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ABSTRACT
In many situations a player may act so as to maximize a
perceived utility that is not exactly her utility function, but
rather some other, biased, utility. Examples of such bi-
ased utility functions are common in behavioral economics,
and include risk attitudes, altruism, present-bias and so on.
When analyzing a game, one may ask how inefficiency, mea-
sured by the Price of Anarchy (PoA) is affected by the per-
ceived utilities.

The smoothness method [16, 15] naturally extends to games
with such perceived utilities or costs, regardless of the game
or the behavioral bias. We show that such biased-smoothness
is broadly applicable in the context of nonatomic congestion
games. First, we show that on series-parallel networks we
can use smoothness to yield PoA bounds even for diverse
populations with different biases. Second, we identify var-
ious classes of cost functions and biases that are smooth,
thereby substantially improving some recent results from the
literature.

1. INTRODUCTION
Game theory is founded on the assumption that players

are rational decision makers, i.e. maximizing their utility,
and that groups of agents reach an equilibrium outcome.
However agents, either human or automated, often have
bounded resources that prevent them from finding the op-
timal response in every situation. Further, human decision
makers are prone to various cognitive and behavioral bi-
ases, such as risk-aversion, loss-aversion, tendency to focus
on short-term utility (present-bias) and so on.

As a concrete example, commuters may have some infor-
mation on the expected congestion at each route via traffic
reports or a cellphone app. However they also know that this
information is inaccurate, and a risk-averse driver might try
to minimize some combination of the expected latency and
the variance rather than the expectation alone. An even
more heuristic pessimistic approach (e.g. if the driver does
not know the distribution of latency), is to simply add a
“safety margin” of 20% to the congestion at each road. A
less pessimistic commuter may only add 5% or 10%.

The implications of these limitations and biases on game
playing can be similarly described: in essence, the players
are playing the “wrong game,” by either applying some sim-
ple heuristics, or optimizing a different utility function from
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the one in the game specification [6]. Moreover, different
agents may have different perspective on the game.

Fortunately, as long as we can incorporate the biases that
affect agents into suitably modified utility (or cost) func-
tions, we can still use traditional equilibrium concepts. More
formally, suppose that in the real underlying game G each
agent i has some utility function ui. Now, each player i sees
her utility as some other function ûi, and thus we are in-
terested in the equilibria of the biased game Ĝ comprised of
modified utilities {ûi}.

Our starting point in this paper is the smoothness frame-
work [15] in nonatomic congestion games. The smoothness
framework connects a particular property of the edge cost
functions (say, (1, 1

4
)-smoothness of affine functions), with a

tight upper bound on the price of anarchy (PoA), this bound
also being independent of the network topology [13].

Smoothness for modified costs has also been considered;
e.g. by Bonifaci et al. [3] in the context of taxes that can
also be viewed as a perturbation on utilities. The defini-
tion of smoothness naturally extends to account for bias,
and the modified definition (which contains both c and ĉ)
guarantees a PoA bound in a similar manner to standard
smoothness PoA analysis. More over, it is easy to see that
while [3] considered a particular modified cost function, the
same biased-smoothness approach works for any combina-
tion of cost function c and bias ĉ. PoA bounds have been
similarly attained via smoothness for games with altruistic
players [4].1

Thus the PoA is not only robust to different notions of
equilibrium, but also to players that are not playing exactly
by the game specification. However this brings about two
important challenges: First, it is unlikely that all of the par-
ticipants in a game have exactly the same bias (see example
on risk-aversion). Thus we want to combine smoothness re-
sults of several different types to attain a single PoA bound.
Second, can we find broad classes of games and behavioral
biases for which smoothness applies?

In this extended abstract we provide positive results in
both of the above directions. We first show (in Section 3)
that under certain conditions on the network structure and
the cost functions, the PoA is close to the average of the PoA
of all participating agents, weighted by their frequency. In
contrast, without such a structural restriction, even a small
fraction of “bad” agents may inflict unbounded damage on
the society. Our second technical contribution is to show
how biased-smoothness can be proved for several classes of

1For more related literature, see the full version of this pa-
per [9].



cost functions (general, convex, affine and quadratic) with
particular behavioral biases, namely different levels of tax
sensitivity, pessimism [8], or risk-aversion [12, 11]. We do
this in Sections 4.1, 4.2 and 4.3.

Our results significantly improve the upper bounds of Meir
and Parkes [8] and Nikolova and Stier-Moses [11], while us-
ing much simpler proofs.

2. PRELIMINARIES

Nonatomic routing games. Following the definitions of
Roughgarden and Tardos [16], a nonatomic routing game
(NRG) is a tuple G = 〈V,E,m, c,u,v,n〉, where

• (V,E) is a directed graph;

• m ∈ N is the number of agent types;

• c = (ce)e∈E , ce(x) ≥ 0 is the cost (or latency) incurred
when x agents use edge e;

• u,v ∈ V m, where (ui, vi) are the source and target
nodes of type i agents;

• n ∈ Rm+ , where ni ∈ R+ is the total mass of type i
agents. The total mass of all agents is

∑
i≤m ni = n.

We denote by Ai ⊆ 2E the set of all directed paths be-
tween the pair of nodes (ui, vi) in the graph. Thus Ai is
the the set of actions available to agents of type i. We de-
note by A = ∪iAi the set of all directed source-target paths.
We assume that the costs ce are non-decreasing, continuous,
differentiable and semi-convex (i.e., xce(x) is convex). Such
cost functions are called standard [13]. An example of stan-
dard cost functions are affine costs where c(x) = ax+ b for
some a, b ∈ R+.

A nonatomic routing game with player-specific costs is a
tuple G =

〈
V,E,m, (ci)i≤m,u,v,n

〉
. It is essentially the

same as the NRG definition above, except that agents of
each type i experience a cost of cie(x).

A state s describes the paths selected by all agents. Due
to space constraints we omit the formal definitions, but we
can think of state s as a vector, where se is the total traffic
through edge e ∈ E.

The social cost in a profile s in game G is SC (G, s) =∑
e∈E sece(se).
A state s for an NRG is an equilibrium in game G if no

agent can gain by selecting a different path. It is well known
that all equilibria (including correlated equilibria) have the
same social cost; and in every equilibrium all agents of type i
experience the same cost [10, 16, 2].

Optimal taxation. Let G∗ be a modification of G, where
we replace every ce(x) with c∗e(x) = ce(x) + xc′e(x) (c′(x)

is a shorthand for ∂c(x)
∂x

). Then, SC (G, s) becomes a poten-
tial function of G, and thus every equilibrium has minimum
social cost (see [1, 14]). We can think of c∗ as the original
cost plus an optimal tax, s.t. the incentives of all agents are
completely aligned with those of the society.

The price of anarchy. Let EQ(G) be the set of equilibria
in gameG. The price of anarchy (PoA) of a game is the ratio
between the social cost in the worst equilibrium in EQ(G)
and the optimal social cost [7]. Since all equilibria have the

same cost, we can write PoA(G) = SC(s∗)
SC(G,OPT(G))

, where s∗

is any equilibrium of G. E.g. in affine NRGs, it is known
that PoA(G) ≤ 4

3
, and this bound tight [16].

Smoothness. A cost function c is (λ, µ)-smooth for λ ≥
0, µ < 1 if for any x, x′ ≥ 0, it holds that

c(x)x′ ≤ λc(x′)x′ + µc(x)x. (1)

A game G is (λ, µ)-smooth if all cost functions in G are
(λ, µ)-smooth. For any (λ, µ)-smooth game, PoA(G) ≤ λ

1−µ [5,

15]. Moreover, w.l.o.g. λ = 1 (that is, for any class of cost
functions there is an optimal pair (1, µ) for some µ). For
example, affine routing games are (1, 1

4
)-smooth [15], pro-

viding an alternative derivation of the PoA bound of 4
3
.

2.1 Introducing Biased Costs
Given a cost function c, we denote by ĉ a modified cost

function. For a class C, we denote by Ĉ where the mod-
ification is determined according to a mapping from cost
functions to cost functions. Given a game G and modified
cost functions Ĉ, we get a new game Ĝ, called the biased
game. This modified game is identical to G, except any cost
function ce is replaced with ĉe, generated according to a
mapping.

Definition 1. A nonatomic routing game with biased

costs is a tuple G =
〈
G, (Ĉi)i≤m

〉
, where all players of type

i play as if the game is Ĝi =
〈
V,E,m, ĉi,u,v,n

〉
.

We denote the (player-specific) NRG where each type i

has costs ĉi = (ĉie)e by Ĝ. Note that at least in the simple
case where ĉi = ĉ for all i (all agents have the same bias),

the game Ĝ is just another NRG. Thus Ĝ and G have a
potential function with a unique locally minimal value.

One way to interpret G is that players play the wrong
game Ĝ, whereas their true costs are according to the un-
derlying game G.

Biased Price of Anarchy. Given the above, we measure
the price of anarchy in a game with biased costs by compar-
ing the equilibria of Ĝ to the optimum of G. Formally:

PoA(G, (Ĉi)i≤m) = sup
s∈EQ(Ĝ)

SC (G, s)

SC (G,OPT (G))
. (2)

An equilibrium of Ĝ, and thus of G, exists even with di-
verse types, although it may not be a potential game. This
follows from general existence results on nonatomic games
with convex strategy spaces and continuous utilities [17].

2.2 Smoothness for Biased Costs
Our goal is to provide bounds on the biased Price of An-

archy for a given game
〈
G, (Ĉi)i

〉
. The fact that each of C

and Ĉi are smooth is insufficient to provide such a bound,
since ĉi and c may be completely unrelated.

In the remainder of this section we extend the definition of
smoothness to games with biased costs, in a way that takes
into account both c and ĉ. This technique is not new and has
been applied before for specific modified costs, for example
nonatomic games with restricted taxes [3] and atomic games
with altruistic players [4]. The extension to general biases
is essentially the same, but is given here for completeness,
and since it is required for our new results.



Definition 2. The class of functions C is (λ, µ)-biased-
smooth (w.r.t. biased cost function ĉ) if for any cost func-
tion c ∈ C and any x, x′ ∈ R+,

c(x)x+ ĉ(x)(x′ − x) ≤ λc(x′)x′ + µc(x)x. (3)

As a first sanity check, we test how biased smoothness
behaves in the trivial case where there is no bias. Indeed, if
ĉ = c for all c ∈ C, and C is (λ, µ)-smooth, then:

c(x)x+ ĉ(x)(x′ − x) = c(x)x′ ≤ λc(x′)x′ + µc(x)x.

That is, Eq. (3) collapses to the standard definition of smooth-
ness from Eq. (1).

Recall that the PoA of a (λ, µ)-smooth game is bounded
by λ

1−µ . A key observation is that this bound extends to
games with biased costs when all agents have the same bias.

Proposition 1. Consider a game G where all cost func-
tions are from C, and C is (λ̂, µ̂)-biased smooth w.r.t. biased

costs Ĉ. Let s be any equilibrium of the game Ĝ, and s∗ any

valid state.2 Then SC (G, s) ≤ λ̂
1−µ̂SC (G, s∗).

Proposition 1 was proved by Bonifaci et al. [3] for a partic-
ular modified cost (truncated taxes), but the proof works
the same for any pair of c and ĉ. In fact, the proof is a
minor variation of the standard smoothness argument, e.g.

from [5, 15]. A price of anarchy bound of λ̂
1−µ̂ follows as an

immediate corollary.

An alternative derivation of optimal taxation. Given the
above, we can now do a second sanity check of the concept
of biased smoothness. It is known that the modified costs
c∗(x) = c(x)+ c′(x)x should lead to an optimal play [1]. We
want to get this result via a biased-smoothness argument.

Lemma 1. Set ĉ(x) = c∗(x) = c(x) + c′(x)x, then c is
(1, 0)-biased smooth w.r.t. ĉ.

Proof. Let h(x) = xc(x). By convexity of h,

c(x)x+ ĉ(x)(x′−x) = h(x)+h′(x)(x′−x) ≤ h(x′) = x′c(x′),

affirming that the price of anarchy of 〈G,C∗〉 is 1.

3. DIVERSE POPULATION
Consider a game G =

〈
G, (Ĉi)i

〉
, where the modified cost

function is obtained for each agent type via a distinct, type-
specific mapping. Suppose we can show biased smoothness

of (λ̂i, µ̂i) for each of the uniform games
〈
G, Ĉi

〉
(i.e., games

that are identical to G, except that all agents have the same
bias). The primary question is whether we can get a bound

on PoA(G) in terms of (λ̂i, µ̂i)i≤m, that is, the smoothness
parameters for each type.

Unfortunately, without further restrictions on the game,
attaining such a bound is impossible, as even a small fraction
of “bad” agents (with poor biased-smoothness guarantees)
may significantly increase the PoA (see full version of this
paper for details).

We circumvent this difficulty by considering networks that
are series-parallel. A directed series-parallel (DSP) graph is
an acyclic directed graph (V,E, u, v) with a source u and a
target v, that is composed recursively by merging two DSPs

2We use λ̂, µ̂ to specify the biased smoothness parameters,
and λ, µ for “standard” smoothness.

C general convex
β β ≤ 1 β ≥ 1 β ≥ 1

λ̂ 1 β 1 + (β − 1)µ
µ̂ (1− β)µ 0 0
PoA upper bound 1

1−(1−β)µ β 1 + (β − 1)µ

Table 1: Biased-smoothness bounds under tax-sensitivity
for cost functions that are (1, µ)-smooth.

C affine quadratic
β β ≤ 1 β ≥ 1 β ≤ 1 β ≥ 1

λ̂ 1 (1+β)2

4β
1 1 + 2β−2

3
√
3

µ̂ (β+1)2

4
− β 0 2β′3

3
√
3
− β′2 + 1 0

PoA 1

(β+1)− 1
4
(β+1)2

(1+β)2

4β
1

β′2− 2β′3
3
√

3

(1+2β)3

27β2

Table 2: Biased-smoothness bounds for tax-sensitivity,
affine and quadratic cost functions (β′ =

√
1 + 2β). All

bounds are tight.

either in a serial manner (source to target) or in a parallel
manner (merge sources and merge targets). The basic graph
is a single directed edge u− v.

Our main result is the following bound. For a proof and
more details see the full version.

Theorem 1. Suppose that G =
〈
G, (Ĉi)i≤m

〉
is a game

over a DSP network with convex cost functions. Then
PoA(G) =

∑
i
ni
n

λλiλ̂i

(1−2µ)(1−µi)(1−µ̂i) = O(
∑
i
ni
n

λ̂i

1−µ̂i ).

In the above theorem, the class C is (λ, µ)-smooth, each

class Ci is (λi, µi)-biased smooth, and C is (λ̂i, µ̂i)-biased-

smooth w.r.t. each Ĉi. Recall that ni
n

is the fraction of
agents of type i.

To get some feel of this bound for specific classes, sup-
pose for example that both of C and Ĉi are affine (as in

Section 4.2). We get PoA(G) ≤ 8
3

∑
i
ni
n

λ̂i

(1−µ̂i) .

4. SMOOTHNESS FOR COMMON BIASES
In this section, we assume that all agents have the same

bias, but make no assumptions on the network.

4.1 Tax-Sensitive Agents
Suppose that the center imposes the theoretically optimal

tax of c′e(x)x on every edge e. However for an agent with
tax sensitivity β ≥ 0, ĉβ(x) = c(x)+βc′(x)x, and the mone-
tary part of the cost is adjusted by a factor of β (say, due to
different wealth). Due to space constraints, we omit the full
propositions. Rather, we provide the smoothness parame-
ters and PoA bounds as a function of β for various classes
of cost functions in a tabular form (Tables 1 and 2).

4.2 Pessimist Agents
Suppose that agents are pessimistic, in the sense that they

play according to a congestion amount that is larger by a
factor of r > 1 than the true congestion [8], that is, ĉr(x) =
c(rx). For affine cost functions, it holds that

ĉr(x) = rax+ b = ax+ b+ (r− 1)ax = c(x) + (r− 1)c′(x)x,

and pessimism with factor r ≥ 1 coincides with tax-sensitivity
of β = r − 1. As a result, we can immediately apply the



upper bounds for tax-sensitive agents to pessimistic agents
with affine cost functions, thereby improving the previous
upper bounds from [8]:

0 1 2 3 4 5 6

1

1.5

2

2.5

β (or r − 1)

P
o
A

The double red lines are the tight bounds on the PoA in
NRGs with affine costs, for agents with tax-sensitivity or
pessimism (from Table 2). For reference, we also show the
upper bounds derived in Table 1 for arbitrary cost functions
(in light gray); using convexity only (thick green line). The
upper bound from Meir and Parkes [2015] is in dashed line.

4.3 Risk-averse agents in the Mean-Var Model
Following [11], consider an arbitrary cost function c(x)

and an arbitrary distribution ε(x) s.t. var(ε(x)) ≤ κc(x) for
all x > 0. Denote v(x) = var(ε(x)) ≥ 0, and suppose that
c(x) is (1, µ)-smooth for some µ < 1. Define the biased cost
as ĉγ(x) = c(x) + γv(x).

Nikolova and Stier-Moses bounded the “Price of Risk Aver-
sion” (PRA), which is the ratio between the social welfare
in the biased equilibrium and that in the non-biased equilib-
rium. Their main result is that the PRA is upper bounded
by 1 + κγη, where η is a parameter that depends on the
network and may be as large as the number of vertices. In
particular this leads to a bound of PoA(G) ≤ (1 + γκη) 1

1−µ
for any class of (1, µ) cost functions under risk aversion.

We show the following:

Proposition 2. For γ ≥ 0, c(x) is (1 + γκ, µ)-biased-
smooth w.r.t. ĉγ(x). Thus,

PoA(G) ≤ (1 + γκ)
1

1− µ.

Our result improves not just the PoA bound that follows
from [11], but also their PRA bound: Since the unbiased
equilibrium is at least at costly as the optimal state, it fol-
lows that the PRA is at most the (biased) PoA, and is thus
upper bounded by (1+γκ) 1

1−µ . Crucially, µ is fixed and does
not depend on the network structure. Thus our results show
the factor η is in fact redundant when considering either the
PoA or the PRA.

5. DISCUSSION
We have considered strategic settings in which partici-

pants are playing the wrong game, and perceiving utilities
in some inaccurate or biased form. Whether these modified
utilities, and thus deviations from rational play, come from
a cognitive limitation, a behavioral bias, or a different per-
ception in regard to taxes or other payments, it is important
to understand how the equilibria of the game are affected.

Biased smoothness is a tool that enables PoA analysis un-
der such modified utilities. Our work is the first to provide
PoA bounds on populations with arbitrary biases, diverse

across agents, in nonatomic congestion games. The analy-
sis framework reduces the problem to that of analyzing the
smoothness parameters of each payoff and behavioral type
of agent. Perhaps surprisingly, some biases (e.g. moderate
pessimism) leads to better equilibria and lower PoA than
under no bias at all. The fact that for specific biases we
get tight PoA bounds (Sections 4.1,4.2), and significantly
improve bounds derived in the traditional way (Section 4.3)
can be seen as an indication that our definition of biased
smoothness (borrowed from Bonifaci et al. [3]) is the “cor-
rect” one.

We emphasize that all of our PoA bounds in Section 4 hold
regardless of the network topology. If we further assume that
the network is series-parallel, then we can combine these
bounds for assorted populations using Theorem 1.
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