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A long line of work in social psychology has studied variations in people’s susceptibility to persuasion –

the extent to which they are willing to modify their opinions on a topic. This body of literature suggests an

interesting perspective on theoretical models of opinion formation by interacting parties in a network: in

addition to considering interventions that directly modify people’s intrinsic opinions, it is also natural to

consider interventions that modify people’s susceptibility to persuasion.

In this work, motivated by this fact we propose an influence optimization problem. Specifically, we adopt a

popular model for social opinion dynamics, where each agent has some fixed innate opinion, and a resistance

that measures the importance it places on its innate opinion; agents influence one another’s opinions through

an iterative process. Under certain conditions, this iterative process converges to some equilibrium opinion

vector. For the unbudgeted variant of the problem, the goal is to modify the resistance of any number of

agents (within some given range) such that the sum of the equilibrium opinions is minimized; for the budgeted

variant, in addition the algorithm is given upfront a restriction on the number of agents whose resistance may

be modified.

We prove that the objective function is in general non-convex. Hence, formulating the problem as a convex

program as in an early version of this work (Abebe et al., KDD’18) might have potential correctness issues.

We instead analyze the structure of the objective function, and show that any local optimum is also a global

optimum, which is somehow surprising as the objective function might not be convex. Furthermore, we

combine the iterative process and the local search paradigm to design very efficient algorithms that can solve

the unbudgeted variant of the problem optimally on large-scale graphs containing millions of nodes. Finally,

we propose and evaluate experimentally a family of heuristics for the budgeted variant of the problem.
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1 INTRODUCTION
A rich line of empirical work in development and social psychology has studied people’s suscepti-

bility to persuasion. This property measures the extent to which individuals are willing to modify

their opinions in reaction to the opinions expressed by those around them, and it is distinct from

the opinions they express. Research in the area has ranged from adolescent susceptibility to peer

pressure related to risky and antisocial behavior [4, 21, 23, 46, 51] to the role of susceptibility to

persuasion in politics [25, 42, 44]. Individuals’ susceptibility to persuasion can be affected by specific

strategies and framings aimed at increasing susceptibility [12, 13, 15, 37, 41, 49, 50]. For instance,

if it is known that an individual is receptive to persuasion by authority, one can adopt a strategy

that utilizes arguments from official sources and authority figures to increase that individuals’

susceptibility to persuasion with respect to a particular topic.

Modifying network opinions has far-reaching implications including product marketing, public

health campaigns, the success of political candidates, and public opinions on issues of global

interest. In recent years, there has also been work in Human Computer Interaction focusing on

persuasive technologies, which are designed with the goal of changing a person’s attitude or behavior
[24, 33, 37]. This work has shown that not only do people differ in their susceptibility to persuasion,

but that persuasive technologies can also be adapted to each individual to change their susceptibility

to persuasion. Despite the long line of empirical work emphasizing the importance of individuals’

susceptibility to persuasion, to our knowledge theoretical studies of opinion formation models have

not focused on interventions at the level of susceptibility. Social influence studies have considered

interventions that directly act on the opinions themselves, where the opinions can take discrete

(e.g., [1, 7, 22, 32, 36, 38]) or real [30, 43] values.

In this work, we adopt an opinion formation model introduced by the work of DeGroot [20] and

Friedkin and Johnsen [26], and we initiate a study of the impact of interventions at the level of

susceptibility. In this model, each agent i is endowed with an innate opinion si in [0, 1], where 0

and 1 are polar opposites of opinions regarding a certain topic. Each agent also has a parameter

representing susceptibility to persuasion, which we will call the resistance parameter αi ∈ (0, 1].
The innate opinion si reflects the intrinsic position of agent i on a certain topic. A higher value on

the resistance parameter αi means that the agent is less willing to conform with the opinions of

neighbors in the social network. According to the opinion dynamics model, the final opinion of each

agent i is a function of the social network
1
, the set of innate opinions, and the resistance parameters,

determined by computing the equilibrium state of a dynamic process of opinion updating. We study

the following natural question:

Problem 1. Given an opinion dynamics model, and a set of agents, each of whom has

an innate opinion that reflects the agent’s intrinsic position on a topic, and a range for

the resistance parameter measuring the agent’s propensity for changing their opinion,

how should we set the agents’ resistance parameter in order to minimize the total sum of

opinions at equilibrium?

Unbudgeted vs Budgeted Variants. In the unbudgeted variant, we are allowed to modify the resistance

of any number of agents. For the budgeted variant, we are given some initial resistance vector and

a budget k , the resistance of at most k agents can be changed.

We emphasize that the algorithm has global information on how the agents interact with one

another and is allowed to change only the resistance parameters of the agents and do not directly

1
We shall see that the social network is characterized by how the agents interact with one another, which is mathematically

captured by a row stochastic matrix that needs not be symmetric.
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change their innate opinions. In the minimization problem, the goal of the algorithm is to bias the

average equilibrium opinions of the agents towards 0.

After reading the formal problem definition in Section 3, the reader can check that the problem

is easy if the resistance of each agent can be picked from the closed interval [0, 1], at least for
the case when the underlying network is strongly connected. For minimizing the equilibrium

opinions, it suffices to make the agent with the minimum innate opinion the most resistant (setting

its resistance to 1) and everyone else totally compliant (setting its resistance to 0). Similarly, for the

maximization problem it suffices to make the agent with the maximum innate opinion the most

resistant, and the rest of the nodes totally compliant. The problem is non-trivial if the resistance αi
of each agent i can take value from some interval [li ,ui ], where 0 < li < ui < 1. We discuss the

model and Problem 1 in greater detail in Section 3.

Our Contributions. In this work, we make the following key contributions.

• Opinion Dynamics with Varying Susceptibility to Persuasion. Based on previous models on opin-

ion dynamics, we introduce an influence optimization problem that focuses on interventions

at the level of susceptibility.

• Analysis of the unbudgeted problem structure. We prove that the objective function is in

general neither convex nor concave. We analyze the mathematical structure of the problem

in Section 4. Perhaps the most important technical insight in this paper is that we show (in

Lemma 4.9) that if the current vector solution is not optimal, then there exists a coordinate

that can be flipped such that the objective will be strictly improved. This shows that an

optimal vector can be found by a simple local search algorithm.

• Local search with irrevocable updates. In general, local search could still take exponential

time to find an optimal solution, for instance, the simplex algorithm for linear programming.

Indeed, we show (in Lemma 5.1) that the local search algorithm will change the resistance of

each agent at most once, which implies that an optimal solution can be found in polynomial

time.

• Efficient Local Search on Large-Scale Graphs. Typically, in local search, the objective function

needs to be evaluated at the current solution in each step. However, since the objective

function involves matrix inverse, its evaluation will be too expensive when the dimension

of the matrix is in the order of millions. Instead, we use the iterative process of the opinion

dynamics model itself to approximate the equilibrium vector. We have developed several

update strategies for local search. For conservative or opportunistic updates, one always makes

sure that the error of the estimated equilibrium vector is small enough before any coordinate

of the resistance vector is flipped. For optimistic update, one might flip a coordinate of the

resistance vector even before the estimated equilibrium vector is accurate enough. However,

this might introduce mistakes which need to be corrected later. Nevertheless, experiments

show that mistakes are rarely made by the optimistic update strategy. In any case, for all

three update strategies, an optimal vector will be returned when the local search terminates.

Our approaches are scalable and can run on networks with millions of nodes. We report

the experimental results in Section 8. In particular, using multiple number of threads, the

optimistic update strategy can solve the problem optimally on networks with up to around

65 million nodes.

• Scalable Heuristics for the Budgeted problem.We provide a family of efficient heuristics for

the budgeted version of our problem, and a detailed experimental evaluation on large-scale

real-world networks.

Comparison with Previous Versions. A preliminary version [2] of this work presented the

problem, but it was overlooked that the objective function might not be convex or concave. A
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subsequent work [10] rectified this issue, and showed that local search can be performed efficiently

to reach the optimal solution, even if the objective function is non-convex. The current presentation

combines results from the aforementioned two works [2, 10]. We have also included a more

detailed Section 7 on heuristic algorithms for the budgeted version of the problem, and the related

experiments in Section 9.

Other Budgeted Variants. The aforementioned budgeted variant can be thought of as an L0-

budget because given an initial α̂ ∈ [0, 1]N and a budget k , the algorithm can only choose α such

that ∥α − α̂ ∥0 = |{i ∈ N : αi , α̂i }| ≤ k . Naturally, one can consider other norms to bound the

budget. For instance, one can consider an Lp -budget, for which the constraint becomes ∥α−α̂ ∥p ≤ k .
In a subsequent work [11], it is shown that the L1-budgeted variant is also NP-hard.

Paper Organization.We review some related work in Section 2. The formal problem definition is

given in Section 3. The structural properties of the problem are given in Section 4 (where the more

technical proofs are deferred to Section 10), and our local search framework for the unbudgeted

variant is given in Section 5. We proved the NP-hardness of the budgeted variant in Section 6, and

we consider the heuristic algorithms in Section 7. The experiments for the unbudgeted variant are

in Section 8, and those for the budgeted variant are in Section 9. Finally, we mention some open

direction in the conclusion.

2 RELATEDWORK
To our knowledge, we are the first to consider an optimization framework based on opinion

dynamics with varying susceptibility to persuasion. In the following we review briefly some work

that lies close to ours.

Susceptibility to Persuasion. Asch’s conformity experiments are perhaps the most famous study on

the impact of agents’ susceptibility to change their opinions [6]. This study shows how agents have

different propensities for conforming with others. These propensities are modeled in our context

by the set of parameters α . Since the work of Asch, there have been various theories on peoples’

susceptibility to persuasion and how these can be affected. A notable example is Cialdini’s Six

Principles of Persuasion, which highlight reciprocity, commitment and consistency, social proof,

authority, liking, and scarcity, as key principles which can be utilized to alter peoples’ susceptibility

to persuasion [12, 13]. This framework, and others, have been discussed in the context of altering

susceptibility to persuasion in a variety of contexts. Crowley and Hoyer [15], and McGuire [41]

discuss the ‘optimal arousal theory’, i.e., how novel stimuli can be utilized for persuasion when

discussing arguments.

Opinion Dynamics Models. Opinion dynamics model social learning processes. DeGroot introduced

an opinion dynamics model in his seminal work on consensus formation [20]. A set of n individuals

in society start with initial opinions on a subject. Individual opinions are updated using the average

of the neighborhood of a fixed social network. Friedkin and Johnsen [26] extended the DeGroot

model to include both disagreement and consensus by mixing each individual’s innate belief with

some weight into the averaging process. This has inspired a lot of follow up work, including

[3, 9, 17, 29, 30].

Optimization and Opinion Dynamics. Bindel et al. use the Friedkin-Johnsen model as a framework

for understanding the price of anarchy in society when individuals selfishly update their opinions

in order to minimize the stress they experience [9]. They also consider network design questions:

given a budget of k edges, and a node u, how should we add those k edges to u to optimize an

objective related to the stress? Gionis, Terzi, and Tsaparas [30] use the same model to identify a set

of target nodes whose innate opinions can be modified to optimize the sum of expressed opinions.

Musco, Musco, and Tsourakakis adopt the same model to understand which graph topologies

minimize the sum of disagreement and polarization [43] .
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Yildiz et al. [52] considered the placement of stubborn agents to maximize expected influence

under the classical voter model.

Inferring opinions and conformity parameters.While the expressed opinion of an agent is readily

observable in a social network, both the agent’s innate opinion and conformity parameter are

hidden, and this leads to the question of inferring them. Such inference problems have been studied

by Das et al. [16, 18]. Specifically, Das et al. give a near-optimal sampling algorithm for estimating

the true average innate opinion of the social network and justify the algorithm both analytically and

experimentally [18]. Das et al. view the problem of susceptibility parameter estimation as a problem

in constrained optimization and give efficient algorithms, which they validate on real-world data

[16].

Non-Convex Optimization. In general, optimizing a non-convex function under non-convex con-

straints is NP-hard. However, in many cases, one can exploit the structure of the objective function

or constraints to devise polynomial-time algorithms; see the survey by Jain and Kar [34] on

non-convex optimization algorithms encountered in machine learning. Indeed, variants of the

gradient descent have been investigated to escape saddle points by Jin et al. [35], who also gave

examples of problems where all local optima are also global optima; some examples are tensor

decomposition [27], dictionary learning [48], phase retrieval [47], matrix sensing [8, 45] and ma-

trix completion [28]. However, all these problems involve some quadratic loss functions, whose

structures are totally different from our objective functions which involve matrix inverse.

Hartman [31] considered the special case that the objective function is the difference of two

convex functions. Strekalovsky devised a local search method to optimize such objective functions.

Even though the objective functions in our problem are somewhere convex and somewhere concave

(see Figure 1), it is not immediately clear if they can be expressed as differences of convex functions.

3 MODEL
We consider a setV of agents, where each agent i ∈ V is associated with an innate opinion si ∈ [0, 1],
where higher values correspond to more favorable opinions towards a given topic and a parameter

measuring an agent’s susceptibility to persuasion αi ∈ (0, 1], where higher values signify agents

who are less susceptible to changing their opinion. We call αi the resistance parameter.
The agents interact with one another in discrete time steps. As a simplification to help readers to

get some intuition on the problem, consider an (unweighted) undirected
2
graph G = (V ,E). The

opinion dynamics evolve in discrete time according to the following model [20, 26] in a graph:

zi (t + 1) = αisi + (1 − αi ) ·

∑
j ∈N (i)

zj (t)

deg(i)
. (1)

Here, N (i) = {j : {i, j} ∈ E} is the set of neighbors of i in some graph, and deg(i) = |N (i)| is the
degree of node i . However, in this work, we consider the general case where the interaction between
agents is captured by a row stochastic matrix

3 P ∈ [0, 1]V×V (i.e., each entry of P is non-negative

and every row sums to 1, but P needs not be symmetric). By denoting A = Diag(α) as the diagonal
matrix with Aii = αi and I as the identity matrix, we can equivalently rewrite Equation 1 as:

2
An unweighted graph G = (V , E) is undirected if E is a collection of 2-subsets of V .

3
Given sets U andW , we use the notation UW

to denote the collection of all functions fromW to U . Each such function

can also be interpreted as a vector (or a matrix ifW itself is a Cartesian product), where each coordinate is labeled by an

element inW and takes a value in U . As an example, a member of [0, 1]V×V is a matrix whose rows and columns are

labeled by elements of V . The alternative notation [0, 1]n×n implicitly assumes a linear ordering on V , which does not

have any importance in our case and would simply be an artefact of the notation.
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z(t+1)
:= As + (I −A)Pz(t ). (2)

Equating z(t ) with z(t+1)
, one can see that the equilibrium opinion vector is given by z = [I −

(I −A)P]−1As , which exists under very mild conditions. For instance, in the proof of Lemma 10.1,

we see that a sufficient (but not necessary) condition for the equilibrium opinion vector to exist

uniquely is that P is irreducible and at least one i ∈ V has αi > 0. In the rest of this paper, we

always call P the interaction matrix.

We quantify Problem 1 as follows. The objective is to choose a resistance vector α to minimize

the sum of equilibrium opinions ⟨1, z⟩ = 1⊤z, i.e., the goal is to drive the average opinion towards 0.

Observe that one can also consider maximizing the sum of equilibrium opinions. To see that the

minimization and maximization problems are equivalent, consider the transformation x 7→ 1−x on

the opinion space [0, 1] that is applied to the innate opinions and expressed opinions in every time

step. Then, it follows that equation (2) still holds after the transformation. Hence, the minimization

problem in the original opinion space is equivalent to the maximization problem in the transformed

space. Either one is an optimization problem in which the goal is to drive the average opinion to

one of the polar opposites {0, 1}. Indeed, to get readers to be familiar with both interpretations, the

hardness is proved via the maximization variant in Section 6, while the algorithms are given via

the minimization variant in Sections 5 and 7.

Definition 3.1 (Opinion Susceptibility Problem). Given a set V of agents with innate opinions

s ∈ [0, 1]V and interaction matrix P ∈ [0, 1]V×V , suppose for each i ∈ V , its resistance is restricted

to some interval Ii := [li ,ui ] ⊆ [0, 1] where we assume that 0 < li < ui < 1.

The objective is to choose α ∈ IV := ×i ∈VIi ⊆ [0, 1]
V
such that the following objective function

is minimized:

f (α) := 1⊤[I − (I −A)P]−1As,

where A = Diag(α) is the diagonal matrix with Aii = αi . Observe that the assumption α > 0

ensures that the above inverse exists.

Unbudgeted vs Budgeted Variants. In Definition 3.1, we are allowed to modify the resistance of any

agent, and this is known as the unbudgeted variant. We also consider the budgeted variant: given

some initial resistance vector and a budget k , the resistance of at most k agents can be changed.

In this paper, we focus on efficient algorithms that optimally solve the unbudgeted variant. In

Section 6, we prove that the budgeted variant is NP-hard, and we propose efficient heuristics that

scale to large networks. Designing algorithms with solid approximation guarantees for the budgeted

variant is an interesting open problem.

Technical Assumption. To simplify our proofs, we assume that the interaction matrix P cor-

responds to an irreducible random walk. Irreducibility is satisfied if P arises from a connected

graph.

4 STRUCTURAL PROPERTIES OF OBJECTIVE FUNCTION
In this section, we investigate the properties of the objective function f in Definition 3.1; we assume

that the interaction matrix P and the innate opinion vector s are fixed, and f is a function on the

resistance vector α .
Non-convex Objective. Contrary to the claim in a preliminary version of this work (see [2]), the

objective f in Definition 3.1 is in general not a convex function of α . In fact, the following example

shows that it might be neither convex nor concave. Consider three verticesV = {1, 2, 3}, where the

innate vector s and the interaction matrix P are given by: s =


1

0.5
0

 and P =


0 0.5 0.5
0.5 0 0.5
0.5 0.5 0

 .
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Suppose we fix α2 = α3 = 0.1 and consider the objective as a function of α1 as д(α1) = 1⊤[I − (I −
A)P]−1As , where A = Diag(α1,α2,α3). Then, the plot of д in Figure 1 (a) shows that it is not convex.

Moreover, suppose this time we fix α1 = α2 = 0.1 and consider the objective as a function of α3 as

h(α3) = 1⊤[I − (I −A)P]−1As . Then, the plot of h in Figure 1 (b) shows that it is not concave.

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

(a)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

(b)

Fig. 1. Cross-Sections of Objective Function

Fortunately, we can still exploit some properties of the function. As we shall see, the main result

of this section is Corollary 4.10, which states that every local optimum (which will be defined

formally) is a global optimum. This enables us to use variants of the local search method to solve

the problem optimally.

4.1 Marginal Monotonicity
As in [2], we show that when one chooses the resistance αi for each agent i ∈ V , it suffices to

consider the extreme points {li ,ui }. Our approach explicitly analyzes the partial derivative
∂f (α )
∂αi

which plays a major role in the local search algorithm that we later develop.

Intuition: Guidance by Current Equilibrium Vector. Observe that given the innate opinion

vector s and irreducible interaction matrix P , for some resistance vector α ∈ (0, 1)V , the equilibrium
opinion vector is given by z(α) = [I − (I − A)P]−1As , where A = Diag(α). For some i ∈ V , if the
innate opinion si is larger than its equilibrium zi (α), this suggests that by being more stubborn,

agent i should be able to increase its equilibrium opinion. In other words, one would expect
∂zi (α )
∂αi

and si − zi (α) to have the same sign. However, what is surprising is that in Lemma 4.2, we shall see

that even for any j ∈ V ,
∂zj (α )
∂αi

and si − zi (α) have the same sign.

Notation. For any α ∈ RV and K ⊆ V , let α−K ∈ R
V
denote the vector such that α−K (i) = α(i)

if i < K , and α−K (i) = 0 if i ∈ K , i.e., the coordinates K of α are replaced with 0. Similarly, given

α ∈ RV , we denote A−K = Diag(α−K ).
In Definition 3.1, observe that the inverse [I − (I −A)P]−1

is involved in the objective function

f (α), where A = Diag(α). Since we wish to analyze the effect on f (α) of changing only a subset

of coordinates in α , the next lemma will be used for simplifying matrix arithmetic involving the

computation of inverses. Its proof is deferred to Section 10.

Lemma 4.1 (Inverse Arithmetic). Suppose α ∈ [0, 1)V has at least one non-zero coordinate and
P is an irreducible interaction matrix. Denote A := Diag(α). Then, the inverseM = [I − (I −A)P]−1

exists, and every entry ofM is positive. Moreover, for every k ∈ V , we have:
(1) (PM)kk =

Mkk−1

1−αk
> 0;

(2) (PM)k j =
Mk j
1−αk

> 0, for each j , k .
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Lemma 4.2 (Sign of Partial Derivative). In the Opinion Susceptibility Problem in Definition 3.1,
given the innate opinion vector s and irreducible interaction matrix P , recall that z(α) := [I − (I −

A)P]−1As , where A = Diag(α). Then, for any α ∈ (0, 1)V and any i,k ∈ V , the two values ∂zk (α )
∂αi

and
si − zi (α) have exactly the same sign in {−, 0,+}.

In particular, this implies that ∂f (α )
∂αi
=
∑

k ∈V
∂zk (α )
∂αi

also has the same sign as si − zi (α).

Proof. By the definition of the inverse of a matrix B, we have BB−1 = I . The partial derivative

with respect to a variable t is: ∂B
∂t B

−1 + B ∂B−1

∂t = 0. Hence, we have ∂B−1

∂t = −B
−1 ∂B

∂t B
−1. Applying

the above result with B = I − (I − A)P and t = αi and denoting M = [I − (I − A)P]−1
, we get

∂M
∂αi
= −Meie⊤i PM . Considering z(α) = MAs , we have ∂z(α )

∂αi
= ∂M

∂αi
As +Meie⊤i s . Replacing

∂M
∂αi

, we

obtain for any i,k ∈ V :

∂zk (α)

∂αi
= −e⊤kMeie⊤i PMAs + e⊤kMeie⊤i s = Mki · [si − e⊤i Pz(α)].

By Lemma 4.1, we know that every entry ofM is positive. Thus, the sign of
∂zk (α )
∂αi

is the same as

that of the scalar si − e⊤i Pz(α).
Recalling M = [I − (I − A)P]−1

, we have [I − (I − A)P]M = I ⇒ (I − A)PM = M − I ⇒ PM =
(I −A)−1(M − I ) where (I −A)−1

exists since α j < 1 for each j ∈ V .

Next, since z(α) = MAs , we have:

Pz(α) = PMAs = (I −A)−1(M − I )As = (I −A)−1[z(α) −As].

Finally, replacing Pz(α), we have

si − e⊤i Pz(α) =si − e
⊤
i (I −A)

−1[z(α) −As]

=si −
1

1 − αi
[zi (α) − αisi ]

=
1

1 − αi
[si − zi (α)].

Since 1 − αi > 0, it follows that
∂zk (α )
∂αi

and si − zi (α) have exactly the same sign in {−, 0,+}, as

required. �

The next lemma shows that the sign of the partial derivatives with respect to coordinate i is
actually independent of the current value αi . Its proof is deferred to Section 10.

Lemma 4.3 (Sign of Partial Derivative Independent of Coordinate Value). Referring to
Lemma 4.2. For any α ∈ (0, 1)V and any i ∈ V , denoteM = [I − (I −A−{i })P]−1. Then, ∂f (α )

∂αi
has the

same sign in {−, 0,+} as si −
∑

j,i Mi jα jsj , which is independent of αi .

Corollary 4.4 (Extreme Points are Sufficient). In Definition 3.1, for any i ∈ V , fixing the
resistance values of all other agents except i , the objective f (α) is a monotone function in αi . This
implies that to minimize f , it suffices to consider the extreme points αi ∈ {li ,ui }, for each i ∈ V .

Proof. If αi 7→ f (α) is a monotone function (that is either monotonically increasing or decreas-

ing), then the function achieves its minimum at either αi = li or αi = ui .
Applying this argument to every i ∈ V gives the result. �
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4.2 Local vs Global Optimum
As shown in Corollary 4.4, it suffices to choose the resistance vector α from the extreme points in

Definition 3.1. Lemma 4.2 readily gives a method to decide, given a current choice of α , whether
the objective f can be decreased by changing the resistance of some agent. In Lemma 4.9, we show

that if α is not a global minimum, then such an agent must exist. As we shall see, this implies that

a local search method can find a global minimum.

Given α and α ′ ∈ RV , denote ∆(α ,α ′) := {i ∈ V : αi , α ′i } as the set of coordinates at which the

vectors differ.

Definition 4.5 (Local Minimizer). Given an objective function f : IV → R, a vector α ∈ IV is a

local minimizer of f , if for all α ′ ∈ IV such that ∆(α ,α ′) = 1, f (α) ≤ f (α ′).

Notation.Whenwewish to consider the effect of changing the resistance of only 2 agents i , k ∈ V ,

we write f (α) = f (αi ,αk ), assuming that α−{i,k } is fixed.
Lemmas 4.6 and 4.7 give some technical results involving changing the resistance of two agents.

Their proofs are deferred to Section 10.

Lemma 4.6. For any i,k ∈ V such that i , k , let M = [I − (I − A−{i })P]
−1 and R = [I − (I −

A−{i,k })P]
−1. Then for any j ∈ V , we have

(1) Mjk =
Rjk

1+αkRkk−αk
,

(2) Mjh = R jh −
αkRjkRkh

1+αkRkk−αk
, for h , k .

In particular, the quantity in Lemma 4.3 can be rewritten as follows:

si −
∑
j,i

Mi jα jsj = si −
∑
j,i,k

Ri jα jsj −
αkRik

1 + αkRkk − αk
(sk −

∑
j,i,k

Rk jα jsj ).

Lemma 4.7 (Diagonal Entry). Suppose α ∈ (0, 1)V , recall that A−{i,k } := Diag(α−{i,k }), and P
corresponds to an irreducible interaction matrix. For any i,k ∈ V such that i , k , let R = [I − (I −
A−{i,k })P]

−1, then Rii = maxj ∈V R ji . Moreover, Rii = Rki if and only if Pkk + Pki = 1.

The following lemma gives the key insight for why local search works. Intuitively, it shows that

there does not exist any discrete “saddle point”. Even though its proof is technical, we still include

it here because of its importance.

Lemma 4.8 (Switching Lemma). Recall that f is defined in Definition 3.1 with an irreducible
interaction matrix P , and assume |V | ≥ 3. Suppose α , β ∈ (0, 1)V such that ∆(α , β) = {i,k} for some
i , k . Moreover, suppose further that

min{ f (αi ,αk ), f (βi , βk )} < min{ f (αi , βk ), f (βi ,αk )}.

Then, we have
max{ f (αi ,αk ), f (βi , βk )} > min{ f (αi , βk ), f (βi ,αk )}.

Proof. We prove the lemma by contradiction. Suppose

max{ f (αi ,αk ), f (βi , βk )} ≤ min{ f (αi , βk ), f (βi ,αk )}.

Without loss of generality, suppose further that f (αi ,αk ) ≥ f (βi , βk ). Then, we have

f (αi ,αk ) ≤

{
f (βi ,αk )

f (αi , βk )
and f (βi , βk ) <

{
f (βi ,αk )

f (αi , βk ).
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We remark that it is important to distinguish between the strict and non-strict inequality. We

use the notation f ′i to denote the partial derivative with respect to coordinate i .
From f (αi ,αk ) ≤ f (βi ,αk ) and the fact that f is marginally monotone (Lemma 4.3) and f ′i (x ,αk )

has the same sign in {−, 0,+} for x ∈ (0, 1), we have

f ′i (x ,αk ) · (αi − βi ) ≤ 0. (3)

On the other hand, from the strict inequality f (βi , βk ) < f (βi ,αk ), we know the partial derivative

f ′k (βi ,y) must have the same non-zero sign in {−,+} for all y ∈ (0, 1), again from Lemma 4.3.

Therefore, we have:

f ′k (βi ,y) · (αk − βk ) > 0. (4)

Similarly, f (αi ,αk ) ≤ f (αi , βk ) and f (βi , βk ) < f (αi , βk ) give that for all x ,y ∈ (0, 1), we have:

f ′k (αi ,y) · (αk − βk ) ≤ 0, (5)

f ′i (x , βk ) · (αi − βi ) > 0. (6)

Next, using Lemma 4.3 and R as defined in Lemma 4.6, the above inequalities (3) to (6) become:

[si −
∑
j,i,k

Ri jα jsj −
αkRik

1 + αkRkk − αk
(sk −

∑
j,i,k

Rk jα jsj )](αi − βi ) ≤ 0,

[sk −
∑
j,i,k

Rk jβjsj −
βiRki

1 + βiRii − βi
(si −

∑
j,i,k

Ri jβjsj )](αk − βk ) > 0,

[sk −
∑
j,i,k

Rk jα jsj −
αiRki

1 + αiRii − αi
(si −

∑
j,i,k

Ri jα jsj )](αk − βk ) ≤ 0,

[si −
∑
j,i,k

Ri jβjsj −
βkRik

1 + βkRkk − βk
(sk −

∑
j,i,k

Rk jβjsj )](αi − βi ) > 0.

Recall that α j = βj for j , i,k . Hence, we denote:

ci := si −
∑
j,i,k

Ri jα jsj = si −
∑
j,i,k

Ri jβjsj ,

ck := sk −
∑
j,i,k

Rk jα jsj = sk −
∑
j,i,k

Rk jβjsj ,

дi (x) :=
xRki

1 + xRii − x
and дk (x) :=

xRik
1 + xRkk − x

.

Then, we have

[ci − дk (αk )ck ](αi − βi ) ≤0, (7)

[ck − дi (βi )ci ](αk − βk ) >0, (8)

[ck − дi (αi )ci ](αk − βk ) ≤0, (9)

[ci − дk (βk )ck ](αi − βi ) >0. (10)

Observe that ci , 0, otherwise (8) and (9) contradict each other. Similarly, ck , 0, otherwise (7)

and (10) contradict each other. We next argue that cick > 0.

From (7) and (10) we have

[ci − дk (αk )ck ][ci − дk (βk )ck ] ≤ 0. (11)

If cick < 0, then the above expression will be positive, because дk (·) ≥ 0 (we shall see that later).

Hence, we conclude that ci and ck have the same sign.
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From (8) and (9) we have

[ck − дi (βi )ci ][ck − дi (αi )ci ] ≤ 0. (12)

Rearranging (11) and (12), we have:

[
ci
ck
− дk (αk )][

ci
ck
− дk (βk )] ≤ 0,

and

[
ck
ci
− дi (βi )][

ck
ci
− дi (αi )] ≤ 0.

Note that every entry of R is positive by Lemma 4.1 and we can easily prove дi (·) and дk (·) are
both strictly increasing functions in [0, 1]. Since α , β ∈ (0, 1)V , the above two inequalities imply

that

0 = дk (0) < дk (min{αk , βk }) ≤
ci
ck
,

ci
ck
≤ дk (max{αk , βk }) < дk (1) =

Rik
Rkk
≤ 1,

and

0 = дi (0) < дi (min{αi , βi }) ≤
ck
ci
,

ck
ci
≤ дi (max{αi , βi }) < дi (1) =

Rki
Rii
≤ 1,

where
Rik
Rkk
≤ 1 and

Rki
Rii
≤ 1 are from Lemma 4.7.

Notice that we get 0 < ci
ck
< 1 and 0 < ck

ci
< 1, which is a contradiction. Hence, the proof is

completed. �

Lemma 4.9 (Descending Coordinate). Let f be the function as defined in Definition 3.1. Suppose
α , β ∈ (0, 1)V such that f (α) > f (β). Then, there exists some i ∈ ∆(α , β) and γ ∈ (0, 1)V such that
∆(α ,γ ) = {i}, ∆(γ , β) = ∆(α , β) \ {i}, and f (α) > f (γ ).
In other words, by switching one coordinate (corresponding to i) of α to that of β , the objective

function f decreases strictly.

Proof. We prove the lemma by induction on |∆(α , β)|. The base case |∆(α , β)| = 1 is trivial.

We consider the inductive step with |∆(α , β)| = q, for some q ≥ 2. Given a list S of coordinates

from ∆(α , β), we use α[S ] to denote the resulting vector obtained from switching coordinates S of α
to those of β .
For contradiction’s sake, we assume that for all j ∈ ∆(α , β), f (α[j]) ≥ f (α); moreover, we pick

i ∈ ∆(α , β) such that f (α[i]) is minimized.

Observe that f (α[i]) ≥ f (α) > f (β) and |∆(α[i], β)| = q − 1. Therefore, by the induction

hypothesis, there exists some k ∈ ∆(α[i], β) such that f (α[i]) > f (α[i,k]).
Next, starting from α , we shall fix all coordinates in V except i and k , and we write the objective

f (x ,y) as a function on only these two coordinates.

Observe that we have already assumed that

f (αi ,αk ) ≤ min{ f (βi ,αk ), f (αi , βk )}. (13)

Moreover, from above, we have f (α[i]) > f (α[i,k ]), which translates to f (βi ,αk ) > f (βi , βk ). Ob-
serve thatwemust have f (αi , βk ) ≤ f (βi , βk ); otherwise, we have f (βi , βk ) < min{ f (βi ,αk ), f (αi , βk )},
which, together with (13), will contradict Lemma 4.8.

Therefore, we have f (α[k ]) = f (αi , βk ) ≤ f (βi , βk ) < f (βi ,αk ) = f (α[i]), which contradicts the

choice of i ∈ ∆(α , β) to minimize f (α[i]). This completes the inductive step and also the proof of

the lemma. �
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Corollary 4.10. For the function f in Definition 3.1 every local minimizer is a global minimizer.

Proof. Suppose that α is a local minimizer, but there is some β with f (α) > f (β). Then,
Lemma 4.9 implies there is some γ with |∆(α ,γ )| = 1 such that f (α) > f (γ ), contradicting that α is

a local minimizer. �

5 EFFICIENT LOCAL SEARCH
We have explained in Section 3 that our optimization problem can be interpreted equivalently as

either a minimization or a maximization problem. Since our algorithm can be seen as a variant of

gradient descent and local search, it will be more intuitive to view it as a minimization problem.

In Section 4, we conclude in Corollary 4.4 that it suffices to consider the extreme points of the

search space of resistance vectors. Moreover, Corollary 4.10 states that every local minimizer is a

global minimizer. Since we know how to compute the sign of the partial derivative with respect to

each coordinate using Lemma 4.2, we can design a simple local search algorithm to find a global

minimizer.

However, it is possible that O(2n) extreme points are encountered before a global minimizer is

reached. Fortunately, in this section, we will explore further properties of the objective function,

and design a local search algorithm that encounters at most O(n) extreme points before finding a

global minimizer.

5.1 Irrevocable Updates
Local Search Strategy.We shall start with the upper bound resistance vector, i.e., for each i ∈ V ,

αi = ui . This induces the corresponding equilibrium opinion vector z(α). According to Lemma 4.2,

if there is some agent i such that αi = ui and si − zi (α) > 0, then we should flip αi to the lower

bound li . The following lemma shows that each αi will be flipped at most once. Essentially, we

show that we will never encounter the situation that there is some agent k such that αk = lk and

sk − zk (α) < 0, in which case we would have to switch αk back to uk .

Lemma 5.1 (Each Coordinate Flipped at Most Once). Starting from the upper bound resistance
vector, the above local search strategy flips each αi at most once.

Proof. We first show that for each agent k ∈ V , the quantity sk − zk (α) cannot decrease when α
is modified according to the local search strategy. According to the strategy, α is modified because

there is some agent i such that αi = ui and si − zi (α) > 0. By Lemma 4.2,
∂zk
∂αi
> 0 for each k ∈ V .

Hence, after αi is switched from ui to li , zk (α) decreases, and the quantity sk − zk (α) increases.
Observe that if a coordinate αk is ever flipped from uk to lk , this means that at that moment, we

must have sk − zk (α) > 0, which, as we have just shown, will stay positive after α is subsequently

updated. �

5.2 Approximating the Equilibrium Vector
Observe that in our local search algorithm, we need to compute the equilibrium opinion vector

z(α) = [I − (I − A)P]−1As for the current resistance vector α , where A = Diag(α). However,
computing matrix inverse is an expensive operation. Instead, we approximate z(α) using the

recurrence z(0) ∈ [0, 1]V and z(t+1)
:= As + (I −A)Pz(t ). The following lemma gives an upper bound

on the additive error for each coordinate.

Lemma 5.2 (Approximation Error). Suppose for some ϵ > 0, for all i ∈ V , αi ≥ ϵ . Then, for every
t ≥ 0, ∥z(α) − z(t )∥∞ ≤

(1−ϵ )t
ϵ .
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Proof. Using the Neumann series [I − (I − A)P]−1 =
∑∞

j=0
[(I − A)P]j , we have z(α) − z(t ) =∑∞

j=t [(I −A)P]
jAs − [(I −A)P]tz(0).

We next prove, by induction, that for any x ∈ [0, 1]V , ∥[(I − A)P]jx ∥∞ ≤ (1 − ϵ)
j
, for all j ≥ 0.

The base case j = 0 is trivial because every coordinate of x is between 0 and 1. For the inductive

step, assume that for some j ≥ 0, every coordinate of y = [(I − A)P]jx has magnitude at most

(1 − ϵ)j . Since P is a row stochastic matrix, it follows that ∥Py∥∞ ≤ (1 − ϵ)
j
; finally, since αi ≥ ϵ

for all i ∈ V , we have ∥(I −A)Py∥∞ ≤ (1 − ϵ)
j+1

, completing the induction proof.

Finally, observing that both

∑∞
j=t [(I −A)P]

jAs and [(I −A)P]tz(0) have non-negative coordinates,
we have

∥z(α) − z(t )∥∞ ≤ max{∥

∞∑
j=t

[(I −A)P]jAs∥∞, ∥[(I −A)P]
tz(0)∥∞}

≤

∞∑
j=t

(1 − ϵ)j =
(1 − ϵ)t

ϵ

as required. �

5.3 Local Search Algorithm
Based on Lemmas 5.1 and 5.2, we give a local search framework in Algorithm 1. Observe that

in line 1, we perturb the innate opinions s slightly to ensure that for each resistance vector α
encountered, no coordinate of s and z(α) would coincide. The reason is that if for some i ∈ V ,
si = zi (α), then no matter how many iterations we run, the estimation zi of zi (α) will satisfy
|si − zi | ≤ err(t), which means that while loop in line 4 will not terminate. However, si = zi (α)
means that the objective function stays the same as coordinate i changes; this implies that the

optimal solution will be reached eventually, but the algorithm might not know when to terminate.

Thewhile loop in line 4 combines local search to update α and estimation of the equilibrium vec-

tor z(α). Here are two general update strategies, which are both captured by the non-deterministic

step in line 7:

• Conservative Update. The opinion vector z is iteratively updated in line 5 until all coordi-

nates of z and s are sufficiently far apart. Then, for every coordinate αi such that αi = ui and
zi < si , we flip αi to the lower bound li .
After we update α , we reset t to 0, and continue to iteratively update z. Whenever we update

α and set t to 0, we say that a new phase begins; we use the convention that the initial phase

is known as phase 0.

• Opportunistic Update. Instead of waiting for the approximation error of every coordinate of

z to be small enough, we can update some coordinates αi , if αi = ui and zi ≤ si −err(t) is small

enough. However, there is some tradeoff between waiting for the errors of all coordinates to

be small enough and updating coordinates of α that are ready sooner.

We might be tempted to update coordinates of α as soon as they are ready, but once α is

modified, we might need to wait for many iterations for the estimation of z(α) to be accurate

enough again. Therefore, we might also choose to wait for more coordinates of α to be ready

before we flip them all at once. In Section 8, we will evaluate empirically different update

strategies.

Optimistic Update. In both conservative and opportunistic updates, a coordinate αi is flipped
only when we know for sure that the current estimate zi has small enough error with respect to

the equilibrium zi (α); hence, no mistake in flipping any αi is ever made. However, our insight is

that as the algorithm proceeds, the general trend is for every zi to decrease.
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Algorithm 1: Local Search Framework

Input: Innate opinions s ∈ [0, 1]V ; interaction matrix P ; for each agent i ∈ V , upper ui and lower li
bounds for resistance.

Output: Optimal resistance vector α ∈ ×i ∈V {li ,ui }.
1 (Technical step.) Randomly perturb each coordinate of s slightly.

2 Initially, for each agent i , set αi ← ui to its upper bound; denote ϵα := mini ∈V αi .

3 Pick arbitrary z ∈ [0, 1]V , and set t ← 0; denote err(t) :=
(1−ϵα )t

ϵα .

4 while ∃i ∈ V : |si − zi | ≤ err(t) ∨ (zi < si ∧ αi = ui ) do
5 z ← As + (I −A)Pz, where A = Diag(α).
6 t ← t + 1.

7 (Non-deterministic step.) Pick arbitrary L ⊆ V (that can be empty) such that for each i ∈ L,
zi ≤ si − err(t) and αi = ui .

8 if L , ∅ then
9 for each i ∈ L do
10 Set αi ← li to its lower bound (and update ϵα ).

11 t ← 0.

12 return Resistance vector α .

The first intuition is that if we start with some z(0) such that every coordinate of z(0) is at least its
equilibrium coordinate of z(α), then z(t ) should converge to z(α) from above. The second observation

is that every timewe flip some αi , this will not increase any coordinate of the equilibrium vector z(α),
thereby preserving the condition that the current estimate z(t ) ≥ z(α). Hence, without worrying
about the accuracy of the current estimate z, we will simply flip coordinate αi to li when zi drops
below si . However, it is possible that we might need to flip αi back to ui , if zi increases in the next

iteration and becomes larger than si again. We shall see in Section 8 that this scenario is extremely

rare. Specifically, in line 8 of Algorithm 2, the set J is (almost) always empty.

6 NP-HARD BUDGETED OPINION SUSCEPTIBILITY PROBLEM
We now consider the setting where there is a constraint on the size of the target-set. That is, we

want to identify a set T ⊆ V of size k such that changing the resistance parameters of agents in

T optimally maximizes the sum of equilibrium opinions. Even though the minimization and the

maximization problems are equivalent, in the NP-hardness proof, the maximization variant will

make the calculation slightly simpler, because in this case, the “default” opinion value is 0 and the

algorithm tries to increase agents’ opinions. This means that under the maximization variant of the

hardness proof, the calculation will have more opinion values with 0.

We use α (0) to denote the given initial resistance vector. ForT ⊆ V , we define F (T ) := max{ f (α) :

∀i < T ,αi = α (0)i }; observe that F is defined with respect to the initial resistance vector α (0).
The budgeted opinion optimization problem is to maximize F (T ) subject to the budget constraint

|T | ≤ k .

Theorem 6.1. The budgeted opinion optimization problem is NP-hard.

Proof. We give a reduction from the vertex cover problem for regular graphs. Given a d-regular
graph G = (V ,E) and an integer K , the vertex cover problem asks whether there exists a set S of

nodes with size at most K such that S is a vertex cover, i.e., every edge in E is incident to at least

one node in S . For simplicity, we assume that

√
d is an integer.
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Algorithm 2: Optimistic Local Search

Input: Innate opinions s ∈ [0, 1]V ; interaction matrix P ; for each agent i ∈ V , upper ui and lower li
bounds for resistance.

Output: Optimal resistance vector α ∈ ×i ∈V {li ,ui }.
1 (Technical step.) Randomly perturb each coordinate of s slightly.

2 Initially, for each agent i , set αi ← ui to its upper bound; denote ϵα := mini ∈V αi .

3 Pick z = (1, 1, . . . , 1), and set t ← 0; denote err(t) :=
(1−ϵα )t

ϵα .

4 while ∃i ∈ V : |si − zi | ≤ err(t) do
5 z ← As + (I −A)Pz, where A = Diag(α).
6 t ← t + 1.

7 (Optimistic Candidates.) Set L← {i ∈ V : zi ≤ si ∧ αi = ui }.

8 (Rare Mistakes.) Set J ← {i ∈ V : zi > si ∧ αi = li }.

9 if L ∪ J , ∅ then
10 for each i ∈ L do
11 Set αi ← li to its lower bound (and update ϵα ).

12 for each i ∈ J do
13 Set αi ← ui to its upper bound (and update ϵα ).

14 t ← 0.

15 return Resistance vector α .

We give a reduction from the above vertex cover problem to the decision version of the opinion

optimization problem. In addition to a given graph G ′, the innate opinion vector s , the initial

resistance vector α (0) and the budget k , an instance of the decision version of opinion maximization

also has some threshold θ . The instance is “yes” iff there exists some node set T in G ′ with size at

most k such that F (T ) ≥ θ . To illustrate our ideas, we first give a reduction in which each agent’s

resistance parameter is in the range [0, 1]. Then, we show how to restrict the resistance to the range

[ϵ, 1] for some small enough ϵ > 0.

Reduction Construction. Suppose we are given an instance of the vertex cover problem for

regular graphs. We construct an instance of the decision version of the opinion optimization

problem. DefineG ′ = (V ∪V ′,E ∪E ′), whereV and E come from original vertex cover problem. For

i ∈ V , si = 1 and α (0) = 0; for i ′ ∈ V ′, si′ = 0, and we give more details on their initial resistance

parameters. The additional nodes V ′ and edges E ′ are added as follows. Let σ = 2n2(
√
d + 1)

(specified later).

For each i ∈ V , we add (σ + 1)
√
d additional nodes Vi into V

′
:

(i)

√
d flexible nodes. Each such node has degree 1 and is connected only to node i; its initial

resistance parameter in α (0) is 0.

(ii) σ
√
d stubborn nodes. These nodes form

√
d cliques, each of which has size σ . In each clique,

exactly one node is connected to i . All the stubborn nodes have initial resistance parameters

in α (0) being 1.

Observe that in G ′, the degree of each node in V is d + 2

√
d . Finally, we set the budget k = K

and the threshold θ = (
√
d + 1)k + (

√
d + 1)(n − k) d

d+
√
d
. To complete the reduction proof, we show

that there exists a vertex cover of size k in G iff there exists some T ⊆ V ∪V ′ of size k such that

F (T ) ≥ θ .
Forward Direction. Suppose in G, there is some vertex cover T ⊂ V with size k . We show that

in G ′, F (T ) ≥ θ ; we set αi = 1 for each i ∈ T , while the resistance parameters of all other nodes
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remain the same as in α (0). We next analyze the equilibrium opinion of each node. Observe that all

stubborn nodes in V ′ have equilibrium opinion 0.

For i ∈ T , node i has equilibrium opinion 1; moreover, all its

√
d flexible neighbors inV ′ will also

have equilibrium opinion 1.

For j ∈ V \T , we compute its equilibrium opinion zj . Since T is a vertex cover, all d neighbors of

j in V are in T and have equilibrium opinion 1. All

√
d flexible neighbors of j in V ′ have the same

equilibrium opinion zj , while the
√
d stubborn neighbors have opinion 0. Therefore, zj satisfies the

equation zj =
d

d+2

√
d
· 1 +

√
d

d+2

√
d
· zj +

√
d

d+2

√
d
· 0, which gives zj =

d
d+
√
d
.

Therefore, we have F (T ) ≥ (
√
d + 1)k + (

√
d + 1)(n − k) d

d+
√
d
= θ .

Backward Direction. Suppose there is someT ⊆ V ∪V ′ such that |T | = k and F (T ) ≥ θ . The goal
is to show that there is a vertex cover with size k in G. Observe that the innate opinions of nodes
in V are 1; hence, if we are allowed to change the resistance of a node i ∈ V , we should set αi = 1

to maximize the total equilibrium opinion.

We consider the following two cases.

1. Case T ⊆ V . i.e. all vertices in T are from V . We prove that T is a vertex cover in G by

contradiction.

Assume that there exists an edge {i, j} ∈ E such that both i, j < T . We derive an upper bound

z for the equilibrium opinion of i and j . Observe that for node i , at most (d−1) of its neighbors

are in T . Hence, we have z ≤ d−1

d+2

√
d
· 1 +

√
d+1

d+2

√
d
· z +

√
d

d+2

√
d
· 0, which gives zj ≤

d−1

d+
√
d−1

; the

important fact is that
d−1

d+
√
d−1

< d
d+
√
d
.

Observe that for any node inV \T , its equilibrium opinion is maximized when all its neighbors

in V are in T .
Hence, we have F (T ) ≤ θ ′, whereθ ′ := (

√
d+1)k+(

√
d+1)(n−k−2) d

d+
√
d
+(
√
d+1)2 d−1

d+
√
d−1

< θ ,

achieving the desired contradiction.

2. CaseT \V , ∅. In this case, we chooseT of size k such that F (T ) is maximized; if there is more

than one such T , we arbitrarily pick one such that |T ∩V | is maximized. For contradiction’s

sake, we assume that T \V , ∅ and T ∩V is not a vertex cover of G. (We actually just need

the weaker condition that V \T is non-empty.) We further consider the following cases.

(i) There is some flexible node u in T \ V . Suppose the degree-1 node u is connected to

i ∈ V . If i < T , then one can consider T ′ := T − u + i; if i ∈ T , then pick any j ∈ V \T
and consider T ′ := T − u + j.
In either case, it follows that F (T ′) ≥ F (T ) and |T ′ ∩V | > |T ∩V |, achieving the desired
contradiction.

(ii) There is some stubborn node u inT \V . Suppose u is in the clique associated with i ∈ T .
Observe that at most k nodes in the clique are inT . Hence, it follows that the equilibrium
opinion of any stubborn node is at most

k+1

σ .

Hence, for any j ∈ V \T , its equilibrium opinion satisfies zj ≤
d

d+2

√
d
· 1 +

√
d

d+2

√
d
· zj +

√
d

d+2

√
d
· k+1

σ . Since
k+1

σ ≤
1

2
, we have zj ≤

d+ 1

2

√
d

d+
√
d
.

Next, if i < T , then set j := i; otherwise, just pick any j ∈ V \T ; consider T ′ := T −u + j .
Note that the equilibrium opinion of stubborn nodes in the clique of u can drop by at

most
k (k+1)

σ < n2

σ .

However, the equilibrium opinion of other nodes cannot decrease and that of j increases

by at least

1

2

√
d

d+
√
d
= n2

σ , by the choice of σ .

Hence, we have the contradiction F (T ′) > F (T ).
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This completes the reduction proof for which the resistance parameter is chosen in the range

[0, 1]. We next show to how to modify the proof for the case in which the resistance value is chosen

in the interval [ϵ, 1] for some sufficiently small ϵ > 0.

The key point is that when we view F (T ) as a function of the resistance parameters in the

network G ′ constructed in the reduction, it is a continuous function. Define γ := θ − θ ′ > 0, where

θ and θ ′ are defined as above.

One can choose ϵ > 0 small enough such that the following holds. In the above proof, if we

replace any 0 resistance value with ϵ , then we have (i) if T is a vertex cover of size k in G, then
F (T ) ≥ θ −

γ
3
; (ii) if G does not have a vertex cover of size k , then for any T ⊆ V ∪V ′ of size k ,

F (T ) ≤ θ ′ +
γ
3
. This completes the proof.

�

7 HEURISTIC ALGORITHMS FOR BUDGETED OPINION SUSCEPTIBILITY PROBLEM
7.1 Marginal Greedy
We propose the Marginal Greedy in Algorithm 3 which has similar framework as the greedy

heuristic in [2] but employs the optimistic update strategy to approximate the equilibrium opinion

vector z(α).

7.2 Batch Gradient Greedy
We also give a gradient-based heuristic, called Batch Gradient Greedy (BGG), in Algorithm 4. The

while loop in line 6 employs the optimistic update strategy to approximate the equilibrium opinion

vector z(α) (as well as r (α)) until it is far apart enough from s to enter the following procedures.

Observe that in Line 17, we introduce the batch approach to accelerate the algorithm. When

dealing with a large scale network and a large budget, we can set the batch size proportional to

the budget, e.g. 1% of budget, to limit the times to run the outer while loop. However, a larger

batch size would intuitively lead to a solution with worse quality, because the algorithm needs to

commit to selecting more agents in each batch which might turn out to have less desirable partial

derivatives later. Our experiment results in Section 9.2 agree with this intuition.

From line 18 to 24, we consider a measure δi for each agent i , that is the partial derivative times

the change of resistance, to decide which agent to include in the batch in order to maximize the

decrease of the equilibrium. Since we are using the optimistic update strategy to approximate z

and r , we need to estimate its lower δ (l )i and upper δ (u)i bounds based on Lemma 5.2 and 7.1.

Then in lines 25 to 28, we try to pick a subset of agents such that their minimal measure lower

bound is greater than the maximal measure upper bound of the rest agents in V \T , i.e. to make

sure that we select a batch of agents with the greatest measure. Otherwise, we discard the subset

and do one more update of r and z until we can find such a subset.

7.3 Approximating the Derivative Vector
In Algorithm 4, we compute the partial derivative vector d(α) = ∇f (α) ∈ RV according to the

equations in the proof of Lemma 4.2, where

di (α) =
∂ f (α)

∂αi
=
si − zi (α)

1 − αi
· 1⊤[I − (I −A)P]−1ei =

si − zi (α)

1 − αi
· ri (α),

where we define r (α) = [I − P⊤(I −A)]−11 ∈ RV .

Lemma 7.1 (Approximation Error). Suppose for some ϵ > 0, for all i ∈ V , αi ≥ ϵ . For t ≥ 0,
define r (t ) =

∑t
j=0
[P⊤(I −A)]j1; we denote r (α) = r (∞).
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Algorithm 3:Marginal Greedy

Input: Innate opinions s ∈ [0, 1]V ; initial resistance vector α (0); budget k ; interaction matrix P ; for
each agent i ∈ V , upper ui and lower li bounds for resistance.

Output: The optimal set T of agents with changed resistance and the corresponding resistance vector

α with ∀i ∈ T : αi ∈ {li ,ui } and ∀i ∈ V \T : αi = α
(0)

i .

1 (Technical step.) Randomly perturb each coordinate of s slightly.

2 Initialize the sum of equilibrium options f ← |V | and the set of agents T ← ∅.

3 for j ← 1 to k do
4 Denote ϵα := mini ∈V α

(j)
i and err(t) :=

(1−ϵα )t
ϵα .

5 for each v ∈ V \T do
6 Set α (j) ← α (j−1)

and α
(j)
v ← uv to its upper bound (and update ϵα ).

7 Set z ← (1, 1, . . . , 1) and t ← 0.

8 while ∃i ∈ V : |si − zi | ≤ err(t) do
9 z ← As + (I −A)Pz, where A = Diag(α (j)).

10 t ← t + 1.

11 Set L← {i ∈ T ∪ {v} : zi ≤ si ∧ α
(j)
i = ui } and J ← {i ∈ T ∪ {v} : zi > si ∧ α

(j)
i = li }.

12 if L ∪ J , ∅ then
13 for each i ∈ L do
14 Set α

(j)
i ← li to its lower bound (and update ϵα ).

15 for each i ∈ J do
16 Set α

(j)
i ← ui to its upper bound (and update ϵα ).

17 t ← 0.

18 if f >
∑
i ∈V zi then

19 Set f ←
∑
i ∈V zi .

20 Update the selected agent v ′ ← v and the corresponding resistance vector α ′ ← α (j).

21 Update the set of selected agentsT ← T ∪ {v ′} and the corresponding resistance vector α (j) ← α ′.

22 return The set of agents T and resistance vector α (k).

Then, for every t ≥ 0, ∥r (α) − r (t )∥1 ≤ n · (1−ϵ )
t+1

ϵ .

Proof. We use the Neumann series [I − P⊤(I −A)]−1 =
∑∞

j=0
[P⊤(I −A)]j .

We have ∥r (α) − r (t )∥1 = 1⊤
∑∞

j=t+1
[P⊤(I −A)]j1.

We next prove, by induction, that for all j ≥ 0, 1⊤[P⊤(I −A)]j1 ≤ n(1 − ϵ)j .
The base case j = 0 is trivial.

For the inductive step, assume that for some j ≥ 0, 1⊤[P⊤(I − A)]j1 ≤ n(1 − ϵ)j . Since P is a

row stochastic matrix, it follows that 1⊤P⊤ = 1⊤. Hence, 1⊤[P⊤(I − A)]j+11 = 1⊤(I − A)[P⊤(I −
A)]j1 ≤ (1 − ϵ)1⊤[P⊤(I −A)]j1, where the inequality holds because every entry of the row vector

1⊤[P⊤(I −A)]j is non-negative. The inductive step is completed by using the induction hypothesis.

Finally, we have

∥r (α) − r (t )∥1 = 1⊤
∞∑

j=t+1

[P⊤(I −A)]j1 ≤ n
∞∑

j=t+1

(1 − ϵ)j = n ·
(1 − ϵ)t+1

ϵ
,

as required. �
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Algorithm 4: Batch Gradient Greedy (BGG)

Input: Innate opinions s ∈ [0, 1]V ; initial resistance vector α (0); budget k ; batch size b, interaction
matrix P ; for each agent i ∈ V , upper ui and lower li bounds for resistance; precision ρ.

Output: The optimal set T of agents with changed resistance and the corresponding resistance vector

α with ∀i ∈ T : αi ∈ {li ,ui } and ∀i ∈ V \T : αi = α
(0)

i .

1 (Technical step.) Randomly perturb each coordinate of s slightly.

2 Initialize the resistance vector α ← α (0) and the set of agents T ← ∅.

3 Denote ϵα := mini ∈V αi and err(t) :=
(1−ϵα )t

ϵα .

4 while |T | < k do
5 Set z ← (1, 1, . . . , 1); r ← (1, 1, . . . , 1); t ← 0.

6 while ∃i ∈ V : |si − zi | ≤ err(t) do
7 r ← 1 + P⊤(I −A)r and z ← As + (I −A)Pz, where A = Diag(α).
8 t ← t + 1.

9 Set L← {i ∈ T : zi ≤ si ∧ αi = ui } and J ← {i ∈ T : zi > si ∧ αi = li }.

10 if L ∪ J , ∅ then
11 for each i ∈ L do
12 Set αi ← li to its lower bound (and update ϵα ).

13 for each i ∈ J do
14 Set αi ← ui to its upper bound (and update ϵα ).

15 t ← 0.

16 Set δ (u) ← (0, 0, . . . , 0); δ (l ) ← (0, 0, . . . , 0); T ′ ← ∅; b ′ = min{b,k − |T |}.

17 while |T ′ | < b ′ do
18 for each i ∈ V \T do
19 (Compute upper d

(u)
i and lower d

(l )
i bound for the partial derivative.)

20 d
(u)
i ← [ri + |V | · err(t)] ·

|si−zi |+err(t )
1−αi . and d

(l )
i ← [ri − |V | · err(t)] ·

|si−zi |−err(t )
1−αi .

21 if si ≥ zi then
22 δ

(u)
i ← d

(u)
i · (αi − li ) and δ

(l )
i ← d

(l )
i · (αi − li ).

23 else
24 δ

(u)
i ← d

(u)
i · (ui − αi ) and δ

(l )
i ← d

(l )
i · (ui − αi ).

25 Pick T ′ to be the set of b ′ agents i in V \T with the largest δ
(l )
i .

26 if maxi ∈V \(T∪T ′) δ
(u)
i > mini ∈T ′ δ

(l )
i then

27 r ← 1 + P⊤(I −A)r and z ← As + (I −A)Pz, where A = Diag(α).
28 t ← t + 1 and T ′ ← ∅.

29 for i ∈ T ′ do
30 if si ≥ zi then
31 Set αi ← li to its lower bound (and update ϵα ).

32 else
33 Set αi ← ui to its upper bound (and update ϵα ).

34 Update the set of selected agents T ← T ∪T ′.

35 The code as Lines 5 to 15 without updating r .
36 return The set of agents T and resistance vector α .
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8 EXPERIMENTS FOR UNBUDGETED VARIANT
Experimental Setup. Our experiments run on a server with 2.1 GHz Intel Xeon Gold 6152 CPU

and 64GB of main memory. The server is limited to activate at most 24 threads by the administrator.

The real network topologies we use in our experiment are shown in Table 1; we interpret each

network as an undirected graph. The number n of nodes in the dataset networks ranges from about

1 million to 65 million; in each network, the numberm of edges is around 2n to 30n.

Table 1. Datasets Information for Different Networks

Name Number n of Nodes Numberm of Edges Source

Residence hall 217 2,672 [39]

Twitter 548 3,638 [19]

Hamsterster 1,788 12,476 [39]

Musae-twitch (PT) 1,912 31,299 [40]

Facebook (NIPS) 2,888 2,981 [39]

Advogato 5,042 39,227 [39]

Chess 7,115 55,779 [39]

Pretty Good Privacy 10,680 24,316 [39]

DBLP 12,495 49,563 [39]

Google+ 23,613 39,182 [39]

Facebook (WOSN) 63,392 816,831 [39]

Catster 148,826 5,447,464 [39]

com-Youtube 1,134,890 2,987,624 [40]

com-LiveJournal 3,997,962 34,681,189 [40]

LiveJournal 10,690,276 112,307,385 [39]

com-Friendster 65,608,366 1,806,067,135 [40]

Input Generation. For each dataset, we utilize the network topology and generate the input

parameters as follows. The innate opinion si of each agent i is independently generated uniformly

at random from [0, 1]. For each edge {i, j} in the network, we independently pickwi j uniformly

at random from [0, 1]; otherwise, we setwi j = 0. For (i, j) ∈ V ×V , we normalize Pi j :=
wi j∑

k∈V wik
.

From Lemma 5.2, one can see that approximating the equilibrium opinions is more difficult when

the resistance is low. However, since we still want to demonstrate that the resistance for each agent

can have varied lower and upper bounds, we set the lower bound li of each agent i independently
such that with probability 0.99, li equals 0.001, and with probability 0.01, it is picked uniformly at

random from [0.001, 0.1]. Similarly, each upper bound ui is independently selected such that with

probability 0.99, it equals to 0.999, and with probability 0.01, it is chosen uniformly at random from

[0.9, 0.999].

8.1 Update Strategies Comparison
We compare the following three update strategies described in Section 5: conservative, opportunistic

and optimistic. For the three smaller networks (com-Youtube, com-LiveJournal, LiveJournal), we

apply all three update strategies. For the largest network (com-Friendster), we only report the

performance of the optimistic update strategy, as the other two update strategies are not efficient

enough for such a large dataset.

Experimental Setup. For fair comparison among the update strategies, we always initialize

z = (1, 1, ..., 1). To compare their performances, we plot a curve for each strategy. The curves have
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a common x-axis, which corresponds to the number of times that the vector z has been updated so

far, i.e., the number of times line 5 (in both Algorithms 1 and 2) has been executed. Since line 5 is

the most time-consuming part of the algorithms, it will be a suitable common reference. We use

the term iteration to refer to each time z is updated.
Recall that in our local search method, initially all agents’ resistance parameters are set to the

upper bound. For each update strategy, the y-axis measures progress ratio, which is loosely reflected

by the current fraction of agents whose resistance parameters are set (or will definitely later be set)

to the lower bound. We will explain formally how the progress ratio for the y-axis is defined for

each strategy as follows.

• Conservative Strategy. We run Algorithm 1 such that in line 7, L is non-empty only if for

all i ∈ V , |si − zi | > err(t), in which case, we pick L to be the collection of all i’s such that

αi = ui and zi ≤ si − err(t).
For the y-axis, we plot the ratio of agents i for which currently αi = li , or we know definitely

that αi should be switched to li , i.e., currently αi = ui and zi ≤ si − err(t).
In Algorithm 1, the iterations (referring to each time z is updated) are grouped into phases,
where a non-empty L in an iteration marks the end of a phase. Observe that at the end of a

phase, for all i ∈ L, αi is set to li and t is reset to 0. Hence, in the next iteration, no coordinate

αi is certain to be switched. Hence, the curve has a step-like shape, where each plateau occurs

after the end of each phase.

Observe that initially ϵα = mini ui ≥ 0.9. Hence, it takes very few number of iterations to

satisfy ∀i ∈ V : |si − zi | > err(t); we call this the phase 0. At the end of the phase 0, we

set some αi = li and ϵα decreases significantly. Hence, subsequent phases have many more

iterations.

Observe that we can stop the iterative process, when for all i ∈ V , |si − zi | > err(t), but there
is no i ∈ V such that zi < si and αi = ui . This marks the end of the curve.

In each phase, we pick L of line 7 as the collection of all i’s such that zi ≤ si − err(t) only
when ∀i ∈ V : |si − zi | > err(t) (otherwise, we pick L = ∅). Then, we set αi = li for each i ∈ L
and t = 0. We call such a phase a conservative phase.
• Opportunistic Strategy. We run Algorithm 1 similarly as before. Phase 0 is the same as

the conservative strategy; we call a phase conservative, if it follows the conservative update
strategy.

Starting from phase 1, we can perform it in an opportunistic manner as follows. Recall that

at the beginning of a phase, t has just been reset to 0. At the t-th iteration of that phase, we

use L(t) to denote the collection of i’s such that zi ≤ si − err(t). For every 1000 iterations, we

compute an estimate slope(k) :=
|L(1000k) |− |L(1000(k−1)) |

1000
of the slope; we keep track km of the

maximum slope computed so far. After some iteration, if the estimated slope drops below

some factor (we use 0.1 in our experiments) of km , then we end this phase. Intuitively, each

additional iteration flips only a small number of coordinates αi , and hence, one would like to

end this phase. We call such a phase opportunistic.
Since typically the total number of phases is around 8, we run phase 1 to 6 opportunistically,

after which we run the remaining phases conservatively to make sure that all coordinates αi
that need to be changed will be flipped.

As in the conservative update strategy, for the y-axis, we plot the ratio of coordinates αi that
currently αi = li , or we know for sure should be switched to li , i.e. αi = ui and zi ≤ si − err(t).
• Optimistic Strategy.We implement Algorithm 2, where in each iteration after z is updated,
a coordinate αi is (re)set to li if zi < si , and (re)set to ui if zi > si . For the y-axis, we plot the
ratio of coordinates that currently take their lower bounds. The curve ends when enough
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Fig. 2. Update Strategies Comparison on com-Youtube.
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Fig. 3. Update Strategies Comparison on com-LiveJournal.

iterations are performed after some coordinate of α is last updated, in order to ensure that

the estimate z is close enough to the equilibrium vector according to Lemma 5.2.

Experiment Results. Each of Figures 2, 3 and 4 shows the plots for the three strategies in the

corresponding network (com-Youtube, com-LiveJournal or LiveJournal). Figure 5 shows the plot

of the optimistic strategy in the com-Friendster network, where the other two strategies are not

efficient enough for such a large network. As expected, the opportunistic strategy is slightly

better than the conservative strategy. From the positions of the plateaus, we can see that the

initial opportunistic phases end sooner than their conservative counterparts. Hence, overall the

opportunistic strategy performs slightly better than the conservative strategy; in increasing sizes of

the three tested networks, the numbers of iterations taken by the opportunistic strategy are 79.2%,

77.9% and 71.5%, respectively, of those taken by the conservative strategy.

On the other hand, the optimistic strategy can achieve the optimal resistance vector with much

fewer number of iterations than the other two strategies. In increasing sizes of the three smaller

networks, the numbers of iterations taken by the optimistic strategy are only 12.8%, 13.4% and

12.4%, respectively, of those taken by the conservative strategy. Moreover, the optimistic strategy

makes very few mistakes; in increasing sizes of the four networks, the numbers of times coordinates

are flipped from lower bounds back to upper bounds are 1, 0, 13 and 168, which are negligible for

networks with millions of nodes.

ACM Trans. Knowl. Discov. Data., Vol. 0, No. 0, Article 0. Publication date: 2020.



Opinion Dynamics Optimization by Varying Susceptibility to Persuasion via Non-Convex Local
Search 0:23

0 100 200 10k 80k 150k 220k 290k

Number of Iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

g
re

s
s
 R

a
ti
o

Conservative

Opportunistic

Optimistic

Fig. 4. Update Strategies Comparison on LiveJournal.
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Fig. 5. Optimistic Strategy on com-Friendster.

8.2 Running Time with Multiple Threads
We compare the actual running time using different number of threads for the optimistic strategy

on only the three smaller networks, since the largest network takes too long using only one thread.

Using all 24 available threads, running the optimistic strategy on the com-Friendster network

already takes around 50 hours.

The three bar graphs in Figure 6 show the running time (measured in minutes) for running the

optimistic strategy with different number of threads on the com-Youtube, com-LiveJournal and

LiveJournal networks. Since updating z (line 5 of Algorithm 2) is the most time-consuming part

of the algorithm, the fact that it is readily parallelizable supports the empirical results that using

multiple threads can greatly reduce the running time, where the effect is more prominent for larger

networks.

9 EXPERIMENTS FOR BUDGETED VARIANT
Experimental Setup. We conduct the experiments on a server with 3.4 GHz Intel(R) Core(TM)

i5-3570 CPU and 16GB of main memory. The server can activate at most 4 threads. The real network

topologies we use are also shown in Table 1.

Input Generation. In each instance of the following experiments, we generate a setup of s, P ,u, l

and α (0) randomly in a similar way to that in Section 8. Particularly, the initial resistance α (0)i of each

agent i is independently selected uniformly at random from [li ,ui ] after li and ui are generated.
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Fig. 6. Running Times vs Number of Threads on (a) com-Youtube, (b) com-LiveJournal and (c) LiveJournal

9.1 Agent Selection Strategies Comparison
As shown in Algorithm 3 and 4, we have two heuristic strategies, Marginal Greedy and Batch

Gradient Greedy (BGG), to select new agent into T . We also run experiments on a trivial random

node selection strategy, where it selects a new agent uniformly at random from V \T into T until

the budget is satisfied.

To compare their performance, we give the average equilibrium opinion zavд employing these

three agent selection strategies on small networks in Figure 7. For fair comparison, we use the same

setup of s, P ,u, l and α (0) on the same network. In each graph, one curve represents one strategy.

The curves share the same x-axis, which corresponds to the ratio of agents selected in T .
Observe that Marginal Greedy and Batch Gradient Greedy with batch size 1 have almost the same

zavд with the change of ratio of agents in T , which implies that they share similar performance.

While the random node selection strategy performs the worst among them.We also run experiments

using Batch Gradient Greedy with different constant batch sizes. When the batch size is small

enough relative to the number of agents in the network, Batch Gradient Greedy have similar

performance to Marginal Greedy. We will show more results on choosing different batch sizes in

the next section.

9.2 Batch Size Comparison
When the budget is proportional to the number n of agents, if we use constant batch size, the

number of times to pick a batch would beO(n) which can be too many on large scale network. One

way to solve this problem is to choose the batch size proportional to the number of agents (or the

budget), e.g. 1%n. Then the number of times to pick a batch would become O(1).
Figure 8 gives the average equilibrium opinion when using Batch Gradient Greedy (BGG) with

different batch sizes on large graphs. We can see that the batch sizes from 1% to 10% get similarly

good performance. The results of batch size 20% is slightly worse but acceptable. While the batch

size 50% performs the worst among them and is not a good choice. Thus, it is recommended to

select 10% of the number of agents (or the budget) or less as the batch size to balance the speed and

performance.

9.3 Running Time Comparison
We compare the actual running time of Marginal Greedy and Batch Gradient Greedy using different

methods to compute (or approximate) the equilibrium on only small networks, since the results on

larger networks are too time-consuming to collect.

Figure 9 (a) to (d) show the running time of Batch Gradient Greedy (BGG). We compare the

efficiency of computing the equilibrium opinion vector z(α) using the matrix inverse z(α) =
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Fig. 7. Average Equilibrium Opinion on Small Networks.

[I − (I − A)P]−1As and approximating z(α) using the random walk recurrence z(0) ∈ [0, 1]V and

z(t+1)
:= As + (I −A)Pz(t ), whereA = Diag(α). For each network, we run 30 different random setups

of s, P ,u, l and α (0). Then we record the running time to select the first batch of different batch

sizes in each setup and give the average and standard deviation in the bar graphs. Observe that the

matrix inverse is faster for networks with less than a few thousands agents. But roughly starting

from Chess, the matrix inverse requires more time to select a new batch than the random walk

recurrence, which implies that the complexity of matrix inverse is much higher.
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Fig. 8. Average Equilibrium Opinion on Large Networks.

While in Figure 9 (e), we show the running time results using Marginal Greedy. We run only

one random setup of s, P ,u, l and α (0) on the same network and collect the running time to select

the first 30 agents. Then we report the average and standard deviation of running time to select a

new agent. Together with Figure 9 (a) to (d), we see that Marginal Greedy is significantly more

time-consuming than Batch Gradient Greedy since Marginal Greedy has to compute the equilibrium

opinion vector for adding each candidate before selecting the best one. Considering they have

similar performance as shown in Section 9.1, Batch Gradient Greedy with proper batch size is much

more efficient than Marginal Greedy.

ACM Trans. Knowl. Discov. Data., Vol. 0, No. 0, Article 0. Publication date: 2020.



Opinion Dynamics Optimization by Varying Susceptibility to Persuasion via Non-Convex Local
Search 0:27

BGG to select new batch of size 1

R
e
si

d
e
n
ce

 h
a
ll

T
w

itt
e
r

H
a
m

st
e
rs

te
r

M
u
sa

e
-t

w
itc

h
 (

P
T

)
F

a
ce

b
o
o
k 

(N
IP

S
)

A
d
vo

g
a
to

C
h
e
ss

P
re

tt
y 

G
o
o
d
 P

ri
va

cy

D
B

L
P

0

10

20

30

40

s
e
c
o
n
d
s

matrix inverse

random walk

(a)

BGG to select new batch of size 10

R
e
si

d
e
n
ce

 h
a
ll

T
w

itt
e
r

H
a
m

st
e
rs

te
r

M
u
sa

e
-t

w
itc

h
 (

P
T

)
F

a
ce

b
o
o
k 

(N
IP

S
)

A
d
vo

g
a
to

C
h
e
ss

P
re

tt
y 

G
o
o
d
 P

ri
va

cy

D
B

L
P

0

10

20

30

40

s
e
c
o
n
d
s

matrix inverse

random walk

(b)

BGG to select new batch of size 100

R
e
si

d
e
n
ce

 h
a
ll

T
w

itt
e
r

H
a
m

st
e
rs

te
r

M
u
sa

e
-t

w
itc

h
 (

P
T

)
F

a
ce

b
o
o
k 

(N
IP

S
)

A
d
vo

g
a
to

C
h
e
ss

P
re

tt
y 

G
o
o
d
 P

ri
va

cy

D
B

L
P

0

10

20

30

40

s
e
c
o
n
d
s

matrix inverse

random walk

(c)

BGG to select new batch of size 1000

H
a
m

st
e
rs

te
r

M
u
sa

e
-t

w
itc

h
 (

P
T

)

F
a
ce

b
o
o
k 

(N
IP

S
)

A
d
vo

g
a
to

C
h
e
ss

P
re

tt
y 

G
o
o
d
 P

ri
va

cy

D
B

L
P

0

10

20

30

40

s
e
c
o
n
d
s

matrix inverse

random walk

(d)

Marginal Greedy to select new agent

R
e
s
id

e
n
c
e
 h

a
ll

T
w

it
te

r

H
a
m

s
te

rs
te

r

M
u
s
a
e
-t

w
it
c
h
 (

P
T

)

F
a
c
e
b
o
o
k
 (

N
IP

S
)

0

2000

4000

6000

se
co

n
d
s

matrix inverse

random walk

(e)

Fig. 9. Average and Standard Deviation of Running Time to Select New Agent or Batch.

9.4 Resistance Generation From Power Law Distribution
We run experiments with the initial resistance vector α (0) generated from the power law distribution

instead of the uniform distribution to see how the heuristic algorithms respond to different distri-

butions. Particularly, each coordinate α (0)i is independently generated from [li ,ui ] with probability

density function proportional to x−2
. Observe that the initial resistance vector generated in this

way would have most of its coordinates being low values. Figure 10 (a) shows the results using the

above setup (denoted as power law distribution, low) on Hamsterster where s, P ,u, l are unchanged.
We also run experiments using a resistance vector with most of its coordinates having high values.
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Fig. 10. Average Equilibrium Opinion on Hamsterster with α (0) Generated from Power Law Distribution.

For each coordinate α (0)i , we first independently generate a αi from [li ,ui ] with probability density

function proportional to x−2
, and then compute α (0)i = ui − αi + li . The corresponding results

(denoted as power law distribution, high) on Hamsterster are given in Figure 10 (b). We can see

that Marginal Greedy and Batch Gradient Greedy with batch size 1 still have similar performance

under different resistance distributions.
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Fig. 11. Average Equilibrium Opinion on Google+ with α (0) Generated from Different Distributions.

Figure 11 gives the average equilibrium opinion on Google+ with initial resistance vector α (0)

generated from different distributions. We only run experiments with batch size 1% since the

performance is good enough. We can conclude that under the same s, P ,u, l and budget, the

obtained average equilibrium opinion would be higher if the agents of the network tend to have

higher resistance.

10 TECHNICAL PROOFS
Lemma 10.1. (Lemma 4.1 restated) Suppose α ∈ [0, 1)V has at least one non-zero coordinate and P

is an irreducible interaction matrix. Denote A := Diag(α). Moreover, the inverseM = [I − (I −A)P]−1

exists, and every entry ofM is positive. Moreover, for every k ∈ V , we have:

(1) (PM)kk =
Mkk−1

1−αk
> 0;

(2) (PM)k j =
Mk j
1−αk

> 0, for each j , k .
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Proof. Observe that P corresponds to an irreducible random walk. Suppose that αi0 > 0. Hence,

(I − A)P represents a diluted random walk, where at the beginning of each step, the measure at

node i0 will suffer a factor of (1 − α0) < 1. The irreducibility of the random walk P means that

every state is reachable from any state. Hence, starting from any measure vector, eventually the

measure at every node will tend to 0. This means that (I −A)P has eigenvalues with magnitude

strictly less than 1. Therefore, we can consider the following Neumann series of a matrix:

M = [I − (I −A)P]−1 = I +
∞∑
k=1

[(I −A)P]k ,

which implies that the inverseM exists, and every entry ofM is positive; in particular, for every

k ∈ V ,Mkk > 1.

By the definition of M , we have [I − (I − A)P]M = I . We fix some k ∈ V . By considering the

(k,k)-the entry, i.e., the dot product between the k-th row of [I − (I −A)P] and the k-th column of

M , we have

Mkk −
∑
i ∈V

(1 − αk )PkiMik = 1.

Hence, we have (PM)kk =
∑

i ∈V PkiMik =
Mkk−1

1−αk
.

Similarly, for j , k , by considering the dot product between the k-th row of [I − (I −A)P] and
the j-th column ofM , we have

Mk j −
∑
i ∈V

(1 − αk )PkiMi j = 0.

Hence, we have for j , k ,

(PM)k j =
∑
i ∈V

PkiMi j =
Mk j

1 − αk
,

as required. �

Lemma 10.2. (Lemma 4.3 restated) Referring to Lemma 4.2. For any α ∈ (0, 1)V and any i ∈ V ,
denoteM = [I −(I −A−{i })P]−1. Then, ∂f (α )

∂αi
has the same sign in {−, 0,+} as si −

∑
j,i Mi jα jsj , which

is independent of αi .

Proof. Using the Sherman-Morrison formula, we consider

X :=[I − (I −A)P]−1 = [I − (I −A−{i } − αieieTi )P]
−1

=[I − (I −A−{i })P + αieieTi P]
−1

=M −
αi

1 + αieTi PMei
MeieTi PM .

Observe that eTi PMei = (PM)ii and (MeieTi PM)i j = Mii (PM)i j for each j ∈ V . Then, by Lemma

4.1, we have

Xii =Mii −
αiMii (PM)ii
1 + αi (PM)ii

= Mii −
αiMii (Mii − 1)

1 + αi (Mii − 1)

=
(1 − αi + αiMii − αiMii + αi )Mii

1 − αi + αiMii
=

Mii

1 − αi + αiMii
;
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and for j , i ,

Xi j =Mi j −
αiMii (PM)i j

1 + αi (PM)ii
= Mi j −

αiMiiMi j

1 + αi (Mii − 1)

=
(1 − αi + αiMii − αiMii )Mi j

1 − αi + αiMii
=
(1 − αi )Mi j

1 − αi + αiMii
.

By Lemma 4.2, we know
∂f (α )
∂αi

and si − zi (α) have the same sign in {−, 0,+}. Recall that z(α) =

[I − (I −A)P]−1As = XAs . Applying the above results, we have

si − zi (α) =si −
∑
j ∈V

Xi jα jsj

=si −
Miiαisi

1 − αi + αiMii
−
∑
j,i

(1 − αi )Mi jα jsj

1 − αi + αiMii

=
si (1 − αi + αiMii ) −Miiαisi − (1 − αi )

∑
j,i Mi jα jsj

1 − αi + αiMii

=
(1 − αi )(si −

∑
j,i Mi jα jsj )

1 − αi + αiMii
.

Since αi ∈ (0, 1), we conclude that
1−αi

1−αi+αiMii
> 0. Thus

∂f (α )
∂αi

, si − zi (α) and si −
∑

j,i Mi jα jsj
have the same sign. �

Lemma 10.3. (Lemma 4.6 restated) For any i,k ∈ V such that i , k , let M = [I − (I −A−{i })P]−1

and R = [I − (I −A−{i,k })P]−1. Then for any j ∈ V , we have

(1) Mjk =
Rjk

1+αkRkk−αk
,

(2) Mjh = R jh −
αkRjkRkh

1+αkRkk−αk
, for each h , k .

In particular, the quantity in Lemma 4.3 can be rewritten as follows:

si −
∑
j,i

Mi jα jsj = si −
∑
j,i,k

Ri jα jsj −
αkRik

1 + αkRkk − αk
(sk −

∑
j,i,k

Rk jα jsj ).

Proof. Using the Sherman-Morrison formula, we have

M = [I − (I −A−{i,k })P + αkekeTk P]
−1

= R −
αk

1 + αkeTk PRek
RekeTk PR

We can compute that eTk PRek = (PR)kk and (RekeTk PR)jh = R jk (PR)kh for j,h ∈ V . Then we have

Mjh = R jh −
αkR jk (PR)kh

1 + αk (PR)kk
.

By Lemma 4.1, we obtain

Mjh = R jh −
αkR jkRkh

1 + αkRkk − αk
for j,h ∈ V and h , k ,

and

Mjk = R jk −
αkR jk (Rkk − 1)

1 + αkRkk − αk
=

R jk

1 + αkRkk − αk
for j ∈ V .

as required. �
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Lemma 10.4. (Lemma 4.7 restated) Suppose α ∈ (0, 1)V , recall that A−{i,k } := Diag(α−{i,k }),
and P corresponds to an irreducible interaction matrix. For any i,k ∈ V such that i , k , let R =
[I − (I −A−{i,k })P]

−1, then Rii = maxj ∈V R ji . Moreover, Rii = Rki if and only if Pkk + Pki = 1.

Proof. We have [I − (I −A−{i,k })P]R = I . By considering the dot product between each row of

[I − (I −A−{i,k })P] and column i of R, we have

Rii −
∑
h∈V

PihRhi = 1,Rki −
∑
h∈V

PkhRhi = 0,

and R ji −
∑
h∈V

(1 − α j )PjhRhi = 0, for j , i,k .

After rearranging, we have

Rii = 1 +
∑
h∈V

PihRhi ,Rki =
∑
h∈V

PkhRhi ,

and R ji = (1 − α j )
∑
h∈V

PjhRhi , for j , i,k .

Now it suffices to show that for j , i,k , the above R ji cannot be the maximum among them, and

Rki ≤ Rii .
First, we show that R ji cannot be the maximum. Since

∑
h∈V Pjh = 1 and α j ∈ (0, 1), we have

R ji = (1 − α j )
∑
h∈V

PjhRhi ≤ (1 − α j )max

h∈V
Rhi < max

h∈V
Rhi .

Thus, R ji cannot be the maximum.

Next, we show that Rki ≤ Rii by contradiction. Suppose Rki > Rii , then Rki is the unique

maximum in the i-th column of R. Since
∑
h∈V Pkh = 1 and Rki =

∑
h∈V PkhRhi , it must be the case

that Pkk = 1. This means P corresponds to a random walk with absorbing state k , which contradicts

that P is irreducible. Therefore, we have Rki ≤ Rii , and hence Rii = maxh∈V Rhi .
Observe that we already know R ji < Rii for j , i,k , and Rki =

∑
h∈V PkhRhi . Hence, Rki = Rii

implies that Pkk + Pki = 1.

Conversely, Pkk + Pki = 1 implies that Rki = PkkRki + PkiRii . As argued above, we must have

Pkk , 1, which implies Rki = Rii . �

11 CONCLUSION AND FUTUREWORK
In this workwe have introduced a novel formulation of social influence, that focuses on interventions

at the level of susceptibility using a well-established opinion dynamics model. We give a solid

theoretical analysis of the unbudgeted variant of the opinion susceptibility problem, and designed

scalable local search algorithms that can solve the problem optimally on graphs with millions of

nodes. We also prove that the budgeted variant is NP-hard, and provide scalable heuristics that we

evaluate experimentally. We believe that our techniques for the unbudgeted variant will lead to

insights for the analysis of the budgeted variant of the problem. We leave the task of providing

theoretical guarantees for greedy algorithms on the budgeted variant as future work.

Other Models Involving Inertia. We remark that the notion of susceptibility is similar to inertia

in other iterative update rules considered in the literature. For instance, Como and Fagnani [14]

considered an iterative update rule that replaces the innate opinion s with the previous expressed

opinion z(t ) in equation (2) in Section 3. The resulting rule becomes z(t+1)
:= Pαz

(t )
, where the

resistance parameters α are absorbed into the row stochastic matrix Pα := A + (I − A)P . In this

case, observe that an equilibrium zα ) corresponds to an 1-eigenvector, which is unique if P is

irreducible and at least one αi > 0. Therefore, the sum of opinions becomes 1⊤zα = nπ⊤α z(0), where
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π⊤α = π⊤α Pα is the stationary distribution (also known as the centrality vector) of the random walk

corresponding to Pα .
It would be interesting to investigate how does this affect the hardness of the influence opti-

mization under this new update rule. We would like to point out that Amelkin and Singh [5] have

analyzed how the centrality vector of a graph changes as edges are modified, and they showed that

some associated optimization problem is NP-hard.

12 ACKNOWLEDGMENTS
This research was partially supported by a grant from the PROCORE France-Hong Kong Joint Re-

search Scheme sponsored by the Research Grants Council of Hong Kong and the Consulate General

of France in Hong Kong under the project F-HKU702/16. T-H. Hubert Chan was partially supported

by the Hong Kong RGC under the grants 17200817 and 17201220. Jon Kleinberg acknowledges

support from a Simons Investigator grant and a Vannevar Bush Faculty Fellowship. Charalampos E.

Tsourakakis acknowledges support from Intesa Sanpaolo Innovation Center; the funder had no role

in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

REFERENCES
[1] Rediet Abebe, Lada A. Adamic, and Jon M. Kleinberg. 2018. Mitigating Overexposure in Viral Marketing. In AAAI.

AAAI Press, 241–248.

[2] Rediet Abebe, Jon M. Kleinberg, David C. Parkes, and Charalampos E. Tsourakakis. 2018. Opinion Dynamics with

Varying Susceptibility to Persuasion. In KDD. ACM, 1089–1098.

[3] Daron Acemoglu and Asuman E. Ozdaglar. 2011. Opinion Dynamics and Learning in Social Networks. Dynamic Games
and Applications 1, 1 (2011), 3–49.

[4] Joseph P. Allen, Maryfrances R. Porter, and F. Christy McFarland. 2006. Leaders and followers in adolescent close

friendships: Susceptibility to peer influence as a predictor of risky behavior, friendship instability, and depression.

Development and Psychopathology 18, 1 (2006), 155–172. https://doi.org/10.1017/S0954579406060093

[5] Victor Amelkin and Ambuj K. Singh. 2019. Fighting Opinion Control in Social Networks via Link Recommendation. In

KDD. ACM, 677–685.

[6] Solomon E. Asch. 1955. Opinions and social pressure. 195 (1955), 31–35. https://doi.org/10.1038/

scientificamerican1155-31

[7] Jonah Berger and Chip Heath. 2007. Where Consumers Diverge from Others: Identity Signaling and Product Domains.

34, 2 (2007), 121–134. http://www.jstor.org/stable/10.1086/519142

[8] Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro. 2016. Global Optimality of Local Search for Low Rank

Matrix Recovery. In NIPS. 3873–3881.
[9] David Bindel, Jon M. Kleinberg, and Sigal Oren. 2015. How bad is forming your own opinion? Games and Economic

Behavior 92 (2015), 248–265.
[10] T.-H. Hubert Chan, Zhibin Liang, and Mauro Sozio. 2019. Revisiting Opinion Dynamics with Varying Susceptibility to

Persuasion via Non-Convex Local Search. In WWW. ACM, 173–183.

[11] T-H. Hubert Chan and Chui Shan Lee. 2021. On the Hardness of Opinion Dynamics Optimization with L1-Budget on

Varying Susceptibility to Persuasion. arXiv:cs.SI/2105.04105

[12] Robert B. Cialdini. 1993. Influence: Science and Practice (3rd ed.). HarperCollins College Publishers.
[13] Robert B. Cialdini. 2001. The science of persuasion. 284 (2001), 76–81. https://doi.org/10.1038/scientificamerican0201-76

[14] Giacomo Como and Fabio Fagnani. 2016. From local averaging to emergent global behaviors: The fundamental role of

network interconnections. Syst. Control. Lett. 95 (2016), 70–76.
[15] Ayn E. Crowley and Wayne D. Hoyer. 1994. An Integrative Framework for Understanding Two-Sided Persuasion.

Journal of Consumer Research 20, 4 (1994), 561–574. http://www.jstor.org/stable/2489759

[16] Abhimanyu Das, Sreenivas Gollapudi, Arindham Khan, and Renato Paes Leme. 2014. Role of Conformity in Opinion

Dynamics in Social Networks. In Proceedings of the Second ACM Conference on Online Social Networks (COSN ’14).
ACM, New York, NY, USA, 25–36. https://doi.org/10.1145/2660460.2660479

[17] Abhimanyu Das, Sreenivas Gollapudi, and Kamesh Munagala. 2014. Modeling Opinion Dynamics in Social Networks.

In Proceedings of the 7th ACM International Conference on Web Search and Data Mining (WSDM ’14). ACM, New York,

NY, USA, 403–412. https://doi.org/10.1145/2556195.2559896

[18] Abhimanyu Das, Sreenivas Gollapudi, Rina Panigrahy, andMahyar Salek. 2013. Debiasing SocialWisdom. In Proceedings
of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’13). ACM, New

ACM Trans. Knowl. Discov. Data., Vol. 0, No. 0, Article 0. Publication date: 2020.

https://doi.org/10.1017/S0954579406060093
https://doi.org/10.1038/scientificamerican1155-31
https://doi.org/10.1038/scientificamerican1155-31
http://www.jstor.org/stable/10.1086/519142
http://arxiv.org/abs/cs.SI/2105.04105
https://doi.org/10.1038/scientificamerican0201-76
http://www.jstor.org/stable/2489759
https://doi.org/10.1145/2660460.2660479
https://doi.org/10.1145/2556195.2559896


Opinion Dynamics Optimization by Varying Susceptibility to Persuasion via Non-Convex Local
Search 0:33

York, NY, USA, 500–508. https://doi.org/10.1145/2487575.2487684

[19] Abir De, Sourangshu Bhattacharya, Parantapa Bhattacharya, Niloy Ganguly, and Soumen Chakrabarti. 2019. Learning

Linear Influence Models in Social Networks from Transient Opinion Dynamics. ACM Trans. Web 13, 3 (2019), 16:1–16:33.
https://doi.org/10.1145/3343483

[20] Morris H. DeGroot. 1974. Reaching a Consensus. J. Amer. Statist. Assoc. 69, 345 (1974), 118–121. http://www.jstor.org/

stable/2285509

[21] T. E. Dielman, Deborah D. Kloska, Sharon L. Leech, John E. Schulenberg, and Jean T. Shope. 1992. Susceptibility to

peer pressure as an explanatory variable for the differential effectiveness of an alcohol misuse prevention program in

elementary schools. Journal of School Health 62, 6 (1992), 233–237.

[22] Pedro Domingos and Matt Richardson. 2001. Mining the Network Value of Customers. In Proceedings of the Seventh
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’01). ACM, New York, NY, USA,

57–66. https://doi.org/10.1145/502512.502525

[23] William N. Evans, Wallace E. Oates, and Robert M. Schwab. 1992. Measuring peer group effects: A study of teenage

behavior. Journal of Political Economy 100, 5 (1992), 966–991.

[24] B. J. Fogg. 2002. Persuasive Technology: Using Computers to ChangeWhat We Think and Do. Ubiquity 2002, December,

Article 5 (Dec. 2002). https://doi.org/10.1145/764008.763957

[25] Marieke L. Fransen, Edith G. Smit, and Peeter W. J. Verlegh. 2015. Strategies and motives for resistance to persuasion:

A integrative framework. 6 (08 2015), 1201.

[26] Noah E. Friedkin and Eugene C. Johnsen. 1999. Social Influence Networks and Opinion Change. 16 (01 1999), 1–19.

[27] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. 2015. Escaping From Saddle Points - Online Stochastic Gradient for

Tensor Decomposition. In COLT (JMLR Workshop and Conference Proceedings), Vol. 40. JMLR.org, 797–842.

[28] Rong Ge, Jason D. Lee, and Tengyu Ma. 2016. Matrix Completion has No Spurious Local Minimum. In NIPS. 2973–2981.
[29] Javad Ghaderi and R. Srikant. 2013. Opinion dynamics in social networks: A local interaction game with stubborn

agents. In ACC. IEEE, 1982–1987.
[30] Aristides Gionis, Evimaria Terzi, and Panayiotis Tsaparas. 2013. Opinion Maximization in Social Networks. In SDM.

SIAM, 387–395.

[31] Philip Hartman. 1959. On functions representable as a difference of convex functions. Pacific J. Math. 9, 3 (1959),
707–713. https://projecteuclid.org:443/euclid.pjm/1103039111

[32] Yansong Hu and Christophe Van den Bulte. 2014. Nonmonotonic Status Effects in New Product Adoption. Marketing
Science 33, 4 (July 2014), 509–533. https://doi.org/10.1287/mksc.2014.0857

[33] Wijnand IJsselsteijn, Yvonne de Kort, Cees Midden, Berry Eggen, and Elise van den Hoven. 2006. Persuasive Technology

for Human Well-being: Setting the Scene. In Proceedings of the First International Conference on Persuasive Technology
for Human Well-being (PERSUASIVE’06). Springer-Verlag, Berlin, Heidelberg, 1–5. http://dl.acm.org/citation.cfm?id=

1986822.1986823

[34] Prateek Jain and Purushottam Kar. 2017. Non-convex Optimization for Machine Learning. Foundations and Trends in
Machine Learning 10, 3-4 (2017), 142–336.

[35] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan. 2017. How to Escape Saddle Points

Efficiently. In ICML (Proceedings of Machine Learning Research), Vol. 70. PMLR, 1724–1732.

[36] Yogesh V. Joshi, David J. Reibstein, and Z. John Zhang. 2016. Turf Wars: Product Line Strategies in Competitive

Markets. Marketing Science 35, 1 (2016), 128–141.
[37] Maurits Kaptein, Panos Markopoulos, Boris Ruyter, and Emile Aarts. 2009. Can You Be Persuaded? Individual

Differences in Susceptibility to Persuasion. In Proceedings of the 12th IFIP TC 13 International Conference on Human-
Computer Interaction: Part I (INTERACT ’09). Springer-Verlag, Berlin, Heidelberg, 115–118. https://doi.org/10.1007/

978-3-642-03655-2_13

[38] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the Spread of Influence Through a Social Network. In

Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’03).
ACM, New York, NY, USA, 137–146. https://doi.org/10.1145/956750.956769
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