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Abstract. As plug-in electric vehicles become more widespread, their charg-
ing needs to be coordinated, in order to ensure that capacity constnantsta
exceeded. This is becoming particularly critical as new fast-chargironoda-
gies are being developed that place additional burden on local traresfarTo
address this problem, we propose a novel online mechanism in whictisage
representing vehicle owners are incentivised to be truthful not onlytabeir
marginal valuations for electricity units, but also about their arrivaladtepe
and maximum charging speeds. The work extends the state of the avenalse
ways. We develop an online, model-free mechanism that handles mitltiein
mand per period, thus accommodating vehicles with heterogeneouseaitdifi
charging speeds; we provide competitive worst-case bounds fanecihanism;
finally, we simulate the proposed online mechanism using data from a cell-w
trial of electric vehicles in the UK, showing that using fast charging leadggto
nificant cost savings.

1 Introduction

Recent advances in battery technology, and pressuresutoedéiae carbon emissions of
transport, have stimulated renewed interest in electiicles (EVs). New hybrid de-
signs, equipped with both an electric motor and an interoadlustion engine (that can
be used to drive or charge the battery), address commonesa@iout the limited range
of such vehicles, and EVs are expected to represent clos@toof all vehicle sales
by 2020, according to a recent Gartner report [7]. Howes, potential growth has
generated concerns that if many of these vehicles are piiggand charged simulta-
neously, they risk overloading local electricity distrilaun networks (Shao et al[10]).
To address this problem, a number of researchers have begurestigate mecha-
nisms to schedule the charging of EVs, such that the locatcaints of the distribution
network are not exceeded. For example, Clement, Haesen &s&ni[1] propose a
centralised scheduler which makes optimal use of the n&teapacity when vehicle
owners truthfully report their expected future vehicle tsthe system. However, such
approaches fail to address the fact that owners will likelgraport this information if it
is in their interest to do so (for example, reporting thaytregjuire their vehicle earlier
than is actually the case to receive preferential chargifm}his end, in this paper we
useonline mechanism desigim order to engineer payment mechanisms that provide
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incentives for these owners to report truthfully their wafar receiving electricity, their
willingness to wait and their maximum charging rate.

Online mechanism design is an important topic in distridud and economics.
For example, Parkes and Singh [8] propose an online variatiiteoVickrey-Clarke-
Groves (VCG) mechanism, which uses an MDP-type frameworkrédict future ar-
rivals. Unlike their work, the mechanism proposed here isl@hdree (i.e., assumes no
knowledge about the future). Model-free online settingsehzeen considered by Porter
[9] and Hajiaghayi et al. [5], who study the problem of onlgaheduling of a single, re-
usable resource over a finite time period. We extend this WwgKkdonsidering multi-unit
domains, with preferences described by a non-increasicigpvef values.

A different approach for dynamic problems is considered iyaJand Parkes [6].
They consider a mechanism in which agents are allocatedragpta right to buy) for the
goods, instead of the goods themselves. The concept ohsgtigoromising, but would
need modifications to apply to our setting with perishabéeteicity units. In addition
to theoretical results, several applications have beegesigd for online mechanisms,
including: the allocation of Wi-Fi bandwidth (Friedman &HRas [3]), scheduling of
jobs on a server (Porter [9]) and the reservation of dispfece in online advertising
(Constantin et al. [2]).

In recent work (Gerding et al. [4]), we propose the first omlmechanism to deal
with the problem of coordinating the charging of a set of piludpybrid electric vehi-
cles (PHEVs) under limited supply. This earlier model, hegrehas several limitations
that we address in this work. First, all vehicles partidipgin the system are assumed
to have the same charging speed. In fact, given the large ensnah competing man-
ufacturers entering this space, it is likely that domestitdBargers with a wide range
of maximum charging speeds will become availabkigh performance chargers may
pose additional burdens on the local transmission netwnd for a real-world de-
ployment, the allocation model and market design needs #@bleeto deal with such a
challenge. Moreover, the presence of multiple, asymmeharging speeds may con-
siderably affect the dynamics of such a market, as they engifferent allocations
of the limited network capacity to become feasible. Finally theoretical worst-case
bound for the mechanism was presented, whereas such a taeaishighly desirable,
especially as online allocation leaves some items unatdda guarantee truthfulness.
Against this background, this paper makes the followingtigoutions to the state of
the art:

— We develop a novel online mechanism that deals with muiti-demandgper time
step by extending the mechanism proposed by Gerding et al. [dctmmmodate
heterogeneous and flexible charging speeds.

— We provide competitive bounds on allocative efficiency paned to the optimal off-
line allocation (which assumes prior knowledge of futunévats).

— We simulate the proposed mechanism using data from a ieédHivial of electric
vehicles in the UK. We show that the use of fast chargers cad fe significant
savings in fuel consumption, and is beneficial both from grspective of individual
vehicle owners, and for the allocative efficiency of the vehmlarket.

Lhtt p: // www. pod- poi nt . cond pod- poi nt - hone provides an example of a domestic
charger that already offers a 2.5 times speed increase over stardagers.
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2 Multi-Speed EV Charging Model

We consider a setting in which multiple units of electriciye periodically sold at fixed
time stepst (e.g., once every hour). Anit of electricity is defined as the amount of
kWh when charging at the lowest rate during that interval.drtgmtly, we assume that
the charging rate can be flexible, and each vehicle has a maxicharging rate (which
depends on the battery and its charger). We assume unitsridiisible, which means
that the charging rate is a multiple of the lowest rate (tbisidt a limitation since
units can be defined to be arbitrarily small). Moreover, weale byS(t) the supply
of electricity available for EV charging, i.e. the numberuwfits to be sold at time.
Note that, since our allocation is essentially greedy (iréts are allocated just before
they are they are charged and there is no pre-allocatiois) attows us to distribute
electricity coming from uncertain sources such as a shaneewable generator (e.g. a
shared neighbourhood wind turbine). For now, we consideakken for electricity for
EV charging that is separate from that for household consiempand so S(t) can be
considered the residual supply once household consumpdi®been removed. Beyond
providing a manageable model, a practical reason for thgars¢ion of concern is to
protect one neighbour from higher electricity prices faming regular jobs (lightning,
domestic appliances) in the case that his neighbours hacbased EVs.

Let/ ={1,2,..., N} denote the set of agents, each of which operates on behalf of
a single EV and its owner. Vehicles come and go and are notalailable for charg-
ing. Furthermore, they can have different maximum chargatgs, and their owners
have different valuations for the electricity. Given thasy agent’s typeis described
by the tuplef; = (v;,a;,d;, r;), wherev; is the marginal valuation vectas; andd;
are the arrival and departure times (the earliest and latess that the EV is available
for charging) and-; is themaximumcharging rate (i.e., the maximum number of units
agent; can charge at any timg.

Each element; ;. of v; represents the agent's willingness to pay for it unit
of electricity. We assume non-increasing marginal vatuej i.e.,v; > v; x41. This
is a realistic assumption for PHEVs since the first few unftglectricity are always
more likely to be used [4]. Furthermore; andd; define when the agent is present in
the market, where; is the agent'sirrival or earliest time the vehicle can be charged,
andd; is the point ofdeparture after which the vehicle is required by the owner.

Given this, anechanisnasks the agents to report their types and decides on an ap-
propriate allocation and payment. We denote the reporteel by 6, = (v, a;, d;, i)
In practice, the arrival repoid; is the time at which the owner plugs a vehicle into
the electricity network. At the time of arrival, an agent Isaarequired to report its
marginal valuation vecto;. The departure repod; is not required in advance and it
simply represents the time when the vehicle is unplugged fte unit. A vehicle owner
may decide to change its (reported) departure time, by ginmgblugging her vehicle.

Agents (or their owners) can misreport their availabifity,example, by unplugging
the vehicle early or plugging in the vehicle some time aftewal to try and get a better
price. Also, they could report a lower maximum charging mathigher valuations. Our
aim is to develop a mechanism whichdisminant strategy incentive compatil§l2SIC),
i.e., agents are best off reportig= 6;, no matter what other agents report. Formally,
a mechanism is given by the allocation polimy> (é;\k<t>),z‘ € I, which determines

the number of units allocated to agémt timet, and payment policyi(é_i|ki),z' el,
which calculates the total payment on (reported) depadfie; agent. We denote by
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0; = {0;|i € I} the types of all agents, atl; = {0;|j € I,j # i} all agents
excepti. Payments are independent of an agent’s own report.Heis,agenti’s en-
dowmen{number of items allocated) on departure, &id = (k§t>, cee k:%>> denotes

theendowmenof all agents at time, wherek!" ™" = k" 4 =" (6, |k®).

3 The Online Mechanism

Essentially, our mechanism uses a greedy allocation palibich allocates available
units to the agents with the current highest marginal valnat(given their current
endowments). While this is not always optimal (since it dogsconsider the fact that
some agents leave earlier than others), it is generallyicgip, as it does not require
information about future arrivals or departures (i.e sithodel free”).

A key problem, identified in our previous work [4], is that gdy allocation in
online domains sometimes overallocates (given the pridessito pay, the agent would
prefer to get fewer units than it would be allocated). To addithis problem, we correct
the allocation by leaving some units unallocated under syakified conditions, which
we refer to as ‘burning’ units. We consider two types of bagyidiscussed below:
immediateburning, where units are simply left unallocated (i.e., @i the agents
receive the unit, even if there is a demand for them), amdeparture where units are
initially allocated using the greedy approach (i.e., thitdyg is being charged), but then
on departure of the agent, any overallocated units are aligel from the battery. Both
of these have advantages/disadvantages. The model widkmarture burning is more
efficient (i.e., generally burns fewer units) and is also @mwmputationally efficient in
computing the payments. However, it may not be realistixpeet that we can partially
discharge a car’s battery on the departure, so the modelwittediate burning may be
more realistic, given the application.

Formally, let the vectobi<t> = (v, ® denote agents reported

FEERRN ’{’i,k§t>+f«i>
marginal values for the nex units, given its endowmen}fét> at timet. Itis convenient
to think of this as the agenttsidsfor the units available at time Furthermore, leB<*)
denote the multiset of such bids from all agents that aresptén the market at timg
i.e.,,fromalli e Isit.a; <t < a@-. The allocation rule is:

Definition 1 (Greedy Allocation). At each time step, allocate theS(¢) units of elec-
tricity to the highest bids itB{*).

To ensure that the payment is report-independent, the merhaeruns the market
without agent (from a; onwards, since agemtdid not affect the market prior to this

time). Lethz denote the multiset of the bids placed by all agents in theketaat
time ¢ if agenti were removed and the market were rerun from< ¢ onwards. In

case|BfZ\ < S(t), we add a number of zero-valued bids and refer to this erdesge

angUO, to ensure thaﬁBgUd > S(t). Next, we define set operatonsax; B and
ming B to return the highest and, respectively, lowkeglements of multiseB (or, if

|B| < k, to returnB). Then, we define thexternalitythat agent would impose on
other agents if it womin(r;, S(¢)) out of S(¢) units at timet as:

B — mi B
i = min(max By )
Intuitively, the muItiseTEf” here contains the bids from other agents that would lose out
if agent: were to winr; units at timef. Note that the intuition here is the same as in the
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v1=(10.83) .
agent 1 Vo=(7)
agent2 m——=————= va=(1)
agent 3 —3 "/ g
CoS(t)=2  S(t)=1

Fig. 1. Example showing arrivals, departures, and valuation vectors of 2 titeand 3 agents.

regular Vickrey-Clarke-Groves (VCG) mechanism, as thal fpdyment corresponds to
the sum of the externalities. However, to compute the olpagiments online, we need
to combine these externalities across all time steps in geats active period up to

current timet. To do this, we define an ordered vectorpoices p@, as follows:

p') = incr (Ui’:ai Ej(t’)) ,

whereincr is an operator that orders elements from a multiset in irsingeorder, and
we use the union symbol to denote the union of multisets (artdessame element can

appear multiple times). Novyag . IS the price that ageritis charged for theé:-th unit
of electricity. Intuitively, this is the minimum valuatiahat the agent could report for
winning this unit by timet. Note we usey_; ;, to denote this price at timé;. Given
this, the mechanism is as follows.

— Decision PolicyThe decision consists of two stages.
Stage 1At each time point, pre-allocateusing Greedy Allocation (see Definition 1).
Stage 2We consider two variations of when to decide to burn preealied units:
— Immediate Burning. Leave any unit unallocated whenever the price for this unit
is greater than the marginal value, i.e., whenever:

tige < p) for k" <k <k 4+l

— On-Departure Burning. For each departing agent, discharge any éni k;
whered; ,, < p_; .

— Payment PolicyPayment always occurs on reported departure (i.e., whewther/agent
unplugs the vehicle). Given that units are allocated to agefitthe payment col-
lected fromi is: i

ri(0_i|ki) = Zk:l P—ik 1)

Figure 1 illustrates the mechanism through an example witin@ steps and 3 agents,

showing the agents’ arrival, departure and valuationsp8s@ furthermore, that supply

is S(t1) = 2andS(t2) = 1. Now, consider 2 distinct cases:

The maximum charging speed of agent Tis= 1.2 In this case, at most one
marginal value is taken from each agent. At timemarginal valuations, ; = 10 of
agent 1, and, ; = 7 of agent 2 are allocated, while at timg marginal value; ; = 8
of agent 1 is allocated. The prices charged to agent Jase= (0, 1), because without
agent 1 in the market, there would be a free, spare unit atttiraad the available unit
att, would sell to agent 3 fot. No units get burnt in this case, and the actual allocation
is actually equivalent to the optimal offline allocation.

2 Note that the other 2 agents only desire one unit, so their maximum chapgiag & irrelevant
in this example.
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The maximum charging speed of agent ¥jis= 2. Then, at timef;, the greedy
mechanism described above allocates the 2 marginal vafusggeat 1:v; » = 10 and
v1,2 = 8, as they are both higher thap; = 7, and agent 2 drops out of the market.
At time 5, the unit is again allocated to agent 1 (due to the margidakvef 3 being
higher than 1). However, now the marginal payments vectguired from agent 1 is
p—1 = (0,1,7), while the marginal valuations arg = (10,8, 3). Given the prices,
agent 1 prefers 2 units to 3 (becau$e+ 8 — 1 > 10+ 8 +3 — 1 — 7), so the third
is burnt. The overall market efficiency is lower, as the tlavdilable unit is now burnt,
whereas withr; = 1 it was allocated to agent 2. Note, however, that even tholgh t
efficiency is much lower, agent 1 has an incentive to dectartetie maximum charging
speedr; = 2 as, in this case, its payment does not change.

4 Truthfulness Properties

In this section, we discuss the incentive compatibility gedies of our mechanism
under the following assumption:

Limited Misreports: Agents cannot report an earlier arrival, a later departuce,

a higher charging rate, i.eg; > a;, dz- < d;,7; < r; must hold.

In our domain, this is a reasonable assumption since a eebweher cannot phys-
ically plug in her vehicle before it is available or unplugpiter the actual departure.
Note that the assumptiah < r; is natural for EV charging. While most electric bat-
teries can be configured to charge at a slower rate, chargérg &t a faster rate than
the one allowed by the manufacturer might destroy them. Adtitery is an integral
and expensive part of an EV, this by itself acts as a natutatet. An EV agent may
strategise by reporting & lower than its true maximal speed, but we show truthful
reporting ofr; is a dominant strategy. Given this, we can state the follgwin

Theorem 1. Assuming limited misreports, and given the decision ananasy policy
as described above, reportiig = 6, is a dominant strategy fori € I.
Proof Sketchthe proof for this theorem has 3 parts:

1. Showing that, after fixing any tuple d#;, d;, 7;), reporting the valuation vector
v; = v; truthfully is dominant strategy incentive compatible (%I

2. Showing that for any fixedv;, #;) (and under the limited misreports assumption
a; > a;,d; < d;), reporting truthfullyé; = a;,d; = d; is DSIC.

3. Showing that for any fixedv,, a;, (Zi>, using the limited misreports assumption
7 < r;, reporting truthfully the maximum charging rate= r; is DSIC.

The first two parts can be shown by using the same proof teabsias in [4].
For the third part, we can show that the vector of marginahpaytsp (") (computed

given the report;) will always contain asubsebf the elements from the vectprfj>
(computed given the truthful report), because; < r;. Thus, either an agent gets the
same allocation, but pays less by reporting a higher speszh(ise the,; vectors are
increasingly ordered, and the payment is the sum of thekfjrshits allocated), or the
agent is allocated more units but then those additionas amé needed, given the prices
(otherwise, burning would apply).

5 Theoretical Bounds on Allocative Efficiency

An important question given the online allocation with dagproposed above is how
the allocative efficiency compares to that of an optimaléflallocation (i.e., assuming
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full knowledge of the future). To answer this, we consider tases with immediate
burning and on-departure burning separately. For the chsamediate burning, we
can show that no lower bound can be established through ampdsa

Example 1:Let an agentlsy, with marginal valuation vectorsyn = (vi, va, . .., vn),
where marginal valuations are strictly decreasing, ie.>> vo > .... > v,. Assume
supply isS(t) = 1 for all ¢, and at each time step, one other “local” agent is present
for that time step only and desires a single unit. The vadmatif the first local bidder
isvi = (v1 — €), the valuations of the next two akg 3 = (v2 — €), the next three
v345 = (us — €), and so on, where is an arbitrarily small quantity. In other words,
each marginal value, — ¢ appears exactly times.

In this example, agentlsy, is pre-allocated every unit, but for each valuatign
the firstk — 1 pre- aIIocated units are burnt, with only the last unit beatigcated (due

to the expandlngp vector). Thus, in the limit, the fraction of units burnt gdesl,
while the efﬁcrency goesto 0.
For on-departure burning, Theorem 2 provides the followitogst-case guarantee:

Theorem 2. The mechanism with on-departure burning is 2-competitiitle the opti-
mal offline allocation, for a setting with non-increasing ngiaal values.

Proof Sketchin order to establish a competitive bound with the optimdircd allo-
cation, we use a “charging argument” similar to Hajiaghetyal. [5]2 The basic idea
is to “charge” (or match) all the marginal values of each ageat are allocated in the
offline case with one or more values allocated online. Spedifi let v denote the
k-th marginal value of ageritthat is allocated in the offline case. In the following we
say that a unit is satisfied (or allocated) in the online ch#ids actually allocated to
agent; by the greedy mechanism and not burnt on departure.

Consider each marginal valué? from agents that are allocated in thefflinecase,
and to “charge” the values as follows: 1. Marginal valuesated both in the online
and offline case are charged to themselves. 2. Marginal vahae are allocated in the
offline case, but not in the online case will always be dispibloy some higher value

Off . Note that, since these values could be allocated onlineaentiigher, they must
necessanly also be allocated in the offline case (but this meaur at a different time
than in the online case, when they would displace a lowerdaimnit). To complete the
charging argument, we need to show what happens to thesawnit burning.

Lemma 1. A marginal utility valuev®® that is allocated to agemtoothoffline and
onllne cannot be burnt on the departure of agedntthe online market. Moreover, if a
unit 09 is displaced by another urwg’ the displacing unmoff cannot be burnt on
departure of agent

Proof SketchThe proof for this lemma relies on comparing the vectors afeias-
ing marginal values; and the payment vectgr_; as well as the condition for burning
specified by the on- departure burning decision policy. Imsary, one can show by
contradiction that, if a unit?" is allocated both offline and online, there could not be
enough higher valued marginal units in agésitactive intervala;, d;] for this unit (or
a higher valued one) to be burnt.

Given Lemma 1, for all agents each marginal value unit that is allocated offline
can be chargedt mosttwice:

3 Here the term “charging” does not refer to electricity charging, butesgnts the name of a
proof device used in online MD.
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- At most once to itself (if it is also allocated online).

- At most once by another unit allocated offline, with a valegslthan its own, that
it displaced at some timewhen that unit was allocated in the offline case (recall that
in the mechanism with on-departure burning, each upjtcan be the winning bid at
most once, so it can displace at most one other unit). Thusw@gatallocated offline is
charged at most twice, giving the online allocation withdeparture burning and non-
increasing marginal values a competitive bound of 2 withajpigmal offline allocation.

Theorem 2 shows the multi-unit demand case with on-depbiuming is no worse
in terms of worst-case competitive bound than the case witjlesunit demand (c.f.
Hajiaghayi et al. [5]) which may seem surprising, given thening. However, the only
units allocated online which could be burnt online on deparbf an agent are units
of such low value that would not be allocated in the corregpanoffline case.

6 Experimental Evaluation

In this section, we apply our mechanism to a range of setthsare based on real data
collected during the first large-scale trial of EVs in the WBuUr experiments examine
two main questions. First, we study how our online allogatioechanism performs
compared to a range of benchmarks as demand for electmcitgases in a neighbour-
hood with limited supply. Second, we look at how the grada&ioduction of fast-
charging EVs would affect the neighbourhood, both in terrhsazial welfare (i.e.,
overall fuel savings) and the financial savings of individua

6.1 Experimental Setup

We base our experiments on data gathered by the CABLED (@gvénd Birmingham
Low Emissions Demonstration) projettvhich is the first large-scale endeavour in
the UK to record and study the driving and charging behagimirEV owners. The
arrival and departure times of vehicle owners are genetsedd on this data. We also
construct the agents’ valuation vectors using the expecteel distances reported by
the project, as well as the fuel and electric efficiencieslzattery capacities of typical
plug-in hybrid EVs, such as the Chevrolet Volt or Toyota PlngPrius. Such hybrid
electric vehicles have a dual engine, and a per mile drivifigiency, which can be
expressed either in units of electricity or litres of fuesgaming a standard driving
speed). As such, an agent’s marginal valuation of a unitesftatity corresponds to the
savings in fuel costs that the agent expects to make due supong this unit instead
of regular fuel (based on a fuel price £F.3/litre). For each configuration, 500 or 1000
runs were performed, with the expected driving distancesfmh vehicle for the next
day being and its entry point into the market being randochireeach run. For full
details, see Gerding et al. [4], where we use the same setLgcdaset.

For each experiment, we consider a single day and, to c#édctila capacity con-
straints (the supply functiofi(¢)), we divide the day into 24 hourly time steps. For each
time step, we first obtain the overall neighbourhood condiampbased on real dafa.
We then consider two possible scenarios. First, when supfiy, electricity is highly
constrained, and we set the capacity limit to 90% of the peakatl consumption, i.e.,
about 0.9 kW per household. This scenario represents neighbods where the local

4 Seehttp://cabl ed. org. uk/ .
® We use the average data for domestic households in June 2010, e#eddpoSCE it t p:
/I www. sce. cont).
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Number of 3 kWh Units Available for EV Charging
20
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Time
Fig. 2. Units of electricity available for EV charging.

transformer can only just support domestic demand with roespapacity for vehicle
charging during peak hours. Second, fiagh supply with significant spare capacity, we
set the limit to 150% of peak consumption, i.e., approxiryateb kW per household.

In addition to our mechanism witBn-DepartureandImmediateburning, we con-
sider a set of benchmark mechanisms.

(): Randomallocates units randomly to agents that have some positaginmal
valuation for them.

(ii): Fixed Priceallocates units at random to agents that have valuatioasegrnan
a fixed price and collects a payment equal to this fixed pribe.frice is chosen a priori
to optimise the expected social welfare (i.e., total fuglrsgs), given full knowledge of
the agent type distributions.

(iv): Heuristicis a common earliest-deadline-first scheduling heuribtit allocates
units to agents to maximise a weighted sum of the agent'satialufor the unit and its
deadline. The weights are chosen asHixed Price

(v): Optimal allocates units to optimise the overall social welfareuassg full
knowledge of all future arrivals.

Note that apart from th&®andombaseline, these benchmarks assume additional
knowledge either about agent type distributions or evearéutirrivals, and so they
should be seen as upper bounds for our approach rather theh @alistic alternatives.
Furthermore, onlfRandomandFixed Priceare truthful (DSIC) like our mechanism.

6.2 Result 1: General Trends with Increasing Demand

First we consider the effect of rising electricity demandhivi a neighbourhood. To
this end, Figure 3 shows the performance of our mechanismneighbourhood of
25 households with increasing numbers of EVEhese results are for the low supply
setting only, as the variation of EV numbers also changesubpely/demand balance.
We assume that electricity is allocated in units of 3 kWh (tharging rate of a standard
UK power socket), and that maximum rates are chosen at rafidom{1,2,3} units,
corresponding to the rates of currently available fast@iarfor domestic use. Due to
the computational complexity of th@ptimalandimmediatemechanisms, we only plot
those up to 30 and 15 agents, respectively.

% Note that as this exceeds 25, some households will have multiple carhowetss to indicate
the effect of very high demand and assume there is no collusion withingehold.

7 Briefly, Immediateis computationally hard, because the price veptﬁ} has to be computed
at every time step by simulating the market without ageand, recursively, for every agent
within that market, as it is needed to compute when burning takes place.
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Allocative Efficiency (% of Optimal)
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Fig. 3. Effect of increasing demand for electricity in a small 25-householdhieigrhood with
low supply.

First, the graph on the left shows the daily fuel saving (edirig payments) for EV
owners under the different mechanisms (all results redate averaged over at least
500 samples and plotted with 95% confidence intervals). Siisvs that there is little
difference between the various mechanisms when competgitow, as most agents
are allocated; but as demand increases, our mechanisis tstantitperform the other
truthful benchmarks (by almost 50%) and achieves 95% or widres optimal through-
out. Interestingly, our mechanism sustains higher sayiiegagent for neighbourhoods
with far higher EV penetration than the truthful benchmafr example, to guaran-
tee a saving of at leag0.7 (just over half a litre of fuel), thRandombenchmark can
support up to 35 EVs, while our mechanism can cope with 50.gfaph on the right
shows the overall allocative efficiency achieved in the sagténg, normalised to the
optimal (beyond 30 EVs, this is normalised to theuristicas a close approximation).

Our principal finding is that online allocation withn-Departureburning achieves
almost the same performance as @gtimal calculated using full prior information
about departures (the difference is not statisticallyifigant). Moreover, the difference
between our online allocation witinmediateburning and withOn-Departureburning
is also not significant. Surprising, given the differentdietical performance bounds of
these policies, and indicates that burning is not a largbleno in realistic settings.

6.3 Result 2: Proliferation of Fast-Charging EVs

We now consider in more detail how the presence of fast-amgigehicles affects mar-
ket performance. To this end, we examine a larger neighlbadgriof 50 households
with one EV each. We choose this size, because it is realisticleads to more in-
teresting results, due to increasing likelihood of contmetiat each time step. Due to
their computational cost, we no longer run tbptimalandimmediatemechanisms (but
their performance is similar to théeuristicandOn-Departure respectively, as shown
previously). To investigate the impact of fast-charging, assume there are two agent
types — the firstnormal can charge a single unit of 3 kWh per time step, while the
secondfast are equipped with fast chargers that can charge up to thewsits per
time step. Throughout the experiments, we vary the numb&sbfcharging EVs (out
of the total 50).

Results for this setting are shown in Figure 4. First, we tiot¢ the trends for the
two scenarios are different — when supply is low, the intatiun of more fast charging
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Fig. 4. Social welfare, individual utilities and units burnt in scenarios with low $pgpft) and
high supply (right), as more fast-charging EVs are introduced.

vehicles results only in a small overall improvement in abaielfare. However, when it
is high, there is a very marked improvement, with an addiidi3—14 litres of fuel per

day being saved by our mechanism as more fast-chargersesenpicorresponding to
a saving of around 5000 litres of fuel per year over the whelghmbourhood). This is

because, at low demand times, there is some spare capaatityethains unallocated,
unless vehicles have a high charging speed.

With respect to the utility of individual agents (includipgyments to the mecha-
nism), we see that agenits both settingsalways have an incentive to switch to fast-
charging EVs (e.g., by purchasing a domestic fast chariéith low supply, the ex-
pected daily saving when switching to a fast-charging E\pjgraximately£0.05, while
with high supply, this is arounfl0.45. In both cases, this benefit is the result of increas-
ing available supply per time step, as well as increasingitteof the price vector.

Finally, another benefit of introducing fast-charging s is the reduced propor-
tion of units of electricity that are burnt by our mechanismthe low supply setting,
the percentage of burnt units is more than halved to lessifi@of all units allocated
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(on average 1.5 kWh) when all cars are fast-charging. With Bigpply, this is even
more significant as only about a third of units are burnt. Teduction is a result of
reduced competition and a larger price vector.

7 Conclusions and Further Work

This work makes several key contributions to the existiterditure. On the theoretical
side, we extend the multi-unit, online mechanism propose@eérding et al. [4] to
also allow for modeling multi-unit demangker time stepin conjunction with multi-
unit demand over time. For our EV application, this allowsaisnodel more realistic
markets, which include vehicles with heterogeneous chgrgapabilities. Moreover,
we provide the first theoretical worst-case bounds for muitt online mechanisms.
On the practical side, we build a detailed simulation of an &rging market and
show that our online mechanism performs close to the offliptéral in a variety of
realistic settings. We also show that faster-chargingebe#t lead to savings in fuel
consumption and increased allocative efficiency.

In future work, we plan to compare the model-free mechanisasented in this
paper with online mechanisms that use a model of expectadefatrivals. Moreover,
we are interested in studying whether there are truthfulhaeisms for this problem
that do not require monetary payments.
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