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ABSTRACT
We consider the problem of minimizing preference elicitation in
efficient multiattribute auctions, that support dynamic negotiation
over non-price based attributes such as quality, time-of-delivery,
and processor speed. We introduce asynchronous price-based mul-
tiattribute auctions, with proxy bidding agents that sit between the
auctioneer and the participants. Empirical results demonstrate the
preference elicitation savings that are provided with minimal price
spaces, asynchronous updates, and proxy agents.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity; J.4 [Computer Applications]: Social and Behav-
ioral Sciences—Economics.

General Terms
Algorithms, Economics.

1. INTRODUCTION
Electronic auction mechanisms are becoming increasing popu-

lar as mechanisms for procurement, sourcing, and logistics in the
supply chain. Multiattribute auctions [1] extend the traditional auc-
tion setting to allow negotiation over non-price attributes, such as
quality, delivery time, color, speed, etc.

There are many markets in which preference elicitation is costly
for participants, for example when participants must consider al-
ternative business plans, collect additional information, or solve
hard computational problems in order to refine their value for dif-
ferent outcomes. Iterative auctions are useful in these settings, be-
cause they allow participants to consider the accuracy to which they
should refine their values, and in which parts of the outcome space
to focus, all in response to feedback about the bids from other par-
ticipants [4]. Preference elicitation has previously been considered
in the context of iterative combinatorial auctions (e.g. [5, 2]). In
this paper, we examine the preference elicitation properties of itera-
tive multiattribute auctions, and in particular we consider the effect�
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that the size of the price space, asynchronous updates, and proxy
bidding agents can have on preference elicitation.

In the multiattribute allocation problem (MAP) there are � sell-
ers, one buyer, and � attributes. Let � denote the set of sellers,
and � denote the set of attributes. Each attribute, ���	� , has a do-
main of possible attribute values (or levels), denoted with abstract
set 
�� ; for example 
�
���� red,yellow,green � if attribute 1 is the
color of an item. The joint domain, across all attributes, is denoted
���
 
���������� 
�� . Each seller, ����� , has a cost function,�� "!$#&%	')( , for an attribute bundle, # �*
 , and the buyer has a
valuation function, + !$#&%,'-( . The efficient outcome !$# �/. � � % solves0214357698;:  6=<?> + !$#/%A@B�� "!$#&%DC . We assume quasilinear utility functions,

with seller � receiving utility E  F!$# .HG % � G @I�� F!$#/% for selling bun-
dle # at price

G
, and the buyer receiving utility E !$# .$G % �J+ !$#/%K@ G .

We focus on the preferential independence (PI) special case in
the experimental analysis [3]. With PI, a seller cost function is
expressed as �  !$#/% �ML � 69NPO  �RQ  � !$# � % , where # � is the level of
the � th attribute, O  � '-( is the weight of that attribute, and Q  � !$# � %
is the marginal cost function for attribute � . Similarly, the buyer’s
valuation is expressed as + !$#&% ��L � 6&N O � Q � !$# � % , where O � andQ � are the weights and functions for the buyer for attribute � .

In experiments, we assume knowledge of the marginal functions
of the sellers and buyer, but not the weights. With this, partial in-
formation about preference information is captured with a convex
simplex of feasible weights. Every time a participant provides in-
formation, via bids, we add new constraints to this simplex. The
residual volume, calculated using a simple Monte Carlo method,
and normalized by taking the � th root (with � attributes) is used
to measure the information revelation. A small volume indicates
little uncertainty, and a high degree of information revelation.

2. THE AUCTION MECHANISMS
The iterative multiattribute auctions, NONLINEAR&DISCRETE

(NLD) and ADDITIVE & DISCRETE (AD), introduced in Parkes
& Kalagnanam [6], can be extended to include mandatory proxy
agents [7], that sit between the auction and the participants. The
role of these proxy agents is to maintain partial information about
preferences, based on revealed preferences in bids. The proxy
agents submit bids automatically (following an equilibrium strat-
egy) whenever there is enough information. Otherwise, the proxy
agents go back to participants and request additional preference in-
formation.

Auction NLD maintains nonlinear prices,
G !$#/% , on attribute bun-

dles. Auction AD, designed for the PI special case, maintains lin-
ear prices,

G ! � .FS % , on level
S �*
?� of attribute � , and an addi-

tional price penalty term, T . The overall price in AD is defined
as
G !$#&% �UL � 69N G ! � . # � %,@ T . The auctions proceed in rounds,

maintaining a provisional allocation and decreasing ask prices by a
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(a) synchronous NLD vs. synchronous AD
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(b) asynchronous AD vs. virtual-round AD
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(c) asynchronous AD vs. asynchronous AD with a
static preference elicitation policy

Figure 1: Total preference elicitation (measured in terms of residual volume in feasible preference space) vs. Number of rounds in the
auction. Careful auction design reduces preference elicitation while maintaining economic efficiency (a, b), and improves efficiency
for constrained preference elicitation (c).

minimal bid increment V based on unsuccessful bids, with dynamic
feedback from the buyer about which bids she currently prefers.
The auctions terminate when they reach quiescence.

The auctions have several useful theoretical properties. For in-
stance, myopic best-response (MBR), in which sellers respond to
prices in each round by submitting a bid for the bundle with maxi-
mal utility at the price, is a sequential equilibrium strategy in both
auctions against a reasonable class of buyer strategies [6]. Sim-
ple asynchronous variations are also defined, with the provisional
allocation, and prices, updated whenever another bid is received.

In addition to verifying the informational benefits of iterative
multiattribute auctions, we identify a useful interaction between
proxy agents and asynchronous auctions. The auction can con-
tinuously poll the proxy agents at random, until no proxy is able
to bid without additional preference information. Only then does
one of the proxy agents fall back and collect additional preference
information. In the current context, we assume that query is sim-
ply “what bundle will you bid for at the current prices?” This is
precisely the information that is necessary and sufficient to make
progress in the auction. This rapid interchange between proxies
and the auction, until all information is exhausted, is termed a vir-
tual round.

3. EXPERIMENTS
We focus our empirical study on the simplified case in which the

buyer functions, Q � !$# � % , and the seller functions, �7 � !$# � % , are known
to the proxy agents. Partial information about preferences is rep-
resented as a convex simplex in weight space, with additional con-
straints on weights inferred from the bids submitted by sellers. As
discussed in the introduction, information revelation is measured
as the residual normalized volume of this simplex. The model used
to generate valuations and costs, along with complete experimental
results, are presented in the longer version of this paper [8]. By
default in all experiments, the number of sellers, attributes, and at-
tribute levels is five, and results are averaged over 20 trials.

Figure 1 illustrates some results. From (a), observe that the lin-
ear synchronous auction (AD) requires less information revelation
than the nonlinear synchronous auction (NLD), for both sellers and
the buyer. Both auctions are efficient in this PI setting, but the price
space is minimal in AD, leading to more effective preference elici-
tation. Comparing (a) with (b), observe that the asynchronous AD

auction requires less information revelation than the synchronous
AD auction. Also, notice a further saving in preference elicitation
in moving to the proxied virtual-rounds variation.1

Finally, in (c) we plot the efficiency of the asynchronous AD auc-
tion for different levels of total information revelation, as the bid
increment V is varied. For comparison, for each level of informa-
tion revelation we also ran the asynchronous AD auction with an
ex ante fixed preference elicitation strategy. In particular, for each
seller we grow a symmetric simplex around the true weight vector,
until the volume equals the average seller volume in the iterative
auction. Adaptive preference elicitation is seen to have a signif-
icant efficiency advantage in this setting, with constrained prefer-
ence elicitation.
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 In total, the residual volume of information not revealed by an av-
erage seller changes from 31.7% to 46.3% to 77.0% to 86.9%, mov-
ing from synchronous NLD to synchronous AD to asynchronous AD
to proxied/virtual-rounds AD.


