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Online Mechanisms
David C. Parkes

Abstract

Online mechanisms extend the methods of mechanism design to dynamic en-
vironments with multiple agents and private information. Decisions must be
made as information about types is revealed online and without knowledge
of the future in the sense of online algorithms. We first consider single-valued
preference domains and characterize the space of decision policies that can
be truthfully implemented in a dominant strategy equilibrium. Working in
a model-free environment we present truthful auctions for domains with ex-
piring items and limited-supply items. Turning to a more general preference
domain, and assuming the existence of a probabilistic model for agent types,
we define a dynamic Vickrey-Clarke-Groves mechanism that is efficient and
Bayes-Nash incentive compatible. We close with some thoughts about future
research directions in this area.

1.1 Introduction

The decision problem in many multi-agent problem domains is inherently
dynamic rather than static. Consider, for instance, the following environ-
ments:

• Selling seats on an airplane to buyers arriving over time.
• Allocating computational resources (bandwidth, CPU, etc.) to jobs ar-

riving over time.
• Selling adverts on a search engine to a possibly changing group of buyers

and with uncertainty about the future supply of search terms.
• Allocating tasks to a dynamically changing team of agents.

In each of these settings at least one of the following is true: either agents
are dynamically arriving or departing, or there is uncertainty about the set
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of feasible decisions in the future. These dynamics present a new challenges
when seeking to sustain good system-wide decisions in multi-agent systems
with self-interested agents.

This chapter introduces the problem of online mechanism design (online
MD), which generalizes the theory of computational mechanism design to
apply to dynamic problems. Decisions must be made dynamically and with-
out knowledge of future agent types or future decision possibilities, in the
sense of online algorithms.

1.1.1 Example: Dynamic Auction with Expiring Items

Consider a dynamic auction model with discrete time periods T =
{1, 2, . . . , } and a single indivisible item to allocate in each time period. The
type of an agent i ∈ {1, . . . , N} is denoted θi = (ai, di, wi) ∈ T × T × R>0.
Agent i has arrival time ai, departure time di, value wi for an allocation of
a single unit of the item in some period t ∈ [ai, di], and wants at most one
unit. This information is all private to an agent. We refer to this as the
canonical expiring items environment.

The arrival time has a special meaning: it is the first period in which in-
formation about the type of this agent can be made available to the auction.
(We say “can be made available” because a self-interested agent may choose
to delay its report.) Assume quasi-linear utility, with utility wi − p when
the item is allocated in some t ∈ [ai, di] and payment p is collected from the
agent. Consider the following naive generalization of the Vickrey auction to
this dynamic environment:

Auction 1. A bid from an agent is a claim about its type, θ̂i = (âi, d̂i, ŵi),
necessarily made in period t = âi. Then: in each period t, allocate the item
to the highest unassigned bid, breaking ties at random. Collect payment
equal to the second-highest unallocated bid in this round.

Example 1.1 Jane sells ice cream and can make one cone each hour.
The ice cream melts if it is not sold. There are three buyers, with types
(1, 2, 100), (1, 2, 80) and (2, 2, 60), indicating (arrival, departure, value).
Buyers 1 and 2 are willing to buy an ice cream in either period 1 or 2
while buyer 3 will only buy an ice cream in period 2. In this example, if
every buyer is truthful then buyer 1 wins in period 1 for 80, stops bidding,
and buyer 2 wins in period 2 for 60. But buyer 1 can do better. For example,
buyer 1 can report type (1, 2, 61), so that buyer 2 wins in period 1 for 61,
stops bidding, and then buyer 1 wins for 60 in period 2. Buyer 1 can also
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report type (2, 2, 80) and delay its bid until period 2, so that buyer 2 wins
for 0 in period 1, stops bidding, and then buyer 1 wins for 60 in period 2.

In a static situation the Vickrey auction is (dominant-strategy) truthful
because an agent does not affect the price it faces. But, in a sequential
setting an agent can choose the auction in which it participates and thus
choose the other agents against which it competes and, in turn, the price
faced. In fact, if every agent was impatient (with di = ai) then prices in
future periods are irrelevant and the dominant strategy is to bid truthfully
immediately upon arrival. Note also that buyer 1’s manipulation relied
on a suitable bid from buyer 3 in period 2 and will not always be useful.
Nevertheless, this serves to demonstrate the failure of dominant strategy
truthfulness.

1.1.2 The Challenge of Online MD

The dynamics of agent arrivals and departures, coupled perhaps with uncer-
tainty about the set of feasible decisions in the future and in general about
the state of the environment, makes the problem of online MD fundamentally
different from that of standard (offline) MD. Important new considerations
in online MD are:

(i) Decisions must be made without information about agent types not
yet arrived, coupled perhaps with uncertainty about which decisions
will be feasible in future periods.

(ii) Agents can misrepresent their arrival and departure time in addition
to their valuation for sequences of decisions. Because of this agent
strategies also have a temporal aspect.

(iii) Only limited misreports of type may be available, for instance it may
be impossible for an agent to report an earlier arrival than its true
arrival.

More generally, online MD can also model settings in which an agent’s
type is revealed to itself over time and with its ability to learn dependent
on decisions made by the online mechanism; e.g., a bidder needs to receive
a resource to understand its value for the resource.

There are two main frameworks in which to study the performance of
online mechanisms. The first is model-free and adopts a worst-case analysis
and is useful when a designer does not have good probabilistic information
about future agent types or about feasible decisions in future periods. The
second is model-based and adopts an average-case analysis. As a motivating
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example, consider a search engine selling search terms to advertisers. This
is a data rich environment and it is reasonable to believe that the seller
can build an accurate model to predict the distribution on types of buyers,
including the process governing arrival and departures.

1.1.3 Outline

In Section 1.2 we present a general model for online MD and introduce
the concept of limited misreports. Given this, we define direct-revelation,
online mechanisms together with appropriate notions of incentive compati-
bility. Section 1.3 provides a characterization of truthful online mechanisms
in the restricted domain of single-valued preferences and gives detailed ex-
amples of truthful, dynamic auctions. These auctions are analyzed within
the framework of worst-case, competitive analysis. Section 1.4 considers
general preference domains, and defines a dynamic Vickrey-Clarke-Groves
mechanism, that is efficient and applicable when a model is available and
common knowledge to agents. Section 1.5 closes with open problems and
future directions.

1.2 Dynamic Environments and Online MD

The basic setting assumes risk neutral agents with quasi-linear utility func-
tions, such that an agent acts to maximize the expected difference between
its value from a sequence of decisions and its total payment. Consider dis-
crete time periods T = {1, 2, . . . , }, indexed by t and possibly infinite. A
mechanism makes (and enforces) a sequence of decisions k = (k1, k2, . . . , ) ∈
O, with decision kt made in period t. Let k[t1,t2] = (kt1 , . . . , kt2). The deci-
sions made by a mechanism can depend on messages, such as bids, received
from agents as well as uncertain events that occur in the environment. For
example, in sponsored search the realized supply of search terms determines
the feasible allocation of user attention to advertisers.

An agent’s type, θi = (ai, di, wi) ∈ Θi, where Θi is the set of possible
types for agent i, defines a valuation function vi(θi, k) ∈ R on a sequence
of decisions k and is private to an agent. Time periods ai, di ∈ T denote
an agent’s arrival and departure period and vi(θi, k) = vi(θi, k

[ai,di]), i.e.
an agent’s value is invariant to decisions outside of its arrival-departure
window. In addition to restricting the scope of decisions that influence an
agent’s value, the arrival period models the first period at which the agent
is able to report its type to the mechanism.

The valuation component wi ∈ Wi of an agent’s type, where Wi denotes
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the set of possible valuations, parameterizes the agent’s valuation function
and can be more expressive than a single real number. For example, in
an online combinatorial auction this needs to convey enough information to
define substitutes (“I want item A or item B but not both”) or complements
(“I only want item A if I also get item B”) preferences. Nor does the
valuation need to be constant across all periods, for instance an agent could
discount its future value in future periods t > ai by discount factor γt−ai for
γ ∈ (0, 1).

1.2.1 Direct-Revelation Mechanisms

The family of direct-revelation, online mechanisms restrict the message that
an agent can send to the mechanism to a single, direct claim about its type.
For the most part we consider “closed” mechanisms so that an agent receives
no feedback before reporting its type, and cannot condition its strategy on
the report of another agent.

The mechanism state, ht ∈ Ht, where Ht is the set of possible states in
period t, captures all information relevant to the decision by the mechanism
in that period. Let ω ∈ Ω define the set of possible stochastic events that
can occur in the environment, such as the realization of uncertain supply.
This does not include the types of agents or any randomization within the
mechanism itself. Write Ω = Πt∈T Ωt and let ωt ∈ Ωt denote the information
about ω that is revealed in period t. Similarly, let θt denote the set of
agent types reported in period t. Given this, it is convenient to define
ht = (θ1, . . . , θt;ω1, . . . , ωt; k1, . . . , kt−1). In practice the state of will be
represented by a small, sufficient statistic of this information. The state
space H =

⋃
t Ht may be finite, countably infinite, or continuous. This

depends, in part, on whether agent types are discrete or continuous. Let
K(ht) denote the set of all feasible decisions in the current time period,
assumed finite for all ht. Let I(ht) denote the set of active agents in state
ht, i.e. those agents for which t ∈ [ai, di].

Definition 1.2 (direct-revelation online mechanism) A direct-
revelation online mechanism, M = (π, x), restricts each agent to making
a single claim about its type, and defines decision policy π = {πt}t∈T and
payment policy, x = {xt}t∈T , where decision πt(ht) ∈ K(ht) is made in
state ht and payment xt

i(h
t) ∈ R is collected from each agent i ∈ I(ht).

Decision policy π may be stochastic. The payment policy may collect
payments from an agent across multiple periods. For notational convenience,



Online Mechanisms 9

we let π(θ, ω) = (k1, k2, . . .) denote the sequence of decisions, and pi(θ, ω) ∈
R denote the total payment collected from agent i, given type profile θ and
a realization of uncertain events ω ∈ Ω.

Example 1.3 Consider the canonical expiring items environment. The
state ht can be defined as a list of reported agent types that are present
in period t, indicating whether each agent is already allocated or not. De-
cision k ∈ K(ht) decides whether to allocate the item in the current period
to some agent that is present and unallocated.

Limited misreports constrain the strategy space available to agents in
direct-revelation, online mechanisms:

Definition 1.4 (limited misreports) Let C(θi) ⊆ Θi for θi ∈ Θi denote
the set of available misreports to an agent with true type θi.

In the standard model adopted in offline MD, it is typical to assume
C(θi) = Θi. We shall assume no early-arrival misreports, with C(θi) =
{θ̂i = (âi, d̂i, ŵi) : ai ≤ âi ≤ d̂i, ŵi ∈ Wi}; i.e. agent i cannot report an
earlier arrival because it does not know its type (or about the mechanism)
until ai. Sometimes, we shall also assume no late-departure misreports,
which together with no early arrivals provides C(θi) = {θ̂i = (âi, d̂i, ŵi) :
ai ≤ âi ≤ d̂i ≤ di, ŵi ∈ Wi}. For example, we could argue that it is not
credible to claim to have value for a ticket for a last minute Broadway show
after 5pm because the auctioneer knows that it takes at least 2 hours to get
to the theater and the show starts at 7pm.

We restrict attention to mechanisms that are either dominant-strategy or
Bayes-Nash incentive compatible. Let θ−i = (θ1, . . . , θi−1, θi+1, . . .), Θ−i =
Πj 6=iΘj and C(θ−i) = Πj 6=iC(θj) and consider misreports θi ∈ C(θi).

Definition 1.5 (DSIC) Online mechanism M = (π, x) is dominant-
strategy incentive-compatible (DSIC) given limited misreports C if

vi(θi, π(θi, θ
′
−i, ω))− pi(θi, θ

′
−i, ω) ≥ vi(θi, π(θ̂i, θ

′
−i, ω))− pi(θ̂i, θ

′
−i, ω),

for all θ̂i ∈ C(θi), all θi, all θ′−i ∈ C(θ−i), all θ−i ∈ Θ−i, all ω ∈ Ω.

It will be convenient to also adopt the terminology truthful in place of
DSIC. The concept of DSIC is very strong: it says than an agent maximizes
its utility by reporting its true type whatever the reports of other agents
and for all stochastic events ω. When the decision policy is stochastic then
DSIC requires that the expected utility is maximized from a truthful report,
whatever the reports of other agents and for all stochastic events ω.
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A randomized mechanism (i.e., one with a stochastic policy) is said to
satisfy strong-truthfulness when truthful reporting is a dominant strategy
for all random coin flips by the mechanism, and for all external stochastic
events ω.

For Bayes-Nash incentive compatibility (BNIC), assume in addition that
all agents know the correct probabilistic model of the distribution on types
and uncertain events, and that this is common knowledge.

Definition 1.6 (BNIC) Online mechanism M = (π, x) is Bayes-Nash
incentive-compatible (BNIC) given limited misreports C if

E
{
vi(θi, π(θi, θ−i, ω))− pi(θi, θ−i, ω)

}
≥ E

{
vi(θi, π(θ̂i, θ−i, ω))− pi(θ̂i, θ−i, ω)

}
,

for all θ̂i ∈ C(θi), all θi, where the expectation is taken with respect to the
distribution on types θ−i, and stochastic events ω, and any randomization
within the policy.

BNIC is a weaker solution concept than DSIC because it requires only
that truth revelation is a best-response when other agents are also truthful,
and in expectation given the distribution on agent types and on stochastic
events in the environment.

1.2.2 Remark: The Revelation Principle

Commonly held intuition from offline MD might suggest that focusing on the
class of incentive compatible, direct-revelation online mechanisms is without
loss of generality. However, if agents are unable to send messages to a
mechanism in periods t /∈ [ai, di] then this is not true:

Example 1.7 (failure of the revelation principle) Consider the
model with no early-arrival misreports but allow for late-departure misre-
ports. Consider two time periods T = {1, 2}, a single unit of an indivisible
item to allocate in either period and an environment with a single agent.
Denote the type of the agent (ai, di, wi) with wi > 0 to denote its value for
the item if allocated in period t ∈ [ai, di]. Suppose possible types are (1, 1, 1)
or (1, 2, 1). Consider an indirect mechanism that allows an agent to send one
of messages {1, 2} in period 1 and {1} in period 2. Let φ denote a null mes-
sage. Consider decision policy: π1(1) = 0, π1(2) = 1, π2(1, z) = π2(2, z) = 0,
for z ∈ {1, φ}, writing the state as the sequence of messages received and
decision kt ∈ {0, 1} to indicate whether or not the agent is allocated in
period t ∈ {1, 2}. Consider payment policy: x1(1) = x2(1, φ) = x2(1, 1) = 0,
x1(2) = 3, x2(2, 1) = −2.01, x2(2, φ) = 0. Type (1, 1, 1) will report message
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1 in period 1 because reporting message 2 is not useful and it cannot report
messages (2,1). Type (1, 2, 1) will report messages (2,1) and has no useful
deviation. This policy cannot be implemented as a DSIC direct-revelation
mechanism because type (1, 2, 1) is allocated in period 1 for payment 0.99,
and so type (1, 1, 1) (which is unallocated if truthful) will want to report
type (1, 2, 1).

The revelation principle fails in this example because the indirect mech-
anism prevents the agent from claiming a later departure than its true de-
parture. In fact, the revelation principle continues to hold when misreports
are limited to no-late departures in addition to no-early arrivals. A form of
the revelation principle can also be recovered by introducing simple “heart-
beat” messages into a direct-revelation mechanism, whereby an agent still
makes a single report about its type but must also send a non-informative
heartbeat message in every period t ∈ [âi, d̂i].† We leave the derivation of
this “revelation principle plus heartbeat” result as an exercise.

With this in hand, and in keeping with the current literature on online
mechanisms, we will focus on incentive-compatible, direct revelation online
mechanisms in this chapter.

1.3 Single-Valued Online Domains

In this section we develop a methodology for the design of DSIC online
mechanisms in the restricted domain of single-valued preferences. We iden-
tify the central role of monotonic decision policies in the design of truthful
online mechanisms. The methodology is illustrated in the design of a dy-
namic auction for two environments: (a) allocating a sequence of expiring
items, (b) allocating a single, indivisible item in some period while adapting
to information about agent types. Both auctions are model-free and we use
competitive analysis to study their efficiency and revenue properties. We
close the section with remarks that seek to situate the study of truthful
online mechanisms in the context of the wider mechanism design literature.

1.3.1 Truthfulness for Single-Valued Preference Domains

An agent with single-valued preferences has the same value, ri, whenever
any of a set of interesting decisions is made in some period t ∈ [ai, di],
and has value for at most one such decision. For example, in the single-

† Thanks to Bobby Kleinberg for suggesting this interpretation.
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item allocation problems considered earlier an agent’s interesting set was all
decisions that allocate an item to the agent.

Let Li = {L1, . . . , Lm} describe a language for defining interesting sets
for agent i, where L ⊆ K =

⋃
h K(h), for any L ∈ Li, and defines a subset

of single-period decisions. Define partial order �L on Li. The valuation
component wi ∈ Wi of an agent’s type, θi = (ai, di, wi), defines wi = (ri, Li)
with Wi = R × Li. This picks out the interesting set and defines the value
on decisions in that set:

Definition 1.8 (single-valued) A single-valued online domain is one
where each agent i has a type θi = (ai, di, (ri, Li)), with reward ri ∈ R
and interesting set Li ∈ Li, where type θi defines valuation:

vi(θi, k) =
{

ri , if kt ∈ {L : L �L Li, L ∈ Li} for some t ∈ [ai, di]
0 , otherwise,

(1.1)

To keep things simple we assume that the set of interesting decisions is
known by the mechanism and thus the private information is restricted to
arrival, departure and its value for a decision. We comment on how to relax
this assumption at the end of the section. Given the known interesting-set
assumption, define a partial-order �θ on types:

θ1 �θ θ2 ≡ (a1 ≥ a2) ∧ (d1 ≤ d2) ∧ (r1 ≤ r2) ∧ (L1 = L2) (1.2)

This will be sufficient because we will not need to reason about misreports
of interesting set Li. Consider the following example:

Example 1.9 (single-valued combinatorial auction) Multiple units of
indivisible, heterogeneous items G, are in uncertain supply and cannot
be stored from one period to the next. Consider single-valued prefer-
ences, where interesting set Li ∈ Li has an associated bundle S(Li) ⊆ G,
and characterizes all single-period decisions that allocate agent i bundle
S(Li), irrespective of the allocation to other agents. Define partial or-
der L1 �L L2 ≡ S(L1) ⊇ S(L2) for all L1, L2 ∈ Li. Agent i with type
θi = (ai, di, (ri, Li)) has value ri when decision kt allocates a bundle con-
taining at least S(Li) items to the agent in some period t ∈ [ai, di].

The subsequent analysis is developed for deterministic policies. We adopt
shorthand πi(θi, θ−i, ω) ∈ {0, 1} to indicate whether policy π makes an in-
teresting decision for agent i with type θi in some period t ∈ [ai, di], fixing
type profile θ−i and stochastic (external) events ω ∈ Ω. Since we are often
considering auction domains, we may also refer to an interesting decision for
an agent as an allocation to the agent. The analysis immediately applies to
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the case of stochastic policies when coupled with strong-truthfulness.‡ We
elaborate more on stochastic policies at the end of the section.

Definition 1.10 (critical value) The critical-value for agent i given type
θi = (ai, di, (ri, Li)) and deterministic policy π in a single-valued domain, is
defined as:

vc
(ai,di,Li)

(θ−i, ω) =
{

min r′i s.t. πi(θ′i, θ−i, ω) = 1 for θ′i = (ai, di, (r′i, Li))
∞, if no such r′i exists,

(1.3)

where types θ−i and stochastic events ω ∈ Ω are fixed.

Definition 1.11 (monotonic) Deterministic policy π is monotonic if
(πi(θi, θ−i, ω) = 1) ∧ (ri > vc

(ai,di,Li)
(θ−i, ω)) ⇒ πi(θ′i, θ−i, ω) = 1 for all

θ′i �θ θi, for all θ−i, all ω ∈ Ω.

The “strict profit” condition, ri > vc
(ai,di,Li)

(θ−i, ω), is added to prevent
weak indifference when θ′i �θ θi and r′i = ri, and is redundant when r′i > ri.
Say that an arrival-departure interval [a′i, d

′
i] is tighter than [ai, di] if a′i ≥ ai

and d′i ≤ di, and weaker otherwise.

Lemma 1.12 The critical value to agent i is independent of reward ri

and (weakly) monotonically increasing in tighter arrival-departure intervals,
given a deterministic, monotonic policy.

Proof Fix some θ−i, ω ∈ Ω. Assume for contradiction that θ′i �θ θi, so that
a′i ≥ ai and d′i ≤ di, but vc

(a′i,d
′
i,Li)

(θ−i, ω) < vc
(ai,di,Li)

(θ−i, ω). Modify the re-
ward of type θ′i = (a′i, d

′
i, (r

′
i, Li)) such that r′i := vc

(a′i,d
′
i,Li)

(θ−i, ω) and mod-
ify the reward of type θi = (ai, di, (ri, Li)) such that ri := vc

(a′i,d
′
i,Li)

(θ−i, ω).
Now, we still have θ′i �θ θi, but πi(θ′i, θ−i, ω) = 1 while πi(θi, θ−i, ω) = 0 and
a contradiction with monotonicity.

Theorem 1.13 A monotonic, deterministic decision policy π can be truth-
fully implemented in a domain with (known interesting set) single valued
preferences, and no early-arrival or late-departure misreports.

Proof Define payment policy xt
i(h

t) = 0 for all t 6= d̂i, and with

xt
i(h

t) =

{
vc
(âi,d̂i,Li)

(θ̂−i, ω) , if πi(θ̂i, θ̂−i, ω) = 1

0 , otherwise
(1.4)

‡ It is convenient for this purpose to consider the random coin flips of a policy as included in
stochastic events ω so that no notational changes are required.
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when t = d̂i. This critical-value payment is collected upon departure. Fix
θ−i, θi = (ai, di, (ri, Li)), and ω ∈ Ω, assume agent i is truthful and proceed
by case analysis. (a) If agent i is not allocated, vc

(ai,di,Li)
(θ−i, ω) > ri and

to be allocated the agent must report some θ′i �θ θi which it can only do
with a report θ′i = (ai, di, (r′i, Li)), and r′i > ri, by limited misreports. But
since the critical value is greater than its true value ri it will have negative
utility if it wins for r′i. (b) If agent i is allocated, its utility is non-negative
since vc

(ai,di,Li)
(θ−i, ω) ≤ ri and it does not want to report a type for which it

would not be allocated. Consider any report θ′i ∈ C(θi) for which the agent
continues to be allocated. But, the critical value for θ′i is (weakly) greater
than for θi since it is independent of the reported reward r′i and weakly
increasing for an alternate arrival-departure interval since it must be tighter
by limited misreports, and then by appeal to Lemma 1.12.

We turn now to identifying necessary conditions for truthfulness. An
online mechanism satisfies individual rationality (IR) when every agent has
non-negative utility in equilibrium. This is required when agents cannot be
forced to participate in the mechanism.

Lemma 1.14 (critical payment) In a single-valued preference domain,
any truthful online mechanism that is defined for a deterministic decision
policy and satisfies IR must collect a payment equal to the critical value from
each allocated agent.

Proof Fix θ−i and ω ∈ Ω. Payment pi(θi, θ−i, ω), made by agent i con-
tingent on successful allocation, cannot depend on reward ri because if
pi(θi, θ−i, ω) < pi(θ′i, θ−i, ω) for θi = (ai, di, (ri, Li)) and θ′i = (ai, di, (r′i, Li))
and r′i 6= ri and min(r′i, ri) ≥ vc

(ai,di,Li)
(θ−i, ω) then an agent with type

θ′i should report type θi. Fix type θi such that πi(θi, θ−i, ω) = 1. Now, if
pi(θi, θ−i, ω) < vc

(ai,di,Li)
(θ−i, ω) then an agent with type θ′i = (ai, di, (r′i, Li))

and pi(θi, θ−i, ω) < r′i < vc
(ai,di,Li)

(θ−i, ω) should report θi. This is possi-
ble even with negative payment pi(θi, θ−i, ω) as long as rewards can also
be negative. On the other hand, if vc

(ai,di,Li)
(θ−i, ω) < pi(θi, θ−i, ω) then

the mechanism fails IR for an agent with type θ′i = (ai, di, (r′i, Li)) and
vc
(ai,di,Li)

(θ−i, ω) < r′i < pi(θi, θ−i, ω).

Say that a domain satisfies reasonable misreporting when an agent with
type θi has available at least misreports θ′i ∈ C(θi) with a′i ≥ ai, d′i ≤ di and
any reward r′i.
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Theorem 1.15 In a (known interesting set) single-valued preference do-
main with reasonable misreporting, then any deterministic policy π that can
be truthfully implemented in an IR mechanism that does not pay unallocated
agents must be monotonic.

Proof Fix θ−i, ω ∈ Ω. Assume, for contradiction, that θi ≺θ θ′i with
θi = (ai, di, (ri, Li)) and θ′i = (a′i, d

′
i, (r

′
i, Li)), but πi(θi, θ−i, ω) = 1,

value ri > vc
(ai,di,Li)

(θ−i, ω) and πi(θ′i, θ−i, ω) = 0. Consider type θ′′i =
(ai, di, (vc

(ai,di,Li)
(θ−i, ω), Li)). We must have pi(θi, θ−i, ω) = pi(θ′′i , θ−i, ω) ≤

vc
(ai,di,Li)

(θ−i, ω) where the equality is by truthfulness and the inequality is
by IR. Thus, agent i with type θi must have strictly positive utility in the
mechanism. On the other hand, the agent with type θ′i �θ θi is not allo-
cated, makes non-negative payment and has (weakly) negative utility. But,
an agent with type θ′i can report θi, which presents a contradiction with
truthfulness.

The restriction that losing agents do not receive a payment plays an
important role. To see this, consider a domain with no late-departure
misreports, fix θ−i, and consider a single-item valuation with possible
types Θi = {(1, 1, $10), (1, 2, $10)}. Policy πi((1, 1, $10), θ−i) = 1 and
πi((1, 2, $10), θ−i) = 0 is non-monotonic, but can be truthfully implemented
with payments pi((1, 1, $10), θ−i) = 8 and pi((1, 2, $10), θ−i) = −100.

Monotonic-Late. The sufficiency result can be generalized to a domain
with arbitrary misreports of departure. For a particular θ−i, ω ∈ Ω and
type θi = (ai, di, (ri, Li)), define the critical departure, dc

(ai,di,Li)
(θ−i, ω), as

the earliest departure d′i ≤ di for which vc
(ai,d′i,Li)

(θ−i, ω) = vc
(ai,di,Li)

(θ−i, ω).
This is the earliest departure time that agent i could have reported without
increasing the critical value. Given this we say that policy π is monotonic-
late if it is monotonic and if no interesting decision is made for agent i before
its critical departure period. A monotonic-late, deterministic decision policy
π can be truthfully implemented in a domain with no early-arrival misre-
ports but arbitrary misreports of departure. Moreover, this requirement of
monotonic-late is necessary for truthfulness in this environment.

1.3.2 Example: A Dynamic Auction with Expiring Items

For our first detailed example we revisit the problem of selling an expiring
item, such as ice cream, time on a shared computer, or network resources, to
dynamically arriving buyers. This is the canonical expiring items environ-
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ment. Assume for notational convenience that the time horizon is finite. We
design a strongly-truthful online auction that includes random tie-breaking
and satisfies monotonicity however ties are broken.

We assume no early-arrival and no late-departure misreports. The no late-
departure assumption can be readily motivated in physical environments.
For ice cream, think about a tour group that will be leaving at a designated
time so that it is not credible to claim a willingness to wait for an ice cream
beyond that period. For network resources, such as an auction for access
to WiFi bandwidth in a coffee house, think about requiring a user to be
present for the entire period of time reported to the mechanism. A technical
argument for why we need this assumption is also provided below.

The assumption of no late-departures can be dispensed with, while still
retaining truthfulness, in environments in which it is possible to schedule a
resource in some period before an agent’s reported departure, but withhold
access to the benefit from the use of the resource until the reported depar-
ture; e.g., in grid computing, jobs can run on the machine but the result
then held until reported departure.

Competitive Analysis. We perform a worst-case analysis and consider
the performance of the mechanism given a sequence of types that are gen-
erated by an “adversary” whose task it is to make the performance as bad
as possible. Of particular relevance is the method of competitive analysis,
typically adopted in the study of online algorithms. The following ques-
tion is asked: how effectively does the performance of the online mechanism
“compete” with that of an offline mechanism that is given complete infor-
mation about the future arrival of agent types? Again, this is asked in the
worst-case, for a suitably adversarially-defined input.

Competitive analysis is most easily justified when the designer does not
have a good model of the environment. As a motivating example, consider
selling a completely new product or service, for which it is not possible to
conduct market research to get a good model of demand. Competitive anal-
ysis can also lead to mechanisms that enjoy good average-case performance
in practice, provide insight into how to design robust mechanisms, and pro-
duce useful “lower-bound” analysis. A lower-bound for a problem makes a
statement about the best possible performance that can be achieved by any
mechanism. Online mechanisms are of special interest when their realized
performance matches the lower bound.

In performing competitive analysis, one needs to define: an optimality
criterion; a model of the power of the adversary is selecting worst-case inputs;
and an offline benchmark, defined with perfect information about the future.
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We are interested in the efficiency of a dynamic auction for expiring items
and adopt as our optimality criterion the value of the best possible offline
allocation. This can be computed as:

V ∗(θ) = max
x,y

N∑
i=1

yiwi (1.5)

s.t.
di∑

t=ai

xit ≥ yi, ∀i ∈ {1, . . . , N} (1.6)∑
i:t∈[ai,di]

xit ≤ 1, ∀t ∈ T, (1.7)

where yi ∈ {0, 1} indicates whether bid i is allocated and xit ∈ {0, 1} in-
dicates the period in which it is allocated.§ For our adversarial model, we
consider a powerful adversary that is able to pick arbitrary agent types, in-
cluding both the value, arrival and departure of agents. Let z ∈ Z denote
the set of inputs available to the adversary and θz the corresponding type
profile. An online mechanism is c-competitive for efficiency if:

min
z∈Z

E
{

Val(π(θz))
V ∗(θz)

}
≥ 1

c
, (1.8)

for some constant c ≥ 1. Such a mechanism is guaranteed to achieve within
fraction 1

c of the value of the optimal offline algorithm, whatever the input
sequence. The expectation allows for stochastic policies and can also allow
for the use of randomization in defining the power of the adversary (we
will see this in the next section). Competitive ratio c is referred to as an
upper-bound on the online performance of the mechanism.

Now consider the following modification to Auction 1:

Auction 2. A bid from an agent is a claim about its type, θ̂i = (âi, d̂i, ŵi),
necessarily made in period t = âi.

(i) In each period, t, allocate the item to the highest unassigned bid,
breaking ties at random.

(ii) Every allocated agent pays its critical-value payment, collected upon
its reported departure.

The auction is the same as Auction 1 except for the payment rule, which
now charges the critical value rather than the second price in the period in
which an agent wins. We refer to this as a “greedy auction” because the

§ Note that the integer program allows the possibility of allocating more than one item to a
winning bid but that this does not change the value of the objective and is not useful.
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decision policy myopically maximizes value in each period. When every bid-
der is impatient then the auction reduces to a sequence of Vickrey auctions
(i.e. Auction 1.)

Example 1.16 Consider the earlier example, with three agents and types
θ1 = (1, 2, 100), θ2 = (1, 2, 80) and θ3 = (2, 2, 60) and one item to sell in each
period. Suppose all three agents bid truthfully. The greedy allocation rule
sells to agent 1 in period 1 and then agent 2 in period 2. Agent 1’s payment
is 60 because this is the critical value for arrival-departure (1, 2) given the
bids of other agents. (A bid of just above 60 would allow the agent to win,
albeit in period 2 instead of period 1.) Agent 2’s payment is also 60.

Theorem 1.17 Auction 2 is strongly-truthful and 2-competitive for effi-
ciency in the expiring-items environment with no early arrival and no late
departure misreports.

Proof Suppose that random tie-breaking is invariant to reported arrival and
departure. The auction is strongly truthful because the allocation function
is monotone: if agent i wins in some period t ∈ [ai, di] then it continues
to win either earlier or in the same period for w′

i > wi, and for a′i < ai or
d′i > di. For competitiveness, consider a set of types θ and establish that
the greedy online allocation rule is 2-competitive by a “charging argument”.
For any agent i that is allocated offline but not online, charge its value to
the online agent that was allocated in period t in which agent i is allocated
offline. Since agent i is not allocated online it is present in period t, and the
greedy rule allocates to another agent in that period with at least as much
value as agent i. For any agent i that is allocated offline and also online,
charge its value to itself in the online solution. Each agent that is allocated
in the online solution is charged at most twice, and in all cases for a value
less than or equal to its own value. Therefore the optimal offline value V ∗(θ)
is at most twice the value of the greedy solution.

There is actually a 1.618-competitive online algorithm for this problem
but it is not monotonic and cannot be implemented truthfully. In fact,
there is a matching lower bound for the problem of achieving efficiency and
truthfulness:

Theorem 1.18 No truthful, IR and deterministic online auction can obtain
a (2−ε)-approximation for efficiency in the expiring items environment with
no early-arrival and no late-departure misreports, for any constant ε > 0.
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Proof Fix ε > 0, consider T = {1, 2} and construct the following three
scenarios: (i) Consider agents θ1 = (1, 1, q(1 + δ)), θ2 = (1, 2, q) and choose
0 < δ < ε

1−ε so that q(1+δ)
q(2+δ) < 1

2−ε and the auction must allocate to both
agents to be (2−ε)-competitive. Let q ≥ vc

(1,1)(θ2) (dropping dependence on
ω because there are no stochastic events to consider), so that agent 1 must
have strictly positive utility since the price is independent of reported value
(for truthfulness) and less than or equal to vc

(1,1)(θ−1) for IR. (ii) As in (i)
except θ1 → θ′1 = (1, 2, q(1+δ)) and a new type θ3 = (2, 2,∞) is introduced.
Agent 1 must be allocated else it can report type θ1. Moreover, agent
1 must be allocated in period 1 because otherwise the mechanism cannot
compete when θ3 arrives. Agent 2 is not allocated. (iii) As in (i) except
θ1 → θ′1 = (1, 2, q(1 + δ)) and θ2 → θ′2 = (1, 1, q). The auction must allocate
to both agents to be (2− ε)-competitive. Further assume that q > vc

(1,1)(θ
′
1),

which is without loss of generality because if q = vc
(1,1)(θ

′
1) then we can

repeat the analysis with q′ = αq for α > 1 replacing q throughout. But
now agent 2 with type θ′2 has strictly positive utility since its payment is no
greater than its critical value and the auction is not truthful in scenario (ii)
because agent 2 can benefit by deviating and reporting θ′2.

The following provides a technical justification for why the no late-
departure misreports assumption is required in this environment:

Theorem 1.19 No truthful, IR and deterministic online auction can obtain
a constant approximation ratio for efficiency in the expiring items environ-
ment with no early-arrival misreports but arbitrary misreports of departure.

Proof Consider M periods. Fix θ−i. Fix vc
(1,1)(θ−i) < ∞ (dropping de-

pendence on ω because there are no stochastic events to consider). First
show that any agent with type θi = (1,M, wi) for wi > vc

(1,M)(θ−i) must
be allocated in period 1. For this, first show that vc

(1,M)(θ−i) = vc
(1,1)(θ−i).

Construct θ′i = (1,M, w′
i) with w′

i = vc
(1,1) + ε, some ε > 0. By truthfulness

and thus monotonicity we have vc
(1,M)(θ−i) ≤ vc

(1,1)(θ−i) and agent i must be
allocated. Moreover, it must be allocated in period 1 else an adversary can
generate M − 1 bids {(t, t, βt−1)} for large β > 0 and t ∈ {2, . . . ,M}, all of
which must be accepted for the auction to be constant competitive. But in
this case the agent should deviate and report (1, 1, w′

i), and be allocated in
period 1 with payment vc

(1,1)(θ−i) < w′
i and have positive utility. Since type

(1,M,w′
i) is allocated in period 1 we must have vc

(1,M)(θ−i) = vc
(1,1)(θ−i) by

truthfulness and the critical-payment lemma else type (1, 1, w′
i) can devi-

ate and report (1,M,w′
i) and do better. Consider again type (1,M, wi),
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we now have wi > vc
(1,M)(θ−i) ⇒ wi > vc

(1,1)(θ−i) and the agent must
be allocated in period 1. To finish the proof, now construct type profile
θ = {(1,M, q1), . . . , (1,M, qM )} with q1, . . . , qm unique values drawn from
[q, q + δ] for some q > 0 and δ > 0. For any i, we must have vc

(1,1)(θ−i) < ∞
else the mechanism is not competitive because the adversary could replace
type i with θ′i = (1, 1, w′′

i ) and some arbitrarily large w′′
i . We can also as-

sume qi ≥ vc
(1,M)(θ−i) ⇒ qi > vc

(1,M)(θ−i), which can always be achieved
by a slight upwards perturbation of any value qi = vc

(1,M)(θ−i). Finally,
the online mechanism can allocate at most one of these bids since any bid
allocated must be allocated in period 1 and can achieve value at most q + δ

while the efficient offline allocation has value V ∗(θ) ≥ Mq. Thus, no con-
stant approximation is possible because M can be selected to be arbitrarily
large.

1.3.3 Example: An Adaptive, Limited-Supply Auction

For our second detailed example, we consider an environment with a single,
indivisible item to be allocated to one of N agents. Each agent’s type is still
denoted θi = (ai, di, wi) ∈ T × T × R>0, with wi denoting the agent’s value
for the item. This first into the known interesting-set model. We assume
no early-arrival misreports but will allow arbitrary misreports of departure.
Our goal is to define an adaptive auction with good revenue and efficiency
properties, again in an adversarial setting.

We relate this dynamic auction problem to the classical secretary problem,
a well studied problem in optimal stopping theory:

The Secretary Problem. An interviewer meets with each from a pool of
N job applicants in turn. The total number of applicants is known. Each
applicant has a quality and the interviewer learns, upon meeting, the relative
rank of each applicant amongst those already interviewed and must make
an irrevocable decision about whether or not to hire the applicant. The
goal is to hire the best applicant. By the “random-ordering hypothesis”,
an adversary can choose an arbitrary set of N qualities but cannot control
the assignment of quality to applicant, rather this is sampled uniformly at
random and without replacement from the set. The online problem is to
design a stopping rule that maximizes the probability of hiring the highest
rank applicant, in the worst-case for all possible adversarially-selected in-
puts. Say that a candidate is the most qualified of all applicants seen so
far. The optimal policy (i.e. the policy that maximizes the probability of
selecting the best applicant, in the worst case) is to interview the first t− 1
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applicants and then hire the next candidate (if any), where t is defined by:

N∑
j=t+1

1
j − 1

≤ 1 <
N∑

j=t

1
j − 1

. (1.9)

For instance, with N = 10, 000 the optimal t is 3680, i.e. sample 3679
applicants and then accept the next candidate. As N →∞, the probability
of hiring the best applicant approaches 1/e, as does the ratio t/N , and the
optimal policy in this big N limit is to sample the first bN/ec applicants
and then immediately accept any subsequent candidate.

We can reinterpret the secretary problem in the auction context. Bidders,
unlike the applicants in the classic model, are strategic and can misrepresent
their value and time their entry into the market. Bidders also have both an
entry and an exit time. We modify the adversarial model in the secretary
problem while retaining the random-ordering hypothesis: an adversary picks
a set of values and a set of arrival-departure intervals and agent types are
then defined by sampling uniformly at random and without replacement
from each set. By an averaging argument, our results for randomly-ordered
inputs imply the same (upper-bound) competitive-ratio analysis when the
bids consist of i.i.d. samples from an unknown distribution.

In addition to efficiency, we can also consider revenue as an optimality
criterion. The auction’s revenue for type profile θ is defined as Rev(p(θ)) =∑

i pi(θ), where notation pi(θ) denotes the (expected) payment by agent i

given type profile θ. Notation ω ∈ Ω is suppressed because there are no
external stochastic events in the problem. For an offline benchmark we
consider the revenue from an offline Vickrey auction and define R∗(θ) as the
second-highest value in type profile θ. An online mechanism is c-competitive
for revenue if:

min
z∈Z

E
{

Rev(p(θz))
R∗(θz)

}
≥ 1

c
, (1.10)

where z ∈ Z is the set of inputs available to an adversary, in this case
choosing the two sets described above, and the expectation here is taken
with respect to the random choice of the sampling process that matches
values with arrival-departure intervals.

The optimal policy for the secretary problem has a learning phase followed
by an accepting phase. For a straw-man online auction interpretation, con-
sider: observe the first bN/ec reports and then price at the maximal value
received so far, and sell to the first agent to subsequently report a value
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greater than this price. Break ties at random. The following example shows
that this fails to be truthful.

Example 1.20 Consider six agents, with types θi = (ai, di, wi) and θ1 =
(1, 7, 6), θ2 = (3, 7, 2), θ3 = (4, 8, 4), θ4 = (6, 7, 8), and agents 5 and 6
arriving in later periods. The transition to the accepting phase occurs after
b6/ec = 2 bids. Agent 4 wins in period 6 and makes payment 6. If agent 1
reports θ′1 = (5, 7, 6) then it wins in period 5, for payment 4.

The auction is truthful when all agents are impatient (ai = di) but is not
monotonic with respect to arrival time (as the above example illustrates)
and fails to be truthful in general. Consider instead the following simple
variation:

Auction 3. A bid from an agent is a claim about its type, θ̂i = (âi, d̂i, ŵi),
necessarily made in period t = âi.

(i) (Learning): In period τ in which the bN/ecth bid is received let p ≥ q

be the top two bid values received so far.
(ii) (Transition): If an agent bidding p is still present in period τ then

sell to that agent (breaking ties at random) at price q.
(iii) (Accepting): Else, sell to the next agent to bid a price at least p

(breaking ties at random), collecting payment p.

Theorem 1.21 Auction 3 is strongly-truthful in the single-unit, limited
supply environment with no early-arrival misreports.

Proof Assume that the method used to break ties is independent of the
reported departure time of an agent. Fix θ−i. Monotonicity is established
by case analysis on type θi: (a) If di is to the left of the transition the
agent is not allocated and monotonicity trivially holds. (b) If [ai, di] spans
the transition, agent i does not trigger the transition, and it wins with
wi > q then there is no tie-breaking and the agent continues to win for
an earlier arrival or later departure (because this changes nothing about
the price it faces when the transition occurs), and continues to win with
a higher value. (c) If arrival, ai, is after the transition and agent i wins
with wi > p (and perhaps winning a random selection over another agent j

arriving in the same period also with wj > p) then it continues to win with
an earlier arrival (even one that occurs before the transition because its
value will define p), with a later departure (because tie-breaking is invariant
to reported departure) and with a higher value. (d) If the agent triggers the
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transition and wins with wi > q then its value wi = p, there was no tie to
break, and the agent continues to win for an earlier arrival (although at some
point the transition will be triggered by the next earliest agent to arrive),
for a higher value, and is unaffected by a later departure. The payment is
the critical value, namely q in case (b) and (d) and p in case (c). Moreover,
the policy is monotonic-late: in case (b) the critical value is infinite for
all departures before the transition but constant with respect to departure
otherwise and the critical departure period is that of the transition; in cases
(c) and (d) the critical value payment is independent of departure time and
the critical departure period is equal to the arrival period.

Example 1.22 Return to the earlier example with six agents and types
θ1 = (1, 7, 6), θ2 = (3, 7, 2), θ3 = (4, 8, 4), θ4 = (6, 7, 8), with agents 5 and 6
arriving in later periods. The transition to the accepting phase occurs upon
the arrival of agent 2. Then p = 6, q = 2 and agent 1 wins for 2. Consider
instead that θ′1 = (1, 2, 6). The transition still occurs upon the arrival of
agent 2 but now the item is sold in period 6 to agent 4 for a payment of
6. An agent with true type θ′1 does not want to report θ1 because of the
monotonic-late property: although it would win it would not be allocated
until period 3, and this is after its true departure.

Theorem 1.23 Auction 3 is e+o(1)-competitive for efficiency and e2+o(1)-
competitive for revenue in the single-unit, limited supply environment in the
limit as N →∞.

Proof Let τ = bN/ec. For efficiency, our competitive ratio is at least as great
as the probability of selling to the highest value agent. Conditioned on selling
at the transition, the probability that we sell to the highest value agent is
at least bN/ec

N = 1/e− o(1). Conditioned on selling after the transition, the
probability of this event is 1/e−o(1) according to the analysis of the classical
secretary problem. For revenue, our competitive ratio is at least as great as
the probability of selling to the highest value agent at a price equal to the
second-highest bid. Conditioned on selling at the transition, the probability
of this event is (1/e)2 − o(1) (i.e., the probability that both the highest and
second-highest value agents arrive before period τ). Conditioned on selling
after the transition, the probability of this event is (1/e)(1 − 1/e) − o(1),
i.e. the probability that the second-highest value agent arrives before τ and
the highest value agent arrives after τ . The unconditional probability of
selling to the highest value agent at the second-highest price is a weighted
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average of the two conditional probabilities computed above, hence it is at
least (1/e)2 − o(1).

The random-ordering hypothesis has a critical role in this analysis: there
is no constant competitive mechanism in this environment for the adversarial
model adopted in our analysis of the expiring items environment.

For the secretary problem it is well known that no stopping rule can
achieve asymptotic success probability better than 1/e. The same lower
bound can be established in our setting, even though the mechanism has
richer feedback (i.e., it sees numbers not ranks) and even though an alloca-
tion to any bidder, and not just to the highest-rank bidder, contributes to
the expected efficiency. The proof of this result is beyond the scope of this
chapter.¶

1.3.4 Remarks

We end this section with some general remarks that mostly seek to place
the study of online mechanisms in single-valued preference domains in the
broader context of computational mechanism design.

Ex post IC. A mechanism is ex post IC if truth revelation is a best-response
contingent on other agents being truthful, and whatever the types of other
agents (and thus for all possible futures in the context of online MD). In
offline mechanisms the solution concepts of ex post incentive compatible
(EPIC) and DSIC are equivalent with private value types. This equivalence
continues to hold for closed online mechanisms, that provide no feedback to
an agent before it submits a bid. However, an online mechanism that pro-
vides feedback, for instance prices, or in an extreme case current standing
bids, loses this property. The report of an agent can now be conditioned on
the reports of earlier agents, and monotonicity provides EPIC but not nec-
essarily DSIC. Consider again Auction 2 in the expiring items environment,
with true types θ1 = (1, 2, 100), θ2 = (1, 2, 80) and θ3 = (2, 2, 60). If the bids
are public then a possible (crazy) strategy of agent 3 is to condition its bid
as possible: “bid (2,2,1000) if a bid of (1,2,100) is received or bid (2,2,60)
otherwise.” Agent 1 will now pay 60 if it bids truthfully, but would pay
60 with a bid of (1,2,90). Nevertheless, truthful bidding is a best-response
when other agents bid truthfully.

¶ One shows that for any stopping rule there is some distribution that is hard in the sense that the
second-highest value in the sequence is much less than the highest value with high probability.
Given this, the expected efficiency ratio of the allocation is determined, to first order, by the
probability of awarding the item to the highest bidder.
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Simple price-based online auctions. One straightforward method to
construct truthful online auctions for known-set, single-valued environments
is to define an agent-independent price schedule qt

i(L, θ−i, ω) ∈ R to agent
i for interesting decision set L ∈ Li, given stochastic events ω ∈ Ω, where
qt
i(L, θ−i, ω) defines the price for a decision in set L in period t. Given

this, define payment p(ai,di,Li)(θ−i, ω) = mint∈[ai,di] q
t
i(Li, θ−i, ω) and let

t∗(ai,di,Li)
(θ−i, ω) denote the first period t ∈ [ai, di] in which qt

i(Li, θ−i, ω) =
p(ai,di,Li)(θ−i, ω). Then, decision policy π that allocates to agent i with type
θi = (ai, di, (ri, Li)) if and only if ri ≥ qt

i(Li, θ−i, ω) in some t ∈ [ai, di], with
the allocation period t ≥ t∗(ai,di,Li)

(θ−i, ω), is monotonic-late and the asso-
ciated critical-value payment is just p(ai,di,Li)(θ−i, ω). Working with price
schedules is quite natural in many domains but not completely general:

Example 1.24 Consider the canonical expiring items environment. Fix
θ−i, and consider a monotonic-late policy π with critical-value vc

(1,2)(θ−i) =
20, vc

(1,1)(θ−i) = vc
(2,2)(θ−i) = 30 (dropping dependence on ω because there

are no stochastic events to consider). This policy allocates to type θi =
(1, 2, 25) in period 2 but not type θ′i = (1, 1, 28) or θ′i(2, 2, 28). No simple
price schedule corresponds to this policy, because it would require q1

i (θ−i) >

28, q2
i (θ−i) > 28 but min(q1

i (θ−i), q2
i (θ−i)) ≤ 25.

The role of limited misreports. Consider again the above example. The
price on an allocation to agent i in period 2 depends on its report: if the
agent’s type is θi = (2, 2, wi) then the price is 30 but if the agent’s type
is θi = (1, 2, wi) then the price is 20. This is at odds with the principle
of “agent-independent prices” that drives the standard analysis of truthful
mechanisms. The example also fails weak-monotonicity, which is generally
necessary for truthfulness.‖

What is going on? In both cases, the reason for this departure from
the standard theory for truthful mechanism design is the existence of lim-
ited misreports. The auction would not be truthful with early-arrival mis-
reports because an agent with type (2, 2, 28) could usefully deviate and
report (1, 2, 28). For limited misreports C(θi) ⊆ Θi that satisfy tran-
sitivity (which holds for the no-early arrival and no-late departure as-
sumptions that are motivated in online MD), so that θ′i ∈ C(θi) and
θ′′i ∈ C(θ′i) implies θ′′i ∈ C(θi), the payment p̃i(k, θi, θ−i, ω) collected from

‖ A social choice function f : Θ → O satisfies weak-monotonicity if and only if for any θi ∈ Θi,
agent i, and θ−i ∈ Θ−i, then f(θi, θ−i) = a and f(θ′i, θ−i) = b implies that vi(b, θ

′
i)−vi(b, θi) ≥

vi(a, θ′i) − vi(a, θi). In the example, when agent i changes its type from (1, 2, 25) to (2, 2, 28)
it increases its relative value for an allocation in period 2 over no allocation, but the decision
policy switches away from allocating to the agent in period 2.
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agent i conditioned on outcome k ∈ O, must satisfy p̃i(k, θi, θ−i, ω) =
min

{
p̃i(k, θ̂i, θ−i, ω) : θ̂i ∈ C(θi), π(θ̂i, θ−i, ω) = k

}
, or ∞ if no such θ̂i ex-

ists, for all i, all k ∈ O and all ω ∈ Ω. Limited dependence on the reported
type is possible as long as the price is independent across available misre-
ports. For unlimited misreports we recover the standard requirement that
prices are agent-independent. So, the temporal aspect of online MD is both
a blessing and a curse: on one hand we can justify limited misreports and
gain more flexibility in pricing and in the timing of allocations, on the other
hand decisions must be made in ignorance about future types.

Relaxing the known interesting-set assumption. We assumed that
the interesting set Li ∈ Li was known by the mechanism. Domains in which
the interesting set is private information to an agent can be handled by
making the following modifications to the framework:

(i) Require that agent i’s domain of interesting sets Li = {L1, . . . , Lm},
defines disjoint sets, so that L1 ∩ L2 = ∅ for all L1, L2 ∈ Li.

(ii) Require that a decision policy π is minimal, so that it never makes
decision kt ∈ L for some L �L Li in some period t ∈ [ai, di], given
reported type θi = (ai, di, (ri, Li)).

(iii) Extend the partial-order, so that

θ1 �θ θ2 ≡ (a1 ≥ a2) ∧ (d1 ≤ d2) ∧ (r1 ≤ r2) ∧ (L1 �L L2), (1.11)

and adopt this partial order in defining monotonicity.

Given these modifications the general methods developed above for the
analysis of online mechanisms continue to hold. For instance, a monotonic,
minimal and deterministic policy continues to be truthful when combined
with critical-value payments, and monotonicity remains necessary for truth-
fulness amongst minimal, deterministic policies. This is left as an exercise.

The requirement that interesting sets are disjoint can significantly cur-
tail the generality of preference domains that can be modeled. It is
especially hard to model substitutes preferences, for instance indiffer-
ence across a set of items. Suppose the items are fruit, with G =
{apple, banana, pear, lime, lemon}. With known interesting sets, we can
model an agent with a type that defines a value for receiving an item from
any subset of the domain G. We must now assume there is some partition,
for instance into {{apple, pear}, {banana}, {lime, lemon}} so that the agent
either has the same value for an apple or a pear and no value for anything
else, or a value for a banana and no value for anything else, or a value for a
lime and a lemon but no value for anything else.
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Stochastic policies. Stochastic decision policies can be important, both
algorithmically (many computational methods for online decision use a prob-
abilistic model to sample possible state trajectories) and also to allow for
tie breaking while retaining the anonymity of policies.

So far we have handled this by requiring strong-truthfulness. More gen-
erally, a stochastic mechanism is DSIC when truthful reporting maximizes
expected utility for an agent (with the expectation defined with respect to
randomization in the policy), and for all reports of other agents and all ex-
ternal stochastic events, ω ∈ Ω. To handle this, let πi(θi, θ−i, ω) ∈ [0, 1]
denote the probability that agent i receives an interesting decision (“is al-
located”), given type θi, types θ−i and (external) stochastic events ω. The
appropriate generalization of monotonicity to this environment requires, for
every θi = (ai, di, (ri, Li)), all θ−i, all ω ∈ Ω, that

πi((ai, di, (ri, Li)), θ−i, ω) ≥ πi((ai, di, (r′i, Li)), θ−i, ω), ∀ri ≥ r′i, (1.12)

and∫ ri

x=0
πi((ai, di, (x, Li)), θ−i, ω)dx ≥

∫ ri

x=0
πi((a′i, d

′
i, (x, Li)), θ−i, ω)dx, (1.13)

for all a′i ≥ ai, d′i ≤ di. The critical value payment becomes:

vc
(ai,di,(ri,Li))

(θ−i, ω) = πi(θ, ω)ri −
∫ ri

x=0
πi((ai, di, (x, Li)), θ−i, ω)dx (1.14)

These definitions of monotonicity and critical-value payment reduce to
the earlier cases when the policy is deterministic.

Theorem 1.25 A stochastic decision policy π can be implemented in a
truthful, IR mechanism that does not pay unallocated agents in a domain
with (known interesting set) single-valued preferences and no early-arrival
or late-departure misreports if and only if the policy is monotonic according
to (1.12) and (1.13).

The payment collected from allocated agents is the critical-value pay-
ment. The following example illustrates a stochastic policy that satisfies
this monotonicity requirement.

Example 1.26 Consider a domain with no early arrival and no late de-
parture misreports, two time periods T = {1, 2}, fix θ−i, and con-
sider agent i with a single-item valuation and possible types Θi =
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{(1, 1, wi), (1, 2, wi), (2, 2, wi)}. For impatient type (1, 1, wi), consider pol-
icy

πi((1, 1, wi), θ−i) =


0 , if wi ≤ 8
wi−8

2 , if 8 < wi ≤ 10
1 , otherwise

(1.15)

Solving for the critical value payment (1.14), we find:

vc
(1,1,wi)

(θ−i) =


0 , if wi ≤ 8
w2

i
4 − 16 , if 8 < wi ≤ 10

9 , otherwise
(1.16)

The policy and critical value payment is defined identically for type
(2, 2, wi). For patient type (1, 2, wi), consider policy

πi((1, 2, wi), θ−i) =


wi
20 , if 0 ≤ wi ≤ 10
wi−5

10 , if 10 < wi ≤ 15
1 , otherwise.

(1.17)

and the critical value payment, from (1.14), is:

vc
(2,2,wi)

(θ−i) =


w2

i
40 , if 0 ≤ wi ≤ 10
w2

i
20 −

5
2 , if 10 < wi ≤ 15

8.75 , otherwise.

(1.18)

Notice that πi((1, 1, 10), θ−i) = 1 and πi((1, 2, 10)) = 0.5, contradicting
more simplistic notions of monotonicity, but that truthfulness is retained
because vc

(1,1,10)(θ−i) = 9 while vc
(1,2,10)(θ−i) = 2.5. Although type (1, 2, 10)

can misreport to (1, 1, 10) and be allocated with certainty, it prefers to report
(1, 2, 10) because its expected utility is (0.5)(10−2.5)+(0.5)(0) > (1.0)(10−
9). We leave as an exercise to check that these policies satisfy monotonicity,
with

∫ wi

x=0 πi((1, 2, x), θ−i)dx ≥
∫ wi

x=0 πi((1, 1, x), θ−i) for all wi.

We make a final remark about stochastic policies. In an environment with
a probabilistic model that is common knowledge, and that defines both a
probability distribution for agent types and for stochastic events ω ∈ Ω, we
can settle for a weaker monotonicity requirement in which (1.12) and (1.13)
are satisfied in expectation, given the model. However, this provides BNIC
but not DSIC since monotonicity may not hold out of equilibrium when
other agents are not truthful, since the probabilistic model of agent types
upon which monotonicity is predicated will then be incorrect.
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1.4 Bayesian Implementation In General Online Domains

In this section we focus on Bayesian implementation of expected value-
maximizing policies in environments in which the designer and every agent
has a correct, probabilistic model for types and uncertain events, and this is
common knowledge. We consider the goal of value-maximization and present
a dynamic variation of the offline Vickrey-Clarke-Groves (VCG) mechanism.
This will involve computing expected value maximizing sequential decision
policies and raise a number of computational challenges. We will see that
the dynamic VCG mechanism is BNIC rather than DSIC, with incentive-
compatibility contingent on future on-equilibrium play by all participants.

1.4.1 A General Model

A Markov decision process (MDP) provides a useful formalism for defin-
ing online mechanisms in model-based environments with general agent
preferences. An MDP model (H,K,P, R) is defined for a set of states
H, feasible decisions K(h) in each state, a probabilistic transition func-
tion P(ht+1|ht, kt) on the next state given current state and decision (with∑

h′∈Ht+1 P(h′|ht, kt) = 1) and a reward function R(ht, kt) ∈ R for de-
cision kt in state ht. The Markov property requires that feasible deci-
sions, transitions and rewards depend on previous states and actions only
through the current state. It is achieved here, for example, by defining
ht ∈ Ht = (θ1, . . . , θt;ω1, . . . , ωt; k1, . . . , kt−1), so that the state captures
the complete history of types, stochastic events, and decisions. In practice
a short summarization of state ht is often sufficient to retain the Markov
property.

Given a social planner interested in maximizing total value, then define
reward R(ht, kt) =

∑
i∈I(ht) Ri(ht, kt), with I(ht) used to denote the set

of agents present in state ht and agent i’s reward Ri(ht, kt) defined so
that vi(θi, k) =

∑di
t=ai

Ri(ht, kt) for all sequences of decisions k. For fi-
nite time horizons, the expected value of policy π in state ht is V π(ht) =
Eπ

{ ∑|T |
τ=t R(hτ , πτ (hτ ))

}
, where the expectation is taken with respect to

the transition model and given the state-dependent decisions implied by
policy π. For infinite time horizons, a standard approach is to define a dis-
count factor γ ∈ (0, 1), so that the expected discounted value of policy π in
state ht is V π(ht) = Eπ

{ ∑∞
τ=t γτ−tR(hτ , πτ (hτ ))

}
. This makes sense in a

multi-agent environment when every agent has the same discount factor γ.
Given MDP value, V π(ht), then the optimal policy π∗ maximizes this

value, V π(ht), in every state ht. For instance, in the finite time-horizon
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(no discounting) setting, the optimal MDP-value function, V ∗, is defined to
satisfy recurrence:

V ∗(h) = max
k∈Kt(h)

[R(h, k) +
∑

h′∈Ht+1

P(h′|h, k)V ∗(h′)], (1.19)

for all time t and all h ∈ Ht. Given this, the optimal decision policy can
then be defined as:

π∗(h ∈ Ht) ∈ arg max
k∈Kt(h)

[R(h, k) +
∑

h′∈Ht+1

P(h′|h, k)V ∗(h′)]. (1.20)

Of course, the type information within the state is private to agents and
we will need to provide incentive compatibility so that the policy has the
correct view of the current state.

Example 1.27 The definition of state, feasible decision and agent type is
as in Example 1.3. The transition function P(ht+1|ht, kt) is constructed
to reflect a probabilistic model of new agent arrivals, and also the alloca-
tion decision. The MDP reward function, R(ht, kt), can be defined with
R(ht, kt) = wi if decision kt allocates the item to agent i, for some agent i

present in the state, and zero otherwise.

1.4.2 A Dynamic Vickrey-Clarke-Groves Mechanism

For concreteness, consider an environment with a finite time horizon and
no discounting, and with the optimal MDP value V ∗(h) defined as the total
expected reward from state h until the time horizon. We make some remarks
about how to handle an infinite time horizon in Section 1.4.3. Consider the
following dynamic VCG mechanism.†† We assume that the decisions and
reports in previous periods t′ < t are all public in period t, although similar
analysis holds without this.

Auction 4. The dynamic VCG mechanism for the finite time horizon
and no-discounting online MD environment works as follows:

(i) Each agent, i, reports a type θ̂i in some period âi ≥ ai.
(ii) Decision policy: Implement optimal policy π∗, which maximizes the

total expected value, assuming the current state as defined by agent
reports is the true state.

†† The mechanism is presented in the no early-arrival misreports model but remains BNIC without
this assumption.
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(iii) Payment policy: In an agent’s reported departure period, t = d̂i,
collect payment

xt
i(h

t) = vi(θ̂i, π
∗(θ≤t, ω≤t))−

[
V ∗(hâi)− V ∗(hâi

−i)
]
, (1.21)

where π∗(θ≤t, ω≤t) denotes the sequence of decisions made up to and
including period t based on types θ≤t and stochastic events ω≤t,
V ∗(ht) is the optimal MDP value in state ht, and ht

−i defines the
(counterfactual) MDP state constructed to be equal to ht but remov-
ing agent i’s type from the state. The payment is zero otherwise.

Agent i’s payment is its ex post value discounted by term (V ∗(hâi) −
V ∗(hâi

−i)), which is the expected marginal value it contributes to the system
as estimated upon its arrival and based on its report. With this, the expected
utility to agent i when reporting truthfully is equal to the expected marginal
value that it contributes to the multi-agent system through its presence.

For incentive-compatibility, we need the technical property of stalling,
which requires that the expected value of policy π∗ cannot be improved (in
expectation) by delaying the report of an agent:‡‡

Theorem 1.28 The dynamic VCG mechanism, coupled with a policy that
satisfies stalling, is Bayes-Nash incentive compatible (BNIC) and imple-
ments the expected-value maximizing policy, in a domain with no early-
arrival misreports but arbitrary misreports of departure.

Proof Consider the expected utility (defined with respect to its information
in period ai) to agent i for misreport θ̂i ∈ C(θi). Let c ≥ 0 denote the number
of periods by which agent i misreports its arrival time. The expected utility
is:

Eπ∗
{
vi(θi, π

∗(hai))|θ̂i

}
+Eπ∗

{ |T |∑
t=ai+c

R−i(ht, π∗(ht))
}

−Eπ∗
{
V ∗(hai+c

−i )
}

(A) (B) (C)

Term (A) denotes the expected value to agent i given its misreport. Term
(B), which denotes the total expected value to other agents forward from
reported arrival, ai+c, given agent i’s misreport, corresponds to the expected
value of terms {−vi(θ̂i, π

∗(θ≤d̂i , ω≤d̂i))+V ∗(hâi)} in the payment. Notation
R−i denotes the total reward that accrues due to all agents except agent i.
Term (C), which denotes the total expected value to other agents forward

‡‡ This is typically reasonable, for example any optimal policy that is able to delay for itself any
decisions that pertain to the value of an agent will automatically satisfy stalling.
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from period ai + c, but with agent i removed, corresponds to the final term

in the payment. Now, add term Eπ∗
{ ai+c−1∑

t=ai

R−i(ht, π∗(ht))
}

to term (B)

and subtract it again from term (C). The adjusted term (C’) is now agent-
independent and can be ignored for the purpose of establishing BNIC. Term
(A) combined with adjusted term (B’) is the expected value to all other
agents forward from period ai, plus the expected true value to agent i.
Agent i’s best response is to report its true type (and immediately upon
arrival) because the policy π∗ is defined to maximize (A)+(B’) when the
other agents are truthful, i.e. in a Bayes-Nash equilibrium.

It bears repeating that truth telling is not a dominant strategy equilib-
rium. We only have BNIC because the correctness of the policy depends
on the center having the correct model for the distribution on agent types.
Without the correct model, the policy is not optimal in expectation and an
agent with beliefs different from that of the center may be able to improve
(its belief about) the expected utility it will receive by misreporting its type
and thus misrepresenting the state.§§

1.4.3 Remarks

We end this section with some general remarks that touch on the computa-
tional aspects of planning in model-based environments, and also describe a
couple of additional environments in which dynamic VCG mechanisms can
be usefully applied.

Infinite time horizon and discounting. The dynamic VCG mechanism
can be extended to handle an infinite time horizon when every agent has
a common discount factor. Rather than collect a payment once, upon de-
parture, a payment can be collected from agent i in each period, so as to
align its utility stream with the expected, marginal stream of value that it
contributes through its presence in the multi-agent system.

Computational notes. Many algorithms exist to compute optimal deci-
sion policies in MDPs. These include dynamic programming, value iter-
ation, policy iteration, and LP-based methods. However, the state space

§§ The additional property of (ex post) IR is ensured when the environment satisfies agent-
monotonicity, which requires that introducing an agent increases the MDP value of any state.
The payments collected by the mechanism are non-negative in expectation (ex ante BB) when
the environment satisfies no positive externalities, which requires that the arrival of an agent
does not have a positive expected effect on the total value of the other agents.
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and action space for real-world online MD problems is large and approxi-
mations will typically be required. One appealing method is to couple the
VCG mechanism with an online, sampling-based approximation algorithm.
Rather than compute a priori an entire policy for every possible state one
can determine the next decision to make in state ht by approximating the
decision problem forward from that state. Given an ε-approximation, the
dynamic VCG mechanism is ε-BNIC, in the sense that no agent can gain
more than some amount ε > 0 (that can be made arbitrarily small) by de-
viating from truthful reporting, as long as the other agents are truthful and
an ε-accurate estimate of the optimal MDP value is also available.

One class of online, sparse-sampling algorithms work by building out a
sample tree of future states based on decisions that could be made by the
policy forward to some look-ahead horizon. These algorithms have run time
that is independent of the size of the state space but scales exponentially
in the number of decisions and in the look-ahead horizon. More recently, a
family of stochastic online combinatorial optimization algorithms have been
proposed that seem especially applicable to online MD environments. The
algorithms solve a sub-class of MDPs in which the realization of uncertainty
is independent of any decision. This is a natural assumption for truthful
dynamic auctions: the decisions made by an IC mechanism will not affect
the reports of agents, and thus the realization of new types is independent
of allocation decisions.

Strategic learning. A variant on the dynamic VCG mechanism can be
used to support optimal, coordinated learning amongst a fixed population
of self-interested agents. Suppose that in addition to influencing the reward
received by an agent in each time period, the decisions made by a mechanism
also reveal information that an agent can use to update its belief about
its type, i.e. types are revealed online. A simple model of this is given
by a multi-agent variation on the classical multi-armed bandits problem.
Each agent owns an “arm” and receives a reward when its arm is activated,
sampled from a stationary distribution. The reward signals are privately
observed and allow an agent to update its model for the reward on its arm.
In a setting with an infinite time horizon and discounting, one can use
Gittins’ celebrated index policy to characterize an efficient online policy
that makes the optimal tradeoff between exploitation and exploration. In
the presence of self-interest, a variant on the dynamic VCG mechanism can
provide incentives to support truthful reporting of reward signals by each
agent, and thus implement the efficient learning policy.
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1.5 Conclusions

We briefly consider some of the many possible future research directions in
this area of online mechanism design:

• Revenue: Little work exists on the design of revenue-maximizing online
mechanisms in model-based environments. For example, the problem of
designing an analog to Myerson’s optimal auction is currently only par-
tially solved, even in the very simplest of online settings.

• Learning by the center: It is interesting to allow the mechanism to improve
its probabilistic model of the distribution on agent types across time, while
retaining incentive compatibility along the path of learning, and seek to
converge to an efficient or revenue-optimal mechanism.

• Alternative solution concepts: Introduce weaker solution concepts than
DSIC that avoid the strong common knowledge assumptions that are re-
quired to justify BNIC analysis. These could include, for instance, set
Nash equilibria, implementation in undominated strategies, or implemen-
tation in min-max-regret equilibria and other robust solution concepts.

• Endogenous information: Extend online MD to domains in which deci-
sions made by the mechanism affect the information available to agents
about their types; i.e., cast online MD as a general problem of coordinated
learning by self-interested agents in an uncertain environment.

• Richer domains: The current work on dominant-strategy implementation
is limited to single-valued preference domains with quasi-linear utilities.
Simple generalizations, such as to an environment in which some agents
want an apple, some a banana, and some are indifferent across an apple
and a banana do not satisfy the partition requirement on the structure of
interesting sets and remain unsolved. Similar complications occur when
one incorporates budget constraints, or generalizes to interdependent val-
uations. With time, perhaps progress can be made on the problem of
online combinatorial auctions and exchanges in their full generality.

Exercises

1.1 Prove that the revelation principle holds with no early-arrival and
no late-departure misreports and prove the “revelation principle +
heartbeats” result in combination with no early-arrival misreports.

1.2 Consider a (known interesting set) single-valued preference domain
with no late-departure misreports. Show that any decision policy π

that can be truthfully implemented by an IR mechanism, and does
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not pay unallocated agents, must be monotonic-early (for a suitable
definition of monotonic-early).

1.3 Prove that the approach outlined to constructing truthful online auc-
tions in terms of an agent-independent price schedule qt

i(L, θ−i, ω) in-
duces a monotonic-late decision policy and critical-value payments.
How would you modify the construction for an environment with
both no early-arrival and no late-departure misreports?

1.4 Construct an example to show that the greedy auction in the expiring
items setting has an arbitrarily bad competitive ratio with respect
to offline VCG revenue.

1.5 Establish that the self-consistency property on prices in Section 1.3.4,
coupled with the condition that a mechanism selects an outcome
that maximizes utility for every agent at these prices is sufficient for
truthfulness. Prove that the condition reduces to agent-independent
prices for unrestricted misreports.

1.6 Prove that modifications (i–iii) in Section 1.3.4 are sufficient to
achieve truthfulness with agents with unknown interesting sets, to-
gether with no early-arrival and no late-departure misreports and a
critical-value payment. What could break if the interesting sets are
not disjoint, or if the policy is not minimal?

1.7 Show that the stochastic policy outlined in Example 1.26 satisfies
monotonicity conditions (1.12) and (1.13).

1.8 Define a dynamic VCG mechanism that works for infinite time hori-
zon and agents with a common, known discount factor γ ∈ (0, 1).

Notes

Lavi and Nisan [LN00] coined the term online auction and initiated the study
of truthful mechanisms in dynamic environments within the computer sci-
ence literature. Friedman and Parkes [FP03] later coined the term online
mechanism design. The characterization of monotonicity requirements for
truthful online mechanisms in single-valued domains is based on Hajiaghayi
et al. [HKMP05], with extensions to single-valued preferences building on
Babaioff et al. [BLP05].¶¶ Weak-monotonicity and its role in truthful mech-
anism design is discussed in Bikhchandani et al. [BCL+06].

The discussion of the secretary problem and adaptive truthful auctions in
the single-item setting is based on Hajiaghayi et al. [HKP04]; see [BIK07]

¶¶ The original paper by Hajiaghayi, Kleinberg, Mahdian and Parkes [HKMP05] mischaracterized
the monotonicity requirement that is necessary for the truthful implementation of stochastic
policies. This was originally brought to the attention of the authors by R.Vohra. The corrected
analysis (presented here) is due to M.Mahdian.
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for a recent extension and [GM66, Dyn63] for classic references. The dis-
cussion of online mechanisms for expiring items is based on Hajiaghayi et
al. [HKMP05], and the negative result is due to Lavi and Nisan [LN05]
(who also adopted an alternate solution concept in their analysis); see
also [NPS03, Por04, JP06] and Awerbuch et al. [AAM03]. Additional models
of dynamic auctions in the computer science literature include: unlimited
supply, digital goods [BYKW02, BKRW03, BH05], two-sided auctions with
both buyers and sellers [BP05, BSZ06], and interdependent value environ-
ments [CIP06].

Moving to the model-based framework, the discussion of the dynamic
VCG mechanism is based on Parkes and Singh [PS03, PSY04]. Related
concepts are discussed in Bergemann and Välimäki [BV06b] and Athey and
Segal [AS06], whose work along with that of Cavallo et al. [CPS06] and
Bapna and Weber [BW06] pertains to a model of strategic learning; see
also [BV03, BV06a]. Pai and Vohra [PV06] advance the study of revenue-
optimal online mechanisms in model-based environments, and together with
Gallien [Gal06] work to extend Myerson’s [Mye81] optimal auction to dy-
namic environments. The observation about the failure of the revelation
principle, the example to illustrate the role of non-negative payments, as
well as inspiration for the extended example of a truthful, stochastic policy
are due to Pai and Vohra. For references on online algorithms and methods
for solving sequential decision problems see [BEY98, HB06, Put94, KMN99].
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[BV03] Dirk Bergemann and Juuso Välimäki. Dynamic common agency. Journal of
Economic Theory, 11:23–48, 2003.
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