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Abstract. As plug-in electric vehicles become more widespread, their charg-
ing needs to be coordinated, in order to ensure that capacity constraints are not
exceeded. This is becoming particularly critical as new fast-charging technolo-
gies are being developed that place additional burden on local transformers. To
address this problem, we propose a novel online mechanism in which agents
representing vehicle owners are incentivised to be truthful not only about their
marginal valuations for electricity units, but also about their arrival, departure
and maximum charging speeds. The work extends the state of the art in several
ways. We develop an online, model-free mechanism that handles multi-unit de-
mand per period, thus accommodating vehicles with heterogeneous and flexible
charging speeds; we provide competitive worst-case bounds for ourmechanism;
finally, we simulate the proposed online mechanism using data from a real-world
trial of electric vehicles in the UK, showing that using fast charging leads tosig-
nificant cost savings.

1 Introduction

Recent advances in battery technology, and pressures to reduce the carbon emissions of
transport, have stimulated renewed interest in electric vehicles (EVs). New hybrid de-
signs, equipped with both an electric motor and an internal combustion engine (that can
be used to drive or charge the battery), address common worries about the limited range
of such vehicles, and EVs are expected to represent close to 10% of all vehicle sales
by 2020, according to a recent Gartner report [7]. However, this potential growth has
generated concerns that if many of these vehicles are plugged in, and charged simulta-
neously, they risk overloading local electricity distribution networks (Shao et al[10]).

To address this problem, a number of researchers have begun to investigate mecha-
nisms to schedule the charging of EVs, such that the local constraints of the distribution
network are not exceeded. For example, Clement, Haesen & Driesen [1] propose a
centralised scheduler which makes optimal use of the network capacity when vehicle
owners truthfully report their expected future vehicle useto the system. However, such
approaches fail to address the fact that owners will likely misreport this information if it
is in their interest to do so (for example, reporting that they require their vehicle earlier
than is actually the case to receive preferential charging). To this end, in this paper we
useonline mechanism design, in order to engineer payment mechanisms that provide
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incentives for these owners to report truthfully their value for receiving electricity, their
willingness to wait and their maximum charging rate.

Online mechanism design is an important topic in distributed AI and economics.
For example, Parkes and Singh [8] propose an online variant of the Vickrey-Clarke-
Groves (VCG) mechanism, which uses an MDP-type framework topredict future ar-
rivals. Unlike their work, the mechanism proposed here is model-free (i.e., assumes no
knowledge about the future). Model-free online settings have been considered by Porter
[9] and Hajiaghayi et al. [5], who study the problem of onlinescheduling of a single, re-
usable resource over a finite time period. We extend this workby considering multi-unit
domains, with preferences described by a non-increasing vector of values.

A different approach for dynamic problems is considered by Juda and Parkes [6].
They consider a mechanism in which agents are allocated options (a right to buy) for the
goods, instead of the goods themselves. The concept of options is promising, but would
need modifications to apply to our setting with perishable electricity units. In addition
to theoretical results, several applications have been suggested for online mechanisms,
including: the allocation of Wi-Fi bandwidth (Friedman & Parkes [3]), scheduling of
jobs on a server (Porter [9]) and the reservation of display space in online advertising
(Constantin et al. [2]).

In recent work (Gerding et al. [4]), we propose the first online mechanism to deal
with the problem of coordinating the charging of a set of plug-in hybrid electric vehi-
cles (PHEVs) under limited supply. This earlier model, however, has several limitations
that we address in this work. First, all vehicles participating in the system are assumed
to have the same charging speed. In fact, given the large numbers of competing man-
ufacturers entering this space, it is likely that domestic EV chargers with a wide range
of maximum charging speeds will become available.1 High performance chargers may
pose additional burdens on the local transmission network and, for a real-world de-
ployment, the allocation model and market design needs to beable to deal with such a
challenge. Moreover, the presence of multiple, asymmetriccharging speeds may con-
siderably affect the dynamics of such a market, as they enable different allocations
of the limited network capacity to become feasible. Finally, no theoretical worst-case
bound for the mechanism was presented, whereas such a guarantee is highly desirable,
especially as online allocation leaves some items unallocated to guarantee truthfulness.
Against this background, this paper makes the following contributions to the state of
the art:

– We develop a novel online mechanism that deals with multi-unit demandsper time
step, by extending the mechanism proposed by Gerding et al. [4] toaccommodate
heterogeneous and flexible charging speeds.

– We provide competitive bounds on allocative efficiency compared to the optimal off-
line allocation (which assumes prior knowledge of future arrivals).

– We simulate the proposed mechanism using data from a real-world trial of electric
vehicles in the UK. We show that the use of fast chargers can lead to significant
savings in fuel consumption, and is beneficial both from the perspective of individual
vehicle owners, and for the allocative efficiency of the whole market.

1 http://www.pod-point.com/pod-point-home provides an example of a domestic
charger that already offers a 2.5 times speed increase over standard chargers.
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2 Multi-Speed EV Charging Model

We consider a setting in which multiple units of electricityare periodically sold at fixed
time steps,t (e.g., once every hour). Aunit of electricity is defined as the amount of
kWh when charging at the lowest rate during that interval. Importantly, we assume that
the charging rate can be flexible, and each vehicle has a maximum charging rate (which
depends on the battery and its charger). We assume units to beindivisible, which means
that the charging rate is a multiple of the lowest rate (this is not a limitation since
units can be defined to be arbitrarily small). Moreover, we denote byS(t) the supply
of electricity available for EV charging, i.e. the number ofunits to be sold at timet.
Note that, since our allocation is essentially greedy (i.e.units are allocated just before
they are they are charged and there is no pre-allocation), this allows us to distribute
electricity coming from uncertain sources such as a shared renewable generator (e.g. a
shared neighbourhood wind turbine). For now, we consider a market for electricity for
EV charging that is separate from that for household consumption, and so S(t) can be
considered the residual supply once household consumptionhas been removed. Beyond
providing a manageable model, a practical reason for this separation of concern is to
protect one neighbour from higher electricity prices for running regular jobs (lightning,
domestic appliances) in the case that his neighbours have purchased EVs.

Let I = {1, 2, . . . , N} denote the set of agents, each of which operates on behalf of
a single EV and its owner. Vehicles come and go and are not always available for charg-
ing. Furthermore, they can have different maximum chargingrates, and their owners
have different valuations for the electricity. Given this,an agenti’s type is described
by the tupleθi = 〈vi, ai, di, ri〉, wherevi is the marginal valuation vector,ai anddi

are the arrival and departure times (the earliest and latesttimes that the EV is available
for charging) andri is themaximumcharging rate (i.e., the maximum number of units
agenti can charge at any timet).

Each elementvi,k of vi represents the agent’s willingness to pay for thekth unit
of electricity. We assume non-increasing marginal valuations, i.e.,vi,k ≥ vi,k+1. This
is a realistic assumption for PHEVs since the first few units of electricity are always
more likely to be used [4]. Furthermore,ai anddi define when the agent is present in
the market, whereai is the agent’sarrival or earliest time the vehicle can be charged,
anddi is the point ofdeparture, after which the vehicle is required by the owner.

Given this, amechanismasks the agents to report their types and decides on an ap-
propriate allocation and payment. We denote the reported type byθ̂i = 〈v̂i, âi, d̂i, r̂i〉.
In practice, the arrival report̂ai is the time at which the owner plugs a vehicle into
the electricity network. At the time of arrival, an agent is also required to report its
marginal valuation vector̂vi. The departure report̂di is not required in advance and it
simply represents the time when the vehicle is unplugged from its unit. A vehicle owner
may decide to change its (reported) departure time, by simply unplugging her vehicle.

Agents (or their owners) can misreport their availability,for example, by unplugging
the vehicle early or plugging in the vehicle some time after arrival to try and get a better
price. Also, they could report a lower maximum charging rateor higher valuations. Our
aim is to develop a mechanism which isdominant strategy incentive compatible(DSIC),
i.e., agents are best off reportingθ̂i = θi, no matter what other agents report. Formally,
a mechanism is given by the allocation policyπ

〈t〉
i (θ̂I |k

〈t〉), i ∈ I, which determines
the number of units allocated to agenti at timet, and payment policyxi(θ̂−i|ki), i ∈ I,
which calculates the total payment on (reported) departureof an agent. We denote by
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θI = {θi|i ∈ I} the types of all agents, andθ−i = {θj |j ∈ I, j 6= i} all agents
excepti. Payments are independent of an agent’s own report.Here,ki is agenti’s en-
dowment(number of items allocated) on departure, andk〈t〉 = 〈k

〈t〉
1 , . . . , k

〈t〉
N 〉 denotes

theendowmentof all agents at timet, wherek
〈t+1〉
i = k

〈t〉
i + π

〈t〉
i (θ̂I |k

〈t〉).

3 The Online Mechanism
Essentially, our mechanism uses a greedy allocation policy, which allocates available
units to the agents with the current highest marginal valuations (given their current
endowments). While this is not always optimal (since it does not consider the fact that
some agents leave earlier than others), it is generally applicable, as it does not require
information about future arrivals or departures (i.e., it is “model free”).

A key problem, identified in our previous work [4], is that greedy allocation in
online domains sometimes overallocates (given the prices it has to pay, the agent would
prefer to get fewer units than it would be allocated). To address this problem, we correct
the allocation by leaving some units unallocated under wellspecified conditions, which
we refer to as ‘burning’ units. We consider two types of burning, discussed below:
immediateburning, where units are simply left unallocated (i.e., none of the agents
receive the unit, even if there is a demand for them), andon-departure, where units are
initially allocated using the greedy approach (i.e., the battery is being charged), but then
on departure of the agent, any overallocated units are discharged from the battery. Both
of these have advantages/disadvantages. The model with on-departure burning is more
efficient (i.e., generally burns fewer units) and is also more computationally efficient in
computing the payments. However, it may not be realistic to expect that we can partially
discharge a car’s battery on the departure, so the model withimmediate burning may be
more realistic, given the application.

Formally, let the vectorb〈t〉
i

= 〈v̂
i,k

〈t〉
i

+1
, . . . , v̂

i,k
〈t〉
i

+r̂i
〉 denote agenti’s reported

marginal values for the next̂ri units, given its endowmentk〈t〉
i at timet. It is convenient

to think of this as the agent’sbidsfor the units available at timet. Furthermore, letB〈t〉

denote the multiset of such bids from all agents that are present in the market at timet,
i.e., from alli ∈ I s.t. âi ≤ t ≤ d̂i. The allocation rule is:

Definition 1 (Greedy Allocation). At each time stept, allocate theS(t) units of elec-
tricity to the highest bids inB〈t〉.

To ensure that the payment is report-independent, the mechanism reruns the market
without agenti (from âi onwards, since agenti did not affect the market prior to this
time). Let B〈t〉

−i denote the multiset of the bids placed by all agents in the market at
time t if agent i were removed and the market were rerun fromâi ≤ t onwards. In
case|B〈t〉

−i | < S(t), we add a number of zero-valued bids and refer to this enlarged set

asB
〈t〉
−i∪0, to ensure that|B〈t〉

−i∪0| ≥ S(t). Next, we define set operatorsmaxk B and
mink B to return the highest and, respectively, lowestk elements of multisetB (or, if
|B| < k, to returnB). Then, we define theexternalitythat agenti would impose on
other agents if it wonmin(ri, S(t)) out ofS(t) units at timet as:

E
〈t〉
i = min

ri

(max
S(t)

B
〈t〉
−i∪0)

Intuitively, the multisetE〈t〉
i here contains the bids from other agents that would lose out

if agenti were to winri units at timet. Note that the intuition here is the same as in the
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agent 1

agent 2

agent 3

S(t1)=2 S(t )=12

v = 10,8,31 á ñ

v = 72 á ñ

v = 13 á ñ

Fig. 1. Example showing arrivals, departures, and valuation vectors of 2 time units and 3 agents.

regular Vickrey-Clarke-Groves (VCG) mechanism, as the total payment corresponds to
the sum of the externalities. However, to compute the overall payments online, we need
to combine these externalities across all time steps in the agent’s active period up to
current timet. To do this, we define an ordered vector ofprices, p

〈t〉
−i , as follows:

p
〈t〉
−i = incr

(

⋃t

t′=ai
E

〈t′〉
i

)

,

whereincr is an operator that orders elements from a multiset in increasing order, and
we use the union symbol to denote the union of multisets (and so the same element can
appear multiple times). Now,p〈t〉−i,k is the price that agenti is charged for thek-th unit
of electricity. Intuitively, this is the minimum valuationthat the agent could report for
winning this unit by timet. Note we usep−i,k to denote this price at timêdi. Given
this, the mechanism is as follows.

– Decision PolicyThe decision consists of two stages.
Stage 1At each time pointt, pre-allocateusing Greedy Allocation (see Definition 1).
Stage 2We consider two variations of when to decide to burn pre-allocated units:
– Immediate Burning. Leave any unit unallocated whenever the price for this unit

is greater than the marginal value, i.e., whenever:

v̂i,k < p
〈t〉
−i,k for k

〈t〉
i < k ≤ k

〈t〉
i + π

〈t〉
i

– On-Departure Burning. For each departing agent, discharge any unitk ≤ ki

wherev̂i,k < p−i,k.
– Payment PolicyPayment always occurs on reported departure (i.e., when theowner/agent

unplugs the vehicle). Given thatki units are allocated to agenti, the payment col-
lected fromi is:

xi(θ̂−i|ki) =
∑ki

k=1
p−i,k (1)

Figure 1 illustrates the mechanism through an example with 2time steps and 3 agents,
showing the agents’ arrival, departure and valuations. Suppose furthermore, that supply
is S(t1) = 2 andS(t2) = 1. Now, consider 2 distinct cases:

The maximum charging speed of agent 1 isr1 = 1.2 In this case, at most one
marginal value is taken from each agent. At timet1, marginal valuationsv1,1 = 10 of
agent 1, andv2,1 = 7 of agent 2 are allocated, while at timet2, marginal valuev1,2 = 8
of agent 1 is allocated. The prices charged to agent 1 are:p−1 = 〈0, 1〉, because without
agent 1 in the market, there would be a free, spare unit at timet1 and the available unit
at t2 would sell to agent 3 for1. No units get burnt in this case, and the actual allocation
is actually equivalent to the optimal offline allocation.

2 Note that the other 2 agents only desire one unit, so their maximum charging speed is irrelevant
in this example.
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The maximum charging speed of agent 1 isr1 = 2. Then, at timet1, the greedy
mechanism described above allocates the 2 marginal values of agent 1:v1,2 = 10 and
v1,2 = 8, as they are both higher thanv2,1 = 7, and agent 2 drops out of the market.
At time t2, the unit is again allocated to agent 1 (due to the marginal value of 3 being
higher than 1). However, now the marginal payments vector required from agent 1 is
p−1 = 〈0, 1, 7〉, while the marginal valuations arev1 = 〈10, 8, 3〉. Given the prices,
agent 1 prefers 2 units to 3 (because10 + 8 − 1 > 10 + 8 + 3 − 1 − 7), so the third
is burnt. The overall market efficiency is lower, as the thirdavailable unit is now burnt,
whereas withr1 = 1 it was allocated to agent 2. Note, however, that even though the
efficiency is much lower, agent 1 has an incentive to declare its true maximum charging
speedr1 = 2 as, in this case, its payment does not change.

4 Truthfulness Properties
In this section, we discuss the incentive compatibility properties of our mechanism
under the following assumption:

Limited Misreports: Agents cannot report an earlier arrival, a later departure,or
a higher charging rate, i.e.,̂ai ≥ ai, d̂i ≤ di, r̂i ≤ ri must hold.

In our domain, this is a reasonable assumption since a vehicle owner cannot phys-
ically plug in her vehicle before it is available or unplug itafter the actual departure.
Note that the assumption̂ri ≤ ri is natural for EV charging. While most electric bat-
teries can be configured to charge at a slower rate, charging them at a faster rate than
the one allowed by the manufacturer might destroy them. As the battery is an integral
and expensive part of an EV, this by itself acts as a natural deterrent. An EV agent may
strategise by reporting âri lower than its true maximal speed, but we show truthful
reporting ofri is a dominant strategy. Given this, we can state the following:

Theorem 1.Assuming limited misreports, and given the decision and payment policy
as described above, reportinĝθi = θi is a dominant strategy for∀i ∈ I.
Proof Sketch:The proof for this theorem has 3 parts:

1. Showing that, after fixing any tuple of〈âi, d̂i, r̂i〉, reporting the valuation vector
v̂i = vi truthfully is dominant strategy incentive compatible (DSIC).

2. Showing that for any fixed〈v̂i, r̂i〉 (and under the limited misreports assumption
âi ≥ ai, d̂i ≤ di), reporting truthfullyâi = ai, d̂i = di is DSIC.

3. Showing that for any fixed〈v̂i, âi, d̂i〉, using the limited misreports assumption
r̂i ≤ ri, reporting truthfully the maximum charging rater̂i = ri is DSIC.

The first two parts can be shown by using the same proof techniques as in [4].
For the third part, we can show that the vector of marginal paymentsp〈r̂i〉 (computed
given the report̂ri) will always contain asubsetof the elements from the vectorp〈ri〉

−i

(computed given the truthful reportri), becausêri ≤ ri. Thus, either an agent gets the
same allocation, but pays less by reporting a higher speed (because thepi vectors are
increasingly ordered, and the payment is the sum of the firstki units allocated), or the
agent is allocated more units but then those additional units are needed, given the prices
(otherwise, burning would apply).

5 Theoretical Bounds on Allocative Efficiency
An important question given the online allocation with burning proposed above is how
the allocative efficiency compares to that of an optimal offline allocation (i.e., assuming
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full knowledge of the future). To answer this, we consider the cases with immediate
burning and on-departure burning separately. For the case of immediate burning, we
can show that no lower bound can be established through an example:

Example 1:Let an agentAsyn with marginal valuation vectorvsyn = 〈v1, v2, . . . , vn〉,
where marginal valuations are strictly decreasing, i.e.,v1 > v2 > .... > vn. Assume
supply isS(t) = 1 for all t, and at each time step, one other “local” agent is present
for that time step only and desires a single unit. The valuation of the first local bidder
is v1 = 〈v1 − ǫ〉, the valuations of the next two arev2,3 = 〈v2 − ǫ〉, the next three
v3,4,5 = 〈v3 − ǫ〉, and so on, whereǫ is an arbitrarily small quantity. In other words,
each marginal valuevk − ǫ appears exactlyk times.

In this example, agentAsyn is pre-allocated every unit, but for each valuationvk,
the firstk − 1 pre-allocated units are burnt, with only the last unit beingallocated (due
to the expandingp〈t〉

−i vector). Thus, in the limit, the fraction of units burnt goesto 1,
while the efficiency goes to 0.

For on-departure burning, Theorem 2 provides the followingworst-case guarantee:

Theorem 2.The mechanism with on-departure burning is 2-competitive with the opti-
mal offline allocation, for a setting with non-increasing marginal values.

Proof Sketch:In order to establish a competitive bound with the optimal offline allo-
cation, we use a “charging argument”’ similar to Hajiaghayiet al. [5].3 The basic idea
is to “charge” (or match) all the marginal values of each agent that are allocated in the
offline case with one or more values allocated online. Specifically, let voff

i,k denote the
k-th marginal value of agenti that is allocated in the offline case. In the following we
say that a unit is satisfied (or allocated) in the online case if it is actually allocated to
agenti by the greedy mechanism and not burnt on departure.

Consider each marginal valuevoff
i,k from agentsi that are allocated in theofflinecase,

and to “charge” the values as follows: 1. Marginal values allocated both in the online
and offline case are charged to themselves. 2. Marginal values that are allocated in the
offline case, but not in the online case will always be displaced by some higher value
voff

j,p. Note that, since these values could be allocated online andare higher, they must
necessarily also be allocated in the offline case (but this may occur at a different time
than in the online case, when they would displace a lower valued unit). To complete the
charging argument, we need to show what happens to these units w.r.t. burning.

Lemma 1.A marginal utility valuevoff
i,k that is allocated to agenti bothoffline and

online cannot be burnt on the departure of agenti in the online market. Moreover, if a
unit voff

i,k is displaced by another unitvoff
j,p, the displacing unitvoff

j,p cannot be burnt on
departure of agentj.

Proof Sketch:The proof for this lemma relies on comparing the vectors of decreas-
ing marginal valuesvi and the payment vectorp−i as well as the condition for burning
specified by the on-departure burning decision policy. In summary, one can show by
contradiction that, if a unitvoff

i,k is allocated both offline and online, there could not be
enough higher valued marginal units in agenti’s active interval[ai, di] for this unit (or
a higher valued one) to be burnt.

Given Lemma 1, for all agentsi, each marginal value unit that is allocated offline
can be chargedat mosttwice:

3 Here the term “charging” does not refer to electricity charging, but represents the name of a
proof device used in online MD.
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- At most once to itself (if it is also allocated online).
- At most once by another unit allocated offline, with a value less than its own, that

it displaced at some timet when that unit was allocated in the offline case (recall that
in the mechanism with on-departure burning, each unitvi,j can be the winning bid at
most once, so it can displace at most one other unit). Thus each unit allocated offline is
charged at most twice, giving the online allocation with on-departure burning and non-
increasing marginal values a competitive bound of 2 with theoptimal offline allocation.

Theorem 2 shows the multi-unit demand case with on-departure burning is no worse
in terms of worst-case competitive bound than the case with single unit demand (c.f.
Hajiaghayi et al. [5]) which may seem surprising, given the burning. However, the only
units allocated online which could be burnt online on departure of an agenti are units
of such low value that would not be allocated in the corresponding offline case.

6 Experimental Evaluation

In this section, we apply our mechanism to a range of settingsthat are based on real data
collected during the first large-scale trial of EVs in the UK.Our experiments examine
two main questions. First, we study how our online allocation mechanism performs
compared to a range of benchmarks as demand for electricity increases in a neighbour-
hood with limited supply. Second, we look at how the gradual introduction of fast-
charging EVs would affect the neighbourhood, both in terms of social welfare (i.e.,
overall fuel savings) and the financial savings of individuals.

6.1 Experimental Setup

We base our experiments on data gathered by the CABLED (Coventry And Birmingham
Low Emissions Demonstration) project,4 which is the first large-scale endeavour in
the UK to record and study the driving and charging behaviours of EV owners. The
arrival and departure times of vehicle owners are generatedbased on this data. We also
construct the agents’ valuation vectors using the expectedtravel distances reported by
the project, as well as the fuel and electric efficiencies andbattery capacities of typical
plug-in hybrid EVs, such as the Chevrolet Volt or Toyota Plug-In Prius. Such hybrid
electric vehicles have a dual engine, and a per mile driving efficiency, which can be
expressed either in units of electricity or litres of fuel (assuming a standard driving
speed). As such, an agent’s marginal valuation of a unit of electricity corresponds to the
savings in fuel costs that the agent expects to make due to consuming this unit instead
of regular fuel (based on a fuel price of£1.3/litre). For each configuration, 500 or 1000
runs were performed, with the expected driving distance foreach vehicle for the next
day being and its entry point into the market being randomized in each run. For full
details, see Gerding et al. [4], where we use the same setup and dataset.

For each experiment, we consider a single day and, to calculate the capacity con-
straints (the supply functionS(t)), we divide the day into 24 hourly time steps. For each
time step, we first obtain the overall neighbourhood consumption based on real data.5

We then consider two possible scenarios. First, when supplyis low, electricity is highly
constrained, and we set the capacity limit to 90% of the peak overall consumption, i.e.,
about 0.9 kW per household. This scenario represents neighbourhoods where the local

4 Seehttp://cabled.org.uk/.
5 We use the average data for domestic households in June 2010, as reported by SCE (http:
//www.sce.com/).
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Fig. 2.Units of electricity available for EV charging.

transformer can only just support domestic demand with no spare capacity for vehicle
charging during peak hours. Second, forhighsupply with significant spare capacity, we
set the limit to 150% of peak consumption, i.e., approximately 1.5 kW per household.

In addition to our mechanism withOn-DepartureandImmediateburning, we con-
sider a set of benchmark mechanisms.

(i): Randomallocates units randomly to agents that have some positive marginal
valuation for them.

(ii): Fixed Priceallocates units at random to agents that have valuations greater than
a fixed price and collects a payment equal to this fixed price. The price is chosen a priori
to optimise the expected social welfare (i.e., total fuel savings), given full knowledge of
the agent type distributions.

(iv): Heuristicis a common earliest-deadline-first scheduling heuristic that allocates
units to agents to maximise a weighted sum of the agent’s valuation for the unit and its
deadline. The weights are chosen as forFixed Price.

(v): Optimal allocates units to optimise the overall social welfare, assuming full
knowledge of all future arrivals.

Note that apart from theRandombaseline, these benchmarks assume additional
knowledge either about agent type distributions or even future arrivals, and so they
should be seen as upper bounds for our approach rather than actual realistic alternatives.
Furthermore, onlyRandomandFixed Priceare truthful (DSIC) like our mechanism.

6.2 Result 1: General Trends with Increasing Demand

First we consider the effect of rising electricity demand within a neighbourhood. To
this end, Figure 3 shows the performance of our mechanism in aneighbourhood of
25 households with increasing numbers of EVs.6 These results are for the low supply
setting only, as the variation of EV numbers also changes thesupply/demand balance.
We assume that electricity is allocated in units of 3 kWh (the charging rate of a standard
UK power socket), and that maximum rates are chosen at randomfrom {1,2,3} units,
corresponding to the rates of currently available fast chargers for domestic use. Due to
the computational complexity of theOptimalandImmediatemechanisms, we only plot
those up to 30 and 15 agents, respectively.7

6 Note that as this exceeds 25, some households will have multiple cars. We show this to indicate
the effect of very high demand and assume there is no collusion within a household.

7 Briefly, Immediateis computationally hard, because the price vectorp
〈t〉
−i

has to be computed
at every time step by simulating the market without agenti, and, recursively, for every agent
within that market, as it is needed to compute when burning takes place.
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Fig. 3. Effect of increasing demand for electricity in a small 25-household neighbourhood with
low supply.

First, the graph on the left shows the daily fuel saving (excluding payments) for EV
owners under the different mechanisms (all results reported are averaged over at least
500 samples and plotted with 95% confidence intervals). Thisshows that there is little
difference between the various mechanisms when competition is low, as most agents
are allocated; but as demand increases, our mechanism starts to outperform the other
truthful benchmarks (by almost 50%) and achieves 95% or moreof the optimal through-
out. Interestingly, our mechanism sustains higher savingsper agent for neighbourhoods
with far higher EV penetration than the truthful benchmarks. For example, to guaran-
tee a saving of at least£0.7 (just over half a litre of fuel), theRandombenchmark can
support up to 35 EVs, while our mechanism can cope with 50. Thegraph on the right
shows the overall allocative efficiency achieved in the samesetting, normalised to the
optimal (beyond 30 EVs, this is normalised to theHeuristicas a close approximation).

Our principal finding is that online allocation withOn-Departureburning achieves
almost the same performance as theOptimal, calculated using full prior information
about departures (the difference is not statistically significant). Moreover, the difference
between our online allocation withImmediateburning and withOn-Departureburning
is also not significant. Surprising, given the different theoretical performance bounds of
these policies, and indicates that burning is not a large problem in realistic settings.

6.3 Result 2: Proliferation of Fast-Charging EVs

We now consider in more detail how the presence of fast-charging vehicles affects mar-
ket performance. To this end, we examine a larger neighbourhood of 50 households
with one EV each. We choose this size, because it is realisticand leads to more in-
teresting results, due to increasing likelihood of competition at each time step. Due to
their computational cost, we no longer run theOptimalandImmediatemechanisms (but
their performance is similar to theHeuristicandOn-Departure, respectively, as shown
previously). To investigate the impact of fast-charging, we assume there are two agent
types — the first,normal, can charge a single unit of 3 kWh per time step, while the
second,fast, are equipped with fast chargers that can charge up to three such units per
time step. Throughout the experiments, we vary the number offast-charging EVs (out
of the total 50).

Results for this setting are shown in Figure 4. First, we notethat the trends for the
two scenarios are different – when supply is low, the introduction of more fast charging
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Fig. 4. Social welfare, individual utilities and units burnt in scenarios with low supply (left) and
high supply (right), as more fast-charging EVs are introduced.

vehicles results only in a small overall improvement in social welfare. However, when it
is high, there is a very marked improvement, with an additional 13–14 litres of fuel per
day being saved by our mechanism as more fast-chargers are present (corresponding to
a saving of around 5000 litres of fuel per year over the whole neighbourhood). This is
because, at low demand times, there is some spare capacity that remains unallocated,
unless vehicles have a high charging speed.

With respect to the utility of individual agents (includingpayments to the mecha-
nism), we see that agentsin both settingsalways have an incentive to switch to fast-
charging EVs (e.g., by purchasing a domestic fast charger).With low supply, the ex-
pected daily saving when switching to a fast-charging EV is approximately£0.05, while
with high supply, this is around£0.45. In both cases, this benefit is the result of increas-
ing available supply per time step, as well as increasing thesize of the price vector.

Finally, another benefit of introducing fast-charging vehicles is the reduced propor-
tion of units of electricity that are burnt by our mechanism.In the low supply setting,
the percentage of burnt units is more than halved to less than1% of all units allocated
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(on average 1.5 kWh) when all cars are fast-charging. With high supply, this is even
more significant as only about a third of units are burnt. Thisreduction is a result of
reduced competition and a larger price vector.

7 Conclusions and Further Work
This work makes several key contributions to the existing literature. On the theoretical
side, we extend the multi-unit, online mechanism proposed in Gerding et al. [4] to
also allow for modeling multi-unit demandper time step, in conjunction with multi-
unit demand over time. For our EV application, this allows usto model more realistic
markets, which include vehicles with heterogeneous charging capabilities. Moreover,
we provide the first theoretical worst-case bounds for multi-unit online mechanisms.
On the practical side, we build a detailed simulation of an EVcharging market and
show that our online mechanism performs close to the offline optimal in a variety of
realistic settings. We also show that faster-charging batteries lead to savings in fuel
consumption and increased allocative efficiency.

In future work, we plan to compare the model-free mechanism presented in this
paper with online mechanisms that use a model of expected future arrivals. Moreover,
we are interested in studying whether there are truthful mechanisms for this problem
that do not require monetary payments.
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