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Abstract. The equilibrium of the direct-revelation Vickrey-Clarke-Groves
(VCG) mechanism for combinatorial auctions requires every agent to pro-
vide complete information about its preferences. Not only is this unrea-
sonable in settings with costly preference evaluation, but moreover it is
often possible to implement the same outcome with incomplete preference
information. We formalize the problem of minimal-revelation mechanism
design and introduce the concept of minimal information certificates.
Linear programming duality theory proves that a class of price-based
information certificates are both necessary and sufficient to compute an
efficient allocation in a dominant strategy mechanism.

1 Introduction

Mechanism design addresses the problem of decision making in distributed sys-
tems in which agents are self-interested, and each agent has private information
about its preferences across different outcomes. Mechanism design assumes that
agents will behave as individual-rational utility-maximizers, and solves for a
game in which the joint actions of self-interested agents implements a desirable
system-wide outcome [18].

It is traditional in mechanism design to ignore computational considerations,
and focus on direct revelation mechanisms, in which agents report all of their pri-
vate information and the mechanism solves a central optimization problem and
implements a particular outcome. However, computational considerations are
important when mechanisms are applied to solve hard problems, for example
combinatorial allocation problems [33]. Moreover, there is often a subtle interac-
tion between computational and economic properties, with naive approximations
changing the economic properties of a mechanism [20, 23]. Computational mech-
anism design [27, chapter 3] augments the traditional mechanism design focus
on incentives with a careful integration of computational concerns.

Combinatorial auctions are important mechanisms in future agent-mediated
electronic commerce applications. For example, in a procurement setting within
the supply chain a combinatorial auction allows competing suppliers to express
volume discounts for service to multiple locations. Focusing on the forward di-
rection, a combinatorial auction has a seller with a set of heterogeneous items,



such as hotel rooms and flights, and multiple buyers that can submit bids on ar-
bitrary bundles of items. Combinatorial auctions present a number of interesting
computational problems. The winner-determination problem is NP-hard, equiv-
alent to a weighted set-packing problem. In addition to characterizing tractable
special-cases [33, 12], methods have been developed to introduce approximations
but maintain strategic properties of combinatorial auctions [23]. The communica-
tion complexity is another problem, because the number of bundles is exponential
in the number of items and an agent can have quite general preferences across
bundles. The worst-case communication complexity of a fully-efficient combina-
torial auction is exponential, both for direct- and indirect-revelation mechanisms
[24], although indirect mechanisms can achieve better average-case performance.
One approach to address the communication complexity is to develop structured
bidding languages that are compact for particular agent preferences [22,6]. An-
other approach is to place explicit restrictions on the expressivity of a language,
while being careful to maintain the equilibrium properties of a mechanism [16,
32].

The wvaluation problem is another equally important problem, but one that
has received less attention. There are many electronic commerce applications in
which it is costly for a bidder to evaluate precise tradeoffs across all possible out-
comes. In a combinatorial auction there are an exponential number of bundles,
and the valuation problem for any single bundle can be an NP-hard problem [34,
26). For example, in a shipping logistics problem a bidder might need to solve a
local optimization problem to determine its cost to provide a particular schedule
of pickup and drop-offs. Moreover, the valuation problem is often the one stage in
negotiation that is difficult to automate within electronic markets, often requir-
ing additional information from management. Mechanism design can reduce the
complexity of the valuation problem through careful preference elicitation [26].
Direct-revelation mechanisms represent one extreme, in which a bidder must
compute an exact value for all outcomes to follow an equilibrium strategy. In-
direct mechanisms, in which agents respond to dynamic feedback, such as price
information, can solve the same problem as a direct-revelation mechanism with-
out agents revealing or computing exact information about their preferences.

Preference elicitation is not a problem that is readily solved by introducing
more expressive bidding languages into direct-revelation mechanisms [22]. Al-
though expressive languages can provide a more compact representation of pref-
erences, information transfer from agents to the mechanism in direct-revelation
mechanisms remains oblivious to the local valuations of other agents, and bidders
(or bidding agents) must still perform enough computation and/or information
discovery to allow their bid to completely characterize their preferences. More-
over, bidding oracles [22,32], or programs, within direct-revelation mechanisms,
move the problem to the mechanism infrastructure without solving the prob-
lem. Let us suppose for the moment that it is cheap to define the oracle (while
evaluation of the oracle to compute exact preferences is costly), and that prob-
lems of trust involved in sending a bidding program to an auctioneer can be
overcome. The fundamental problem of designing a minimal-revelation mecha-



nism still remains, because the computational burden of preference elicitation is
simply shifted to the mechanism infrastructure. For this reason, we focus here
on the core problem of minimizing the amount of preference information that a
bidding agent must provide, and we will not care whether this agent is a bidding
program submitted by the bidder to the mechanism, or simply a bidder or a
bidding agent that interacts with the mechanism.

Indirect mechanisms allow for adaptive preference elicitation by a mechanism
because agents can compute strategies in response to information provided by the
mechanism. The information, for example prices in an ascending-price auction,
defines the equilibrium path of a mechanism, and agent strategies along that path
provide incremental information about preferences for different outcome. Thus,
it is possible in an indirect mechanism, but impossible in a direct mechanism, to
elicit just that information that is required to determine the optimal outcome
and no more. For example, in an English auction it is sufficient for the two
bidders with the highest value to bid up the price until only one bidder, the
winner, is left in the auction. The winner reveals a lower-bound on its value for
the item, the competing bidder reveals its exact value, while the other losers
reveal only upper-bounds on their values.

In this paper, we formalize the problem of minimal-revelation mechanism
design and introduce the concept of minimal information certificates. Our main
results are for the class of allocatively-efficient combinatorial auctions, that al-
locate items to maximize the total value across agents. First, we show that the
problem of computing an efficient allocation with truthful agents is information-
ally equivalent to the problem of computing competitive equilibrium (CE) prices
for a large class of query languages. Second, we quantify the informational-cost
of incentive-compatibility, or cost-of-truthfulness, and show that the problem
of computing an efficient allocation with self-interested agents is information-
ally equivalent to the problem of computing Universal CE prices. From this, we
show that there is a non-zero cost-of-truthfulness unless a technical condition,
agents-are-substitutes holds, which requires that items are more like substitutes
than complements.

The competitive equilibrium prices in a combinatorial auction can be both
non-linear, such that the price on a bundle of items is not equal to the sum
over the constituent items of the bundle, and non-anonymous, such that differ-
ent agents face different prices for the same bundle. Universal CE prices require
that the same condition also holds on the auction problem induced by remov-
ing each agent in turn from the auction. In competitive equilibrium every agent
prefers the bundle it receives in the efficient allocation and the efficient alloca-
tion maximizes the revenue for the seller. Although it is immediate from linear
programming duality theory that CE prices provide sufficient information to
compute an efficient allocation, the mecessary direction of the main result is
novel. This necessary direction requires some additional assumptions about the
structure of the preference-elicitation language, which are in fact met by cur-
rent proposals for indirect combinatorial auctions. The characterization of the
informational cost-of-truthfulness is also novel.



The informational equivalence between the problem of computing CE prices
and the problem of computing an efficient allocation sheds new light on the
preference-elicitation properties of ascending-price auctions such as iBundle [25,
29] and /Bundle Extend & Adjust [31]. More generally, the equivalence provides
formal motivation for the continued study of primal-dual based methods for
the design of indirect mechanisms because primal-dual algorithms have natural
interpretations as ascending-price auctions and terminate with CE prices [29,4].

2 Preliminaries: Efficient Combinatorial Auctions

Before moving on to introduce a formal framework for minimal-revelation mech-
anism design it is useful to describe a particular mechanism design problem.
This will provide some context to the discussion. In this section, we introduce
the efficient combinatorial auction problem. This problem is used to illustrate
the minimal-revelation framework in Section 3, and is also the problem for which
we derive our main results. We provide only a bare description of the combina-
torial auction design problem. Many details of practical auction design, such as
activity rules [21], winner-determination algorithms [35,1], bidding languages,
and collusion [2] are necessarily left undiscussed.

In a combinatorial auction there is a set of G discrete items to allocate to
T agents, i € {1,...,N}. Each agent has a valuation function v; : 2¢ — Ry,
that defines its value v;(S) > 0 for bundles of items, S C G. This is the private
values auction model, in which an agent’s value is independent of the values of
other agents. We assume free-disposal, such that v;(S) < v;(S’) for all ' O S.
An additional assumption is that agents have quasi-linear utility functions, such
that u;(S,p) = v;(S) — p, is agent ¢’s utility for bundle S at price p. This is
a common assumption in the auction literature, and tantamount to assuming
risk-neutral agents.

An allocation, S = (S1,...,SN) is feasible, written S € F, if no two agents
receive the same item, i.e. S; NS; = for all ¢ # j, and if S; C G for all agents.
We focus on the efficient auction design problem, in which the goal as designer
is to implement the allocation that maximizes the total value across all agents.
The efficient allocation, S*, solves:

§* = argmax > il Si) [CAP]

i€l

An efficient combinatorial auction is a mechanism that solves CAP in equi-
librium, such that self-interested agents with private information about their
valuations submit bids that implement the efficient allocation when the auction
is cleared.

In the classic Vickrey-Clarke-Groves (VCG) [36,7,15] mechanism for the
combinatorial auction, or Generalized Vickrey Auction (GVA), every agent re-
ports a claim about its valuation function to the auctioneer. The GVA imple-
ments the allocation that maximizes the total reported value, and computes a
payment, pgva i, for each agent, 4, which can be less than the agent’s bid price.
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Fig.1. A Price-Based Auction with Proxy-Bidding-Agents

The GVA is strategyproof, with a dominant-strategy equilibrium in which each
agent reports its truthful valuation function. In equilibrium the GVA is efficient,
and each agent’s payment is computed as:

Pgva,i = 0i(S7) = [V(Z) = V(T \ 9)]

where V(Z) is the value of the efficient allocation, V(7 \ i) is the value of the effi-
cient allocation computed without agent 7 in the auction, and S* is the efficient
allocation. Each agent pays the minimal price it could have bid with hindsight
and still received the same bundle, given the bids submitted by other agents.
In the special case of a single item the GVA reduces to the Vickrey auction,
a second-price sealed-bid auction. The GVA is a direct-revelation mechanism,
with complete elicitation of agent preferences.

Many indirect mechanisms have been proposed for the efficient combinato-
rial auction problem. These are typically price-based auctions, in which agents
must bid in response to price information provided by the auction to guide the
bidding process [13, 37,25], although a number of non-price based methods have
also been proposed [3,9]. Indirect mechanisms, such as ascending-price auctions,
allow adaptive information elicitation and have been demonstrated to outper-
form direct mechanisms in settings with hard valuation problems and costly
preference elicitation [26,8]. The information feedback provided in an indirect
mechanism guides the valuation work of participants, enabling them to make
better decisions about which outcomes to refine their value over.

2.1 Proxy Bidding Agents

Proxy bidding agents provide a useful framework within which to understand
the goals of minimal-revelation mechanism design. Figure 1 illustrates a proxy-
bidder based framework for an iterative VCG-based combinatorial auction [30].



Proxy bidding agents sit between the auction and the bidders, and maintain par-
tial information about agent preferences and compute an equilibrium strategy
in response to price information from the auction. In an ascending-price Vick-
rey auction the equilibrium strategy is simply myopic best-response (MBR), or
straightforward bidding [30,31]. In MBR, an agent bids in each round for the
bundle(s) that maximize its payoff given the current prices. The role of each
proxy agent is to elicit just enough preference information to be able to fol-
low an equilibrium bidding strategy. A MBR strategy can be computed with
incomplete information about preferences. For example, it is sufficient to have
lower- and upper-bounds on the values of bundles to determine the bundles in
the best-response set. This is discussed in more detail in Parkes [27, chapter 8].

Related work proposes an alternative model for partial-revelation VCG mech-
anisms, in which preference queries are not driven by a search for competitive
equilibrium prices [9,11]. The model consists of a single elicitator agent, which
acts on behalf of the mechanism and asks a sequence of explicit questions of
agents. Example queries include rank-queries, e.g. “do you prefer bundle S; or
S27”, and value-queries, e.g. “what is your value for bundle S;7”, queries. In this
collection, Hudson & Sandholm [17] present experimental results that compare
the effectiveness of different preference elicitation properties. In addition, Conen
& Sandholm [10], propose a differential elicitation method to implement VCG
mechanisms. Differential elicitation is a price-based approach, although prices
need not be ascending. Agents are asked to provide MBR, information across a
pair of bundles, as the price difference across the bundles is adjusted.

While ascending-price combinatorial auctions scale to many hundreds of
items and many hundreds of bids, these direct elicitation methods currently
scale to only tens of items. Moreover, the new results presented in this paper,
which characterize the minimal information required to implement an efficient
combinatorial auction, also apply to these non price-based elicitation methods.

2.2 Competitive Equilibrium Prices

Competitive equilibrium (CE) prices have an important role in formalizing con-
ditions for minimal preference elicitation in VCG mechanisms, and also in con-
structing minimal revelation mechanisms.

Let price, p;(S) > 0, denote the price for bundle S C G to agent . In general,
prices can be non-linear, such that p;(S1) + p;(S2) # p;(S1 U S2) — pi(S1 N Sa)
for bundles S; and Sy, and non-anonymous, such that p;(S) # p,(S), for agents
i# -

Competitive equilibrium (CE) prices, pee, satisfy conditions (CS1) and (CS2)
with respect to the efficient allocation, S*:

S = argmax[vi(S) — pi(5)] (CS1)
S* = argglea]}_gZpi(Si) (CS2)

i€T



In competitive equilibrium, every buyer receives a bundle that maximizes its
payoff at the prices (CS1), and the allocation maximizes the seller’s revenue at
the prices (CS2). Competitive equilibrium prices always exist in the combina-
torial auction problem, although they must sometimes be both non-linear and
non-anonymous [5]. Moreover, if an allocation is supported in CE then it must
be efficient. These results come directly from linear-programming (LP) duality
theory, with respect to a hierarchy of LP formulations for CAP. Each formu-
lation introduces additional variables and constraints to strengthen the natural
LP relaxation of a mixed-integer formulation of CAP and achieve integrality.

In Section 4 we use CE prices, and a restricted class, Universal CE prices
to define minimal-information certificates to compute efficient allocations in
dominant-strategy mechanisms.

Definition 1. Universal CE prices, puce, are prices that are in competitive
equilibrium for CAP defined across all agents, T, and also for CAP defined with
each agent removed from the auction in turn.

As an example, consider a single item allocation problem with agents values,
vy = 4,v2 = 8,v3 = 10. Non-anonymous CE prices satisfy, ps > max(py,p2),
ps < 10, po > 8, and p; > 4. However, prices p1 = 6,p2 = 9,p3 = 9 are
not Universal CE prices because p1 = 6,p2 = 9 are not CE prices for the
problem with agents v; = 4,vs = 8. Universal CE prices also require p» < 8
and p; < ps. Combining these constraints, Universal CE prices must satisfy,
4<p <8,p» =8, and 8 < p3 < 10.

3 Minimal-Revelation Mechanism Design

In this section we introduce a formal framework for minimal-revelation mech-
anism design. In particular, we formalize minimal preference information with
respect to a partial order defined over the space of possible agent valuation func-
tions. We introduce the idea of an information certificate for a statement about
an aggregate property of agent preferences, such as “allocation (Si,...,Sn) is
efficient”. A certificate provides sufficient information about agent preferences
to verify the correctness of the claim. A minimal certificate is a certificate that
contains no additional information about agent preferences beyond that implied
by the statement itself.

The objective in minimal-revelation mechanism design is to elicit a minimal
certificate for the optimal outcome, such as an efficient allocation, while also
satisfying the standard requirements of incentive-compatibility and individual-
rationality. We describe the problem in terms of agent valuations, but the dis-
cussion can be easily recast in more general terms by thinking of agent types
instead of valuations.

3.1 Information Sets, Statements, and Certificates

Let V; define the abstract set of all possible valuation functions for agent ¢, and
let V. =V; x...x Vy define the joint product across all agents. Also, let K



denote the set of possible outcomes. For example, in a combinatorial auction the
set K corresponds to the set of feasible allocations.

Definition 2. A preference information set, inf, C V; is a space of possible
agent valuations that includes the true valuation, v; € inf;.

Similarly, let inf C V denote a joint preference information set, such that
v = (v1,...,un) € inf. Preference elicitation can be formalized as the process
of refining beliefs about agent preferences. It is useful to define a partial order,
=, across information sets, with inf, < inf, < inf, D inf,. Information
set, inf,, provides less information about preferences than inf, if v € inf, =
v € nf,. In a given problem instance the information sets form a complete
lattice with respect to < with minimal element, inf = V, and maximal element
mf = (1)1,. ..,UN).

We now define statements and certificates for statements.

Definition 3. A statement, X : V — {T,F}, defines a function from agent
values to a truth value.

Examples of statements include: “allocation (), AB) is efficient”, “vi(A) =
107, and “v1(A) > vo(B)”.

Definition 4. Information set, inf, is a certificate for X, written cert(inf, X),
if the information set satisfies v € inf = X(v).

In words, an information set provides a certificate for a statement if the state-
ment holds for all possible preferences consistent with the information set. Only
true statements can have certificates because an information set must contain
the true preferences of agents.

Definition 5. Information set, inf, is a minimal certificate for X, written
certmin(inf, X), if the information set is both a certificate, and in addition if
X(w)=>veinf forallveV.

The minimal certificate, with respect to partial ordering, <, defines the mazx-
imal space of valuations that are consistent with statement X.

Definition 6. The information content, inf(X), of statement X, is the min-
imal certificate for X.

The information content of a statement, X, is the minimal information im-
plied about agent preferences by the statement. Equivalently, the information
content of a statement X captures the weakest set of constraints on agent pref-
erences that still imply X.

Figure 2 illustrates these ideas. The actual preferences, v € V', of the agents
are represented by the single point in the domain of preferences. Notice that
v € inf, and v € infs, but that information inf,; < inf, and only inf, is a
certificate for X. Information set, inf,, is not a minimal certificate, because

infq C inf(X).
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Fig. 2. Information sets and certificates. The space, inf(X), inside the inner circle rep-
resents the information-content of statement X, or equivalently the minimal certificate
for X. Information set inf,, but not information set, inf,, provides a certificate for
statement X.

3.2 Query Languages

A query language, L, characterizes the kinds of questions that can be asked
in a mechanism about agent preferences. A query language provides a method
to refine the preference information set, adding new constraints to represent
responses from agents. The definition of the information provided in response to
a query assumes truthful responses, and will be used in the context of incentive-
compatible mechanism design.

Definition 7. A query language, L, defines queries, Q € L, that provide
information sets, Q(v;), about agent preferences when evaluated by agent i, with
valuation v;.

As an example, the query “what is your valuation?”, elicits the singular
information set, inf, = {v;}, from agent i, while the query “is your value for
A greater than your value for B?” elicits the information set that contains all
valuations for which v;(A4) > v;(B) if the response is “yes”, or the information
set that contains all valuations for which v;(B) > v;(A), otherwise.

Let inf(Q) denote the information set that is implied by the response of an
agent to query @. The information content of a sequence of queries, Qo, - .., Q¢,
is simply:

inf (Qo, - -+, Qr) = inf(Qo) N ... Ninf (Q)

In Section 4.1 we provide concrete examples of a query language for a com-
binatorial auction.
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Fig. 3. Preference-information sets, for an allocation of a single item and two agents.
(a) This information set, {v1 > w2}, is not agent-independent. (b) This information
set, {v1 > 4,v, < 4}, is agent-independent.

3.3 Information Set Refinements

We introduce two refinements on information sets. The first refinement places
restrictions on joint information sets, and is stated in terms of constraints and
relationships across multiple agents.

Definition 8. Preference information, inf, is agent-independent, if there is
an equivalent decomposition, (inf, ..., inf n), for which inf = inf{N...Ninf 5.

In words, an agent-independent preference information set can be captured
exactly as the intersection over individual agent preference information sets.
Thinking in terms of constraints on preferences, agent-independence implies that
the constraints on joint preferences can be expressed as the union of constraints
stated on individual agent preferences. Agent-independence does not restrict the
types of agent preferences in the private values model.! Instead, it restricts the
types of query languages. For example, an information set that follows from
information “the value of agent 1 for choice k; is greater than the value of agent
2” can not be captured as an agent-independent information set.

As an example, information set, inf, = {v1(S) > v2(S)}, for agents 1 and 2,
is not agent-independent because agent 1’s valuation is stated in relation to agent
2’s valuation. As another example, Figure 3 illustrates agent-independence in a
single-item allocation problem, with two agents with values v; = 6 and vs = 2.
The information is agent-independent in the right-hand plot, but not the left-
hand plot.

The second refinement requires outcome-independent information, and re-
stricts the space of feasible information sets for a particular agent. As a pre-
liminary, let Apax(k', k, inf;) denote the maximal possible difference in agent

! However, correlated-value and common-value preferences, in which agent valuations
depend on the valuations of other agents, are not compatible with agent-independent
information sets.
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1’s value for choices k' and k, given a preference information set. Formally,
Amax (K', k, inf ;) = maxy, cins, [vi(k') — vi(K)].

Definition 9. Given information set, inf,, the worst case preferences, WC(
inf;, k) > inf;, for outcome k € K, are the set of valuations, v € inf;, that
satisfy:

e
ey 2 ) W)
k' £k, k' €K
s.t. vi(k) = min v}(k)
vi€inf;

In words, worst-case preferences, WC(inf;, k), contain all valuations consis-
tent with information, inf;, that maximize the total value to agent 7 for all
choices other than k across all valuations that also minimize agent ¢’s value for
choice k.

Definition 10. Information, inf, is outcome-independent when
v; € WC(inf;, k) = vi(k') — vi(k) = Amax (K, k,inf;), VE #k
for all choices, k € K, and for all agents, i € L.

In words, preference information is outcome-independent whenever it is al-
ways possible (for all choices, k, and all agents, 1) to select a valuation consistent
with preference information that simultaneously minimizes the value on choice,
k, to agent, ¢, and maximizes the difference in value to agent ¢ between every
other choice and that choice. In other words, the solution to (WC) must simulta-
neously maximize the difference in value between choice £ and all other choices,
for all k.

Consider the following examples from combinatorial auctions.

Ezample 1. Information set, inf ; = {v1(A) € [5,10],v1(B) < v1(A4)+6,v1(AB) <
v1(A) + v1(B)}, is not outcome-independent. Valuation v{(4) = 5,v](B) = 11,
vi(AB) = 16 satisfies v{ € WC(inf 4, 4), but Anax(AB, A, inf,;) = 16, with
valuation vy (4) = 10,v{(B) = 16,v{ (AB) = 26, which satisfies v{ € inf ;.

Ezample 2. Information set, inf, = {v1(4) € [5,10],v1(B) < v1(A)+6,v1(4AB) <
v1(A) + 5,v1(AB) < v1(B) + 5}, is outcome-independent. Valuation, vj(A) =
5,01 (B) = 11,v{(AB) = 10, satisfies v] € WC(inf,,A), and Apax(AB, A,
inf,) = 5, Amax(B, A, inf,) = 6. Valuation, 4 (4) = 10,5,(B) = 0,5(AB) = 5
satisfies 9, € WC(inf,, B), and Apax(AB, B, inf,) = 5, Amax(A4, B, inf ) = 10.
Valuation, 01 (A) = 10,0, (B) = 16,01 (AB) = 0 satisfies ¢, € WC(inf,, AB), and
Amax(B, AB,inf,) = 16, Apax(A, AB, inf,) = 10.
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3.4 Minimal Information Revelation

We can now formally define the minimal revelation mechanism design problem.
Note that these definitions are presented ez post, and such provide a strong
(perhaps too strong) requirement for an indirect mechanism that must elicit
preferences online without access to an oracle.

Introduce an information cost function, c(inf) > 0, to capture the total cost
to agents to provide an information set. It is reasonable to assume monotonic
cost functions, such that inf, < inf, = c(inf,) < c(inf,). In other words,
it cannot be cheaper to provide more information than less.? In this paper, we
assume that this cost information, or some useful heuristic, is known to the
mechanism designer.

Definition 11. The ex post minimal-revelation mechanism design prob-
lem, for statement X, is to elicit the minimal cost certificate:

inf (X, v) = igflignv c(inf) [MRMDP (X, ¢)]

st. inf(X) < inf
(IC), (IR),. ..

where c(-) is the information-cost function and (IC) and (IR) represent the
incentive-compatibility and individual-rationality constraints of mechanism de-
sign.

Incentive-compatibility (IC) constraints in a direct-revelation mechanism,
make truth-revelation a game-theoretic equilibrium, such that an agent cannot
improve its expected payoff by misstating its valuation information. Informally,
the idea in an indirect revelation mechanism, in which the strategyspace allows
an agent to provide partial information about its preferences, is to make truth-
ful, but partial, revelation a game-theoretic equilibrium. Similarly, individual-
rationality (IR) constraints ensure that an agent’s expected payoff in equilib-
rium is non-negative. The VCG mechanism is an example of an (IC) and (IR)
direct-revelation mechanism. The next section discusses indirect variations on
the VCG mechanism that retain (IC) and (IR) properties. We will find that
(IC) can impose additional requirements on the information that is required to
solve a problem. For example, in the Vickrey auction we need exact information
about the second-highest value in order to implement the Vickrey price.

We also consider a couple of additional constraints on the minimal-revelation
mechanism design problem. The first variation introduces a language-based con-
straint, that seeks to elicit minimal information relative to a particular language.

2 We allow an agent to provide more information for the same cost, for example when
the best method for a bidder to value a particular bundle is to value a number of
smaller bundles, in which case the additional information about the value of those
smaller bundles is available for free.
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Definition 12. The language-constrained minimal-revelation mechanism
design problem, for statement X, is to select the minimal cost queries from
language L that elicit o certificate for statement X.

inf (X, v) = min c(Q(v) [MRMDP (£, X, ¢)]
s.t. inf(X) 2 Q(v)
(IC), (IR), ... (1)

where Q € L denotes a set of queries in the language, c(-) is the information
cost function, and Q(v) is the information implied by the response to the query.

This language-constrained variation is useful when the language is coarse
and does not allow precise minimal preference elicitation. The second variation
introduces an information-set based constraint, and requires agent- and outcome-
independent information sets.

Definition 13. The information-constrained minimal-revelation mech-
anism design problem, for statement X, is to select the minimal cost agent-
and outcome-independent information sets that solve:

min clinf;N...N1n
inf ,CVi,...,inf N CVn (inf IN)

st. inf(X) X inf,N...Ninfy
(IC), (IR), ...

where the information sets, inf;, are also restricted to outcome-independent in-
formation sets.

This information-constrained variation is useful because it simplifies the in-
formation equivalence analysis in the next section.

4 Minimal-Revelation Combinatorial Auctions

In this section, we prove an information equivalence result between the problem
of computing an efficient allocation and the problem of computing competitive
equilibrium prices. The problem of computing an efficient allocation with mini-
mal preference elicitation can be reduced to the problem of computing a set of
CE prices with minimal preference elicitation. The necessary direction, that a
price certificate is necessary for an efficient allocation, is novel.

In addition to providing some theoretical support for the use of ascend-
ing combinatorial auctions, this reduction is useful because simple minimal-
information queries exist to verify that prices are CE. Before presenting the
main result we introduce a query language that guarantees that preference in-
formation sets are both agent- and outcome-independent.

In the following, EFF(S), is a statement that S is efficient, and CE(p, S) is
a statement that prices p are in competitive equilibrium with allocation S. The
corresponding functions, that evaluate to true if and only if the statement holds
for preferences, v € V, are written EFF(S,v) and CE(p, S, v).
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4.1 Best-Response Query Language

A canonical query language, the best-response query language, Ly, can be con-
structed from simple price-based queries.

Definition 14. A price-based query, Q(p), elicits from an agent the set of
bundles that mazximize its utility at prices p, or the emptyset if no bundle has
positive utility.

Ezample 3. Consider prices, p(A) = 5,p(B) = 5,p(AB) = 7. Response, {4} to
query, Q(p), provides information set, inf = {v;(4) —5 > v;(B) — 5;v;(A) — 5 >
’U,(AB) - 7; ’Ui(A) -5 Z 0}

We continue to assume truth-revelation from agents in response to queries,
an assumption that will be justified very soon, with incentive-compatible auction
design.

Definition 15. A best-response query language, Ly, contains all queries,
Q, with information content equal to the information content of some sequence
of price queries.

Formally, Q € Ly, if and only if inf (Q) = inf (Qy, - - -, Q}), for some sequence,
Qg - - - > @y, of price queries, for any agent preferences.

Our intention in introducing Ly, is not that queries be executed as a sequence
of price-based queries. Rather, we will analyze necessary and sufficient proper-
ties of information certificates in efficient and incentive compatible mechanisms
that contain all queries that can be expressed within the best-response query
language. As an example, Ly, is rich enough to contain all query types previ-
ously proposed for iterative combinatorial auctions in Parkes [28] and Conen &
Sandholm [9,11, 10]. This includes the following queries: value queries, what is
your value for bundle S?; rank queries, what is your preference ordering across
bundles S; and S»?; bounded-value queries, is your value for bundle S less (or
greater) than z?; and weighted-rank, or differential queries, is your difference in
value between bundles S; and S less (or greater) than z?

For all these queries, there exists a reduction to a sequence of price-based
queries. As an example, the rank query, “is v;(S1) > v;(S2)” can be implemented
with a single price-query with prices, p;(S1) = 0, p;(S2) = 0, and p;(S) = oo, for
all S # {S1,S2}. Similarly, the value query, “what is your value for S” can be
implemented with a sequence of price-queries, with prices selected according to
a standard binary-search method. With a slight variation, language Ly, is also
rich enough to represent approximate preference revelation via partially-specified
constraint-network formulations of valuations [9].> The variation allows an agent
to respond with, 1, to indicate that it does not have enough information to
respond to price-based query.

3 In a constraint-network model, bundles are represented as vertices with lower- and
upper-bounds on values, and ordering information between pairs of bundles is rep-
resented with weighted edges, with weights that define upper- and lower-bounds on
the difference in value between a pair of bundles.
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Example 4. Consider a problem with 2 goods, A and B, and 2 agents. Agent
1 has values, v1(4A) = 4,11(B) = 3,v1(AB) = 8, and agent 2 has values
v2(A) = 1,v2(B) = 6,v2(AB) = 9 [9]. Let EFF(S*,v) denote a function that
evaluates to true if and only if §* is an efficient allocation, given agent val-
ues v. Complete information, inf, = (v1,v2), provides a trivial certificate of
efficiency. Rank information, that specifies a value-decreasing order over agent
preferences, i.e. (AB, A, B, () from agent 1 and (AB, B, A, () from agent 2, is not
a certificate; allocations (AB, () and (#, AB) can both be efficient with respect
to this information. A price-based query, with prices p(4) = 3, p(B) = 4, and
p(AB) =T, elicits information set, inf, = {v1(4) —3 > v1(B) — 4;v1(A) —3 =
v1(AB)—T7;v1(A)—3 > 0;v2(B) —4 > v2(A) — 3;v2(B)—4 = va(AB) — 7}, which
provides a certificate that prices are in competitive equilibrium with allocation
S* = (A, B), and immediately also provides a certificate that allocation, S*, is
efficient.

Crucially, language Ly, with or without L, generates preference information
that is both agent- and outcome-independent. We omit the proof in the interest
of space.

Proposition 1. The best-response query language, Ly, constructs information
sets that are both agent- and outcome- independent.

The main results are stated for agent- and outcome-independent information
sets, and hold in particular for mechanisms with queries restricted to language
Lbr-

4.2 Minimal-Revelation: Truthful Agents

We first show that the problem of computing an efficient allocation with truthful
agents is informationally equivalent to the problem of computing competitive
equilibrium prices.

Proposition 2 (sufficient). A preference information set that provides a cer-
tificate of competitive equilibrium, for some prices p and allocation S, also pro-
vides a certificate of efficiency for allocation S.

Proof. This direction is easy, following immediately from standard duality argu-
ments. We have cert(inf, CE(p, S)) = (CE(p, S,v), Yv € inf) = (EFF(S,v), Vv €
inf) = cert(inf, EFF(S)) O

Let vwc(inf;,S) denote a worst-case valuation for agent ¢ and bundle S,
given information set, inf ;. Also, let BR;(p, v;) denote the set of utility-maximizing
bundles for agent i with valuation v; at prices p (solving CS1), and let 74(p) de-
note the set of revenue-maximizing allocations for the seller at prices p (solving
CS2).

Proposition 3 (necessary). An agent- and outcome-independent preference
information set that provides a certificate of efficiency for some allocation, S,
must also provide a certificate of competitive equilibrium, for some prices, p.
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Proof. First, cert(inf, EFF(S)) = (EFF(S,v), Vv € inf), which implies (Jp -
CE(p, S,v)), Yv € inf, by standard duality arguments. Expanding the definition
of CE prices, and because preferences are agent-independent, we have (3p - Vi -
(Si € BRi(p,vi) A S € my(p))), Yu1 € infy,...,Vun € infy, which as a
special case implies dp - Vi - (S; € BRi(p,vwc(inf;,S:) A S € ms(p)).
Let p denote the equilibrium prices for this worst-case valuation special-case,
so that (5‘, € BR;(p, vwc(infi,gi)) A S e ms(p)), Vi. Now, with outcome-
independence, every agent will continue to prefer bundle S; at any valuation
other than the worst-case valuation for its efficient bundle, and we have (Vi - S; e
BRi(p,v;) A S € ms(p)), Vv € inf. Finally, this implies CE(p, S,v), Vv € inf,
by basic duality, and we have a certificate, cert(inf, CE(p, S)). O

Combining Proposition 1, and Propositions 2 and 3, we immediately have
the following result, which establishes the information equivalence between the
minimal-revelation efficient allocation problem and the minimal-revelation com-
petitive equilibrium prices problem.

Theorem 1 (information equivalence). In a distributed algorithm restricted
to queries in the best-response query language it is necessary and sufficient to
elicit an information certificate for CE prices to compute an efficient allocation.

This result is stated for a distributed algorithm, and not a mechanism, because
for now we continue to assume that agents respond truthfully to queries. Minimal
CE price certificates are easy to construct ez post from queries, once the efficient
allocation is known. The ez post minimal query problem reduces to finding the
minimal-cost price-based query from the set of CE prices.

Proposition 4. The ex post minimal-revelation efficient allocation problem,
given queries restricted to the best-response query language, Ly, is equivalent
to:

inf (Lo EFF,v) = i c(Q(0) [MP (Lr, EFF, ¢)]

s.t. inf(CE(p, S)) = Q(p)

where CE is the set of competitive equilibrium prices, and c(-) is the cost metric.

This demonstrates the power of the information equivalence between the
efficient-allocation and competitive-equilibrium price problems. The query to
generate a minimal certificate for CE prices is easy, just announce the prices as
a price-query and ask agents for their best-response sets. We are not aware of
a corresponding simple construction for the ez post minimal query to elicit an
information certificate to verify directly that a particular allocation is efficient.

Of course, we are really interested in constructing indirect mechanisms that
achieve this ez post performance. A competitive analysis, to compare the perfor-
mance of an indirect mechanism with this ex post ideal, is left for future work. We
already notice that an asychronous English auction explicitly achieves CE prices
by increasing the price until only one agent is left. Similarly, an ascending-price
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combinatorial auction such as iBundle [29], terminates with competitive equilib-
rium prices. The precise performance of ascending-price auctions such as sBundle
depends on details such as whether bids and price-updates are synchronous or
asynchronous across agents, and on the order with which agents interact with
the auction.

4.3 Minimal-Revelation: Self-Interested Agents

We can now quantify the informational cost of incentive-compatibility, or the
cost-of-truthfulness, and show that the problem of computing an efficient allo-
cation with self-interested agents is informationally equivalent to the problem
of computing Universal CE (UCE) prices. From this we show that there is a
non-zero cost-of-truthfulness unless items are more like substitutes than com-
plements.

The equivalence result is stated for an ex post Nash equilibrium, in which no
agent can gain from a unilateral deviation at the end of an auction, even with
complete information about the bids placed by other agents.

Theorem 2. An information certificate for Universal CE prices is necessary
and sufficient to compute the efficient allocation in a revenue-mazimizing ex
post Nash equilibrium, at least for agent- and outcome-independent information
sets.

Proof. (sketch) The sufficient direction is easy to show. Given UCE prices, pyce,
the VCG payments are computed as pgva,i = Puce,i(S;)—[P(Z) — P(T \ i)], where
S* is the efficient allocation and P(Z) is the maximal revenue to the seller at
prices, puce, over all allocations, and P(Z \ %) is the maximal revenue to the seller
at prices, pyce, over all allocations that exclude agent i [31]. The VCG payments
provide an ez post Nash equilibrium in an indirect mechanism, and the VCG
mechanism maximizes the expected revenue across all efficient auctions [19].
The proof of the necessary direction has two main steps. First, the uniqueness
of the VCG mechanism amongst revenue-maximizing, efficient, and Bayes-Nash
incentive-compatible mechanisms [14, 19], implies that an efficient indirect mech-
anism in ex post Nash, that is also revenue-maximizing across efficient mecha-
nisms, must implement the outcome of the VCG mechanism. Second, a similar
argument to that in Proposition 3, demonstrates that as long as information is
agent- and outcome-independent then cert(inf, EFF(S)) and cert(inf, VCG(p)),
taken together, imply a certificate for UCE prices. O

This extension to UCE prices provides a clean characterization of the addi-
tional information elicitation costs imposed by agent incentives. UCE prices are
a subset of CE prices, and can therefore be expected to require more preference
information in some cases. Take as a hyopothesis that minimal CE prices are the
prices that minimize information revelation across all CE prices. The following
condition is necessary and sufficient for minimal CE prices to be Universal CE
prices, and under the hypothesis necessary and sufficient for a zero informational
cost-of-truthfulness.
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Definition 16 (agents are substitutes).

V(T)-V(Z\L)>> [V(T)-V(Z\i)], VLCZI

i€l

In words, the marginal product of any set of agents must be greater than
the total marginal product of each agent individually. This condition holds in
problems in which items are substitutes, but quickly breaks down in problems
with complements between items [2].

In related work, Parkes & Ungar [31] propose an extension to iBundle, in
which enough information about agent preferences is determined to implement
the VCG outcome. The auction, iBEA, collects additional information beyond
that collected by iBundle precisely when minimal CE prices are not Universal
CE prices.

5 Closing Remarks

Preference elicitation is an important problem in mechanism design for agent-
mediated electronic commerce. Preference elicitation also presents an impor-
tant and interesting theoretical challenge in computational mechanism design.
This paper makes some initial progress towards a formal theory for the design
of minimal-revelation VCG mechanisms. We demonstrate the central role that
price-based methods play in minimal-revelation mechanism design. The equiva-
lence results provide some justification for price-based designs for iterative com-
binatorial auctions, such as iBundle [26,29] and AKBA [37].

Current price-based auctions structure an ascending search through price
space, but this is of course just one possible search method. It would be in-
teresting to understand the preference-revelation tradeoffs in other price-based
search heuristics. One useful property of ascending-price auctions, that would be
lost in other price-based methods, is the monotonicity provided for local agent
valuation problems. For example, once a particular bundle in an ascending-price
auction is too expensive it will always be too expensive in future rounds and an
agent knows that it will not need to refine its value in the future.

The centralized elicitator-agent methods of Conen & Sandholm [9], pro-
vide immediate and full information about agent preference information to the
mechanism, as preference elicitation queries are executed. In comparison, in
the proxy-bidding agents/MBR setting described in this paper, preference in-
formation is only provided to the mechanism in the form of best-responses to
prices. We plan to investigate the role of asychronous price-updates and ac-
celerated price increases via extended “virtual auction rounds” to leverage the
additional preference information that proxy agents may have in our setting.
Another topic of current work is to measure the effect of price-discrimination on
the preference-elicitation costs of ascending-price auctions, and to measure the
cost-of-truthfulness in ascending-price combinatorial auctions.
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