é-consistent with a
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A B AB
Agentl 0 14° 14
Agent 2 10* O 10
Agent3 4 5 12

Table 7.2: Problem 9.

current approximation if the probability that a valuation consistent with the new approx-

imation was also consistent with the previous approximation is at least 1 — 4.

7.5.2 Special Case: Upper- and Lower- Bounds

An important special case occurs when an agent can provide approximate information in
the form of upper- and lower- bounds on value.

Bounds {v(S),%(S)]* in round ¢ denote lower-bounds u(S) < 4(S) on bundles S, for
some valuation function 4(S), and upper-bounds 7(S) > 9(S). Valuation function 4(S) is
compatible with bounds, 9(S) € C([u(S),T(S))), if 9(S) > u(S) and 4(S) < T(S) for all
SCg.

Given prices p;(S) and bounds [v;(S),Ti(S)]), let u;(S) = v;(S) — pi(S) and T(S) =
7;(S) —pi(S). The bounds provide sufficient information for a best-response bid if for every
bundle S:

u;(S) + e 2w(T) VT #S5TCG (dominates)
or
3T #S,TCG suchthat Ti(S) < u(T) +¢

In words, this states that every bundle must either have a utility that dominates the
utility of all other bundles, for all future refinements, or have a utility that is dominated
by at least one other bundle for all future refinements. The best-response is to bid all

bundles that satisfy the (dominates) condition.

7.5.3 Example: Incremental Information Revelation

This section presents a worked example of iBundle(2) with proxy bidding agents on Prob-
lem 9 in Table 7.2, in which the efficient allocation S* = (4, B,0).

Assume that the agents initially provide the following information to their proxy agents:
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A

B AB

agent 1 0 (13.5,14.5] same as B
agent 2 (2,12] O same as A
agent 3 [2,6] [2,6] (8,16]

Assume that the minimal bid increment, ¢ = 2. The proxied auction proceeds auto-

matically through 7 rounds with this information, as illustrated below:

Bids

Selected utility bounds

Agent 1 Agent 2 Agent 3 Agent 1

Agent 2 Agent 3

Round| Prices
A B AB
1 00 0
2 00 2
3 2 2 2
1 2 2 4
5 2 2 6
6 1+ 4 6
7 4 4 8
8 4 4 10

(B,0)°

(8,0)

(8.2)°
(B,2)

(B,2)

(B,4)
(8,4)°

(B,4)

(4,0)°
(4,0)
(4,2)°
(4,2)"
(4,2)
(A,4)°
(4,4)"
(4,4)

(AB,0) |B:[13.5, 14.5]
(AB,2)" | B:[13.5, 14.5]
(AB,2) |B:{11.5, 12.5]
(AB,4) | B:[11.5, 12.5)
(AB,6)" | B:[11.5, 12.5]
(AB,6) | B:[9.5, 10.5]
(AB,8) | B:[9.5, 10.5]
? B:[9.5, 10.5]

Af2,12] A2, 6] AB:[8, 16]
A2, 12]  A:2, 6] AB:[6, 14]
A:0, 10]  4:[0, 4] AB:[6, 14}
A0, 10] A0, 4] AB:4, 12)
A0, 10]  A:{0, 4] AB:[2, 10]
A2, 8] A2, 2 AB:2, 10]
A2, 8] A2, 2] AB:[O, §
A2, 8] A:[-2, 2] AB:[-2, 6]

In rounds 1-7 the proxy agents have enough information to submit a best-response

bid (to within ¢). However, in round 8, the approximate information provided by agent

3 is not sufficient to determine the best-response. Notice that the bounds on bundle AB

do not satisfy the (dominates) condition with respect to the bounds on bundle A (or on

bundle B).

In this round agent 3 must provide more value information to its proxy agent. Only in-

formation consistent with Gapprox,3(4) =

[ 6] UapproxS B) [2 6] Uapproxs AB) [8 16]

is allowed. Suppose that agent 3 provides bounds [11, 16] on bundle AB.

The auction can now proceed as follows:

A B AB|Agent1 Agent2 Agent 3 Agent 1

Agent 2 Agent 3

84 4 10 [(B,4)
96 6 10 |(B,6)

(4,4)

(AB,10)" | B:[9.5, 10.5]
(AB,10) | B:(75, 8.5]

A-2, 8] A:[-2, 2] AB:(1, 6]

A:[-4, 6] A:[4, 0] AB:(1, 6]

At round 9 more information is required from agent 2. Suppose agent 2 first provides
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new bounds vapprox,2(A) = [2, 10]. These bounds are consistent, but not sufficient for best-
response because the lower utility bound is still more than € below 0. With information

Vapprox,2(A4) = [6,10] the auction can continue.

A B AB|Agentl Agent 2 Agent 3 | Agent 1 Agent 2 Agent 3

9(6 6 10|(B,6)° (A,6)° (4AB,10)|B:[7.5,8.5] A:(0, 6] A:-4, 0] AB:[1, 6]

10/6 6 12 |(B,6)" (4,6)° (AB,12)|B:7.5,8.5] A:[0, 6] A:[-4, 0] AB:[-1, 4]

11|6 6 14 |(B,6) (4A,6) 7? B:(7.5, 8.5] A:[0, 6] A:[-4, 0] AB:[-3, 2]

In round 11 more information is required from agent 3. Suppose that agent 3 provides
Vapprox,3(AB) = (11,13], which will adjust the utility bounds on AB to -3, -1]. This is

enough information for the agent’s proxy agent to compute an empty best-response:

A B AB|Agent 1 Agent 2 Agent3| Agentl Agent 2 Agent 3
1216 6 14 {(B,6) (A,6) @ B:(7.5, 8.5] A:(0, 6] A:[-4, 0] AB:[-3, -1]

and the auction terminates with final allocation §* = (B, A,0) which is the efficient
allocation. The final information revealed to the proxy agents in this example is tabulated

below.

A B AB
agent 1 0 [13.5,14.5] same as B
agent 2 [6,10] 0 same as A
agent 3 [2,6] [2,6] (11,13]

Notice two interesting effects of the proxy agents:

e The auction has a “multi-modal” interface. An agent can either submit quite ac-
curate information up-front, as is the case for Agent 1 in this example, or provide

incremental information as required, as is the case for Agents 2 and 3.

e The auction is now “staged”, with a number of rounds performed automatically via

communication with the proxy agents but not communication with the actual agents.
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7.5.4 Example: Strategic Revelation in a Proxied English Auction

Consider a simple example of a proxy bidding-agent interface into the English auction,
which is an ascending-price auction for a single item in which the item is sold to the
highest bidder for its bid price. The English auction myopically-implements the Vickrey
outcome as the bid increment ¢ — 0, with the item sold to the highest bidder for € above
the second-highest value over all agents.

Introducing proxy agents that accept refinements on upper- and lower- bounds on value
from agents makes the auction a staged Vickrey auction. As discussed above:

- iterative truth revelation is a dominant strategy in response to strategies from other
agents consistent with er ante fixed valuation functions

- iterative truth revelation is a Bayesian-Nash equilibrium of the proxied auction, i.e.
a sequentially-rational best-response to iterative truth revelation from other agents

However, iterative truth-revelation is not a dominant-strategy equilibrium. I construct
an example below in which an agent can increase its utility with a non-truthful strategy.

Consider the following example:

Agent 1 Agent 2 Agent 3
value 5 10 15

Incremental Truth-Revelation

First, suppose that each agent plays the Bayesian-Nash equilibrium, maintaining bounds
compatible with its true value. Consider initial bounds (2, 6], [5, 15], [8, 20]. Proxy agents
1, 2 and 3 bid while p < 2, then agents 2 and 3 bid while p < 5. Finally, with the price
at p = 5+ ¢, agents 1 and 2 need to provide more information. Suppose agent 1 updates
its bounds [2,6] — [2,5], and agent 2 [5,15] — [9,12]. Proxy agent 1 drops out, while
proxy agents 2 and 3 bid while p < 8. With the price at p = 8 + ¢, agent 3 provides more
information. Suppose agent 3 updates its bounds (8,20] — [12,18]. With this information
the price increases to p = 9 + ¢, and agent 2 might continue refining its lower bound until

it is approximately 10. At this point agent 3 wins the auction, and pays 10 + €.
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Static Incremental Strategies

Now, suppose that agent 2 provides information consistent with 9, = 9 instead of v, = 10.
Suppose that agent 1 continues to follow an incremental truthful strategy. It should be
clear that agent 3's best strategy is incremental truth-revelation. This strategy will win

the item for a price of 9 + ¢, which is the best possible outcome for agent 3.

Dynamic Strategies

Finally, here is an example to demonstrate that incremental truth revelation need not be
an agent’s best strategy, and does not form a dominant strategy equilibrium.

Suppose that agent 1 follows a truthful strategy, while agent 2’s strategy is:

set initial bounds [4,30]. At first request for more information, provide bounds (6, 30).
If the agent is provisionally allocated the item in the next state of the auction provide
bounds [25,30], otherwise provide bounds (7,7].

Notice that agent 2 makes a dynamic decision about whether to announce information
consistent with a value of 7, or with a value somewhere between 25 and 30.

First, consider the outcome if agent 3 follows the following incremental truthful strat-
egy. Initial bounds (5,20]. The price will increase to 4 + ¢, at which point agent 3 is
provisionally allocated the item. Agent 2 provides new bounds [6,30], and the price in-
creases to 5 + €, with the item allocated to agent 2. Finally, agent 2 updates its bounds to
[25,30], and the auction will terminate with agent 2 buying the item for price 15 + ¢.

Now, consider an alternative strategy for agent 3. Initial bounds (30,40]. The price
will increase to 4 + €, at which point agent 3 is provisionally allocated the item. Agent 2
provides new bounds [6,30], and the price increases to 6 + €, with the item allocated to
agent 3. Finally, agent 2 updates its bounds to [7,7)], and the auction will terminate with

agent 3 buying the item for price 7 + €.

7.5.5 Real World Proxy Agents

On-line auctions such as eBay, www.ebay.com, for consumer-to-consumer e-commerce
present a real-world example of auctions with separate valuation and bidding problems:
people value items, and eBay provides automated bidding agents that monitor auctions
and place bids. In an ascending-price auction, the proxy agents are configured with a user’s

reservation value, the maximum she will pay for an item, and bid while the price is below
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that value. Interestingly, the proxy agents do not convert ascending-price auctions into
sealed-bid auctions because they can inform a user by e-mail when her reservation value
has been reached, and accept updated values. This allows the user to deliberate further
about her value for the item, but only if that is required by the current price in the auction,
and makes the auction with proxy agents bounded-rational compatible.

Proxy bidding agents that restrict agents to placing a bid at the current ask price
may also be useful in preventing “code bidding” between agents in an auction, to achieve
collusive outcomes. This practice of adding “magic numbers” on the trailing digits of bids
to pass information to other bidders was observed in the FCC spectrum auction, an open
and simultaneous auction for individual licenses [CS00]. The FCC introduced “click-box”
bidding to constrain bids to be one of a finite number of bid increments above the current

ask price.

7.6 Theoretical Analysis
First, consider the following lemma.

LEmMa 7.3 (optimality if terminates). iBundle Eztend€Adjust computes the efficient
allocation and Vickrey payments for myopic best-response bidding strategies as the minimal

bid increment € = 0.

Proof. The final prices in the auction satisfy the Vickrey test conditions (Definition
6.10) by construction. The discounts computed during Phase II of the extended auction are
simply equal to the discounts that would be computed with ADJUST* at the end of Phase II.
The final adjusted prices are Vickrey payments by Theorem 6.5 in Chapter 5. The alloca-

tion is the one from the end of Phase I, the allocation computed with iBundle and therefore
efficient by Theorem 5.1 of Chapter 4. |

We already have a proof of Theorem 7.1, that iBundle Extend&Adjust computes the
Vickrey payments whenever they are supported in minimal competitive equilibrium. The
prices at the end of :Bundle(3) satisfy the conditions required in Theorem 6.1 in Chapter
4. The prices are indeed negative translations of agent valuation functions when agents

follow myopic best-response strategies.
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7.7 Experimental Analysis

In this section I describe the results of experiments run with iBundle Extend&Adjust and
agents with myopic best-response strategies, on the same problem sets used to test iBundle
in chapter 5. The first set of results measure the distance between minimal CE prices and
the result of using ADJUST* on prices at the end of iBundle(3). The results demonstrate
that {Bundle with adjusted prices computed at the end of the auction terminates with
minimal CE prices. The second set of results compare the adjusted prices at the end of
the extended auction, i.e. after Phase II, with prices in the Generalized Vickrey auction.
Again, the results show very strong support for Conjecture 7.1, that the extended auction

is an iterative Generalized Vickrey auction.
Yy

7.7.1 Results I: iBundle and ApJusT*

First, in this section I present the results of experiments to compare the effect of computing
adjusted prices at the end of :Bundle, with computing minimal CE prices and Vickrey
payments. The variations ADJUST, ADJUST*, and ADJ-PIvVOT?*, introduced in the previous
chapter, are all considered. In these first set of experiments, first reported in Parkes &
Ungar [PUOOb], the auction is not extended into Phase II and only computes Vickrey
payments when they are supported in competitive equilibrium.

The auction is tested on problems PS 1-12 in Table 5.5 (chapter 5) and also problems
Decay, Weighted-random (WR), Random and Uniform in Sandholm [San99]. Each problem
set defines a distribution over agents’ values for bundles of items.

In this set of experiments the distance D(p;(S}), pvick(i)) between prices p;(S;) and
Vickrey payments is measured with an L) norm, as Li(pi, pvick) = 3; [Pi(Si) — Pvick(i)l/
>, vi(Si), i.e. the sum absolute difference between the price charged to each agent and its
GVA price normalized by the total value of the allocation over all agents. An L, norm is
appropriate because minimal CE prices is computed with a linear additive measure over
the auctioneer’s price to each agent in the allocation, and because errors in the prices are
always one-sided (i.e. greater than the Vickrey payments).

There does not appear to be a useful measure of the distance to Vickrey payments
in problems in which the auction’s allocation is inefficient, and different from that in the

GVA. Thus, I compute the average distance over problem instances in which :Bundle
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Figure 7.2: Average performance of iBundle with price-adjustment ADJUST* and ADJ-PIvOT* in

problems PS 1-12 (see Table 5.5). The number of rounds to termination is varied by adjusting the
minimal bid increment.

computes the optimal allocation, which approaches 100% of problems as the bid increment
gets small.

Figure 7.2 plots the distance to the Vickrey payments in iBundle, before and after price-
adjustment using ADJUST* and ADJ-PIVOT?*, averaged over 25 trials each of problems
PS 1-12. I ran :Bundle with different bid increments to vary the number of rounds to
termination, and average performance across problem sets by normalizing the number
of rounds to termination according to the minimal number of rounds in which ‘Bundle
achieves 100% allocative efficiency. For comparison, I also plot the performance of minimal
CE prices.

The results show clear support for Theorem 7.1, that states that iBundle(3) followed
by ADJUST* computes minimal CE prices. The average distance between minimal CE
prices and GVA prices across these problems is 5.3%. For small bid increments iBundle
computes prices to within 6.5% of the Vickrey payments, with ADJUST to within 5.5%
(not plotted), and with ADJUST* and ADJ-PIvVOT* to within 5.2%. The prices continue
to adjust towards the min CE prices for bid increments smaller than those required for
100% allocative efficiency, corresponding to normalized rounds to termination > 1. It is
noteworthy that the approximate method ADJ-PIvOT* is as effective as ADJUST* for small

bid increments.

The benefit of ADJUST* over ADJUST is quite marginal without the extended phase of
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the auction. In comparison, the results with ADJUST* after the second phase of the auction
demonstrate the importance of computing price adjustments beyond a single minimal CE
price vector (see Figure 7.5 for example).

[ also compute the fraction of all problems in which D(p;, pyia(i)) < 2%, to test the
proportion of problems in which prices are approximately Vickrey. CE prices are equal
to Vickrey payments in approximately 57% of problem instances; and iBundle with both
ADJUST* and ADJ-P1vOT* computes Vickrey payments in these problems, while iBundle
alone terminates with Vickrey payments in only around 38% of problem instances.

The minimal CE prices are close to GVA prices (average distance < 2.5%) in problems
PS 4-8, in which the agents in the optimal allocation also tend to be in the second-best
allocations. In contrast, the minimal CE prices differ from the GVA payments by more than
5% in problems PS 1, 3, 9, 11 and 12, which are characterized by optimal allocations that
are very different from second-best allocations, and agents with complementary demands
for bundles (see Table 5.5).

As expected, additional analysis shows that the Vickrey test (Definition 6.10) is suffi-
cient but not necessary for the adjusted prices to equal Vickrey payments. The specificity
of the test was 100% (no false-positives), but its sensitivity was only 56% (some false-
negatives); i.e. some cases in which the adjusted prices were in fact Vickrey payments
were undetected.

The success of ADJ-PIVOT*, the approximate adjustment method that uses pivot allo-
cations from earlier rounds of the auction, is confirmed in the results illustrated in Figure
7.3, for problems Decay, WR, Random, and Uniform. In Decay I set Sandholm’s a param-
eter to 0.85. The distance to Vickrey payments is plotted against the run time of iBundle
with ADJ-PIVOT*, computed with respect to the time to solve the single-shot General-
ized Vickrey auction (for the same winner-determination algorithm in both auctions). I
varied the minimal bid increment to adjust the number of rounds in :Bundle, and study
the distance between final prices and minimal CE and Vickrey payments as the allocative
efficiency and correctness trends to 100%.

Minimal CE prices are equal to Vickrey payments in WR, because there is typically
a single agent in the efficient allocation in this problem set. iBundle with ApJ-PivoT*
computes the Vickrey payments in these problems. It is interesting that ADJ-PIvoT* is

able to compute prices closer to the Vickrey payments than the minimal CE prices in
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Figure 7.3: Performance of iBundle with price-adjustment ADJ-PIVOT* problem sets from Sand-
holm [San99]. The bid increment in iBundle is adjusted to give different run times.

Decay and Random. Recall that the ADJUST* procedure minimizes each agent’s payment
separately, and can compute prices that are closer to the Vickrey payments than any
single set of CE prices. Finally, notice that the minimal CE prices remain quite far from
Vickrey payments in the Uniform problem set. The second-best allocations in Uniform are
typically quite different from optimal allocations, and the agents-are-substitutes condition
(Definition 6.3) often fails.

Although my focus in this work was not on the auctioneer’s winner-determination work,
it is worth noting that the run time in the iterative auction is basically comparable to that
in the GVA, if one considers the level of accuracy at which the performance of :Bundle and
ADJ-P1voT* levels out. The obvious exception here is in the weighted-random problem

set, but this was actually the easiest problem to solve- the GVA solved the problem in an
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average time of 9.1 sec, compared with 362 sec, 1791 sec, and 138 sec for Decay, Random,

and Uniform, on a 450 MHz Pentium.

7.7.2 Results II: iBundle Extend& Adjust

iBundle Extend&Adjust is tested in the same suite of problem instances; i.e. problems PS
1-12 and problems Decay, Weighted-random, Random and Uniform. Problem sizes (num
agents, num items, num bundles) are set to (8, 50, 120) in Decay, (20, 50, 400) in Uniform,
(8, 30, 80) in Random and (15, 50, 300) in Weighted Random. Decay parameter a = 0.85.
The results are averaged over 40 trials.

This time I measure the distance between agent payments in the auction and GVA
payments with an Lo norm, as Lo(p;, pvick) = [Zi(p,- - pvick(i))2] 12, I compute the average
distance to Vickrey payments over the instances in which the auction terminates with the
optimal allocation. As the bid increment gets small this fraction approaches 100%. This
provides a more useful measure of distance than computing the average L, distance over
all trials, including those in which the allocation is not efficient.

Figure 7.4 plots the distance between Vickrey payments and auction payments against
the “correctness” of the auction, the fraction of instances in which the auction computes
the efficient allocation, which approaches 100% as minimal bid increment ¢ — 0, for PS
1-12. The allocative efficiency in these experiments increases from around 90% at 23%
correctness, to almost 100% at correctness of 65% and above, as the bid increment gets
small. The figure plots the between Vickrey payments and: (1) prices at the end of Phase I
(iBundle); (2) after the initial price adjust at the start of Phase II (iBundle and ADJUST*);
(3) at the end of Phase II (:Bundle, Extend&Adjust); and (4) minimal CE prices.

Considering aggregate statistics, the number of rounds on Phase II is smaller than
in Phase I, but the auctioneer’s computation in each round takes more time. At 95%
correctness the average number of rounds in Phase I is 149, compared to 18 in Phase II;
each round in Phase [ takes an average of 0.5s, compared to 2.8s in Phase II; the agent
valuation information provided at the end of Phase I is 77%, and increases to 83% at
the end of Phase II, using the metric introduced in section 5.3.1 in chapter 5. Finally,
approximately 1-in-3 agents receive a dummy agent during Phase II.

Figure 7.5 illustrates the performance of the auction in problems Uniform, Decay,

Random, and Weighted Random. In all problems allocative efficiency approaches 100%
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Figure 7.4: Distance to Vickrey Payments in PS 1-12.

for small bid increments, and the distance to GVA payments approaches zero. The effect
of Phase II is quite significant.

[t is worth noting that the auction implements the Vickrey outcome even in problems in
which the outcome is not supported in any competitive equilibrium; notice that the distance
between the minimal CE prices and the GVA payments is non-zero in all experiments.
This is important because there is often no single set of CE prices that supports Vickrey

payments.

7.8 Discussion: Phase I to Phase II Transition

[t is important that agents cannot identify the transition from Phase I to Phase II, because
an agent’s bids in Phase II do not change either the final allocation or its own final payment.
The only effect of an agent’s bids in Phase II is to reduce the final payment made by other
agents. If it is costly to participate in the auction an agent would choose to drop out after
Phase I. In addition, there are opportunities for collusion between agents in Phase II (just
as the GVA itself is vulnerable to collusion).

Certainly, we must hide bids from dummy agents in Phase I (or give the dummy agents
false identities). Each agent only needs information about its own ask prices, and whether
or not it is receiving a bundle in the provisional allocation. Agents do not need any
information about the bids, prices, or allocations of other participants.

It is also important that agents cannot distinguish the competitive effects of bids from
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dummy agents from the competitive effects of bids from real agents. This is our reasoning
for constructing dummy agents to mimic the real agents that compete for items in Phase
[ of the auction.

Finally, another concern is that an agent cannot detect from the auctioneer’s response
time that we have moved from Phase I into Phase II.

Figure 7.6 illustrates a typical run of i:Bundle Extend&Adjust. Figure 7.6 (a) plots:
(i) the efficiency of the allocation implemented during the auction; (ii) the revenue to the
auctioneer, which increases monotonically across rounds; and (iii) the adjusted revenue,
which falls towards the Vickrey payment during Phase II. Notice that the efficiency of the
allocation oscillates during Phase I until it is locked-in, and that the final adjusted prices
at the end of Phase II are the Vickrey payments. Figure 7.6 (b) plots the CPU time for
the auctioneer in each round of the auction. Notice that it climbs slowly during Phase I, as
agents submit more bids in each round and the winner-determination problems get larger.
The transition from Phase I to II is quite apparent, at around iteration 70, when there is
a jump in CPU time. The auctioneer must check Vickrey conditions at the end of every
round during Phase II. Figure 7.6 (c) plots the number of active agents and dummy agents
during the auction. The number of active agents falls during Phase I until all agents are in
the provisional allocation, at which point the optimal allocation is found and the auction
enters Phase II. During Phase II the number of dummy agents increases as agents continue

to drop out of the auction.

7.8.1 Unresolved Issues

There are a number of interesting areas for future work. I divide them into computational
issues, and issues about agent incentives in iBundle Extend&Adjust.

Computational

First, it should be possible to reduce the computational demands on the auctioneer. For
example, it would be useful to allow the auctioneer to recompute the dependent agents in
each round of Phase II without explicitly computing the second-best revenue-maximizing
allocations.

It would be interesting to investigate the performance of approximate methods such as

ADIJ-PivoT*, which proved very effective in when used to adjust prices immediately after
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iBundle. The pivot method uses the cached provisional allocations computed during the

auction to compute second-best allocations.

Agent Incentives

The separation of concerns between Phase I and Phase II in :Bundle Extend&Adjust is
potentially dangerous. At the end of Phase I the final allocation has been determined,
and bids from an agent during Phase II serve to reduce the final payment made by other
agents. This separation is quite different from the Groves mechanisms, in which the agents
submit their valuation functions in a single-shot and there is no sense of “what I am doing
now is changing the allocation” and “what I am doing now is changing the prices”. Of
course, the situation in iBundle Extend&Adjust is not completely decoupled. Bids during
Phase I do affect prices at the end of Phase II, in addition to the allocation.

However, one concern is that the mechanism for potential collusion, which is a problem
in the regular Groves mechanism, is quite explicit in :Bundle. For every $1 that agent 1
bids-up during Phase II, one (or more) agents pay $1 less. To the extent to which the
opportunities for collusion are so transparent it will be very important that there is a
high-degree of uncertainty about the phase (I or II) of the auction.

It would be useful to investigate the incentive properties of prozied iterative mecha-
nisms, and to understand the difficulty of manipulation in with myopic best-response proxy
agents and consistency checks. An appropriate question to ask is the degree to which proxy
agents “limit” the opportunities for manipulation in Proposition 7.2.

Finally, I would like to reduce the level of price discrimination in the auction. For
example, in application to the allocation of a single item, the current auction maintains
a separate ask price for each agent. In comparison, the English auction implements the

Vickrey outcome with a single ask price which is the same to all agents.
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Chapter 8

Bounded-Rational Compatible Auctions

& Myopic Best-Response

This chapter introduces the idea of bounded-rational compatibility, which captures the
concept. of allowing an agent to implement an equilibrium bidding strategy without com-
puting its exact preferences across all outcomes. Bounded-rational compatibility parallels
the idea of strategy-proofness in auctions. In a strategy-proof auction an agent can com-
pute its optimal strategy without any information about the preferences of other agents.
In a bounded-rational compatible auction an agent can compute its equilibrium strategy
(e.g. Bayesian-Nash, dominant-strategy, etc.) without complete information about its own
preferences. In other words an approximate valuation function is sufficient to compute an
optimal strategy. This useful in problems in which agents have limited computational
resources, local valuation problems are hard, and there are many possible outcomes.

It is also useful to discuss the complexity of myopic best-response within the context
of bounded-rational compatibility; i.e., under what conditions can an agent compute its
myopic best-response strategy without first evaluating its complete preferences over all
outcomes, and how significant are the savings computationally? Clearly an agent can
compute its set of best-response, or surplus-maximizing, bundles for a particular set of ask
prices with suitable bounds on the values of each bundle, but what about best-response to
a sequence of prices over the course of an iterative auction? An initial attempt is made
in this chapter to provide a structural analysis of the myopic best-response problem, to
identify conditions in which myopic best-response is a polynomial problem while complete
revelation is an ezponentiel problem.

An explicit model of the bounded-rationality of agents can provide a new insight into

computational mechanism design. In particular, we might take as a goal to maximize
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allocative efficiency given the bounded-rationality of agents. In a sense this turns Rus-
sell’s definition of “bounded-optimality” [Rus95] on its head. Instead of requiring that a
bounded-rational agent takes the best decision possible given the constraints of its compu-
tational machine, let us design the environment of an agent— the mechanism —to extract
the most value from the metadeliberation and resource-bounded computation of agents.
Again, this brings us back to the concept of a bounded-rational compatible auction.

Experimental results presented in this chapter demonstrate that iterative auctions can
compute more efficient allocations than sealed-bid auctions, for myopic best-response agent
strategies and the same limits on agent computation. Well designed mechanisms can allow
agents to avoid unnecessary computation end shift agent computation towards evaluating
preferences towards local problems that are compatible with good system-wide solutions.
An obvious example of good mechanism design is strategy-proofness, so that agents do
not waste precious cycles worrying about other agents. Bounded-rational compatibility
captures this more subtle idea of providing agents with information to make good decisions
about their own deliberation.

From a design perspective, one can imagine that bounded-rational compatibility in-
troduces a new constraint to mechanism design, which can be taken in combination with
other game-theoretic requirements such as incentive-compatibility and efficiency. The pre-
cise type of bounded-rational compatibility depends on the equilibrium concept adopted
in analysis of a mechanism; e.g. dominant-strategy, Bayesian-Nash equilibrium etc. Es-
sentially an agent must be able to compute its equilibrium concept with an approximate
valuation function.

The formal definition of bounded-rational compatibility leads to a couple of metrics to
quantify the degree of BRC in an auction for a particular problem and a particular model
of agent bounded-rationality.

Experimental results are presented for two models of agent deliberation in equilibrium.

1. Costly computation and rational metadeliberation in a single-item allocation prob-

lem, comparing the properties of simple auction mechanisms.

2. Limited computation and myopic metadeliberation within a simple model of agent

interaction. called “lazy deliberation and eager bidding” (LDEB).

The LDEB model provides a couple of metrics to quantify the degree of bounded-rational
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compatibility of a mechanism. One metric, bounded-efficiency, measures allocative effi-
ciency for different computation budgets. Another metric, bounded-computation, measures
the amount of computation actually performed by agents for different computation bud-
gets. In a bounded-rational compatible auction the bounded-computation peaks at a level
below that required for agents to compute their complete preferences.

The outline of this chapter is as follows. First I introduce the agent valuation problem,
define bounded-rational compatibility, and present a few examples. Then, I consider the
complexity of myopic best-response in {Bundle, and characterize conditions on problem
domains for which myopic best-response is polynomial while complete revelation is ezpo-
nential. The last two sections present two sets of experimental results. Section 7.4 presents
a comparison of simple auction models for a simple model of costly agent deliberation. Sec-
tion 7.5 presents a computational study of auction models for a simple model of limited

agent deliberation, in allocation problems with multiple items.

8.1 Agent Decision Problem

It is helpful to assume that an agent’s decision problem can be separated into a valuation
problem, to compute the value of different items, and a bidding problem, to compute an
optimal bid. Each problem is well-defined in separation, for example the valuation problem
can be solved with decision analysis tools and optimization methods that are independent
of the particular auction, while the bidding problem can be solved with game-theoretic
methods. Figure 8.1 illustrates this decision problem. The arrows show the flow of infor-
mation.

Auction design can influence the effectiveness of an agent’s deliberation on its local
valuation problem because an agent can decide how to deliberate dynamically during the
course of an auction, for example based on price information. Careful auction design can
simplify an agent’s valuation problem; auctions can allow an agent to avoid unnecessary
computation on its valuation problem and bid with approximate valuations.

Before turning to valuation, note that the bidding problem can be hard, in particular
when an agent with information about the bidding strategies of other agents can manip-
ulate the outcome of the auction. Counter-speculation and game-theoretic reasoning is

difficult. This is the critical role for strategy-proof mechanisms.
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Figure 8.1: The Agent Decision Problem.

As an example of a hard valuation problem, consider an auction for machine time in
a multi-agent job-shop scheduling problem, in which each agent has jobs to schedule on
a shared machine. To compute the value of a bundle of machine times an agent must
compute its best schedule of jobs given the time specified in the bundle, which can be a
NP-hard problem. Consider also an auction-based system for distributed task allocation
where agents need to reformulate local plans to compute costs for performing additional
tasks; or an auction-based system for allocating landing times at an airport, where the
valuation problem is to compute the value of a time slot based on local constraints such
as the availability of support and maintenance crews, gate availability, and costs for late
arrival.

Let v;(S) > 0 denote agent i’s value for bundle S C G of items, where G is a set of

discrete items.

DeFiNiTION 8.1 [valuation problem] The valuation problem for agent ¢ is to compute
v;(S, 8;) for all bundles S C G, given preferences 6; € ©;, where ©; is the set of all possible
types.

Recall that the type of an agent defines its preferences, in this case the value of an
agent for all possible bundles of items. We can define an approzrimate valuation function
in terms of stochastic information about an agent’s type.

Let 8app,i € A(O;) denote a distribution over types, where A(©;) is the set of distribu-

tions on types. Similarly, v;(S, 8app,;) € A(R) defines a distribution over the agent’s value
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for bundle S. An agent has approximate information about its valuation function if the

value of one or more bundles is not completely defined:

DEFINITION 8.2 [approximate valuation| Agent ¢ has an approximate valuation function,
vi(S, Oapp,i), if there is at least one bundle S’ for which the value v;(S’,68,pp,:) remains
uncertain.

Example approximate valuations in a combinatorial allocation problem include:

- lower bound, v;{S’), and upper bound, 7;(S'), such that v,(S') < v;(S',6:) < T(S"),
for at least one bundle 'C G

- vi(S',6;) = U(a,b), uniformly distributed between a and b, for some bundle ' C G

An agent’s metadeliberation problem is to estimate the value of additional computation
vs. acting, and to decide what to deliberate on and for how long.

Russell and Wefald [RW91] present a general model of metareasoning, that considers
computational actions explicitly within an agent’s decision problem. A bounded-rational
agent chooses a sequence of actions, computational or otherwise, to maximize expected
utility, given models of computation and models of its world. The value of computation
derives from the effect that the computation has on the actions that an agent takes in the
world. Russell and Wefald develop myopic approximations to metareasoning and present
an application to a stochastic decision problem.

A bounded-rational compatible auction allows an agent to perform useful
metadeliberation. An agent with limited or costly computation and simple metadelibera-
tion can avoid further deliberation about value when it knows that its bid is optimal for
all possible values consistent with its approximate solution. An agent with costly compu-
tation, for example an opportunity cost associated with deliberation, considers the cost of
deliberation and the expected value of the effect of further deliberation on the utility of

its decision.

8.2 Bounded-Rational Compatible Auctions

A bounded-rational compatible (BRC) auction is an auction in which an agent can compute
its optimal strategy, for a particular equilibrium concept, with an approximate valuation
function and with minimal information about the other agents. We first introduced the

term bounded-rational compatible auctions in Parkes et al. [PUF99]. It is important to
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quality the definition in terms of information about other agents, because we wish to
identify auctions in which an agent can avoid valuation work without additional work
modeling the other agents. To understand this, consider the following example.

Ezample. An agent in the Vickrey auction without any information about the prefer-
ences or strategies of other agents cannot compute its optimal strategy without complete
information about its own valuation problem, because the optimal strategy of an unin-
formed agent is to bid its complete and accurate valuation function. However, an informed
agent in the Vickrey auction can compute its optimal strategy with approximate value
information. For example if an agent knows that the highest bid from another agent is $10
then it can bid optimally with a lower bound on its own value of $12; i.e. a bid of b = §12

will maximize utility.

A natural way to handle information in the characterization of bounded-rational com-
patible auctions is to require that an agent can compute its equilibrium strategy without
any additional information about the problems of other agents beyond that which is re-
quired to compute the optimal strategy with complete information about the agent’s own
problem.

We define the concept of an information-restricted agent:

DeriNiTioN 8.3 [information-restricted] An agent i is information restricted if it has the
minimal amount of information about the other agents needed to compute its equilibrium
strategy with complete information about its own preferences.

In other words, an information-restricted agent has no more information than is mini-
mally required by the solution concept in the mechanism. For example:

- an information-restricted agent in a dominant-strategy equilibrium has no informa-
tion about the other agents, because it requires no information to compute its dominant
strategy.

- an information-restricted agent in a Bayesian-Nash equilibriumn has the distributional
information about agent preferences required to compute the expected-utility maximizing
strategy in the Bayesian-Nash equilibrium.

With this concept we can define a bounded-rational compatible auction. The equilib-

rium concept undefined in the general definition.
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DeFINITION 8.4 [bounded-rational compatible] An auction is BRC if an information-
restricted agent can compute its equilibrium strategy with approximate information about
its valuation problem in one or more non-trivial problems.

In other words, in a BRC auction an agent can compute its optimal strategy with
incomplete information about its preferences and minimal information about the other
agents. This definition precludes an agent from compensating for less information about
its own problem by collecting information about the problems of the other agents.

We also exclude trivial problems from consideration:

DerFINITION 8.5 [trivial problem] An instance of mechanism M for agent i, as defined
with preferences 6_; = (6y,... ,60i-1,0i+1,0;) of the other agents, is trivial if the outcome
implemented in equilibrium f(6;,0_;) is the same irrespective of the type 8; € ©; of agent
i

In other words a problem is trivial for agent 7 if the same outcome would be implemented
by the mechanism for all possible preferences of agent i, even when agent i has complete
and accurate information about its preferences.

Ezample. Consider a second-price sealed-bid auction in which agent 1 is the only agent.

This is a trivial problem because the agent will win the item for $0 whatever its bid.

We exclude trivial problems from the definition of BRC because an agent can trivially
compute its optimal strategy with approximate information about its preferences in a
trivial problem (so long as it knows the problem is trivial!), because it can simply follow
a strategy for any possible set of preferences.

The precise interpretation of equilibrium in BRC is left undefined, and depends on the
analysis method adopted for a mechanism. Special cases of bounded-rational compatibility,

for particular equilibrium concepts, include:

DeFiNiTION 8.6 [dominant BRC] An auction is dominant-strategy BRC if an information
restricted agent can compute its dominant strategy with approximate information about

its valuation problem, in one or more non-trivial problems.

DeriviTioN 8.7 [myopic BRC] An iterative, price-directed, auction is myopic BRC if

an information-restricted agent can implement its myopic best-response strategy in every
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round with approximate information about its valuation problem, in one or more non-
trivial problems.

Note carefully that myopic bounded-rational compatibility requires that an agent com-
putes its optimal strategy in every round of the auction with an approximate valuation

function, not just in a single round.

8.2.1 Bounded-Rational Compatible Auction Examples

English Auction

ProposiTioN 8.1 The English auction is myopic bounded-rational compatible.

Proor. Consider the English auction, an ascending-price auction for a single item,
with myopic best-response agent strategies. An agent that knows its value v can compute
its optimal myopic best-response strategy without any information about the bids from
other agents, i.e. b*(p) = p if p < v, and drop out of the auction otherwise. An agent
can also compute its optimal strategy with an approximate valuation, e.g. bounds v <

v < T. in some problems. For example, if the highest outside bid b = v — A, then the
agent can compute its optimal strategy (bid at every price) with lower boundv > v-A4A. |}

Consider the simple example in Figure 8.2. Agents 3 and 5 will bid the ask price up to
just above agent 5's lower bound, the second-highest lower bound. At this price, agents 1
and 2 can drop out of the auction without computing their exact values, while agents 3,
4 and 5 must perform further deliberation. This bidding problem demonstrates the BRC

property of the English auction, in this example, for agents | and 2.

3

5
I ]
Ask Price

l A Jm———

F—

Figure 8.2: Example Scenario in the English Auction.
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The Vickrey Auction

ProposiTioN 8.2 The Vickrey auction is not dominant bounded-rational compatible.

PRooF. An agent that knows its value v can compute its dominant strategy without
any information about the bids from other agents, i.e. s* = v. Therefore, in order to be
dominant BRC the Vickrey auction must allow an agent to compute its dominant strategy
without any information about the bids from other agents, and approximate value informa-
tion for its own problem. But its dominant strategy in this uninformed case is truthful and

complete revelation of its value information, which presents a conflict with the demands of
BRC. |

Posted Prices Market

ProrposiTioN 8.3 A posted price market is dominant BRC.

PROOF. A posted-price market with infinite supply, or with an ezclusive take-it or
leave-it offer to an agent, is not a situation of strategic interaction. There is no relevant in-
formation about the other agents, and the optimal strategy— also a dominant strategy —is
to accept the price on an item if the price is below an agent’s value. An agent can compute

this optimal strategy with approximate information about its value, for example with a
lower-bound that is above the ask price. |

8.2.2 Preliminary Theoretical Results

It is useful to outline some possibility and impossibility results for mechanism design, once

bounded-rational compatibility is introduced into the mix of desirable auction properties.

THEOREM 8.1 (possibility). The English Auction is efficient and Bayesian-Nash

bounded-rational compatible for the single-item allocation problem.

Proor. Myopic best-response is a Bayesian-Nash equilibrium of the English auction,
l.e. the myopic best-response is sequentially rational for an agent given myopic best-

response by every other agent (see section 7.4). The English auction is efficient with this
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strategy, and we have already show an example of how myopic best-response can be imple-
mented with an approximate valuation function. |

THEOREM 8.2 (possibility). iBundle is efficient and myopic bounded-rational compat-

ible for the combinatorial allocation problem.

Proor.  iBundle is efficient with myopic best-response strategies, and it is quite
straightforward to construct non-trivial problems in which at least one agent can implement
its myopic best-response strategy in each round without complete information about its val-

uation function. For example, the simple problem in section 3.2.2, an agent can bid for its
value maximizing bundle with a partial-ordering over bundles. |

TueoOREM 8.3 (impossibility). No strategy-proof (direct-revelation) auction can be dom-

inant strategy bounded-rational compatible and efficient.

Proor. Dominant strategy bounded-rational compatibility requires that an agent can
compute its equilibrium strategy (in this case its dominant strategy) with an approximate
valuation function and no information about the preferences or strategies of other agents.
A single-shot direct-revelation mechanism cannot be efficient unless every agent submits
complete and accurate information about its valuation function in every problem. Any
approximate information, for example specifying an incorrect value for bundle S’ can be
exploited by constructing a non-trivial problem in which the values of the other agents
for particular bundles make the error in the value of bundle S’ cause the selection of an

inefficient allocation. An uninformed agent with an approximate valuation function cannot
submit complete and accurate information about its valuation function in every problem. |

8.2.3 Discussion

Although the definition of bounded-rational compatibility requires only a single non-trivial
problem in which the agent can compute its optimal strategy with approximate information
fapp,i about its valuation problem, the definition is successful in separating direct-revelation
and iterative auction designs. Bounded-rational compatibility also captures other market

mechanisms, such as posted-price mechanisms, and demonstrates that there is often a
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trade-off between allocative-efficiency and bounded-rational compatibility. Of course, it-

erative auctions such as iBundle are interesting because they are BRC and efficient.

8.2.4 Approximation-Proofness

The strategy-proofness of a mechanism can break when agents have approximate valuations
[San96]. An agent that is informed about the bids that another agent will place can
optimize its local computation about value, and submit more useful bids in the auction.
For example, the Vickrey auction is not strategy-proof for an agent with an uncertain
value for its item and costly computation. The agent can avoid costly computation if it

has access to free information about the other agent.

ProposiTION 8.4 A bounded-rational agent with uncertain values and limited computa-
tion can improve its ezxpected utility with information about the bids from other agents in

a strategy-proof auction.

For example, if an agent has uncertain values on two items, but can only refine its value
for one item, it will help to know the likely prices on the items. The bounded-rationality
of agents can break the strategy-proofness of an auction.

However, so long as a mechanism satisfies approzimate-proofness, then this loss in full
strategy-proofness is not a problem. The concept of approximate-proofness parallels that
of strategy-proofness, and states that the dominant strategy for an agent is to report
truthful (but approximate) information about its valuation function, or truthful statistics

about its approximate valuation function.

DeFINITION 8.8 [approximate-proof] A direct-revelation mechanism is approximate-
proof for statistics p(fapp,i), if 8i(fapp,i) = 1(fapp,i) in dominant-strategy equilibrium.

In other words, a direct-revelation mechanism is approximate-proof for statistics
(Bapp.i), such as mean, upper- and lower-bounds, etc. if the dominant strategy of an agent
is to reveal this aggregate information about its approximation truthfully. A special case
is that the mechanism simply allows the agent to provide its complete approximation, for
example upper- and lower- bounds on the value of every bundle.

Ezample. The single-item Vickrey auction, in which an agent can report a single value

for the item, is approximate-proof for mean statistics, with an expected utility maximizing
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agent with a quasi-linear utility function. Given approximate information v;(f,pp;:) the
agent’s dominant strategy is to report its true expected value. To understand this, notice
that the agent wants to buy the item whenever the highest bid from another agent is less

than its expected value.

In an approximate-proof mechanism the loss in strategy-proofness for agents with ap-
proximate valuation functions and limited computation is not necessarily a problem. In
fact, in an approximate-proof auction it is beneficial for an agent to allocate its compu-
tational resources to maximize the effectiveness with which its final valuation function
implements the optimal outcome for complete information about agents’ preferences. If an
agent can improve the quality of the final result through deliberation about other agents,
so that it can in turn improve the quality of its own valuation information, then this is
useful,

Of course, we would prefer an iterative auction that can guide agent metadeliberation,
and provide information to guide an agent’s valuation deliberation for “free”.

I leave the design of approximate-proof mechanisms for combinatorial problems as an
important open problem. Note, for example, that the GVA is not approximate-proof with
expected-value information. The property that holds in the single-item Vickrey auction
requires linearity, which does not hold in the combinatorial GVA. By the revelation princi-
ple, clearly one could simply look for approximate-proof direct-revelation mechanisms that
allow an agent to report complete information about its approzimation to the mechanism.
Perhaps more interesting is the design of approximate-proof mechanisms for aggregate
statistics on an agent’s approximate information about its preferences, such that truthful

information of this statistic is a dominant strategy.

8.3 Myopic Best Response
A running assumption in my dissertation can be stated as follows:

Craivm 8.1 iBundle solves realistic problems with less information and less agent com-
putation than GVA.
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In hard problem instances we will need complete information revelation from agents to
compute and verify an optimal allocation. The claim is that despite the same worst-case
performance, the average-case performance of iBundle is good, in that we solve easy in-
stances with as little information as possible. Back in chapter 3, section 3.2.2, I introduced
a few examples that can be solved with approximate information from agents. But, what
about the computation required by an agent to provide myopic best-response bids?

Leaving aside whether or not the sequential complexity of myopic best-response is
harder or easier than direct-revelation complexity, let us consider the simpler problem of

responding to a single price vector.

DerFINITION 8.9 [best-response problem] Compute set of bundles, BR(p), to solve:

mng(S) - p(S)

The following section considers conditions on an agent’s local problem, valuation prob-

lem, and approximation algorithm for best-response to be easy while complete revelation
is hard.

8.3.1 Structural Analysis

One approach is to characterize the structure of an agent’s valuation problem, approximate
valuation complexity, and exact valuation complexity, in which best-case myopic best-
response is polynomial-time computable (in the number of items) while worst-case complete
revelation is exponential-time computable (in the number of items).

Consider the following cases, in which myopic best-response is computable in best-case

polynomial time, while complete revelation remains hard:

(a) A polynomial-time approximate valuation algorithm, an exponential-time exact

valuation problem, and a polynomial number of interesting bundles.

(b) A polynomial-time approximate inference capability (e.g. if v(S)) = z then
v(S') < z, for all §' < §)), with exponential inference power, a polynomial algo-
rithm to compute the exact value of a single bundle, and an exponential number of

interesting bundles.
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In case (a), the agent can compute its complete approximate valuation function in
polynomial time, computing an approximate value for each bundles in polynomial time on
a polynomial number of interesting bundles. It remains an exponential-time problem to
compute the agent’s exact valuation function, because it must do an exponential amount
of work on each of a polynomial number of bundles.

In case (b), the agent can compute its complete approximate valuation function in
polynomial time, because it can compute the approximate value of an exponential number
of bundles (this is what is meant by the “exponential power” statement) in polynomial
tiine, based on the exact value of a single bundle, that it can also compute in polynomial
time. This approximate inference capability can be repeated for a number of “seed”
bundles, until the agent has enough information to compute its best-response. It remains
an exponential-time problem to compute the agent’s exact valuation function, because it
must do a polynomial amount of work on each of an exponential number of bundles.

Of course, this analysis is simplistic and ignores the subtle question of whether the ap-
proximate information allows an agent to compute its best-response. Factors that should
boost the ability of an agent to compute its myopic best-response with approximate infor-
mation and limited deliberation are:

- high variance in values for different bundles with similar prices, or ask prices that are
very different in structure from values.

- a small number of interesting bundles to enable single-bundle approximation methods
without inference across bundles

- a structured local problem to allow approximate value inferences across bundles

- linear prices instead of non-linear prices on bundles

The results in the next couple of sections present an experimental comparison between
the computational and economic properties of different auction mechanisms with a simple
model of a bounded-rational agent. The results demonstrate the effect that auction de-
sign can have on the efficiency of an allocation. Iterative auctions allow agents to follow
strategies with less value computation and can lead to more efficient allocations because
agents use deliberation to refine values on important items and/or bundles as feedback is

provided by the mechanism about the bids and preferences of other agents.
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8.4 Costly Deliberation and Single-Item Allocation

The first set of experiments consider costly agent deliberation in a single-item allocation
problem. I compare the performance of three simple auction models: a sealed-bid auction,
an ascending-price auction, and a posted-price market.

An agent’s metadeliberation problem is to determine how much deliberation to per-
form before placing a bid. The decision is a tradeoff between reducing uncertainty about
the value of the good so that the bid is accurate, and avoiding the cost of deliberation.
Given the model of an agent’s valuation problem and decision procedure we derive optimal
metadeliberation strategies for agents. The key observation is that the value of deliber-
ation is derived from the effect of deliberation on an agent’s bid. Deliberation can only
be worthwhile when it changes an agent’s bid and expected utility from the decision is
greater than cost. To the best of my knowledge, this was the first model of normative
agent metadeliberation within an iterative auction [Par99].

An agent’s optimal metadeliberation strategy does depend on the bids that other agents
will make, even in incentive compatible auctions (unlike an agent’s optimal bidding strat-
egy). For example, an agent should never deliberate about its value for a good if its current
upper bound on value is less than the ask price, because further deliberation can never
cause the agent to accept the price. Metadeliberation is hard because of uncertainty about
the bids of other agent and the outcome of additional deliberation.

I describe normative metadeliberation strategies for risk-neutral agents, who receive

utility v; — p for purchasing a good at price p.

8.4.1 Model of Agent Bounded-Rationality

In Parkes [Par99] I propose a simple model for the valuation problem of an agent and derive
myopic metadeliberation strategies and bidding strategies in different auction mechanisms.
[ do not expect the valuation problems and decision procedures of real agents (or real
experts) to have characteristics that match the precise assumptions (e.g. distributional
assumptions) of the model. However, I believe that the same qualitative effect will be
observed with alternative models of agent deliberation and hard valuation problems.

The model of approximate valuation matches some of the properties of standard algo-

rithmic techniques for solving hard optimization problems, such as Lagrangian relaxation,
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depth-first search, and branch-and-bound. Furthermore, the model supports a mode of
interaction between people and software bidding agents that is provided in some current
on-line auctions [PUF99].

Every agent i has an unknown true value v; for a good, and maintains a lower bound
v; and upper bound ; on its value, written v, 7;]. Agent i believes that its true value is
uniformly distributed between its bounds, v; ~ U(v;,7,). Given this belief the expected
value for the good is 9; = (v; + 7;)/2. As an agent deliberates its bounds are refined and
its belief about the value of the good changes, with expected value ¥ converging to v over
time.

Let A; = ¥; — v; denote an agent’s current uncertainty about the value of the good.
Agents have a deliberation procedure that adjusts the bounds on value, reducing uncer-
tainty by a multiplicative factor «, where 0 < @ < 1. The new bounds are aA,; apart,
and consistent with the current bounds (but not necessarily adjusted symmetrically). For
a small a the uncertainty is reduced by a large amount, and we refer to (1 — a) as the
computational effectiveness of an agent's deliberation procedure.

An agent believes that the new expected value 9] for the good after deliberation will
be uniformly distributed 9] ~ U(y; + al;/2,7; — aAi/2), such that the new bounds are
consistent with the current bounds.!

Finally, there is a cost C associated with each deliberation step performed by an agent,

measured in units of payment; i.e. an agent’s utility for value v and cost C is v — C.
pay g Y

8.4.2 Auction Models

We compare the following auctions: second-price sealed-bid [SB], sequential posted-price
[PP], and ascending-price [AP]. The [PP] and [AP] auctions are BRC (dominant and
myopic), the [SB] auction is not BRC.

The auctions place different information requirements on the auctioneer: the [PP]
auction requires a well-informed auctioneer for good performance, because the ask price
is critical; while the [AP] and [SB] auctions set the price dynamically from bids received

during the auction.

'This belief that the new bounds are uniform with respect to the current bounds is inconsistent with
the prior belief that the actual value of the item is uniformly distributed between the bounds. To support a
uniform value for the item over a sequence of deliberations the distribution for the value in the next round
must put more weight on values towards the center of the range. In simulation this distribution is carefully
computed to maintain a uniform prior for the true value after any sequence of deliberations.
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Second-price Sealed-bid [SB]

Actions: bid.

In [SB] the auctioneer accepts bids b; from agent 7, and then closes the auction. The
item is sold to the agent that submits the highest bid, for a price equal to the second-highest
bid (or $0 if only one bid is received). This is the Vickrey auction.

Sequential Posted-price [PP]

Actions: accept, reject.

In [PP] the auctioneer offers the item to each agent sequentially, for price p. The item
is sold to the first agent that accepts the price. The item is not sold if every agent rejects
the price. The [PP] auction is bounded-rational compatible (see Section 3). In simulation
I optimize the ask price off-line to maximize revenue, given agent bidding and deliberation

strategies. This is equivalent to assuming a well-informed auctioneer.

Ascending-price [AP]

Actions: register, leave, bid, deliberate.

[ use a variant on the standard ascending-price (English) auction that is designed to
simplify the analysis of deliberation and bidding strategies, without changing the per-
formance of the auction for rational agents. The auction includes a nominal charge for
remaining in the auction, and allows agents to explicitly state that they will leave the
auction.

Initially all agents register with the auctioneer. Then, agents can place bids until
they leave. Bids indicate the mazimum that an agent is currently prepared to pay for
the item. A bid b; is accepted if b; > p, and the ask price is increased to e above the
second-highest bid received, for some bid increment ¢ > 0. Agents can place new bids at
any time, and leave the auction at any time. Agents are charged a nominal participation
fee to remain in the auction, unless they hold the highest bid.

After a period of time without new bids, or without an agent leaving the auction,
the auctioneer announces the number of active agents in the auction, and the auction
enters a “going going gone” phase. An agent must bid, leave or deliberate to keep the
auction open. When an agent decides to deliberate it sends a deliberate message to the

auctioneer. The auctioneer then gives the agent time to deliberate, and then expects either
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a bid or a leave message. The agent is dropped from the auction if it does not respond.
Finally, the auction will close, with the item sold to the agent with the highest bid for the
value of the second-highest bid received.

An alternative solution to prevent agents free-riding off the deliberation of other agents
is to add a patch to the rules of the English auction. The auctioneer chooses an agent at

random in each round of the auction, and requests that it place a bid or leave the auction.

8.4.3 Metadeliberation and Bidding Strategies

In this section I briefly describe optimal agent deliberation and bidding strategies in each
auction. The analysis of an agent’s optimal metadeliberation strategy in [PP) is presented
in the Appendix of this chapter. The optimal metadeliberation strategy in [PP] is also
relevant in [AP]. The value of deliberation is computed within Russell & Wefald's [RW91]

decision-theoretic framework.

Second-price Sealed-bid [SB]

The optimal bid, b*, for a risk-neutral agent with approximate value [v;,7;] that will

perform no further deliberation, is to bid

To decide how long to deliberate before bidding an agent needs to know the utility of
its bid, but this depends on the bids placed by other agents— information not available
to an uninformed agent. The agent can assume that the highest outside bid, p, is equal to
its current approximate value for the item, p = 9;, but this will lead the agent to perform
too much deliberation. Similarly, if an agent assumes that p = v or p = 7 it will tend to
perform too little deliberation.

I assume that agents can compute a symmetric pure-strategy Nash equilibrium, where
every agent performs the same number of deliberations. The equilibrium number of de-
liberations are computed off-line (to simulate long-term learning), so that the total cost
of deliberation is just less than the expected utility to the agent that wins the auction.
This provides a best-case number of deliberations for a symmetric pure Nash equilibrium

of metadeliberation decisions.
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Value bounds Deliberation bounds Expected value Optimal action
for pricep=3

[6,8] (6.8,7.2 7 accept
(4,7] (5.05,5.95) 5.5 accept
[3.5,6.5] [4.55,5.45] 5 deliberate

[3.8] [4.5,6.5] 5.5 deliberate
[4.5,5.3] [4.9,4.9] 4.9 reject
[2,4] [2.8,3.2] 3 reject

Table 8.1: Deliberation bounds for an agent with a = 0.5 and C = 0.05 and different approximate
values. The optimal action (deliberate, accept or reject) is computed for ask price p = 3.

Sequential Posted-price [PP]

The optimal bidding strategy depends on the relation between the ask price p and the
agent’s belief about its expected value 9;:
b accept ,ifp < 9;

reject , otherwise.

In [PP] the utility 4;(b*) depends on the expected value ©;, but not on the bids placed
by other agents. The optimal deliberation strategy depends on the price, an agent’s ap-
proximation, and the deliberation procedure parameters « and C. An agent will deliberate
while the ask price is “close” to its current approximate value 9;, where close is defined

with deliberation bounds:

DEerFINITION 8.10 [deliberation bounds] An agent should deliberate when the ask price
pis d; < p < d;, where d; and d; are lower upper deliberation bounds, and depend on
[v;, i), @, C.

[ derive an analytic formula for the deliberation bounds in the Appendix. Table 8.1
presents bounds for an agent with @ = 0.5 and C = 0.05, and different approximate values.
The table also records the optimal action for ask price p = 5, i.e. deliberate, accept
or reject. The deliberation bounds are always tighter than the value bounds, because
an agent should never deliberate when the ask price is outside its value bounds because
deliberation cannot change its bid. Deliberation is more useful as the price is closer to
expected value, uncertainty increases, and deliberation effectiveness increases, because it
is more likely to change an agent’s bid.

Figure 8.3 (a) illustrates the combined bidding and deliberation strategy for an agent in

[PP]. The strategy is as follows: when the ask price is between the bounds on deliberation,
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deliberate. Otherwise: if the ask price is less than ¥; (expected value of the item),

accept, and if the ask price is greater than 9; then reject.

E s
4 Rejcc{ g \ {3] Leave auction.
v
| ;
7 B R S Rhhhhdds I IO
. [2] Wait. Deliberate if
Deliberate. auction will close, with
probability 1 /(N 1)
y
d oo ‘ 7 _______ L R ASAtttatt: ALMLY .
- v Active
Y - Agents
= [1] Bid. '
Accept ]
v (b) Ascending Price auction [AP].

(a) Posted Price auction [PP].

Figure 8.3: Optimal bidding and deliberation strategies in each auction. The optimal action
depends on the ask price, p, and the deliberation bounds. Agents are more bounded-rational from
level [4] to [1).

Ascending-price [AP]

The optimal bidding strategy for an agent in [AP] depends on the relation between the

current ask price and an agent’s deliberation bounds.

bid ,ifp<d;
b* =< leave ,ifp>d;
wait , otherwise.

This strategy is equivalent to accepting any ask price less than d; and rejecting any ask
price greater than d;, which is the optimal strategy in [PP]. However, when the ask price is
between the bounds an agent will now wait, and only deliberate when it must deliberate
and bid to keep the auction open. Agents that either wait or bid remain active. Let N,
denote the number of active agents.

Even though an agent has an optimal myopic strategy to deliberate at the current
ask price, prices increase as agents bid. The price might increase so that p > d;, in which

case the agent is better to leave the auction than deliberate. In the going-going-gone
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phase of the auction, an agent with bounds d; < p < d;, will wait if another agent will
deliberate and bid, and only deliberate and bid to prevent the auction from closing.? I
call this the “waiting game”. Agents try to free-ride off the deliberation of other agents.
All deterministic Nash equilibrium solutions have a single agent that deliberates, while
all other agents wait: if no agent deliberates then it is a rational unilateral deviation
for any single agent to deliberate, and if more than one agent deliberates that it is a
rational unilateral deviation for one of those agents to wait.

In the unique mized Nash equilibrium (also symmetric), with agents that randomize
among strategies, every agent deliberates with probability 1/(Ng — 1). The denominator
is N, — 1 because the agent that is currently holding the highest bid will not deliberate.
Uninformed agents can implement this strategy because the auction announces the number
of active agents N, at the start of every round. The agents do not need to know the
strategies or utility functions of other agents. Figure 8.3 (b) illustrates the combined
bidding and deliberation strategy of an agent in [AP]. The Nash equilibrium allows agents
to deliberate sequentially. Agents exchange information about their local problems through
the ask price as they deliberate and bid.

We assume in simulation that agents implement this outcome, and simulate the mixed
Nash equilibrium by choosing an active agents at random to deliberate. An agent that is
selected deliberates until the ask price is outside its deliberation bounds, when it either

bids or leaves the auction.

8.4.4 Experimental Results: Costly Computation

We compare the performance of each auction in terms of the allocative efficiency.

In each trial we assign a value for the item to each agent from the same distribution,
v; = U(0, 10), uniform between 0 and 10. Every agent has initial bounds on value, [v;, 7] =
[0,10] (i.e. ignorance). Each auction is tested with four different agent bounded-rational
levels, as summarized in Table 8.2, and with between I = 5 and I = 100 agents. In
each experiment all agents have the same deliberation effectiveness, 1 — a, and the same
deliberation cost, C. The bounded-rational level can be interpreted as a function of the
computational power of an agent’s deliberation procedure, or a function of the difficulty

of an agent's valuation problem. For example, moving from level {1] to level (4], either the

Ve assume that the auction allows enough time for an agent to deliberate later in the auction.
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valuation problem gets easier, or the agents have more computational resources.

Bounded-rational 1 - deliberation Deliberation Initial Deliberation

Level effectiveness cost bounds
a C d d

(1] 0.7 0.5 S 5
2] 0.3 0.5 4.2 5.8
(3] 0.7 0.05 2.9 7.1
(4] 0.3 0.05 1.8 8.2

Table 8.2: Bounded-rational levels and corresponding initial deliberation bounds

We provide the agents with optimal deliberation and bidding strategies and simulate
agent deliberation procedures. In particular, we compute new value bounds such that: (1)
the true value remains between the bounds; (2) the true value is uniformly distributed
between the bounds with respect to all stochastic sequences of deliberations.

In the [PP] auction we optimize the ask-price for revenue. In the [AP] auction we select

the minimum bid-increment that provides agents with positive utility from participation.

8.4.5 Second-price Sealed-bid Auction [SB]

We choose the number of deliberations performed by each agent in the [SB] auction off-
line, selecting the maximum number of deliberations for which the agents still gain utility
through participation in the auction.® Figure 8.4 plots efficiency as the number of agents
increases, for each level of bounded-rationality, and also the optimal performance (with
agents that know the value of the resource). The results are averaged over 500 trials.
The sealed-bid auction performs well for small numbers of agents and easy valuation
problems (or agents that have sufficient computational-resources), i.e. for up to 20 agents
for type (3] and [4] agents, and for all types of agents when there are less than 5 agents.
However, the auction fails at high levels of bounded-rationality, (e.g. [1] and [2]), even with
small numbers of agents. No agent can deliberate when the total cost for every agent to
perform a single deliberation is greater than the expected utility to the agent that receives

the resource. Every agent must perform the same number of times in the [SB] auction.*

3The agents each perform the following numbers of deliberations for each level of bounded-rationality:
(t,1,0,0,0,0,0,0,0,0]; (1,1,0,0,0,0,0,0,0,0}; {17,10,7,3,2,1,1,1,0,0]; [16,10,6,2,1,0,0,0,0,0], for [ =
(3. 4,5, 10, 20, 30, 40, 50, 60, 100].

*In an alternative model, we could compute a mixed-strategy equilibrium for agent deliberation, where
agents deliberate m times with probability p. The problem is that there are many such equilibrium, for
example 10 agents can deliberate twice for the same cost as 20 agents that deliberate once. There is no
simple mechanism for equilibrium selection in a system of uninformed agents.
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Figure 8.4: Efficiency in the sealed-bid [SB] auction, for agents with bounded-rational levels [1]
to {4], and for agents that know their value for the rescurce [Opt].

When no agent deliberates the efficiency is approximately 50% because every agent bids
b; = 5, and the resource is allocated at random. The auction is not bounded-rational
compatible, so agents cannot reason effectively about when to deliberate. The traditional
result from auction theory, for agents that know their value for the resource, is illustrated
as [Opt]. In this case [SB] achieves 100% efficiency for all numbers of agents because it is

a dominant strategy for agents to bid their true value for the resource [PMM87).

8.4.6 Sequential Posted-price Auction [PP)]

We set the price in the [PP] auction to maximize revenue.’ Figure 8.5 compares the
performance of [PP] ‘o’ with [SB] ‘x’ for each bounded-rationality level, as the number of
agents increases. Subplot [4] also shows, line ‘*’, the performance of [PP] with agents that
know their value for item. The results are averaged over 1000 trials.

The [PP] auction achieves low efficiency with small numbers of agents, but tends to
support solutions with reasonable efficiency as the number of agents increases. In compar-
ison [SB] is almost 100% efficient for small numbers of agents, but fails for larger numbers
of agents. The [PP] auction does not perform well for small numbers of agents because

the optimal price varies considerably across trials. Similarly, [PP] with agents that know

SThe price is set as follows for each level of bounded-rationality: (4.9,4.9,4.9, 4.9,4.9,4.9,4.9)],
[5.8,5.8,5.8, 5.8,538,5.8,5.8), [6.6,6.6,7.0, 7.1,7.1,7.1,7.1], [6.8,7.8,8.2, 8.2,8.2,82,82], for [ =
(5,10, 20, 30, 40, 50, 100). The optimal ask price for agents that know the value of the item is: [6.8,7.8, 8.6,
8.8,9,9.3,9.5).
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Figure 8.5: Efficiency in the posted-price [PP] ‘o’ and sealed-bid [SB] ‘x’ auctions, for agents with
bounded-rational levels [1] to [4]. We also plot in subplot [4] the performance of [PP] with agents
that know their value for item (line ‘+’).

their value of the resource performs worse than [SB] with bounded-rational agents for
small numbers of agents. However, when there are many agents, offering agents a fixed
price sequentially allows agents to deliberate about their value for the resource without
losing utility. Agents receive an exclusive offer of the resource, at a certain price. There
is much more uncertainty in the [SB] auction. The auctions have the same performance
with agents that have limited computational resources (level [1]). In this case there is no
ask price that will motivate agents to deliberate (see deliberation bounds in Table 8.2),
and the best the auctioneer can do is sell the resource to the first agent for p = 4.9.

Also, notice that with agents that know their value for the resource, the efficiency
approaches 100% as the number of agents increases. In comparison, the performance of
[PP] with bounded-rational agents does not approach 100%, even as the number of agents
increases. Let us consider type [4] agents. Table 8.2 shows that these agents have initial
deliberation bounds [d,d] = [1.8,8.2]. This means that if the auctioneer charges a price
p > 8.2, no agent will deliberate, and the resource will not be sold because every agent
will reject the price. The ask price is limited to p = 8.2, even for many agents, and this

limits the ability of the auctioneer to sell the resource to the agent with the highest value.
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8.4.7 Ascending-price Auction [AP]

We set the bid-increment in the [AP] auction to the minimum value that allows agents to
gain positive utility from participation in the auction.® Figure 8.6 compares the perfor-
mance of [AP] ‘+' with [PP] ‘o’ for each bounded-rationality level, as the number of agents

increases. The results are averaged over 200 trials.
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Figure 8.6: Efficiency in the ascending-price [AP] ‘+’ and posted-price [PP] ‘o’ auctions, for agents
with bounded-rational levels [1] to {4].

The [AP] auction has very good performance, matching [SB] for small numbers of
agents, and matching [PP] for larger numbers of agents. In particular, for agents that
have moderate computational resources (i.e. levels [3] and [4]), the [AP] auction generates
higher final ask prices than [PP] and supports better efficiency. The performance of [AP]
holds up as the number of agents increases because agents deliberate in sequence, and wait
for other agents to deliberate. Around the same number of agents deliberate for all large
numbers of agents, because the bid increment is finite. [PP] performs better than [AP]
with agents of type [2], because in this special case the ability to set an exact ask price
before the auction is critical to provide incentives for the right agents to deliberate.

(AP] always outperforms [SB}, achieving as good a performance when [SB| does not
fail, but performing better than [PP] when [SB] fails. This is an interesting result, given

the strategic equivalence of the English and Vickrey auctions in traditional auction theory

5The bid-increment is set as follows for each level of bounded-rationality: [1,1,1,1,1,1,1}, [0.7,
1,1,1,1,1,1j, [0.2,0.2,0.4,0.4, 0.5,0.5,0.5], [0.2,0.2,0.6,0.6,0.6, 0.6, 0.6], for I = [5, 10, 20, 30, 40, 30, 100].
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[PMM87]. It is perhaps surprising that the performance of [AP] can be sustained for large
numbers of agents. The finite bid increment limits the total amount of deliberation in the

auction, even as the number of agents increases.

8.4.8 Mixture of Agents

Let us consider a market with a mizture of agents; some with hard valuation problems
(*inexperienced agents”), and some with easy valuation problems (“experienced agents”).
We assume a fraction f of inexperienced agents; and a fraction 1 — f of experienced agents

that know their value v; for the item. Fig 8.7 plots performance for I = 30, with a = 0.3

and C = 0.05.7
J L o — X ) (AP]
— P S——_)
(PP]
0.8t
g (s8]
=
w
0.67
0'40 0.2 0.4 0.6 0.8 1

Fraction of Bounded-Rational Agents

Figure 8.7: Performance of [SB], [PP] and [AP] for a mixture of agent types, with I = 30 agents.
Fraction f of agents have bounded-rational level 4], while fraction 1 — f of agents know their value
for the resource.

In this example, the performance of [AP] dominates [SB| and [PP] for all mixtures
of agents. With many experienced agents, e.g. f < 0.4, the [SB] and [AP] auctions
are approximately equivalent, and perform better than the [PP] auction. (This is the
traditional auction model). For a medium to large fraction of inexperienced agents, f > 0.4,
the performance of [SB] falls off, while [PP] approaches [AP]. This illustrates the value of
a bounded-rational compatible auction ([AP] vs. [SB]) with bounded-rational agents.

“In [SB] no agents perform any deliberation, In [AP] we choose bid increments: {0.2,0.3,0.4,0.4,0.4,0.6]
for f =[0,0.2,0.4,0.6,0.8,1.0]. In [PP] we choose the following ask-price: [8.8, 8.6, 8.2, 8.2,8.2,8.2].
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8.4.9 Comparing Agent Deliberation across Auctions

In this section we compare agent deliberation in a system with I = 30 agents, and a = 0.7
and C = 0.05 (level [3] in Table 8.2). In this problem the [SB], [AP] and [PP] auctions
achieve efficiency of 92.1%, 96.1% and 91.6% respectively. The [AP] auction outperforms
the other two auctions. The average utility for an agent that wins each auction is 2.52,
1.56 and 1.87 in the [SB], [AP], and [PP] auctions, so that the auctions can support an
average of 1.7, 1.0 and 1.2 deliberations per-agent (dividing by IC).

15,
1.5¢ - OQptimal |
[AP) --- Constr-Optimal
2 g
8 2
§ : — " x §10
§ / (s} 3
=} ) k-]
£05 £ 5
S (PP] 5
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(a) (b)

Figure 8.8: Comparison of Agent Deliberation for I = 30 agents with bounded-rational level
(4]. (2) Average number of deliberations performed by a single agent, as a function of the agent’s
(true) value for the item. (b) Average best-case number of deliberations to solve allocation problem
(Optimal), and average best-case distribution of a constrained number of total deliberations (1 per
agent) to maximize probability of correctness (Constr-Optimal).

Figure 8.8 (a) plots the average number of deliberations performed by agents in each
auction, as a function of the true value of the agent for the resource, averaged over 500 trials.
The agents in [SB] all perform the same number of deliberations, a single deliberation in
this case because the utility can support a maximum of 1.7 deliberations per-agent. The
average number of deliberations performed in [AP] is 1.0 (compared to a maximum possible
of 1.0), and 0.29 deliberations are performed in [PP] (compared to a maximum possible of
1.2).

In fact, 81.2% of agents in [PP] perform no deliberation, including 80.9% of agents
with true value between 8 and 10. This occurs when other agents buy the item earlier,
and represents a clear loss in allocative efficiency. The seller cannot set a higher price than
7.1, because no agents would deliberate and the item would remain unsold (see the initial

upper bound on deliberation in Table 8.2). In comparison, 53.4% of agents in [AP] do
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not deliberate, including 51.8% of agents with value between 8 and 10. In both systems
agents with high value for the item choose to deliberate more than agents with low value,
we show that this is useful to enhance the quality of resource allocation.

Figure 8.8 (b) plots the best-case deliberation in to solve the allocation problem (Op-
timal), averaged over 500 trials, and the best-case distribution of total deliberation (1 per
agent) to maximize probability of correctness (Constr-Optimal), averaged over 50 trials.

The Optimal deliberation distribution in a problem instance is computed assuming an
oracle, that decides which agents should deliberate and cooperative agents. The oracle has
perfect information about the true value of each agent, but cannot predict the stochastic
nature of the valuation procedure. Deliberation continues until the lower bound on one
agent is greater than the upper-bounds on all other agents. The Constrained-Optimal
solution is computed for a total deliberation budget Chax by computing the best solution
from the subset of deliberation allocations with increasing deliberation allocated to agents
with higher values (this is sufficient).

Notice that the agents with high value deliberate more than the agents with low value
in Optimal and in Constr-Optimal. Every agent must deliberate while its upper bound is
greater than the lower bound of the agent with the greatest value, and this requires more
deliberation for agents with high values. In Optimal the average number of deliberations
performed per-agent is 2.6, while the three agents with greatest value perform an average
of 5.8 deliberatious each, and the single agent with the greatest value performs an average
of 10.2 deliberations.

The [AP] auction allows agents with high values to compute more accurate valuations,
and place more accurate bids, than agents with low values. Given a fixed budget for total
deliberation (because agents will not lose utility from participation in the auction) this
enhances the efficiency of resource-allocations. In [PP] the ask price must be low enough
for agents to deliberate, and this can make it impossible to separate agents with high value
from agents with medium-high value. Agents with medium-high value might accept the
price, while agents with high value are not offered the item. In [AP] the ask-price increases
to the agents’ initial lower bound on deliberation, and then continues to increase as agents
deliberate and bid sequentially. As the price increases it provides incentives for agents

with high values to continue to deliberate, while agents with lower values drop out of the

auction.
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8.5 Limited Computation and Multiple Items

A second set of experiments considered limited computation and multiple items, and looked
at the ability to boost allocative efficiency with bounded-rational compatible auction de-
sign, through the promotion of better metadeliberation. A useful BRC auction will maxi-
mize allocative efficiency in a particular problem, given self-interested agents with limited
computation.

The results highlight the advantages of BRC auctions when agents have limited com-
putation and hard valuation problems, especially in multi-item allocation problems when
agents must compute the value of a number of different items or bundles of items. For
example, the English auction achieves greater allocative efficiency with less agent compu-
tation than a sealed-bid Vickrey auction.

[ adopt a simple model of metadeliberation in a decentralized system, the lazy deliber-

ation and eager bidding (LDEB) model:

o Lazy sequential deliberation. Sequential (asynchronous) deliberation ensures that no
two agents deliberate at the same time. Agents are selected at random to either bid
or deliberate, and deliberate if the value from deliberation is greater than the value

from bidding at that moment.

o Fager bidding. Agents bid whenever the expected utility from bidding is greater than
the expected utility from deliberation, given the current approximate valuation of

the agent.

The sequential deliberation model, coupled with eager bidding and instant updates by
the auctioneer of the state of the auction (e.g. ask prices, current allocation) maximizes
the value of incremental deliberation by agents. Information about agents’ refined values
is shared with other agents (via new prices, etc.) before any agent performs additional
deliberation.

Figure 8.9 illustrates the LDEB model of agent participation. Agents’ bids, the state
of the auction and agents’ values with the following steps: (1) agents with optimal bids
place bids with the auctioneer; (2) the auctioneer updates the state of the auction; (1)
and (2) repeat; (3) when quiescence is reached, either (a) no agent wants to deliberate and
the auction terminates or (b) one agent that prefers to deliberate than have the auction

terminate performs an incremental amount of deliberation on its value, then back to (1).
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Figure 8.9: The Lazy Deliberation and Eager Bidding Agent Participation Model.

The lazy deliberation and eager bidding model provides a general model to compare
auction performance with bounded-rational agents. In this case the bid/deliberate decision
of agent agent is determined for agents with limited computation, but it could equally well
apply to agents with costly computation. The LDEB model is reasonable in a system
with fast communication and lazy deliberation, and provides a best-case measure of the

allocative efficiency of auctions when agents have limited or costly computation.

8.5.1 Performance Metrics

[ propose metrics bounded-efficiency and bounded-computation to compare the performance
of different auctions in a particular problem at design time. The metrics assume a model
of agent deliberation procedures, computational resources, and valuation problems.

Bounded-efficiency and bounded-computation are defined as follows:

¢ Bounded-efficiency Perf s(Cmax) of auction A is the allocative-efficiency achieved

with agents that have limited computation budget Cpax.

¢ Bounded-computation Comp 4(Cmax) of auction A is the average computation per-

formed by agents with computation budget Cpax.

The bounded-efficiency and bounded-computation metrics are computed in simulation
with the LDEB model and limited agent computation. The metrics are closely related
to the theoretical characterization of BRC auctions. For example, the ratio of bounded-

computation to computation budget provides a direct measure of the bounded-rational
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compatibility of an auction:

THEOREM 8.4 Auction A is bounded-rational compatible iff the bounded-computation
Comp 4(Cexact) < Cexact, where Cexacy is the computation required to compute ezact values

for all items.

In the Vickrey auction ComPA(Cexact) = Cexact, While in the English auction
Comp 4(Cexact) < Cexact because agents can bid optimally without exact values for items.
An asymptotic measure of the efficiency of an auction mechanism is given by the

mazimum bounded-efficiency of an auction, Perf%, is computed:

Perfly = lim Perf 4(C)

In the English auction Perf’ = 100%, while in a posted-price market Perf’ < 100%.

8.5.2 Auction Models

The experiments study three different allocation problems: the single-item problem, the
linear-additive problem, and the assignment problem. The linear-additive and assignment

problems are defined in the following way:

o Linear-additive problem. Allocate |G| items to maximize total value over all agents,
for agents with additive values for items. The value for bundle S C G of items
vi(S) = 3_jes vil7), with items that have values v;(j) = U(0, 10).

o Assignment problem. Allocate |G| items to maximize total value over all agents,
for agents that demand at most one item. The value for bundle S C G of items

v;(S) = maxjes vi(7), with items that have values v;(j) = U(0, 10).

The auction models, i.e. Vickrey, ascending-price and posted-price market, are adapted

for each problem domain.

o Second-price sealed bid auction (Vickrey). In the additive-value multi-item problem
we allow agents to submit OR bids, e.g. (A,p;) OR (B,p2) indicates that the agent
will pay up to p; for item A and up to p2 for item B, for as many items as desired. To

compute the Vickrey outcome separate the bids across items, and run an individual
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single-item Vickrey auction for each item. In the assignment problem we allow agents
to submit XOR bids, e.g. (A,p1) XOR (B, p2), indicates that an agent will pay up to
p1 for A or up to ps for item B but does not want both. The allocation and Vickrey
payments in this case can be computed by solving the problem with all agents and

then once without each agent in turn. A linear-program will solve the assignment

problem.

o Vickrey-minus. The Vickrey-minus auction is a Vickrey auction, except in an initial
round d agents are eliminated. The dropped agents perform no computation about

their values for items and place no bids.

o Simultaneous Ascending Price Auction. The simultaneous ascending-price auction
implements a separate ascending-price auction for each item. All auctions close

simultaneously when every individual auction has reached quiescence.

o Posted-price. I consider two simple generalizations of the posted-price market for the
additive and assignment multi-item problems. In both cases the auctioneer chooses
one price p, the same for all items. In the additive-value problem each item is taken
in turn and offered sequentially to agents, with agents selected at random. Items are
sold to the first agent to accept the price, and remain unsold if all agents reject the
price. In the assignment problem all unsold items, initially all items, are offered to
agents, with agents selected at random. [tems are sold to the first agent to accept

the price, and remain unsold if all agents reject the price.

8.5.3 Agent Metadeliberation

The model of agent computation shares all the features of that in Section 8.4 except that
agents now have limited deliberation instead of COSTLY COMPUTATION. Each invocation
of the valuation procedure costs an agent a single unit, and each agent has a limited
budget Crmax. If an agent is selected to deliberate in the LDEB model, it deliberates if its
expected utility from deliberation is positive. Otherwise it places its optimal bid, given its
approximate information about its values for different items.

Agents do not deliberate past a minimal uncertainty on the value of each item, Apgjp, >

0. and once the uncertainty is within this minimal error the agent bids with a certain value
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at the mean of the final bounds. Similarly, when an agent exhausts its deliberation budget
it assumes mean values for all items.

The main interest in these problems is that an agent now has mulitiple items to delib-
erate about. Agents compute independent bounds on the value of each item j € G. In the
additive-value model, this implies that agent i has lower and upper bounds on a bundle
S & G, with lower bound v;(S) = 3 csv;(j) and upper bound 7i(S) = ¥ ;e Ti(j). In
the assignment model, this implies that agent ¢ has lower and upper bounds on a bundle
S of v;(S) = max;es v;(j) and 7;(S) = max;es T:(j).

The following metadeliberation strategies are implemented for each market and allo-

cation problem:

o Sealed-bid. Every agent deliberates until it has accurate values for all items, or until
it has used all its computation budget. At each new deliberation step the next item

is selected at random.

e Price-based. (1) Additive-value problem. Every agent deliberates while the ask price
is between its bound on value for one or more items, selecting items at random.
The optimal bidding strategy is computed based on upper- and lower- bounds while
deliberation remains, otherwise based on the mean values. (2) Assignment problem.
An agent will bid for an item whenever the utility (value - price) for one item domi-
nates the utility for all other items, i.e. whenever the minimum possible utility from
some item j' is at least the maximum possible utility from all other items j € G,
y(5") = v,(J') — p(4") 2 (5) = 9:(5) — p(j) for all j # j'. Otherwise, an agent

deliberates about the value of an item that can possibly maximize utility, selecting

one of those items at random.

8.5.4 Experimental Results: Limited Computation

The results compare the bounded-efficiency and bounded-computation of each auction
in single-item and multi-item allocation problems. In addition to computing bounded-
efficiency and bounded-computation, we also compute the average number of times that
the final allocation is optimal. This can provide a more sensitive measure of the difference

in performance between two auctions than allocative efficiency.
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The number of agents are adjusted between 5 and 50, and we consider multi-item prob-
lems with 10 items. Agents’ values for individual items are independently and identically
distributed according to a uniform distribution between 0 and 10. The initial approximate
value for each agent for an item is (v;(5),7:(5)) = (0, 10), to represent complete uncertainty.

We set the deliberation parameter a = 0.7, so that an agent reduces uncertainty in the
value of an item by 0.3A with a single deliberation step, where A is the difference between
an agent’s upper and lower bound for the value of a particular item. The minimum
uncertainty Apip = 0.5, and agents assume the approximation is accurate when 7;(j) —
v;(j) < 0.5 and take the value equal to the mean of the final bounds. Given this, the number
of deliberation steps required to compute an exact value for a single item is Cexacr = 9.

The bid increment in the ascending-price auctions is € = 0.1, and we test the Vickrey-
minus auction with between 10-50% dropped agents. We set the ask price in the posted-
price market to maximize bounded-efficiency for a computation budget Crnax = 3, which
is 33% of Cexact.

The posted-price market requires that the auctioneer has a priori distributional infor-
mation about agents’ values, to set an ask price which maximizes performance on average.
In simulation we select the ask-price to maximize bounded-efficiency for a particular agent
computation budget, with the same ask price used in all problem instances. The intention
is to provide a best-case analysis of the performance of a posted-price market. One can
consider an auctioneer that has participated in a marketplace for an extended period and

has been able to adjust its ask price to maximize performance.

Single-item Problem

In Figure 8.10 (a) and (b) we plot the bounded-efficiency and bounded-computation for
each auction in the single-item allocation problem, with 20 agents. The results are averaged
over 100 trials. In the posted price auction p* = 7.3, and the Vickrey-minus results are
presented for 10 (i.e. 50%) eliminated agents. In Figure 8.10 (c) we plot bounded-efficiency
versus bounded-computation, to compare the bounded-efficiency against the computation
actually performed by agents.

First, note that the bounded-efficiency in the English, Vickrey and Vickrey-minus
auctions increases as Cnax increases, because agents perform more deliberation and place

more accurate bids. Paradoxically, the performance of the posted-price market actually
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Figure 8.10: Single-item problem with 20 agents. (a) Bounded-efficiency as comp budget in-
creases, (b) Bounded-computation as comp budget increases, (c) Bounded-efficiency vs. bounded-
computation.

falls slightly for agents with large computation budgets because the price is set to maximize
performance for Cnax = 3. The agents in posted-price perform less average computation
as the available computation increases (see Figure 8.10 b). As Cpax increases the item is
more likely to be sold to an earlier agent, because the agents can compute more accurate
values. The same effect is observed for posted-price in the additive-value and assignment
problems, Figure 8.11 (a) and Figure 8.12 (a).

In this single item problem the English auction does not outperform the Vickrey with
agents that have the same computation budget, Figure 8.10 (a). An agent in the English
auction cannot use information about prices to make good allocation decisions; the only
decision that an agent can take is to avoid computation, because it only has a single
item for which to compute value. However, the English auction is effective in reducing
unnecessary agent computation, achieving 100% bounded-efficiency with 49% less agent
computation than the Vickrey auction. This is illustrated in Figures 8.10 (b) and (c).

The posted-price market achieves around 90% bounded-efficiency with as little as 8%
of the computation of the Vickrey auction, clearly demonstrating its bounded-rational
compatibility. Although the bounded-efficiency of the Vickrey-minus auction is less than
for the Vickrey auction, it allows agents to perform 50% less computation on average
(Figure 8.10 b), because 50% of agents are eliminated.

We tested the performance of the auctions for different numbers of agents, and found as
expected that the performance of the posted-price market and the Vickrey-minus auctions

increase with more agents.
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Additive-value Problem

Figure 8.11 plots experimental results for the additive-value multi-item problem with 10
items. The performance of each auction is compared for 5, 20 and 50 agents, computed
over 80, 30 and 20 trials respectively. We set the posted price p* = 5.6,8.4 and 8.8 for
each problem size, and drop 50% of agents in Vickrey-minus.

Figures 8.11 (a - ¢j plot the bounded-efficiency, number of optimal allocations, and
bounded-computation for the problem with 20 agents. Figures 8.11 (d - f) plot bounded-

efficiency versus bounded-computation for 5, 20 and 50 agents.
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Figure 8.11: Additive-value problem.

In this multi-item problem the English auction performs better than the Vickrey auc-
tion for agents with the same computation budget, as shown for example in Figure 8.11
(a) and (b). With 20 agents, for medium budgets, 30 < Cnax < 80, the bounded-efficiency
is greater in the English auction, and the auction computes more optimal allocations. For
intermediate computation budgets the agents in the English auction can use prices to make
good decisions about how to allocate computational resources.

Furthermore, the agents in the English auction compute 100% efficient allocations with
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49% less computation than the agents in the Vickrey auction. This is illustrated in Figure
8.11 (c) and (e). For large computation budgets the agents in the English auction can
avoid computation altogether.

Figures 8.11 (d - f) show that as the number of agents increases from 5 to 50, the
agents in the English auction are able to avoid more computation on average, computing
100% efficient allocations are computed with 31%, 49% and 58% less agent computation
than in the Vickrey auction.

Figures 8.11 (d - f) also show that the posted-price market performs especially well as
the number of agents increases, achieving bounded-efficiency of 88%, 93% and 96% for 5,
20, and 50 agents, and with 20%, 10% and 5% of the computation in the Vickrey auction.

The Vickrey-minus auction eliminates 50% of the agents from the auction, and reduces
the average computation by 50%. For large numbers of agents it performs almost as well
as the Vickrey auction, with 97% bounded-efficiency for 50 agents.

The number of optimal allocations does not reach 100% in either the Vickrey or English
auctions, see Figure 8.11 (b). This is because the agents do not refine their value for items
beyond uncertainty 7;() — v;(7) < Amin. This level of accuracy is sufficient for allocations
which are approximately 100% efficient, but not sufficient for 100% optimal allocations.

We see the same effect for the assignment problem in Figure 8.12 (b).

Assignment Problem

Figure 8.12 plots experimental results for the assignment problem with 20 agents. The
results are averaged over 20 trials, with posted-price is p* = 6.5 and 10 dropped agents in

Vickrey-minus.
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Figure 8.12: Assignment problem with 20 agents. (a) Bounded-efficiency; (b) Optimal allocations;
(c) Bounded-efficiency vs. bounded-computation.
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The results are similar to in the additive-value allocation problem. The English auction
computes 100% efficient allocations with 51% less computation than the Vickrey auction,
and has greater bounded-efficiency for medium computation budgets because agents can
use prices to avoid computation on values for items with optimal bids, and perform com-
putation on the value of other items.

The Vickrey-minus auction has smaller bounded-efficiency in this problem than in
the additive-value problem. Good allocations require careful coordination between agents
in the assignment problem, and dropping just one agent in the optimal allocation can
completely change the optimal allocation with the remaining agents. In comparison, good
allocations in the additive-value problem are more stable to removing agents.

The posted-price market performs well in this problem. Its bounded-efficiency is 98%,
89% and 92% for 5, 10 and 20 agents, with 40%, 28% and 14% of the agent computation in
the Vickrey auction. This suggests that prices which support the optimal allocation tend

to be similar for all items.

8.5.5 Discussion

The experimental results demonstrate that the BRC auctions (ascending-price and posted-
price) can compute better allocations than non BRC auctions (the Vickrey auction) when
agents have limited computation budgets and must compute the values for multiple items.

In the additive-value and assignment problems the ascending-price auction has greater
bounded-efficiency than the Vickrey auction for intermediate computation budgets, and
computes optimal allocations for significantly less agent computation as agents’ computa-
tion budgets increase. Agents can prune local computation based on information about
the values of other agents. The effect is particularly noticeable as the number of agents
increases, because more agents can avoid computation for incremental computation by any
one agent. In comparison, uninformed agents in the Vickrey auction can do no better than
select items on which to compute value at random. This is suboptimal when an agent has
multiple items to value.

Posted-price markets are useful in systems with many agents, at least if the auctioneer
is able to adjust the ask price over time to maximize performance. The posted-price
market provides a satisficing approach. Prices can support good solutions with very little

computation, because items are often sold before they are offered to many agents and
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prices allow agents to control computation.

The Vickrey-minus auction eliminates a fraction f of agents and reduces computation
by the same amount, f, can perform almost as well as the Vickrey auction in problems
with many agents and heavy competition between agents for items. The auction can
significantly reduce agent computation for only a small reduction in allocative efficiency.
Restricting participation might be useful in systems in which a single-round sealed-bid

auction is important, perhaps because communication is unreliable or expensive.

8.6 Related Work

8.6.1 Resource-Bounded Reasoning

Good [Goo71] and Simon (Sim76] provide early discussions on the explicit integration of
the costs of deliberation within a framework of agent computation. Later, Horvitz [Hor87]
introduced the concept of bounded-optimality, that an agent’s actions maximize expected
utility given its bounds on computation, which is developed in [RSP93].

Horvitz (Hor87] and Boddy & Dean [BD89] introduced the idea of anytime algorithms
or flezible computation, computational procedures that compute answers to hard problems
incrementally. Stochastic performance profiles can be associated with anytime algorithms,
to allow an agent to reason about the expected value of further deliberation given a model of
the cost of further deliberation. In special cases they allow tractable models for normative
metadeliberation.

Sandholm [San93, San96] has considered the effect of agent bounded-rationality in
distributed task allocation problems. Sandholm [San93] implemented a CONTRACTNET
[DS88] based system for a distributed task allocation problem, with agents that bid on the
basis of marginal values for tasks. The system, TRACONET, allowed agents to bid with
approximate values and continue to deliberate during the auction.

In subsequent work Sandholm & Lesser [SL96] propose a framework for leveled com-
mitment contracts between agents, which allows agents to decommit from a contract. As
noted by the authors, this is useful with agents that have approximate values for tasks
and continue to refine their beliefs after striking initial contracts. For example, agents can
correct early mistakes as they continue to compute values for tasks. The technique allows

agents to integrate local deliberation with negotiation between many other agents.
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Sandholm & Lesser [SL97] study a coalition formation problem, in which the problem
of computing the value of a coalition structure is complex because it requires determining
an optimal assignment of tasks to agents in the coalition. However, the authors do not
design a mechanism that allows approximate information about coalition values. Instead
it is assumed that agents predict value perfectly. There is no attempt to integrate the
formation and valuation problems.

Sandholm [San96] demonstrates that the strategy-proofness of an auction can break
when agents have approximate values for items and options to continue computation or
submit bids. An agent can make a better decision about whether or not to perform further
computation about the value of an item if it is well informed about the bids from other
agents. As discussed in section 8.2.4, this loss in strategy-proofness can help to increase
allocative-efficiency so long as the auction is approzimate-proof, such that truth-revelation
of approximate information is a dominant strategy for an agent.

Larson & Sandholm [LS01] model agent deliberation in an auction where agents make
explicit decisions about whether to deliberate about their own values or the values of
other agents. Determine equilibrium agent strategies and show that whether or not agents
engage in strong strategic deliberation, which is deliberating about the values of other
agents, depends on both the model of bounded-rationality and the auction mechanism.
Unlike my analysis Larson & Sandholm do not present any efficiency comparisons across

auction designs.

8.6.2 Auction Models With Costly Participation

A number of economic equilibrium models consider costs associated with participation in
an auction, for example costs of bid preparation and information acquisition. However,
almost all models assume that all participation decisions are made as a one-shot decision
before an auction starts, and the models cannot capture the important idea that agents
may continue to incur costs as an auction proceeds.

Matthews [Mat84] and Lee [Lee85] model auctions in which there is a cost of informa-
tion acquisition, but all agents have the same value for items. In Matthews [Mat84] agents
make a continuous decision about information acquisition, while in Lee [Lee85] agents
make a single-shot decision about whether or not to pay to become informed. Both au-

thors conclude that a seller that cares about revenue-maximization might want to restrict
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participation, because it carries the total cost of agent participation. Similarly, Samuelson
[Sam85] shows that it can be useful to restrict participation when agents have participation
costs (for example bid preparation costs) and individual values for resources. The results
are consistent with my work on models of agent bounded-rationality within auctions, if
one views the cost of valuations as an external cost of participation.

Kolstad & Guzman [KG99] compute a rational expectations equilibrium for costly in-
formation acquisition in a first-price sealed-bid auction, in which agents choose the amount
of information to acquire within a cost-benefit model. The information allows agents to
tender accurate bids in a construction project. Levin & Smith {LS94] compute mixed-
strategy rational-expectations entry strategies in first-price and second-price sealed-bid
auctions, for agents with costs of participation that make simultaneous entry decisions
based on initial estimates of value. The auctioneer can improve revenue by restricting
participation because agents adjust their bids to allow for costs of participation.

Stegeman [Ste96] derives a similar result for a private-value auction and agents with
one-time participation costs. Neither Levin & Smith or Stegeman can distinguish between
iterative and single-stage auctions because agents decide whether or not to enter the auction
before the auction starts.

In one of the few models to allow agents to enter sequentially, Ehrman & Peters [EP94]
compare the performance of different auctions for agents with one-shot participation costs.
The authors show that a sequential posted-price auction is useful for high costs of partici-
pation because it controls participation, through controlling the number of agents that are
offered the item.

Similarly, in a model of affiliated values, in which the value of one agent for an item
is partially related to the value of other agents, Milgrom & Weber [MW82] show that
the English auction outperforms other auctions. The information during the auction, from
agents’ bids and decisions to leave the auction, allow an agent that remains in the auction to
refine its estimate of value. Bids from other agents directly improve an agent’s valuation. In
comparison, with hard valuation problems and an iterative approximation algorithm bids
from other agents provide information that improve an agent’s metadeliberation. Milgrom
& Weber also show that providing expert appraisals always improves performance (the
“linkage principle”), which is analogous to providing free computational resources in a

model of bounded-rational agents and hard valuation.
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Appendix

In this Appendix I derive the expected utility of deliberation for an agent in the posted-
price auction [PP], and present a method for computing the deliberation bounds (Definition
8.10) which are used to determine when an agent should deliberate. Let #; denote the
current expected value (mean of bounds).

The expected utility of deliberation, 4;(D™), for a sequence of m deliberations, is

computed as the estimated increase in utility minus the cost of deliberation:
ui(D™) = di(bpm) — 4i(6°) — mC

where 4;(b%) is the expected utility of the current optimal bid b°, and i;(bm) is the ex-
pected utility of the optimal bid b}, after deliberation. Both expected values are computed
with respect to the agent’s belief about its expected value for the item after deliberation.?
An agent will deliberate when 4;(D,,) > 0 for some m > 0.

We compute 4;(D™) by case analysis on the ask price:

e [T; < p] No deliberation. 4;(D™) = ~mC for all m > 0 because the agent’s optimal

bid is unchanged (reject), and ;(bpm) = 4;(b*) = 0.
o (v; < p < 7T;] See below.

e [p < u;] No deliberation. i;(D™) = —mC for all m > 0 because the agent’s optimal

bid is unchanged (accept), and 4;(bpm) = 4,(b*).

The case v; < p < T; can be divided into two subcases, 7; < p < 7; and v <p<u;. We
solve subcase ¥; < p < 7. The solution is valid for the other subcase by symmetry. The
utility of deliberation depends on the distance between the ask price p and ¥;. Introduce

parameter, -;, for the distance between p and 9;:
= 2o~
7‘ - A; p 1

Parameter +; is always between 0 and 1, and 4; = 0 when p = ¥;, and 4; = 1 when
p = U, or p = u;. In this case the current optimal bid (without deliberation) is reject,

and 4;(D™) can only be positive if the optimal bid after deliberation is accept, that is

8This is necessary to ensure that the utility of deliberation (before allowing for cost) is always positive.
Although deliberation might determine that the current optimal bid has less utility than the agent believed
before deliberation, the true utility is unchanged.
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when 9; > p after deliberation. After a sequence of m deliberations the expected value is
distributed uniformly: 4 = U(v; + @™A/2,7; — ™A /2), so the upper bound must be at
least p:

7;-a™A/2>p

Let m*(a, C) denote the minimum number of deliberations that can possibly have pos-

itive utility, computed (after substitution for «) as:

* _ log(l - 7)
’"(“”"[ log(@) W

The estimated utility of an agent’s optimal bid after m > m*(a,+) deliberations is:

vi—a™A/2 N
i;(bpm) = —_A((T—cl:’)")dﬁi
ui=p
_ (@i—a™Ai/2-p)?
- 24;(1 - a™)
_ Ai(l-q9-a")
- 8(1 — a™)

because 0; = U(y; + a™A;/2,7; — a™A;/2), and the agent will accept the price if 9; > p,
for expected utility 9; — p.
Putting everything together, because @;(b*) = 0 (the current optimal bid is reject),

the expected utility of deliberation in this case is:

A(l-y=a™ !2 . .
{“_(Dm) = 8(l-a™ -mC ’ if m 2m (017)

-mC , otherwise.

Comparative statics confirms our intuition about the value of deliberation to an agent.
Deliberation is more useful as: the price gets closer to an agent’s expected value (because
it is more likely to change an agent’s bid); as the value of uncertainty increases, as the

deliberation effectiveness increases; and as the deliberation cost decreases.

e J4;(D™)/0y <0
Proof. By contradiction. Assume 94;(D™)/3y = -2(1 — v — a™)/8(1 — a™) is
positive, for some m > m*(a,7). This implies that 1 — vy < a™. However, m >

m*(a,v) iff 1 —v > o™, giving a contradiction |
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e J04;(D™)/0A >0, when p = ;
Proof. With v = 0, we have 4;(D™) = A;(1 — a™)/8, and d4;(D™)/3A; = (1 -

a™)/8, positive because a™ <1 |

e 04;(D™)/0a < 0, when p = ¥;
Proof. With vy =0, 84;(D™)/8a = —mAa™"!/8, which is negative |

e 0u;(D™)/9C <0
Proof. Trivial, because 84;(D™)/0C = —m |}

Finally, we can compute the deliberation bounds, from the largest v for which 4;(D™) > 0
for some m > 0. When no such v exists, then d; = d; = U; and the agent will not deliberate

at all, for any ask price.
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Chapter 9

Extended Example: Distributed Train
Scheduling

In this chapter I present a computational study of an auction-based method for decentral-
ized train scheduling.! Auction methods are well suited to the natural information and
control structure of modern railroads. I assume separate network territories, with an au-
tonomous dispatch agent responsible for the flow of trains over each territory. Each train
is represented by a self-interested agent that bids for the right to travel across the network
from its source to destination, submitting bids to multiple dispatch agents along its route
as necessary.

The natural separation of track control across multiple dispatch agents precludes a
combinatorial auction for the entire problem. Instead each individual dispatcher runs an
auction for the right to travel across its territory, and trains must solve a coordination
problem to receive compatible entry and exit times across their complete route. Trains bid
for the right to enter and exit a territory at particular times. The dispatcher agents selects
bids to maximize revenue in each round. Feasibility requires that there is a safe schedule
for trains over the dispatcher’s region given the bid times. As such, the scheduling problem
lies outside of the standard combinatorial allocation problem.

An additional difficulty in this domain is presented by the continuous time dimension to
a bid. Instead of imposing a finite time discretization on the system I provide an expressive
bidding language that allows trains to bid for the right to enter and exit within ranges
of times (e.g. “arriving no later than 12pm”). Prices are approximated with a finite grid
of (entry, exit) pairs, and updated by dispatcher agents with :Bundle-style price update

rules.

'This chapter is almost identical to Parkes & Ungar {PUO1].
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Computational results on a simple network with straight-forward best-response bidding
strategies demonstrate that the auction computes near-optimal system-wide schedules. In
addition, the method appears to have useful scaling properties, both with the number of
trains and with the number of dispatchers, and generates less extremal solutions than those

obtained using traditional centralized optimization techniques.

9.1 Introduction

Auction-based scheduling methods are well-suited to the decentralized information and
control structure of modern railroads. The flow of trains over a railroad network is not
controlled by a single centralized scheduler, but rather by the joint decisions of a number
of largely autonomous dispatcher agents, each responsible for a local track territory. In
addition, trains are operated by competing companies, each of which would prefer for their
trains to run on-schedule even if the trains of other companies must wait. Real train drivers
receive bonuses for on-line arrivals, and have private information about repair schedules,
etc.

Auction-based methods fill two important needs. First, they respect the natural auton-
omy and private information within such a distributed system. Secondly, they can provide
incentives for trains to reveal truthful information (indirectly, via bids) about their values
for different schedules. In a naive central implementation, a self-interested train with pri-
vate information about its time constraints, value, and costs, cannot be expected to act
truthfully, but rather to misrepresent this information if it will improve its own schedule
in the system-wide solution.

The train scheduling problem that I address in this chapter falls within a hierarchy of
interrelated train scheduling problems; see [KH95] for a recent survey. I assume that all
strategic planning, i.e. deciding on train routes and assigning values, times, and costs, is
already completed. The input is a set of trains, each with a defined routes over a track
network, a value for completing its journey, and an optimal departure and arrival time
and cost function for off-schedule performance. The system-wide problem is to compute
a robust and safe schedule for the movement of trains over the network to maximize the
total cost-adjusted value over all trains.

In constructing an optimal schedule I depart from earlier models for automatic train
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scheduling that used fixed-priority scheduling rules.? These early models have been criti-
cized for a “hurry up and wait” approach [KHC91], with high priority trains moved down
lines as fast as possible, possibly causing problems and inefficiencies at yards further down
the line. I build instead on the pacing models of Kraay et al. [KHC91], which control the
speed of trains in finding optimal schedules.

The auction design has each dispatcher agent running a separate auction, for the right
to enter and exit its territory at particular times. There are necessarily multiple auctions,
to respect the autonomy of individual dispatchers to make local decisions. All auctions
terminate simultaneously, when there is quiescence across the system.

A train agent must bid for pairs of entry and exit times across multiple dispatchers
to complete its journey, which presents a coordination problem. The exit time from one
dispatcher must be early enough to allow the train to enter the next dispatcher on its
route at the required entry time. Iterative auctions (as opposed to sealed-bid auctions)
allow trains to adjust towards a good solution, and should help to solve this coordination
problem. In addition, trains can submit bids for sets of times, i.e. “I want to enter your
territory at any time after 10am, but leave no later than 1.30pm, and my maximum travel
speed is 100km/hr.” This constraint-based bidding language is a concise way to handle
the continuous time attribute of a bid without imposing an explicit discretization on time.

In each round the auctioneer computes the set of bids that maximize revenue, subject
to the constraint that there must be a safe schedule for trains given the entry and exit times
in accepted bids. The winner-determination problem is solved without a discretization on
time, formulated as a mixed integer program.

Although there is no explicit discretization on time imposed on agents’ bids, the prices
in the auction are maintained over a discrete price lattice. The lattice maintains prices on
pairs of entry and exit times, and prices are computed on-the-fly for any pair of entry-exit
times based on the closest lattice points. The discrete price lattice does not restrict the
times that can receive bids, but rather provides an approximate method to maintain prices.
Prices are increased across rounds with an iBundle style price-update, i.e. based on the
bid prices from unsuccessful agents.

Experimental results compare the quality of schedules computed in the auction-based

Priority-based dispatching is still used in most North American railroads; high priority trains are
generally not delayed even if they are running early, while low priority trains are delayed even if they are
running late [Hal93].

262

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



method with schedules computed under a traditional centralized optimization approach.
In order to make a fair computational comparison across the methods the global scheduling
problem and the winner-determination problems are both formulated as (closely related)
mixed integer programs, and solve with CPLEX the standard mixed integer programming
software package. The experiments compare the centralized solution (with complete infor-
mation about agents’ problems) with the auction solution on a set of stochastic problem
instances.

In assessing the performance of the auction-based method I make a reasonable assump-
tion about agent bidding strategies, i.e. that agents follow a myopic best-response bidding
strategy, and submit bids to maximize value given the current ask prices.

The computational results demonstrate that the auction-based method can generate
better schedules than the centralized method, and in less time. Moreover, the auction
appears to have good scaling properties with the number of agents and dispatchers, at
least for the auction parameters selected in the tests (e.g. price update speed, time in each
round to solve winner-determination, etc.)

As a word of caution, it also seems likely that the bid-coordination problem will become
quite hard in the auction as the number of dispatchers increase, perhaps for routes across
five or more dispatchers. The performance of the simple myopic bidding strategy might
begin to fall-off in these cases, leaving agents “exposed” to times that they cannot fit
with times from other dispatchers. Further study is required to consider alternative, more
sophisticated bidding strategies in these cases.

The outline of the rest of this chapter is as follows. In section 9.2 I define the global train-
scheduling problem, and formulate a mixed-integer program model under assumptions of
centralized information about the local values and cost functions of each train. In section
9.3 I describe the key elements of the auction-based solution: the bidding language. price-
updates, winner-determination, termination conditions, and bidding rules. Section 9.4
formulates the bidding problem for a train agent in the auction as a shortest-path problem,
which is solved using dynamic-programming. Finally, section 9.5 presents experimental

results over a set of stochastic train scheduling problems.
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9.2 The Train Scheduling Problem

Each train is assumed to have a source and destination node, a value to complete its
journey, and a cost for off-time departure and/or arrival. The global objective is to find a
safe schedule that maximizes the total net value, the total value minus cost of delay across

all trains that run.

east
_
1 2 3 4 5 6 7 8
—— & 4 —0
double track single track
(siding) yard

Figure 9.1: The Train Scheduling Problem.

I introduce a novel mixed-integer programming (MIP) formulation that allows trains
to be dropped when necessary, i.e. to allow other high-valued trains to run on-time. A
very similar formulation is adopted for the winner-determination problem in the auction

(see the next section).

9.2.1 Track Network: Topology and Constraints

In modeling the train scheduling problem I make a number of simplifying assumptions,
both about the network structure and about the types of interactions that are allowed
between trains.

The key assumption is that of a single line operation- a sequence of single-track, double-
track, or yard sections, separated by nodes. The structure is illustrated in Figure 9.1.
This simplifies the specification of the global train-scheduling problem and the winner-
determination problem in the auction-based method. The single line assumption also allows
train agents to restrict their attention to tradeoffs across multiple temporally different
routes, ignoring alternate paths over the network. The same assumption is made in the
majority of the train scheduling literature, for example in Kraay et al. [KHC91]. Section

9.7 discusses a possible extension of this auction-based method to a multiple line network.
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An interaction between a pair of trains may be a meet or a pass, and is associated with
a network location and a time. A meet is when two trains traveling in opposite directions
are at the same location at the same time. A pass is when two trains traveling in the

same direction are at the same location at the same time.

East r
3.5 1
3~~~y ~"~"f--=--- il NP - - -- --'-AS
o [T A--f----- T T e - S SR
S25
7]
]
2 of A\ it 2y Al Rt ittt v ed il ]
g Y
s1sf- 1\ I AR ARREERE oo
[ =
S
&N
0 1E---- - - PR R NPT A P k
___________ . A \____|S
0.5
West-¥ard-— - - '
Tt T2 5 T3r4 19615 TH 19 T7 20 25 T10
ime

Figure 9.2: A Safe Train Schedule.

The feasibility of a schedule for trains across a network is determined by the safety of

meets and passes. This depends on the type of section:

(S1) Any number of trains can meet and pass in yards.

(S2) Any number of trains can meet on double-track sections, but no trains can pass.
(S3) No trains can meet or pass on a single-track section.

In addition, a feasible schedule must maintain a minimum separation distance, Qsafety,
between trains on single and double track sections. This minimum separation distance
requirement is waived for trains in yards. Finally, no train can exceed either its maximum
speed, or the maximum safe speed on any section.

Figure 9.2 illustrates a safe train schedule for the parameters in the experimental model
in Section 9.5. This solution is for ten trains, trains 1, 2, 4, 5, 6, 8, 9 run East, the other
trains run West. The sidings (or double-track sections) in this network are illustrated with
an “S” on the right of the plot, the yard with a “Y”. Notice that trains meet at sidings

and at the yard, but no trains meet or pass on the single track sections. No trains pass in
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the yard in this example, although this is a legal manoeuvre. Notice also that the trains
remain a safety distance apart, and maintain constant speeds within each section.
Allowing trains to meet but not pass on double-track sections reduces problem-solving
complexity because there are many ways for two trains to cross in the same direction
but only a few ways for two trains to cross in opposite directions. Similarly, modeling

infinite-capacity yards and double-track sections (sidings) is a simplifying assumption.

9.2.2 Schedules

A schedule specifies the network position across time for each train in the system. It is
sufficient to to consider schedules in which trains travel at a constant speed across each

section (the speed can vary from train to train and from section to section), by the following

result:

LeEmMa 9.1 Any feasible schedule can be reduced to a feasible schedule where each train

travels at a constant speed within each track section.

The transformation that maintains feasibility is to hold times at nodes between track
sections constant, and smooth the speed of each train between these points. The proof
is quite straightforward- just show that the number of meets are the same for any speed
profile consistent with the entry and exit points, and that the number of passes is (weakly)
less when trains travel at a constant speed. I choose to ignore constraints on acceleration
across sections.

This observation reduces the size of the search space in the scheduling problem, and

simplifies the problem of finding optimal times for trains at the ends of each section.

9.2.3 A Mixed Integer Programming Formulation

Let Z denote the set of trains and N denote the set of nodes between track sections. It
is useful to view the network in a west-east orientation, with nodes ordered such that
j > k for j € N further east than kK € M. The trains are divided into a set east C T
that travel west-to-east and west that travel east-to-west. The nodes are labeled with
the type of section to the east, e.g. the section between node j and j + 1 is a yard if

j € yard, single-track if j € single, and double-track otherwise. The minimum travel time
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for train i between node j and j + 1, its free-running time r(2, ), is defined by the length
of the section, the maximum speed of the train, and the maximum safe speed over the
section. Remember, this is a time to run from west-to-east for a train 7 € east, and from
east-to-west otherwise.’

Each train ¢ € 7 has a source node and optimal departure time, (s(z),t;(?)), a destina-
tion node and optimal arrival time, (d(z),t}(7)), a value V; > 0 for completing its journey,
and a cost penalty, cost;(ts,ty), for off-schedule performance. Following [Hal93] we assume
a linear additive cost penalty for each train. Given actual source t; and destination #4

times, the cost for off-schedule performance is computed as:
costi(ts, ta) = Ci |ty — t5(2)| + Ci | ta — t5(3)]

where C; > 0 is train i's unit cost for off-schedule performance.

This cost function assumes that performance is measured only on the basis of a train’s
time at its source and destination nodes. This is reasonable for a freight train with a single
shipment to make, but less appropriate for a train that must make intermediate scheduled
pick-ups and drop-offs.

Given that it is sufficient to consider only trains that travel at a constant speed across
each section (Lemma 9.1), [ can specify a schedule with the time, t(7, j), of each train i
at node j. Let y(¢) € {0,1} equal 1 if train ¢ is not dropped from the schedule, and 0
otherwise. Let Agource(?) and Agest (i) denote the absolute error in departure and arrival
time for train i at source node s(i) and destination node d(7). The system-wide objective

is to maximize total value minus cost:

max Y Viy(i) = Y CiBhsource(i) = Y, Cildest (i)
i i i

A train can be dropped from the schedule completely. Dropped trains neither achieve
any value nor incur any cost penalties. In congested networks with high cost penalties it
can be better to drop low value trains in allow more trains to run on schedule and avoid
cost penalties.

The constraints make sure schedules are feasible, i.e. that a schedule is safe, trains are
separated, and speed constraints are not violated. In the following (“the big M technique”),

M is a large positive number, used to make sure that dropped trains do not restrict

3Later, when I formulate the MIP for winner-determination [ will leave this information implicit in the
bidding language to simplify the presentation.
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schedules for other trains and also to implement disjunctive logic constraints as a mixed-
integer program.

Constraints (1a) and (1b) set the errors Agource(Z) and Agest (i) for train i:

Asource (1) 2 [t(4, (1)) ~ t1(2)] — M(1 -y(i)) Viel (1a)
Adest (1) 2 |83, d(?)) — ()] — M(1 —y(i)) VieZ (1b)

Notice that if y(:) = 0 for train 7 then A(z) = 0 is a solution, and we count no penalty
for dropped trains. This avoids requiring non-linear terms, such as C;Asoucce(1)y(%), in
the objective function. The absolute value constraint can be implemented by writing two
greater than constraints, one for the positive term and one for the negative term.
Constraints (2a) and (2b) ensure consistency of travel times for trains, given free run-
ning times r(z, j) for train ¢ between node j and j + 1. Again, neither constraint is binding

for a dropped train by the “big M” formulation.

t(i,7 + 1) > t(i,j) + r(3,§) = M(1 —y(i)) Vi€ east,Vj eN {(2a)
t(i,7 +1) <3, 7) = r(i,5) + M(1 —y(?)) Vi€ west,VjEN (2b)

The zero-one variables gap(i,',j) make sure that trains are a safe distance apart at
all times; gap(i,1’ ,j) = 1 iff train ¢ trails train + by at least time safety at node j. The
“big M" technique is used to constrain a train to be either more than safety ahead or more
than safety behind another train. Note that constraint (3b) is true whenever at least one

of the trains is dropped, so that the times on dropped trains are not constrained.

t(i,7) — t(i',5) + Mgap(i,i',j) > safety ,VjeEN,Vi,i'el (3a)
t(i',5) — t(i,5) + M(1 - gap(i,7', 7)) + M(2 - y(3) — y(i'))
> safety,Vj € N\Vi,i' € T (3b)

The zero-one variables after(i,i',;j) indicate whether train 7 arrives at node j after
train ¢'; efter(¢,1',7) = I if train 1 is after train ¢’ at node j. This indicator variable is set
by constraints (4a) and (4b) to be consistent with the times defined by variables ¢(z, ', j).

A dropped train can assume the same ordering with respect to all trains, allowing them
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to trivially satisfy (4c) and (4d).

t(i,j) - (&', §) < Mafter(i,i’,j) ,Vj € N,Vi,i' €I (4a)
(i, 5) — t(5,5) — M(2 - y(6) — y(i")) <
M(1 — after(i,d',j)) ,Vj eN,Vi,i'eT (4b)

Constraint (4c) captures the restriction that trains traveling in the same direction cannot
pass on sidings or single-track sections. East-bound train i must remain after east-bound
train 7’ at node j if it is behind train 7 at node j + 1 and the section between j and j + 1

is not a yard. Similarly for west-bound trains.

after(i,i',j) =after(i,i',j + 1)
Vj ¢ yard,Vi,i’ € east,Vi,i’ € west (4c)

Finally, constraint (4d) captures the restriction that trains traveling in opposite direc-
tions cannot meet on single-track sections. If east-bound train 7 is after west-bound train
i" at node j it must also have followed west-bound train 7' at node j + 1 for single-track
sections between j and j + 1, otherwise the trains were on the same single-track section at

the same time and traveling in opposite directions.

after(i,i',j) =after(i,i',j + 1)

Vj € single,Vi € east,Vi' € west (4d)

Taken together with the objective function, the constraints specify a mixed-integer
program to solve the centralized train scheduling problem. The optimal solution specifies
which trains are dropped (with y(i) = 0) and the times ¢(7, j) for other trains at each node

j in the network.

9.3 An Auction-Based Solution

Let us assume that the track network is divided across dispatcher territories, with each
dispatcher responsible for the local flow of trains. A separate dispatcher agent auctions the
right to travel across each territory. Each train is associated with a train agent that places
bids for the right to travel across a territory, and coordinates times across dispatchers on

its route to achieve a good schedule. The dispatchers have information about the local
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network topology, i.e. the location of double-track network sections and of yards for passing

and meeting,.

yard yard

dispatcher 1 dispatcher 2 dispatcher 3

Figure 9.3: The dispatcher territory structure.

[ assume that dispatch territories are separated by neutral yards to allow the safety
constraints on meet and constraints to be decoupled across dispatch territories, because
yards have infinite capacity and allow arbitrary meets and passes. The dispatcher on each
side of connecting yards must simply ensure that trains remain a safety distance apart as

they enter and exit their territory. The structure is illustrated in Figure 9.3.

9.3.1 Auction Innovations

The nature of the train scheduling problem require a number of innovations in auction
design:
(1) A constraint-based bidding language allows trains to submit bids with continuous time
attributes, to represent a choice set over different pairs of times, i.e. without discretization.
(2) Prices are maintained over a discrete lattice with quotes computed on-the-fly for any
pair of times, i.e. an approximate representation of a continuous and non-linear price
space.
(3) The selection of revenue-maximizing bids is built on top of a feasibility check that looks
for feasible meet/pass schedules given entry-exit times, i.e. the conflicts across bids are
non-trivial and checked via solving for feasible schedules.

As noted earlier, there are implement multiple independent auctions, one for each
dispatcher territory. This respects the decision autonomy of each dispatcher. Given that
trains must receive compatible entry-exit times across multiple dispatchers, the auctions

are necessarily iterative to allow train agents to coordinate their bids across multiple

auctions.
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All auctions close simultaneously when bid quiescence is detected across the system.

9.3.2 Dispatcher Auction

Train agents can bid for entry and ezit times in a territory, while the dispatcher agent has

the flexibility to decide exactly how a train will run, consistent with those times.

Bidding Language

The bidding language is quite expressive: a train can bid a price to enter a territory at
time fenry and depart at time tey;., and state whether the times are fized or flexible. With
a fixed time the train must enter (or exit) the territory at that exact time. With a flexible
entry time, any time after teniry is acceptable; with a flexible exit time, any time before
texit is acceptable (subject to constraints on a train’s minimal travel time). Finally, a train
agent can submit multiple bids coupled with an “exclusive-or” constraint, to state that
the dispatcher can accept any one pair of times from any one bid.

Let K denote the set of all bids, and $(i) C K the bids received from agent i. A set of
bids from agent ¢ in a particular round are all associated with a single entry node, neqry(4),
a single exit node neyic (i), and true/false values fizede,,, and fized,;, to state whether the
times are fixed or represent constraints. Each individual bid & € (i) specifies an entry
time, tequry(k), an exit time teit (k), and a bid price p(k) > 0.

Example:

Bid (5, 10, $100) xor (7,12,$150) for entry node A and exit node B, with fized,,,,, but
~fized,,;,, states that the train agent is willing to pay up to $100 to enter at A at time 5
and depart before time 10, or up to $150 to enter at time 7 and depart before time 12.

To keep the winner-determination problem tractable I also find it useful to restrict the

number of bids that an agent can place in any round.*

Winner-determination

In each round of the auction the dispatcher solves the winner-determination problem,
computing a provisional allocation to maximize revenue based on bids. The provisional

allocation must be consistent with some feasible schedule.

‘Experimentally, Bmax = 5 appears to work well in many problems.
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The winner determination problem is formulated as a mixed-integer program, very
similar in form to that for the centralized train scheduling problem. However, it tends to be
much easier to solve because: the problem is restricted to the space of solutions compatible
with the bids submitted by agents; and the problem is for only a single territory. As in the
centralized problem, it is not necessary to select a bid from every train agent, even if there
is a feasible solution involving every agent, when a schedule with fewer agents generates
more revenue.

Mixed-Integer Program Formulation.

Borrowing as much from the earlier global MIP formulation as possible, we introduce
new zero-one variables z(i,k) € {0,1} for agent i € T and bid k € B(i), the set of bids
from agent i, with z(i,k) = 1 iff agent ¢'s bid & is in the provisional allocation. The linear
objective function is:

max Y p(k)z(i, k)

i,k€A(i)
i.e. maximize total revenue where p(k) denotes the bid price of bid & from agent i.

Constraints (2a, 2b, 3a, 3b, 4a, 4b, 4c, 4d) are adopted from the MIP of the global train
scheduling problem, with train times computed on the basis of bids from agents. Allowing

for flexible bid times, we write:

8i,5(1) = D tenry(K)2(is k), if fizedenyry (i) (la)
kea(i)

ti,5()) = Y temry(k)z(i,k) , otherwise
keB()

8i,d(i) = Y texie(K)z(i k) , if fizedeg (i) (1b")
kep(1)

8i,d(i)) < D tent(k)z(i,k) , otherwise
kepa(i)
> zi,k) < y(i) (1c')
k€B(i)

The source node s(i) is the entry node neny(2), and the destination node d(3) is the exit
node, neyi (7).

Constraints {1a’) constrain the schedule for train ¢ to an entry time consistent with its
bid, similarly for (1b’) for its exit time. Constraint (1c’) ensures that at most one bid is
accepted per agent, and that no bids are accepted from dropped trains.

Winner-Determination Cache.
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Onc useful technique to speed-up winner-determination in iterative auctions is to main-
tain solutions from previous rounds in a cache, indexed against the bids that were submit-
ted. The cache can be checked for a solution before solving the mixed integer program.

In this problem, a hit in the cache depends on the constraints submitted by agents.
Given a set of bids K from agents, a match is found if a permutation (in terms of the order
of agents) of the new bids are consistent with a set of bids in the cache. To be consistent:

(1) if bids from agent ¢ are successful in the cached solution, then the new bids from
i must support the time corresponding to the successful bid, and be (weakly) less flezible
than the other times in the cached bid.?

(2) if bids from agent 7 are unsuccessful in the cached solution, then the new bids from
i must all be (weakly) less flezible than the old bids.

A bid is less flexrible than another bid if it represents a smaller set of times and at the
same price or less, vice-versa for a more flezible bid. An exclusive-or set of bids support
an accepted bid if one or more of the bids in the set is (weakly) more flexible than the

accepted bid.

Price Updates

Each dispatcher agent maintains ask prices on a discrete price lattice, but without imposing
a discretization on the times that a train agent can bid. Given a bid for a pair of fixed
times (¢, ¢z, the price is determined as the price of the nearest point in the lattice, or as
the minimal price over a set of points in the case of a bid with flexible times. The lattice
structure is used to approximate a continuous non-linear price space. A smaller unit of
discretization leads to a higher computational cost and slower convergence but perhaps
to a higher schedule quality. An alternative price structure might explicitly maintain
unsuccessful bids and compute ask prices on-the-fly exactly.

Ask prices represent a lower-bound on the price that a train agent must bid to have
any chance of success in the auction, but do not guarantee that a bid will be successful.
An unsuccessful bid increases the price on its nearest lattice point, or multiple consistent
lattice points in the case of an unsuccessful constraint-based bid.

For each bid in an unsuccessful exclusive-or set of bids we update the ask price on all

3The other times can be more flexible if every agent that bids is in the cache and the prices on the
rejected bids from each agent are no greater than on the accepted bids.
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grid points consistent with the bid times. The price-update method:

(a) find the point on the lattice closest to the bid, or set of consistent points

(b) and update the ask price at that lattice point to € above the unsuccessful bid price

where € > 0 is the minimal bid-increment in the auction.® The structure of this price-
update is motivated by price updates in iBundle, the allocatively-efficient ascending-price
combinatorial auction introduced in chapter 5, that updates prices on bundles of items by
€ in response to unsuccessful exclusive-or bids.

An “infinite” value is used to represent the case that the safety condition will be violated
with any bid close to a particular grid point. This is used as items are sold to train agents
at particular times (under the continuous clearing rules, see below), to move a train’s bid

focus away from a time that cannot be accepted at any price.

Price Quotes

The prices on the lattice are used to compute ask prices. The ask price for a fixed pair
of times is read off the grid as the price at the closest point. Dispatcher agents provide
a price-query function for train agents, to allow train agents to compute the ask price for
any pair of times “on-the-fly”. For a bid with a flexible entry time and/or a flexible exit
time, the price is computed as the minimal price over all compatible grid points.

The prices on flexible times have the following useful semantics:
p(ki1) 2 p(k2), ifky C ko

for bids &, and k; if all times consistent with k, are also consistent with &;. This follows
immediately from the minimal operator used to compute an ask price under a flexible bid.
The relationship allows a train agent to prune its local search when counsidering different
times in its best-response strategy.

Note, however, that it is not necessarily the case that p(k,) > p(kz) for a pair of fired
times k; and ks, because k; might hit a safety conflict with the bids from another agent
that k|, might escape. When k7 is a flexible bid it would also escape the safety problem

whenever k) escaped the safety problem.

6The price is also increased because of bids submitted by a train agent that is in the provisional
allocation, but receives the same pair of times from the last round of the auction, and is trying to shift
away from that allocation. I allow a train agent to indicate when it is merely repeating a bid because it
must under the auction rules, rather than because it really wants that pair of times.
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Bidding Rules

The bidding rules are quite simple: (1) an agent must bid at least the ask price for a good;
and (2) an agent must repeat a bid that supports a pair of times it receives in the current
provisional allocation. This ensures that progress is made across individual rounds of the

auction.

Clearing and Termination Rules

The auctions terminate simultaneously when no new bids are placed by any train agent to
any dispatcher agent. In addition, each auction has a continuous clearing rule, in which
a dispatcher commits to a particular pair of times for an agent that receives those times
in the provisional allocation for more than a fixed number of successive rounds, Tjear-
Continuous clearing helps to reduce bidding complexity, committing trains to particular
times (although they can continue to bid for alternate times at an additional cost), and
focusing search. A countervailing force is that early commits can also lock-in a particular
pair of times too quickly when continued search might find a better solution.

The MIP formulation for winner-determination is easily adapted to include committed
times. These times can be represented with bids from a dummy agent, with acceptance of
those bids forced within the MIP solution method. The flexibility of mixed-integer program
formulations of winner-determination problems was previously noted by Andersson et al.
[ATY00].

9.4 The Bidding Problem

Recall that each train ¢ € T has value V; to complete its journey, subject to a cost
cost;(ts, tq) for off-schedule performance, given optimal source and destination times ¢; (i)
and ¢3(4) and actual times t, and t4. The bidding problem is to purchase the right to travel
across the network from source to destination at minimal total cost, where cost is the sum
of the price it pays in each auction and the cost of off-schedule performance. In addition,
if this cost is greater than the train’s value then it would prefer to drop out completely.
The bidding problem is difficult for two main reasons:
(a) coordination: a train agent must bid with multiple dispatchers when its route spans

more than one territory.
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(b) dynamic pricing: a train agent cannot know the prices at which the auction will clear.

Each train agent is assumed to follow a myopic best-response bidding strategy, bidding
for the schedule that minimizes total cost given the current ask prices. Myopic best-
response provides a good starting point to analyze the performance of the auction method.
It would be interesting, but probably quite difficult, to also consider the effect of fully
strategic agent behavior on the quality of solutions. For example, a train might achieve
a better outcome by anticipating the bids of other agents and considering the effect of

current bids on future prices.

9.4.1 Myopic Best-response Bidding Strategy

The myopic best-response bidding problem can be formulated as a shortest weighted path
problem. The edges in the graph correspond to pairs of entry-exit times at each dispatcher,
fixed or flexible as appropriate. Edges are connected if the exit time on one edge is con-
sistent with the entry time on the next edge. The cost associated with an edge represents
the sum of the current ask price, and any cost for off-schedule arrival or departure if the

dispatcher is at the source or destination of a train’s route.

direction of travel
L

{10,20}: $100 (30,501:5120
o A

[10,35):860

(10,40]:350

1 2 3

Figure 9.4: The myopic best-response bidding problem.

Figure 9.4 illustrates a partially-completed graph, with nodes I, 2 and 3 representing
yards between dispatchers d, and d2. Times on edges between yards I denote entry-exit

times for the relevant dispatcher, and the sum of the ask price and any additional cost if
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one of the yards is also the source or destination yard and the time would leave the train
off-schedule.

Formulation

A train’s best-response, taking current prices as fixed, is to select a path from source to
destination with minimal total cost (or no path in the case that the minimal cost is greater
than its value for completing the journey).

Given a set of dispatchers, D, let (d;,... ,dy) represent the dispatchers on the route
of a particular train. Let Cy_, (t) denote the minimal total cost to enter dispatcher d; no
earlier than time ¢, travel from d, to d,, and exit from dispatcher d,. This cost represents
the cost of the best schedule, given current ask prices and the train’s costs for off-schedule

performance. The solution to C* can be computed as a recursive relationship:

min (cj(t,f) + CG+1)_M(T)) ifj<n

Ci i t) =
jon . e
rgxgc,(t, T) ifj=n

where c;(¢,,t2) is the cost to enter dispatcher j at time ¢; (or no earlier than ¢; in the case
of a flexible bid time), and exit dispatcher j at time ¢ (or no later than ¢, in the case of
a flexible bid time), computed as the sum of the price for times and any additional cost
penalty for off-schedule performance if dispatcher j is at the end of the train’s route.

The price is the ask-price if the agent is not yet committed to the good (i.e. it has not
cleared), or zero otherwise (in which case the price represents a sunk cost). Trains treat
offered items in the same way as any other item, making an assumption that it can move
away from such an item if necessary without becoming exposed.

Trains consider flexible bid times in the case of non-extremal nodes, but fixed times at
source or destination because a cost is incurred for any deviation from optimal departure
and arrival times. The intermediate time 7 represents the time to cross from dispatcher
d; to dj;y. In this description I have finessed detail about the time to travel across yards

between dispatch territories, which is simply incorporated into the recursion.

Dynamic Programming Solution Method

Dynamic programming solves this shortest-path formulation of the myopic best-response

bidding problem, computing the best solution over a fixed lattice of time points (that
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can be different for each train agent), and working from dispatcher d, to d;, pruning any
dominated solutions (for example higher cost edges with earlier entry times). In related
work, Boutilier et al. [BGS99] proposed a dynamic programming algorithm for agent
bidding strategies in sequential auctions with complementarities.

We implement the following algorithm:

(1) determine the maximal consistent set of current offers and sold items that also leave
enough time for travel across those dispatch territories without suitable times.

(2) for each maximal set, use dynamic programming to determine minimal-cost routes
in the gaps of the schedule, i.e. for those contiguous sequences of dispatchers for which
the train is not currently holding a suitable pair of entry and exit times. Flexible time
constraints are selected for all entry and exit times except those representing a train’s
initial departure or arrival time, at which nodes the train is not willing to be flexible.

(3) fill the gaps and select the solution with the lowest total cost (including the cost for
current offers/sold items used in the solution).

Whenever a gap occurs at the start or end dispatcher on a train’s route the train
considers tradeoffs between bid price and the cost of off-schedule performance for off-time
departure and/or arrival times.

This method includes a bias in favor of solutions consistent with times the train receives
in the current provisional allocations. This is reasonable, given that the ask prices represent
a lower-bound on what might be a successful bid price but provide no guarantees that a bid
will succeed. That an agent currently receives a pair of times conveys useful information
about the “fit” of those times with bids from other agents.

Finally, given a solution a train will submit as many bids that are consistent with the
solution as possible, making use of XOR logic and constraints on times to submit multiple
bids without compromising the solution. This increases its own likelihood of success, and

also helps the dispatchers to coordinate joint search across multiple agents.

9.5 Experimental Results

The performance of the auction based solution is compared with a centralized solution
in networks consisting of linear chains of dispatcher territories. Both the global MIP

formulation and the MIP for winner-determination in each round of the auction are solved
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with CPLEX. The rest of the code (myopic best-response, price-updates, etc.) was written
in C++.

9.5.1 Dispatcher model

Each dispatcher territory has the same network structure, as depicted in Figure 9.5. The
total distance is 157.5 km, consisting of a single-track section followed by a double-track
section (siding) followed by a single-track section. Dispatcher territories are connected
together with yards. Trains have a maximal speed of 100km/hr over single- and double-
track sections, and lkm/hr within a yard. For simplicity, I model maximal speed as
100km/hr throughout the network and re-scale yards from size 0.5km to a model length
of 50km.

siding

& m @

70 25 62.5

Figure 9.5: The Network Structure for a Single Dispatcher, with distances of each section (in km).

9.5.2 Example Problem

Consider a problem with a chain of two dispatchers, and 7 trains, each with value $200 and
cost 350 per hour of delay. Trains 1, 2, 4, 5, and 6 run east with optimal departure and
arrival times (in hours) of { (1, 7), (3, 11), (8, 16), (11, 19), (10, 17) }, while trains 3 and
7 run west with optimal times { (1, 7), (12, 18) }. Given a maximal speed of 100km/hr
the free-running time of a train across the network is 3.66 hr, i.e. this is how long it would
take a train with no delays.

The auction-based and centralized solutions to this problem are illustrated in distance-
time charts in Figure 9.6. Both solutions find optimal solutions, with value $1400 (all
trains run on-time). This problem is quite under-constrained, with a number of possible
optimal schedules.

Notice that the auction-based solution is less extremal than the centralized solution.
This is quite typical, a result of the fact that train agents tend to bid less extreme times
than those selected with a global LP-based branch & bound method such as CPLEX, and

achieve a more evenly paced schedule from source to destination. We would expect this
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(b) Centralized solution.

Figure 9.6: Example: 7 trains, 1 dispatcher territory. Distance in 100's of kms, time in hrs.
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property to make auction-based solutions more robust against unexpected minor delays

during the execution of a schedule.

9.5.3 Results

The auction algorithm was parameterized as follows: at most 5 bids per-agent in each
round, at most 240 seconds to solve winner-determination in each round (with the best
feasible solution used if the optimal solution is not found), a minimal price increment of
$25. The price lattice was maintained over points with a granularity of 0.2 hrs, and I used

a time interval size of 0.3 hrs in the trains’ dynamic-programming algorithm.

Problem Generator

A stochastic method is used to generate a set of problem instances. The approach is loosely
based around instances in Kraay et al. [KHC91]. I refer the reader to Hallowell [Hal93]
for an account of other interesting train scheduling problem sets in the literature. I report
results on problem sets with between 2 and 4 dispatcher agents and between 5 and 15
train agents. I consider linear networks, formed from dispatcher territories as shown in in
Figure 9.5 and connected with yards. The problem sets are parameterized by constants:
prob(E), pv, ov, pc, 0c, dePmax; tslack and Ogqack, as described below.

All trains travel from end-to-end over the network, and travel East with probability
prob(£). A train’s value is selected from a normal distribution, V; ~ N(uy,ov), with
mean i and standard deviation oy, and its unit cost C; for off-schedule performance is
normally distributed N(uc, oc). The optimal departure time for a train, ¢}(), is uniformly
distributed, t3(i) ~ U(0, deppay)- Finally, a train’s optimal arrival time, ¢} (i), is computed
so that the relative slack, i.e. (available time - free-running time) / free-running time, is
normally distributed with mean ugqcx % and standard deviation ogqcx %.

The complexity of a train-scheduling problem depends on many factors, including the
slack time available to each train, the network section types, and the number of “cross-
overs”. A cross-over is counted whenever two trains traveling on-time must cross at some
point in the network. As I scaled the problems, with more train agents and more dispatcher
agents, I adjusted the dep_,, parameter to maintain the same number of average cross-
overs per-agent, in an effort to maintain a similar problem complexity. An appropriate

dep .« value was computed separately for each problem size based on statistical analysis.
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Model Size

num dispatchers 2 3 4

num trains 5 10 15 G} 10 15 ) 10 15

Global-time (s) | 97 1438 2022 (1161 2442 2495 | 886 2378 3155
Global-value (8) | 895 1699 2097 | 854 1561 1177|898 1106 1132
Auc-time (s) 15 792 2568 15 1192 2039 |26.9 944 2448
Agent time (s) |04 06 2709 22 33 (19 44 88

Auc-value (8) 850 1893 1737 | 842 1855 2632 | 768 1832 2162
Revenue (8) 315 698 1045 470 1030 1690 | 700 1365 2142
num rounds 12 13 25 13 16 18 16 16 23

Cache hit (%) 60 50 30 [ 61 50 47 | 50 52 37

Table 9.1: Comparative performance: Auction vs. Centralized methods.

Without this adjustment, adding more trains and more dispatchers increases the number
of cross-overs and makes problems much more difficult to solve.

We selected prob(E) = 0.7, pv = $200, oy = 50, pc = 8100, o¢ = 25, psiack = 100%,
Ostack = 25%, and set dep,,,, to give average cross-over complexity of 2 per-train. [

generated 10 problem instances for each problem size.

Results

Table 9.1 presents the results. The computation time of the centralized method is bounded
at 3600 secs, at which point [ take the best available solution. CPLEX also ran out of
memory (at 200 MB) while solving a few of the centralized problems, stopping before 3600
secs but without an optimal solution. Notice that the quality of the schedule computed in
the auction dominates that from the centralized solution in hard problems, as the number
of dispatchers and/or the number of agents increase.

The winner-determination time in the auction (totaled over all rounds and all dispatch-
ers) has reasonable scaling properties, with the number of train agents and in particular
with the number of dispatchers. The auction appears able to decompose the problem ef-
fectively across dispatchers, such that most computation in terms of coordinating trains is
performed by one “critical” dispatcher.

It is noteworthy that the train agent best-response bidding problem is quite easy,
indicating that it would be interesting to experiment with a smaller discrete time step.

Notice also that the simple cache proves quite effective, finding the optimal solution around
50% of the time.
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More experiments are required, both to better understand the average-case scaling
properties of the auction, and also to look more deeply at agent strategies. My conjecture
is that the average-case run time in the auction scales quadratically with the number of
train agents, and perhaps sub-linearly with the number of dispatch territories.

In terms of agent strategies, I suspect that some agents purchase times that they cannot
use as the number of dispatchers increases, and as the bid coordination problem gets more
difficult. This belief is based on a comparison of the revenue with value in the auction, see
Table 9.1. If this is the case it will be necessary to consider more sophisticated bidding
strategies to avoid this exposure problem.

A similar exposure problem is noted in the FCC spectrum auction problem, in which

agents need sets of compatible licenses, and bid across simultaneous auctions [BCL00].

9.6 Related Work

This is not the first study of auction-based methods for train scheduling problems. Brewer
& Plott [RP96], proposed the BICAP ascending-price auction for distributed train schedul-
ing. The auction proposed in this chapter is more flexible: while we allow trains to con-
struct arbitrary schedules across the network, BICAP restricts trains to bid from a small
set of fixed paths. Market-based methods have also been advocated for other distributed
scheduling problems, such as for airport take-off and landing slot allocation problems
[RSB82].

Returning to centralized approaches to train scheduling, Kreuger et al. [KCO97] have
proposed a constraint-based method which appear to have better scaling properties than
straight applications of MIP methods, but is perhaps less suited to making tradeoffs across
schedules with different qualities.

Wellman et al. [WWWMMO1] propose an auction-based method for a factory-scheduling
problem, in which agents compete for periods of time on (one or more) shared machines.
As in train scheduling, agents often require a combination of time periods, and perhaps
across multiple machines. The train scheduling problem is different in nature because it is
not possibie to define up-front a static set of mutually-compatible times, any of which can
be safely allocated to any agent. Instead, a feasible allocation of times to agents must be

checked for a safe underlying meet/pass schedule. My approach is also rather different to
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that adopted by Wellman et al., since I avoid imposing a discretization of time into finite

slots, but provide instead a simple and expressive constraint-based bidding language.

9.7 Discussion

The auction-based mechanism for the distributed train scheduling problem presented in
this chapter is a better match to the natural information and control structure of modern
railroads than traditional centralized scheduling solutions. Moreover, initial experiments
on a simple network structure show that the auction-based solution can generate better
solutions than a centralized approach, and more quickly. The auction-based approach also
appears to have useful scaling properties. Of course, it would be interesting to compare the
auction approach with other centralized satisficing approaches. The current comparison
with an integer-programming based centralized solver may be a little unfair.

The main weakness with the current approach is the lack of an interesting network
structure. I assume a single-line network, which while quite a common assumption in the
acadermic train scheduling literature [KHC91, KH95, Hal93]| is perhaps not very realistic.
In the context of an auction-based method, relaxing the single line assumption would
require two important changes:

(a) extend the mixed integer program formulation of the winner-determination problem
for each train agent to schedule trains across multiple lines

(b) extend the bidding strategy of train agents to consider alternative routes, in addition
to alternative times

Certainly (b) would not seem to be too difficult, given that train agents already consider
alternative routes in time. The current “shortest path” approach will extend quite readily.
In addition, although it is not immediately clear how to formulate a multi-line problem as

a mixed integer program, the problem is no more difficult than that faced in a centralized

solution.
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Chapter 10
Conclusions

Auctions offer great promise as mechanisms for optimal resource allocation in complex
distributed systems with self-interested agents. However, limited and costly computation
necessitates a rethinking of traditional auction theory because direct extensions of auctions
that work well in small problems can fail in complex distributed systems. My thesis is that
it is necessary to take an explicitly computational approach to auction design. Indeed,
the value of auctions in e-commerce systems will depend on the ability to maintain the
desirable properties of auctions, for example economic efficiency, robustness, and simplicity,
as methods are introduced to allow tractable computation. Once computational issues are
successfully addressed, auctions may provide simple, stable, and robust solutions to many
important distributed optimization problems.

Agents often demand bundles of items, and have values for bundles that are not equal
to the sum of the values of the items in the bundle; e.g., for task allocation, procurement
problems, and dynamic bandwidth allocation. Combinatorial auctions allow agents to
represent these preferences explicitly by submitting bids on bundles of items, for example
stating “I only want A if I also get B”. Desirable properties of combinatorial auctions
include strategy-proofness, such that truthful bidding is optimal whatever the strategies
of other agents, and allocative-efficiency, such that the auction implements the value max-
imizing allocation. However there is a tension between the classic game-theoretic solution
to this problem and computational efficiency.

The Groves family of mechanisms, and the Generalized Vickrey Auction (GVA) in par-
ticular, are strategy-proof and efficient. But the GVA is a sealed-bid combinatorial auction.

Every agent must first report its value for every possible bundle, before the auctioneer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



computes the allocation and agent payments. Sealed-bid auctions are undesirable compu-
tationally because of this complete revelation requirement, which soon becomes intractable
in large complex domains for agents with hard valuation problems. Iterative mechanisms
are absolutely critical in such domains because they can solve problems without complete
information revelation from agents, and even without individual agents computing their
exact values for all outcomes. The revelation principle of mechanism design, coupled with
the uniqueness of Groves mechanisms provides useful guidance. Any strategy-proof and
efficient iterative combinatorial auction must compute Groves payments at the end of the
auction.

My dissertation develops an efficient iterative combinatorial auction, which avoids the
centralization and complete revelation problems of the GVA. The auction, iBundle, and its
extension Ezrtend&Adjust, is an ascending-price combinatorial auction that allows agents
to adjust their bids in response to bids from other agents. iBundle solves realistic problems
without complete information revelation from agents, and with Extend&Adjust inherits
much of the strategy-proofness of Groves mechanisms by computing Vickrey-Groves pay-
ments at the end of the auction. Instead of terminating as soon as the efficient allocation
has been determined, Extend&Adjust remains open just long enough to collect additional
information from agents (via best-response bids) to compute Vickrey payments.

In summary, the main contributions are:

¢ Bundle Extend&Adjust is the first iterative combinatorial auction to compute min-

imal competitive equilibrium prices in the combinatorial allocation problem.

¢ :Bundle Extend&Adjust is the first iterative combinatorial auction to compute the
efficient allocation and Vickrey payments in all problems in which Vickrey payments

can be priced in competitive equilibrium.

e A primal-dual algorithm, VICKAUCTION, that computes Vickrey payments without
explicit information about agent valuation functions. The algorithm simply assumes

myopic best-response information from agents.

iBundle Extend&Adjust interprets the primal-dual algorithm VICKAUCTION as an
ascending-price auction. The only difference is an explicit method to adjust prices in the

second “extend” phase of the auction, which aims to be more “natural” to participants
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than the method in VICKAUCTION. An agent’s bids in rounds past the natural termination
point of iBundle neither affect the final allocation nor the final price that the agent pays.
The only effect is to reduce the price that other agents pay. Therefore it is important
that an agent not be able to detect that the auction is in this phase, or else it would sim-
ply drop out and wait for the auction to finally terminate. The outstanding challenge in
completing a proof of the following conjecture is to demonstrate that Extend&Adjust ter-
minates. That termination implies Vickrey payments follows directly from the optimality

of VICKAUCTION.

e (conjecture) iBundle Extend&Adjust is the first iterative combinatorial auction to
compute the efficient allocation and Vickrey payments in all combinatorial allocation

problems.

The combined system, iBundle Extend&Adjust with a proxy bidding agent interface,
is a promising dynamic mechanism to solve combinatorial allocation problems with dis-

tributed self-interested agents.

10.1 A Brief Review

Chapter 1 provides an introduction to the computational problems inherent in classic
game-theoretic mechanisms, such as the Groves mechanisms. The Groves mechanisms are
centralized solutions to decentralized optimization problems. The mechanism makes it a
dominant strategy for agents to provide complete and truthful information about their
preferences to the auctioneer, which then computes an optimal system-wide solution.

An important challenge problem in computational mechanism design is to develop a
strategy-proof and dynamic mechanism, in which it is an agent’s dominant strategy to
provide truthful information incrementally to the mechanism, until just enough is known
about agents’ problems to solve the system-wide problem. The scheme proposed in this
dissertation, comprising of :Bundle, Proxy, Extend&Adjust, makes significant progress in
this direction for the combinatorial allocation problem. Transformation techniques between
the XOR bidding language and other more expressive bidding languages also promise to
lead to specific implementations of iBundle that are able to exploit structure in agent
preferences without incurring the cost of a potentially exponential explosion into values

on bundles.
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Chapter 2 introduces important results from classic mechanism design, including the
Groves family of mechanisms. Groves mechanisms are the only strategy-proof and effi-
cient mechanisms among direct-revelation mechanisms. Taken along with the revelation
principle, which states that any mechanism can be implemented as an equivalent direct-
revelation mechanism (with agents reporting complete information about their prefer-
ences), this uniqueness provides useful focus to the design of iterative mechanisms. In
particular, any efficient and strategy-proof iterative mechanism must compute the out-
come of a Groves mechanism for the underlying preferences of agents.

The revelation principle does not mean that we need to only consider direct-revelation
mechanisms when constructing mechanisms for combinatorial problems. The revelation
principle assumes unlimited computational resources, both for agents in submitting val-
uation functions, and for the auctioneer, in converting a mechanism into a single-shot
direct-revelation solution. In fact, the work in my dissertation clearly demonstrates that
iterative auctions ezpand the implementation space when computation is an issue.

The tensions between classic game-theoretic solutions and tractable computational so-
lutions soon become evident as one considers the application of mechanisms to difficult
distributed optimization problems, such as supply-chain procurement or bandwidth allo-
cation. Chapter 3 considered the computational demands within a mechanism, addressing
computation at both the infrastructure (e.g. auctioneer) and agent level.

A number of methods were surveyed to address the computational complezity on the
mechanism infrastructure, including approximations, special-cases and decentralized meth-
ods. Naive attempts to introduce approximations into mechanisms can break useful game-
theoretic properties, such as strategy-proofness.

The strategic complezity of a mechanism is closely linked to its game-theoretic prop-
erties. In particular, a mechanism in which every agent has a dominant strategy, i.e. an
optimal strategy whatever the strategies and preferences of other agents, is useful game-
theoretically and computationally. From a game-theoretic perspective, a dominant strat-
egy equilibrium is a very robust solution concept, stable for example against “irrational”
agents. From a computational perspective, with a dominant strategy an agent can avoid
costly modeling and game-theoretic reasoning about other agents.

The third important cost is that of vaeluation complezity; valuation problems are of-

ten hard, agents have limited and/or costly computation, and there are many different
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outcomes in combinatorial domains.

High-level bidding languages, such as bidding programs, can help in situations in which
it is easier to specify a method to compute values for outcomes than to compute values
for every possible outcome. This might be the case if an agent has a well-formulated
optimization problem to compute its value for different resource bundles. However, it is
quite likely that each outcome has a different structure, and requires additional inform:iion
and a new specification. Another problem with this approach is that it shifts computation
to the center and is problematic from a privacy and informational perspective.

My dissertation adopts an alternative approach, that of dynamic mechanisms, in which
agents reveal incremental information about their preferences until the mechanism can
compute and verify an optimal solution. iBundle is an iterative combinatorial auction
that solves realistic problems without complete information revelation from agents. The
idea is to “open up” the algorithm for computing the outcome of the GVA, and involve
agents dynamically in the computational process. It is easy to construct examples in
which it is not necessary to have complete information about agents’ valuation problems
to compute and verify the outcome of the auction. Some simple examples were described
towards the end of Chapter 3. A well structured dynamic method will ask agents for just
enough information to enable the mechanism to compute and verify the outcome.

Table 4.7 summarizes the progress in iterative auction design over the past two decades.
Each contribution relaxes assumptions on agent preferences and/or strengthens the equi-
librium analysis of the auction. All auctions terminate with efficient allocations and prices
that are in competitive equilibrium, or equal to Vickrey payments, or both. Prior to
iBundle there was no method that terminated in competitive equilibrium in the general
problem, let alone in the minimal competitive equilibrium solution or with Vickrey pay-
ments.

My approach to iterative combinatorial auction design integrates principles from linear
programming and game-theoretic mechanism design.

First, I assumed that agents will follow a myopic best-response bidding strategy in
every round of the auction. This allowed the direct application of linear programming
theory, and primal-dual algorithms in particular, to auction design. With myopic best-
response there is an easy mapping from an suitable primal-dual algorithm to an ascending-

price combinatorial auction. The corresponding auction, iBundle, is the first efficient and
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iterative combinatorial auction for any reasonable agent bidding strategy, in this case
myopic best-response.

Second, I extended the approach to compute Vickrey-Groves payments at the end of the
auction, in addition to the efficient allocation. When successful, this makes myopic best-
response an optimal sequential strategy for an agent in the auction, in equilibrium with
best-response from every other agent. I derived a new primal-dual algorithm, VickAuc-
TION, from a linear program formulation of the Groves mechanism for the combinatorial
allocation problem. VICKAUCTION provably computes the Vickrey payments with only
best-response information from agents. VICKAUCTION corresponds to iBundle with a sec-
ond phase, Extend&Adjust. The purpose of the second phase is to elicit enough additional
preference information from agents to compute Vickrey payments. It turns out that Vick-
rey payments require more information than that which is required to compute the efficient
allocation. Vickrey-Groves payments are computed by an adjustment procedure from final
prices, based on primal-dual information collected from best-response bids from agents.

Chapters 4 and 5 presented the iBundle auction, which computes efficient allocations
with agents that follow myopic best-response bidding strategies. Chapter 4 reviews linear
program models for the combinatorial allocation problem, and introduces a primal-dual
algorithm, COMBAUCTION, that dynamically computes prices with enough structure to
support the efficient allocation in competitive equilibrium. In some problems it is necessary
to use non-anonymous prices, with a different price for the same bundle to different agents,
and non-linear prices, with the price on a bundle different from the total price over the
items in a bundle.

COMBAUCTION has a natural interpretation as an ascending-price auction. The primal
solution corresponds to a provisional allocation and the dual solution corresponds to bun-
dle prices. Complementary slackness conditions have a natural interpretation within an
ascending price auction. A provisional allocation is efficient whenever: (1) every agent re-
ceives a bundle in its myopic best-response bid set and (2) the allocation maximizes revenue
for the auctioneer. This connection to linear programming theory proves the optimality of
iBundle as an efficient ascending-price auction.

Experimental results confirm that iBundle computes efficient allocations across a suite
of problem instances, with less information revelation than the GVA. In addition, the effect

of price discrimination on allocative efficiency is small, and I expect iBundle to perform well
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with anonymous prices in most problems. Approximations are possible within iBundle.
For example, increasing the minimal bid increment € in iBundle decreases the number
of rounds and can provide an order-of-magnitude speed-up for small losses in allocative
efficiency. Methods to leverage the sequential nature of winner-determination with iBundle
were also studied, via caching and hot-start techniques.

Chapters 6 and 7 presented a method to extend iBundle and compute Vickrey payments
at the end of the auction, in addition to the efficient allocation. The method justifies
myopic best-response, making myopic best-response an optimal sequential strategy for an
agent, in equilibrium with best-response strategies from other agents. The design leaves
iBundle basically unchanged, simply keeping the auction open for a few more rounds and
then computing discounts to agents at the end of the second phase. In the end, agents are
charged discounted prices based on discounts computed during the second phase.

First, I derived a linear program to compute minimal competitive equilibrium (CE)
prices from a set of suitable competitive equilibrium prices and the efficient allocation.
Minimal CE prices provide some protection against manipulation, and support the Vick-
rey payments in special cases. The linear program formulation leads to the procedure
ADJuUST, which computes minimal CE prices from the price information at the end of
COMBAUCTION, and similarly at the end of iBundle. [ characterized necessary and suffi-
cient conditions under which ADJUST will compute minimal CE prices, and proved that
:Bundle(3) with ADJUST terminates with minimal CE prices. The discounted prices are

equal to Vickrey payments in all problems for which minimal CE prices support Vickrey

payments.

THEOREM 10.1 iBundle and ADJUST is an iterative Vickrey auction when minimel CE

prices support Vickrey payments.

A fast but accurate method ADJPIVOT computes approximate discounts to agents after
iBundle terminates, checking complementary-slackness conditions only with respect to the
“pivotal” allocations that were previously computed as provisional allocations during the
auction.

Second, I derived a linear program formulation to compute the Vickrey payment of

any one agent in any combinatorial allocation problem instance. The Vickrey payment
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to every agent can then be solved as a sequence of independent linear programs. Again,
this leads to a linear program to compute the Vickrey payment to an agent from a set
of suitable competitive equilibrium prices and knowledge of the optimal allocation (but
without additional information about agent valuation functions or the value of the optimal
allocation). Finally, I proposed procedure ADJUST*, a slight variation on ADJUST, as a
method to compute Vickrey payments from the price information at the end of an iterative
auction. Considering necessary and sufficient conditions on CE prices for ADJUST* to
compute minimal Vickrey payments, the most important non-obvious condition can be
stated as follows:

. if an agent in the optimal allocation is not in one or more second-best allocations
(without one of the agents in the allocation) then the price on the bundle it receives in the

optimal allocation must equal its value.

This condition will not necessarily hold at the end of COMBAUCTION, or at the end
of iBundle. However, I was able to derive a primal-dual algorithm, VICKAUCTION, which
computes Vickrey payments with ADJUST*, by proposing a second phase to COMBAUC-
TION, called PHASEII. PHASEII continues to adjust prices until the conditions for Vickrey
payments are met. The overall VICKAUCTION method is composed of COMBAUCTION(3)
followed by PHASEII. VICKAUCTION implements the allocation computed at the end of
COMBAUCTION, with adjusted prices based on discounts computed during PHASEII.

[ prove optimality for VICKAUCTION:

THEOREM 10.2 VICKAUCTION is a primal-dual algorithm to compute the Vickrey pay-
ments and efficient allocation in the combinatorial allocation problem, with only best-

response information from agents.

Chapter 7 introduces an experimental auction method, iBundle Extend&Adjust, to im-
plement VICKAUCTION in a decentralized system. The auction introduces a second phase
to compute Vickrey payments, collecting just enough additional information from best-
response agent strategies. The main difficulty in implementing the primal-dual method,
VICKAUCTION, as an auction arises because it is important that agents can not detect the
transition from phase I to phase II. The experimental method used to drive price compe-

tition in the extended phase is to introduce dummy agents into the auction as real agents
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drop out to:

(a) provide enough competition to drive the prices to agents in the efficient allocation
high enough to compute Vickrey discounts to every agent

(b) provide a “competitive effect” that is hard to distinguish from the bids of the real
agents they replace

The valuation functions of the dummy agents are configured by the auctioneer dynam-
ically to mimic continued bidding from the real agents as they drop out

[ proved that the adjusted prices in iBundle Extend&Adjust are Vickrey payments
when the auction terminates. The outstanding open question is whether the current rules
for quiescence detection and dummy agents are sufficient to generate conditions to be able
to compute Vickrey prices from competitive equilibrium prices.

In Chapter 8 presented encouraging experimental results for iBundle Extend& Adjust.
The extended auction is indeed able to compute the Vickrey outcome with myopic best-

response agent strategies across a suite of problems. I make the following conjecture:

CoNJECTURE 10.1 iBundle Extend€Adjust is an iterative Generalized Vickrey Auction.

Vickrey payments make myopic best-response becomes a Bayesian-Nash equilibrium of

the auction.

THEOREM 10.3 Myopic best-response is a Bayesian-Nash equilibrium of an iterative

auction that myopically implements the outcome of the Generalized Vickrey Auction.

Finally, proxy bidding agents are suggested as a method to boost the strategy-proofness
provided by Vickrey payments. The proxy agents act as an interface between the auction
and the agents, receiving incremental information from agents about their preferences
over allocations, and following a myopic best-response strategy with that information.
The proxy agents check consistency, the information provided in each round must all be

consistent, and only bid when there is enough information to determine the best-response.

ProposITION 10.1 Dynamic truth-revelation is a dominant strategy to the prozy agents

if: (a) the prozy agents can constrain agents to providing information consistent with
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a single ex ante fired (but perhaps untruthful) valuation function; and (b) the auction

implements an iterative GVA with myopic best-response.

The proxy agents cannot actually limit agents to a single valuation function, but check-
ing consistency across rounds should be quite effective at constraining any possible manipu-
lation. The only gap that remains in the auction’s strategy-proofness is the extent to which
consistency cannot be completely enforced without falling back on complete information.

Chapter 9 proposed a new auction property, bounded-rational compatibility, to char-
acterize auctions in which agents can compute equilibrium strategies with approximate
information about their preferences. For example, an iterative auction is myopic bounded-
rational compatible if an agent can compute its myopic best-response strategy with an
approximate valuation function, for example bounds on its value, in some problems.
:Bundle is (myopic) bounded-rational compatible, while the Generalized Vickrey Auction
is not (dominant-strategy) bounded-rational compatible. The extended iBundle auction
is Bayesian-Nash bounded-rational compatible in problems in which it computes Vickrey
payments with myopic best-response strategies.

To begin to understand the advantage of myopic best-response over complete revela-
tion [ compared the efficiency and computation in iterative and sealed-bid auctions for
a simple model of a bounded-rational agent. I modeled the deliberation decision of an
agent explicitly, and computed myopically-rational metadeliberation strategies for agents
in iterative and sealed-bid auctions. The experimental results showed that: (a) iterative
auctions compute more efficient solutions than sealed-bid auctions, with agents allocating
limited computational resources to more “important” bundles; (b) iterative auctions allow
agents to avoid value computation.

Finally, Chapter 9 presented an application of auction-based methods to a distributed
train scheduling problem. Auction methods are well suited to the natural information
and control structure of modern railroads. In the model, trains bid for times to enter
and exit the territories of each dispatcher along their route. Each dispatcher operates an
ascending-price auction, for the right to enter and exit its territory at a particular time.
iBundle style price-update rules are applied to adjust the price on pairs of entry and exit
times across rounds. One innovation in the design is that train agents can bid with an

expressive constraint-based bidding language to represent indifference across times, e.g.
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“any arrival time before 12pm is fine”. This is coupled with a finite lattice of ask prices
maintained by each dispatch agent. Computational results on a simple linear network, for
train agents with myopic best-response bidding strategies demonstrated that the auction-
based method computed better solutions than a monolithic centralized method and in less

time, and suggest that the auction method has useful scaling properties.

10.2 Future Work

Let me outline some areas for concrete future work.

10.2.1 Iterative Combinatorial Auction Extensions
Expressive Bidding Languages

iBundle provides agents with a complete, but not very expressive, “exclusive-or” bidding
language. Expressive languages, for example constraint-based and functional-
approximation languages, can reduce the informational and computational demands on
agents and lead to faster winner-determination algorithms.

One interesting approach to develop a mechanism for a new language is understand
to adjust prices via a transformation of the problem into the iBundle price-adjustment
scheme. It is possible to derive optimal rules for a new language by compiling the following
translation: from bids in the new language to XOR-bundle bids in iBundle to price updates
in :Bundle and back to price updates in the new language. Ideally we would like to exploit
structure in agents’ bids in winner-determination and price-updates.

Consider XOR to OR as a simple transformation example. Additive-or bids can be
simulated in ‘Bundle as bids from separate agents, which illustrates that :Bundle rules for
this language are:

- increase prices on any single bundle in an OR bid for which an agent is unsuccessful in

the current round

- never introduce price-discrimination

- terminate when every agent receives all bundles in its bid in the provisional allocation
Automated compilation methods could also be introduced, to allow a user to define

a language semantics from which optimal auction methods are generated on-the-fly.
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Application Study

One outstanding important piece of experimental work is to perform a computational
comparison of agent winner-determination with a Groves mechanism and Bundle in a
simulated combinatorial allocation problem domain with concrete models for local agent
problems. Here are some problems with desirable properties (hard agent valuation prob-
lems, well-formed central optimization problems, natural decentralization, existing problem

sets, etc.).

o Distributed traveling salesperson problem. Andersson & Sandholm [AS98, AS99,
AS00] define a multiagent TSP in which agents have locations and jobs have lo-
cations. The goal is to allocate jobs to agents to maximize the social welfare, which
is measured as the total distance traveled by all agents. The authors report results
for a distributed task allocation method on 8x8 simulations, with random agent and

job locations selected on a simple grid.

o Multiple project resource management. Projects may involve dozens of firms and
hundreds of people who need to be managed and coordinated. Examples include
large construction projects, opening a new store, performing major maintenance,
starting up a new manufacturing facility [SBG94]. One well-formulated multi-agent
problem is known as multiple-project resource-constrained optimization, in which
individual projects compete for the same constrained resources and must solve local
scheduling problems to minimize costs given allocations. The local problem is hard,
and as Shutb et al. [SBG94] note, it is not realistic to solve to optimality with several

hundred activities.

o Multi-agent scheduling problems. A classic example is the airport takeoff and landing
time-slot problem [RSB82, GIP89]. Airlines complete for takeoff and landing slots
at airports. For a particular allocation of slots the airline must solve its local crew
and airplane scheduling problem to compute the cost for using the slots.

Sequential Winner Determination

The winner-determination problem in iterative auctions presents an interesting dynamic

computational problem, because agents’ bids change only gradually during the auction
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as prices increase. In addition to simple caching across rounds, and hot-start techniques,
one might also look to compute and re-use solutions to subproblems. As an example,
with branch-and-cut optimization, in which new constraints are introduced during linear-
program based branch-and-bound search, one can re-use cuts to prune search in later
rounds. Another interesting approach is that of “continual computation”, in which proba-
bilistic and game-theoretic methods are used to predict future winner-determination prob-

lems and to precompute solutions in the down time between rounds.

The Agent Meta-deliberation Problem

Given that an agent has a hard valuation problem, limited computational resources, and
many possible bundles of items to value, how should an agent schedule deliberation across
different bundles? This is an interesting domain for metadeliberation techniques, such as
those that have found application in other time critical domains, e.g. medicine, etc. An
iterative auction provides a dynamic and time-critical environment, with prices increasing
across rounds, and a finite time delay between rounds. Values for bundles are nested within
an agent’s algorithm to compute its best response, and the expected utility of submitting
a correct best-response in the current round depends on beliefs about strategies of other

agents and future prices in the auction.

An Asynchronous iBundle Auction

It would be useful to prove properties about iBundle when not every agent submits a bid
in each round. For example, is it possible to claim efficiency in a system with some “slow”
agents and some “fast” agents, where agents bid correctly whenever they bid?

10.2.2 Electronic Commerce Foundations

Multiattribute auctions and combinatorial exchanges present just two new emerging areas

of computational mechanism design in electronic commerce.

Multiattribute Auctions

A multiattribute auction allows agents to negotiate over the attributes (size, terms-of-
payment, delivery schedule, speed, etc.) of an item in addition to the price. Multiattribute

auctions can lead to more efficient outcomes than fixed attribute auctions, in which sellers
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are restricted to price competition in an ez ante fixed space of attributes. Multiattribute
auctions promise to provide robust methods for efficient automated negotiation between
multiple agents.

There are three central challenges in the design of multiattribute auctions: (1) tractable
winner-determination, which depends on an agent's preferences over the attributes of a
good in addition to price; (2) minimize the amount of information revelation required by
agents; (3) handle issues of strategic misrepresentation of preferences.

Informationally, it will be important to design iterative mechanisms that allow agents
to reveal incremental information about their preferences. Another method to reduce the
informational load on users is to position a semi-autonomous proxy bidding agent between
a user and the auctioneer that will accept many different types of information, including
ordinal, cardinal, hard constraints, functional approximations, and then submit optimal
bids to the auctioneer based on this information.

[t appears possible to reduce simple multiattribute allocation problems (for example
with one seller and multiple buyers) to a combinatorial allocation problem, at least if
attributes are discrete. A bundle of attributes becomes a bundle of items. The preferences
of the seller can be introduced via an agent that competes with buyers not to sell goods
with particular attributes if the price is too low, or if another set of attributes are more
desirable at the current prices. However, the Myerson-Satterthwaite impossibility theorem
limits what can be achieved in a game-theoretic sense. We cannot expect to implement
an efficient method that is incentive-compatible for both agents and budget-balanced, but
must sacrifice one of these conditions.

Reverse auctions, e.g. procurement auctions, provide a similar opportunity for iBundle-
based methods. In a reverse combinatorial auction there is a single buyer and multiple
sellers, each able to provide bundles of items. The efficient allocation will depend on the
value of the buyer for different bundles of items and on the costs of each seller to provide
bundles. The optimal solution selects bundles of items from muitiple sellers to maximize
the difference between the value of the buyer and the total cost over the sellers. Again, [
believe that it is possible to transform this problem into a regular “forward” combinatorial

auction and derive iBundle price update rules.
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Combinatorial Exchanges

A combinatorial exchange allows multiple buyers to trade with multiple sellers, with all
agents able to express logical conditions across bundles of items. Combinatorial exchanges
address an important weakness in combinatorial auctions, which is the assumption that
there a single seller is able to offer bundles composed of many different types of items.
On the contrary, wc might expect that a more natural model would allow multiple buyers
to engage in combinatorial trades with multiple sellers. Interesting applications of such
cxchanges include: a bandwidth exchange that aggregates supply from geographically
disparate sellers to match bids for “virtual networks”, or a travel exchange, that aggregates
the supply of excess seats and hotel rooms, to match bids for bundles of rooms and flights.
The winner determination problem in a combinatorial exchange, to select bids to maximize
surplus, is a classic combinatorial optimization problem.

The pricing problem is interesting, in particular because of the Myerson-Satterthwaite
impossibility theorem that shows that it is not possible to achieve efficiency, budget-
balance, and incentive-compatibility. We must sacrifice one of these desirable properties.
One approach would fix strategy-proofness, and perhaps sacrifice efficiency in favor of
budget-balance. This is similar to an approach of McAfee [McA92] for double auctions
on homogeneous items. Another approach would fix budget-balance, and try to achieve
as much strategy-proofness and efficiency as possible. In Parkes, Kalagananam and Eso
[PKEOL] I take this approach, allocating surplus when an exchange is cleared to minimize
the distance between agent payments and Vickrey payments. The choice of distance met-
ric has a distributional effect on surplus allocation and changes the incentive properties of
the exchange. A simple “threshold” rule appears to perform well, providing discounts to
agents that would receive a large discount in a Vickrey-Groves scheme, providing discounts
above a certain error threshold.

It also remains an open problem to identify special cases in which budget-balance is

not a problem, for example with restricted models of aggregation and bidding languages.

10.2.3 Approximations, Intractability, and Bounded-Rationality

Recent algorithmic approaches to mechanism design consider the effect of approximation
and intractability on the economic properties of mechanisms. The goal is to understand

both what is possible and what is impossible when tractable computation is introduced as
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an additional constraint.

In one sense, bounded-rationality and intractability can help; one might use NP-
hardness results to design “bounded strategy-proof” mechanisms that cannot be manipu-
lated without an agent solving a hard problem in polynomial time.

In another sense, bounded-rationality and intractability can be a problem; optimal
game-theoretic mechanisms can require the network infrastructure to solve multiple in-
tractable problems and approximate solutions can quickly break incentive-compatibility
properties. In addition to proving worst-case manipulation results for approximation algo-
rithms, one might also use randomized mechanisms to expand the implementation space.

Another thread in this interface between intractability and mechanism design is the
effect of agent bounded-rationality on preference revelation. It is often impossible for an
agent to compute its complete preference set, i.e. its value for all possible outcomes. The
direction started on in this dissertation is to design incentive-compatible mechanisms that
can solve distributed problems with approximate (but truthful) information revelation
from agents, providing dynamic feedback to agents about information collected from other
agents and about progress towards a system-wide solution. My current research results
suggest that primal-dual optimization theory may provide a suitable set of mathematical

tools to develop iterative strategy-proof mechanisms with rich structures.
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