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ABSTRACT

In kidney exchanges, hospitals share patient lists and receive
transplantations. A kidney-paired donation (KPD) mech-
anism needs to promote full sharing of information about
donor-patient pairs, and identify a Pareto efficient outcome
that also satisfies participation constraints of hospitals. We
introduce a random graph model of the KPD exchange and
then fully characterize the structure of the efficient outcome
and the expected number of transplantations that can be
performed. Random graph theory allows early experimental
results to be explained analytically, and enables the study
of participation incentives in a methodological way. We de-
rive a square-root law between the welfare gains from shar-
ing patient-donor pairs in a central pool and the individual
sizes of hospitals, illustrating the urgent need for the na-
tionwide expansion of such programs. Finally, we establish
through theoretical and computational analysis that enforc-
ing simple individual rationality constraints on the outcome
can mitigate the negative impact of strategic behavior by
hospitals.
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1. INTRODUCTION

The scarcity of cadaver kidneys and significant medical
benefits from live kidney donation has promoted the expan-
sion of kidney-paired donation (KPD) in recent years. The
idea is that kidney patients with one or more incompati-
ble donors, might be able to receive compatible transplants
through barter exchanges. It is typical for this to be per-
formed as a two-way exchange, which involves four (typically
simultaneous) operations.! Currently, there is a handful of
such kidney-exchange programs in the USA and several oth-
ers around the world [14]. Their expansion in large-scale has
been hitherto hindered by the ethical, logistical and even in-
centive issues they entail.

Nevertheless, there are numerous reports favoring the ben-
efit of kidney exchanges. From the medical literature, sur-
vival rates up to 100% are reported in a sample including
10 two-way, paired donations [8]. Further benefits in terms
of total saved lives can be found where larger than two-way
exchanges are considered [14]. Recent history has seen an in-
crease in (KPD) through multi-regional KPD programs [11].

Naturally enough, if we would like to represent the patient-
donor set as a graph, with each pair as a vertex, and focusing
on two-way exchanges, then we could think of the compati-
bility relationships as being the edges. An edge indicates a
two-way compatibility between the donor and patient of pair
one and pair two, and vice-versa. If one considers utility to
be achieved by a compatible transplant to a patient, then
the Pareto-efficient solution with only two-way exchanges
is a mazimum matching [12]. In this paper, we make a
clean start by defining a comprehensive random graph model
of (two-way) KPD exchanges. The use of a random-graph
model is appropriate here, because there are well defined
probabilistic models of the blood and tissue type compati-
bility of donor-patient pairs entering KPD exchanges.

In addition to efficiency, an important consideration is in
regard to the incentives of hospitals to participate, where a
typical concern is that an individual hospital will hold back
some pairs (to match locally, before or after the exchange
clears) in order to increase the number of hospital-specific
matches. This kind of strategic hiding of pairs can lead away
from Pareto-efficient solutions. In Ashlagi et al. [3], this
loss is shown to be 50% in the worst case for strategyproof

'Longer than 2-way exchanges are also possible. In 2007,
a chain of 10 kidney transplantations was performed that
lasted over 8 months [10] and that was triggered by a sin-
gle altruistic donor with no designated recipient. Here, we
will focus on 2-way exchanges that are easier to perform in
practice and thus more prevalent



mechanisms, in short because one has to find the maxi-
mum matching individually for every hospital before look-
ing at the global maximum. By adopting a random-graph
model, we are able to complement the worst-case analysis
in the literature with a meaningful average-case analysis.
The main technical content of this paper involves develop-
ing a structural analysis of maximum matchings on domain-
appropriate random graph models, and the main message is
positive: our analytical and simulation results suggest that
an appropriate exchange design can be very effective in miti-
gating incentives to hospitals for hiding patient-donor pairs.

We completely characterize the maximum matching prop-
erties of our model (i.e. Pareto-optimal outcomes). In stat-
ing our results, we work under two assumptions: the first
is a perfect matching (PM) assumption, which is that any
bipartite random graph, with the probability of an edge be-
tween two vertices defined in a way that is appropriate to
the kidney domain, will assume a perfect matching. This is
easily justified even for small-size patient lists of less than
10 pairs, and the resulting analytical model is very accurate,
explaining early experimental results [1, 13, 15]. The sec-
ond is a regqularity assumption on the existence of optimal
exchanges that possess a particular graph structure. We de-
rive a square-root relationship between the welfare gains of
sharing patient-donor pairs in a central pool and the indi-
vidual sizes of hospitals. This serves as a formal proof for
the necessity of collaborative, nationwide kidney exchange
programs.

Based on our analysis of the structure of the matching
problem, the strategic problem facing hospitals is reduced
to a game of adding nodes on a bipartite graph, which
enables us to show empirically that non-truthful sharing
in a non-IR mechanism is hurtful in expectation to truth-
ful hospitals. We also quantify this expected loss in a 2-
hospital scenario. In the sequel, we consider two variants on
individually-rational centralized mechanisms, both of which
are efficient under the PM assumption when hospitals fully
reveal their patient-donor pairs. Our preferred mechanism
(xCM), computes a matching of a particular structure individ-
ually for each hospital, and completes with a random max-
imum matching of the remainder donor-patient pairs. We
establish under an additional regularity assumption on the
realized structure of maximum matchings in KPD graphs,
that xCM is individually-rational, efficient and supports full
sharing of donor/patient pairs in a Bayesian-Nash equilib-
rium.

In detailed simulations, we validate the incentive compat-
ibility of the xCM mechanism. In comparison, a randomized,
non-IR mechanism allows a strategic hospital to achieve
~ 20% more transplantations than the truthful ones. xCM
eliminates this benefit and also keeps efficiency. Our model
remains robust after the introduction of extra nuisance pa-
rameters (for example PRA sensitivity of patients) in which
xCM is also able to restore fairness and retain almost 96% of
efficiency.

Some proofs are omitted from this version of the paper
in the interest of space and will be available in an extended
version.

1.1 Related Work

Roth et al. [13] study priority mechanisms in which pa-
tients decide how to reveal the sets of their incompatible
donors and the transplants they are willing to accept. Hos-
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pital incentives are analyzed in Ashlagi et al. [3], although
in worst-case rather than random-graph framework.

Ashlagi and Roth [2], independently of our work, adopt
a random-graph model with which to study individually-
rational, multiple hospital mechanisms (including 3-way ex-
changes). While the themes and qualitative observations are
quite similar, our results differ. First, we provide a detailed,
quantified analysis of the welfare gains from a centralized
pool (Theorem 2, Corollary 2 and 3.) Through this, we are
also able to provide an almost perfect analytical explanation
for existing numerical results in the literature. Second, our
main equilibrium, IR and efficiency results are presented for
the CM mechanism and made under the PM and regularity
assumptions. In comparison, Ashlagi and Roth [2] intro-
duce a different mechanism, termed the Bonus mechanism
and provide an equilibrium analysis under a different regu-
larity assumption. In particular, we both focus on the set
Q of efficient outcomes, but Ashlagi and Roth [2] assume
an expected property over the entire set, namely the regular
size assumption, while we make a claim on the existence of
an outcome « € €2 of a specific structure. Interestingly, we
show (under our assumptions) that for 2-way exchanges, IR
and efficiency can be achieved in a Bayes-Nash equilibrium
of the xCM mechanism, while Ashlagi & Roth [2] establish
(under their assumptions), and while allowing for 3-way ex-
changes, that IR can be achieved with a small efficiency loss
that is about 1% of the individual hospital sizes in an ep-
silon Bayes-Nash equilibrium of the Bonus mechanism. In
this sense, our works can be considered complementary. In
addition, our positive results on xCM hold in both a truth-
ful equilibrium and an equilibrium in which each hospital
follows a canonical deviation and only hides pairs that form
part of a maximum matching with a particular structure on
its own, local graph.

2. MISE-EN-SCENE

Human blood has four different types, namely O, A, B
and AB, depending on the presence or absence of the pro-
teins A and B. Two people are blood-type compatible if the
donor does not introduce new proteins to the recipient. For
example, a donor with blood type A can donate to patients
with type A or AB and a donor with type O can donate to
any blood type since O denotes the absence of both proteins.

Blood-type compatibility is the first requirement for a kid-
ney transplantation. In addition, the donor and the recipi-
ent should share as many common HLA antigens as possible
to prevent a positive crossmatch, i.e. the transplant being
rejected. The probability of a crossmatch between a donor
and a patient selected at random has been calculated around
11% [17]. However, this number varies greatly among pa-
tients and we will adopt the analysis in [14] which identifies
three distinct categories of tissue-type sensitivities, namely
low, medium and high PRA, as shown in Table 1:

Sensitivity type Distribution p. probability
Low-PRA 70.19% 0.05
Medium-PRA 20% 0.45
High-PRA 9.81% 0.9

Table 1: Positive crossmatch [14]

In this paper we will denote the positive crossmatch proba-



bility with p. and we will fix its value to p. =~ 0.2 to produce
numerical results, i.e. the weighted average of the afore-
mentioned distribution. In this case the probability that
two pairs that are already blood-type compatible, are also
tissue-type compatible is (1 — p.)? = 0.64, since every donor
has to be compatible with the patient of the other pair.
We therefore make the strong, simplifying assumption that
tissue-type compatibilities are independent random events,
ignoring blood and PRA sensitivity types for the moment.
However, in Section 5.2 we show that our results remain
robust even under these nuisance parameters.

Formally, a donor-patient pair is defined on S x S, where
S = {0, A, B, AB} is the blood-type set. Following the
terminology in Unver [15], we break up the entire set into 4
distinct subsets as follows:

Definition 1. A donor-recipient pair is under-demanded
(denoted U), if the donor is not ABO compatible with the
patient. If in addition the pair contains only the types A
and B, then it is called reciprocal (denoted by R).

Definition 2. A pair is over-demanded (denoted by O) if
the donor and the patient are ABO compatible. If they also
have the same type then the pair is called self-demanded
(denoted by S).

The following table summarizes.

patient O A B AB
donor

(0] S O O O
A U S R O
B U R S O
AB U U U S

Table 2: ABO subsets

The compatibilities of Lemma 1 are depicted graphically
in Figure 1. It is now easy to establish the following:

LEMMA 1. An under-demanded pair can only be matched
to an over-demanded one. A reciprocal pair can be paired
with an over-demanded or another reciprocal pair. A self-
demanded pair can me matched to an over-demanded or an-
other self-demanded pair.

2.1 The random graph model

We model the donor-patient pairs of a hospital as a graph
where a node represents one such pair and an edge repre-
sents the fact that two pairs can perform a paired donation.
Obviously, an efficient two-way kidney exchange is a maxi-
mum matching on this graph. Our goal is then to study the
expected properties of such a matching under two proba-
bilistic assumptions: that blood types are drawn from some
discrete blood-type distribution and that tissue-type com-
patibilities are independent Bernoulli trials with probability
1—pc (robustness against these assumptions will be checked
in subsequent sections). Random graph theory is therefore
a natural way to study the expected properties of efficient
outcomes and the Bayes-Nash equilibria of multi-hospital
participation in KPD markets.

More formally, a @zdom donor-patient graph that has n
pairs is denoted by G, and its vertex set is constructed by
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the following random process:

REPEAT until G, has n pairs
Draw 2 people ~ Blood Type Frequencies
IF not Blood Type Compatible
Add to G,
ELSE
Add to G, with probability p.
REPEAT Vu,v € V(G,),
IF u,v ABO compatible AND z ~ U(0,1),z > pc
ADD (u,v) to E(Gp)

In general, the O group is the most common, and A, B, AB
follow in that order. For our analysis, we will consider a
fixed distribution over the blood types. To produce arith-
metical results we will consider a distribution of O(50%),
A(30%), B(15%) and AB(5%) which is close to the world
average (see [16]) but we will also check for robustness in
the experimentation section of the paper.?

Unfortunately, the aforementioned process does not ad-
here to any well-known random graph model. Nevertheless,
we will soon show how to combine known combinatorial re-
sults with the specific properties of G, aiming to identify
the structural properties that most of the model-generated
graphs share with each other.

We start by identifying the vertex sets and the induced
subgraphs in G, that correspond to the pair types intro-
duced in Definitions 1 and 2. In particular denote with

O, U, S, R the vertex sets containing the over-demanded, under-

demanded, self-demanded and reciprocal pairs respectively.
The expected sizes of these sets are given by the following
lemma.

LEMMA 2. Denote with ps the probability that a random
pair in G, belongs to the x vertex set, z € {O,U, S, R} and
fy the frequency of blood type y. Then it holds:

8 Pe w T

W - Pe
pPs = 1% 7pU:V7pR:V

V )
Also (see Table 2),

(1)

po =

V=w+tw-pc+s-pc+r

w= fo-(fa+ [fB)+ fap-(fo+ fa+ fB)
s=fo+fa+ s+ fin

r:2~fA-fB

Furthermore, the expected sizes of the subgraphs of @; are:

0l =po-n= " n
Ul=pv-n=g n (2
|S\:ps%:‘9.vp°‘n
|R|:pR-n:%-n

PRrROOF. By considering a fixed distribution of ABO blood-
types, equations (1) and (2), follow immediately by the el-
ementary properties of the uniform distribution. For the

2Blood-type distribution among human population varies
a lot [16]. For example, Koreans are evenly distributed in
types O, A and B while the Bororo people in Brazil are 100%
of type O.



aforementioned distribution, the coefficients are w = 0.2725,
s=0.365, r=0.09. O

By Lemma 2, the size of every vertex set is proportional
to the total size n of a graph in GG,,. However, by inspection,
the set O is much smaller than the set U since % =p. < 1.
A similar argument holds for the set S as well. In summary,
Lemma 1 gives information about compatibilities among dif-
ferent pair types and Lemma 2 offers insight on their respec-
tive sizes. Figure 1 is a graphical depiction of the structure of
a G, graph. The edges in the figure correspond to compat-
ibility relationships but the intra-type compatibilities (i.e.
self-loops) have been omitted.

Figure 1: Vertex sets in Gn

The sizes were calculated by considering the positive cross-
match probability equal to p. = 0.2. Obviously, the over-
demanded pairs are more centrally placed within the graph
and thus more likely to participate in a maximum matching.
In addition, a large portion of the under-demanded pairs
are left unmatched by any matching, due to the blood-type
incompatibilities with each other, as shown in Lemma 1.
These and similar remarks are summarized in the following
lemma:

LEMMA 3. The O subgraph (induced by the O vertex set)
is connected to all other subgraphs. The U subgraph is iso-
lated, i.e. it has no edges. The subgraph R is bipartite. The

S subgraph is comprised by four disconnected components
comprising the pairs (O, 0), (A, A), (B, B) and (AB, AB)

ProOF. No under-demanded pair can be matched to an
under-demanded pair by Lemma 1, thus the U subgraph is
isolated. Pairs within the R subgraph are symmetric in Ta-
ble 2 and hence R is bipartite with the vertex classes (A, B)
and (B, A). Pairs in the S subgraph are on the main diago-
nal of Table 2 and hence S has 4 disconnected components,
one for each blood type. [l

As first shown in Roth et al. [13], the Pareto-optimal so-
lution is essentially a maximum matching on the graph. It
is therefﬂoge important to characterize the maximum match-
ings of G, which in fact is a random graph as well. In the
following section we will achieve approximate results which
will form the basis for our subsequent analysis.

3. MAXIMUM MATCHING IN Gy

In graph theory [4], the maximum matching of a graph
is a subset of its edges with no common vertices and with
the maximum cardinality possible. It has numerous appli-
cations as a combinatorial problem [9], and luckily it can
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be solved deterministically in polynomial time by Edmond’s
algorithm [6]. Random graph theory [5] on the other hand,
studies distributions over graphs normally referred to as ran-
dom graph models. For example, G, , is often defined as a
process producing graphs with n nodes such that each of the
(Z) possible edges exists independently with a probability p.
Combinatorial arguments are then used to explore graph in-
variants such as size, connectivity or chromatic number.

Despite the extensive research literature and to the best
of our knowledge, no random graph model could be applied
directly for the problem defined in this paper. However, it
will suffice to prove a specific result regarding matchings in
bipartite graphs and then make a few reasonable assump-
tions on how to proceed. In particular, let us denote with
Grxn,p the bipartite graph with n nodes in each class such
that any node is connected to any node of the other class
with probability p. It then holds:

THEOREM 1. Graphs in model Grnxnp with p > ¢ — 1
(¢ being the golden ratio) assume a perfect matching for
sufficiently large n.

Theorem 1 is sufficient in unveiling that a bipartite ran-
dom graph always assumes a near-perfect matching. In or-
der to facilitate our mathematical analysis for the rest of our
technical results, we make the following assumption:

ASSUMPTION 1. Perfect matching (PM) Every graph
drawn from Grxn,p assumes a perfect matching

For example, under our kidney exchange model where p =
1—p. = 0.8 the probabilities of a perfect matching for n = 4
and n = 6 are 0.985 and 0.999 respectively. In addition, any
graph in Ga,,p can be reduced to a graph in Gpxn,p and
thus inherit its matching properties. As a consequence of
the PM assumption, we conclude that:

COROLLARY 1. Under the PM assumption, every graph
drawn from G, with n even, assumes a perfect matching

We now proceed to characterize the maximum matching

on G. We make the PM assumption throughout the rest
of the paper.

LEMMA 4. The probability that the O subgraph cannot be

completely matched to the U subgraph in random graph G
decreases exponentially in n.

PROOF. An O pair (z,y) is compatible with its symmetric
(y,z) U pair. By Lemma 2, pairs (y,x) are expected to be
p% times more than the pairs (x,y). Therefore, with n O
. 1-pc

pairs, -n pairs in U will remain unmatched on average.
This means that there will be a - n pairs in U that will be
unmatched, for some constant «. The probability that an
over-demanded pair remains unmatched if subgraph O is
matched only against the U subgraph is therefore equal to
pe ™. This tends to O for large n. [

The S subgraph is even more densely connected as shown
in the following lemma:

LEMMA/V5. Consider the subgraph S with k pairs contained
in some Gp. Also denote with s(k) the expected number of

pairs that are matched in a mazimum matching of S, and
with 8 some value O(1). Then:

s(ky=k—-p
For sufficiently large k it holds that 3 = 2.



We now turn our attention to the R subgraph. This is a bi-
partite graph (see Lemma 3) but it is unbalanced and there-
fore we cannot apply Assumption 1 directly.

LEMMA 6. C’@sider the R subgraph with k pairs con-
tained in some Gr. Also denote with r(k) the expected num-

ber of pairs that are matched in a maximum matching of R.
It holds:

r(k) = k — ©(Vk)
In particular,

2k

s

k—r(k)~

The unmatched pairs in the R subgraph actually fol-
low the folded binomial distribution. Formally, if X ~
Binom(n,p),p = 0.5 then the variable defined by YV =
|2 - X — n| follows a folded binomial. By Lemma 6 we have
that E[Y] approximates the value 4/ % -n. Now it is easy to

prove the following:

LEMMA 7. Consider m independent random variables X,
such that X; ~ Binom(n,0.5). Also define:

Vi =|2X1 = n) 4+ (2Xm —n)[ = 2> X; —mn]
Then it holds,

E[Y,n] ~ m 3)
PROOF. The sum of m random variables X; defined as
above follows Binom(m - n,0.5). Applying Lemma 6 and a

substitution of variables will get us the desired result. [J]

2
Z.on.
i

We can now put the pieces together and characterize max-

imum matchings globally on é’vn by calculating the expected
cardinality of a maximum matching.

THEOREM 2. If pu(n) is the expected cardinality of a max-

imum matching in Gy, then given the PM assumption, there
exist positive constants v < 1 and 8 such that:

p(n) =v-n—06(n)-p

ProoF. Consider a matching in G, where all O pairs are
matched with pairs in U and subgraphs S and R assume
maximum matchings internally. It is not possible to con-
struct an alternating path for this matching since by Lemma
1 the U subgraph is isolated. Therefore, the matching is
maximum (see also [9]). In expectation and in a popula-
tion of n donor patient pairs and given equations (2), the
unmatched pairs are equal to |U| — [O] + ©(y/n) + 8 =
A-n+0(y/n)+ 8. Therefore the expected number of matches
is given by equation:

p(n) =n—\-n+60(n)+3)
Setting v = 1 — A\, we conclude that
u(n) =5 -n—O(/n) - B

(4)

a

In particular by equations (2) and p. = 0.2 we have that
A= (1-pc) ¥ ~0.44 and hence v = 1 — A = 0.56. We now
make the following definition, which will be helpful when
considering incentives.
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Definition 3. Maximum matchings of G, in which O is
matched completely to U and the S and R subgraphs as-
sume a maximum matching internally, are themselves ran-

dom graphs denoted by M/n The remainder graph, ﬁ; =
G, — M, is also random and on expectation it contains:

e Pairs in the U subgraph, proportional to size n

e Pairs in R all of the same class (either A-B or B-A)
proportional to /n

e A total of 2 pairs of the S type

Notice also that graphs from D,, are isolated, i.e. they
contain no edges. The proof of Theorem 2 establishes that

matchings of the form M,, exist with high probability for a
given Gy,.

3.1 Interpretation of results

Using Theorem 2 and Lemma 6, and adopting |R| as the
size of the reciprocal subgraph, we can use the following
approximation for the expected number of matched pairs in

Gn:
2
p(n) =~ 0.556 -n — 4/ = - |R| — 2 (5)
T

Using equation (2) we know that |R| = { -n = 0.18n.

Substituting in (5) we get:
pn)=y-n—38-vn-2
~ = 0.556, § = 0.342

(6)

We can now explain much of the assumptions and empir-
ical observations of previous related work. The abundance
of unmatched undemanded pairs is established in Lemma
2. The deviation from the mazimal-size matching in Roth
et al. [13] (See Propositions 1 & 2 and Table 2), are ex-
plained by virtue of Theorem 2. In particular, for the
simulation with n = 100 the deviation from the expected
~ 56 exchanges is explained by equation (6) which yields
55.6 — 0.34 - 10 — 2 = 50.2. This result is very close to the
value 49.7 that is reported in Roth et al. [13].

Similarly, simulation results in Table 1 of Abraham et
al. [1], although they were based on few samples (100 tri-
als), is also explained in light of Theorem 2. In particular,
equation (6) almost always provides estimations between the
reported mean and max values. Finally, Lemmas 4,5,6 prove
analytically the assumptions behind kidney exchange mod-
els that focus on the reciprocal R subgraph, as in Unver [15]
which uses the number of (A, B) pairs as the representative
state of a Markov chain model.

4. INCENTIVES IN KPD MARKETS

We now turn our attention to the case of multiple hospitals
contributing their donor-patient graphs to a KPD market.
We make this model more succinct through the following
definitions:

Definition 4. The addition of two donor-patient graphs
G1,G2 is defined by G1 P G2 = G1 |UG2J C, where C =
{(u,v)}, u € V(G1), v € V(G2), and pair u is blood-type
compatible and tissue-type compatible with pair v, the lat-
ter independently with probability p.. Let V(G), E(G) and
M(G) denote the vertex set, the edges set and some maxi-
mum matching of graph G respectively.



Definition 5. A hospital h of size n has a donor-patient
graph G, as a type, which is a realization of random graph
Gn. A strategy sp of a hospital h is a function such that
sn(Gr) C Gp. If sp(Gr) = Gj the strategy is truthful. If
sn(Ghr) C Gy it is non-truthful. A selfish strategy is defined
by sn(Gr) = @

Definition 6. A centralized mechanism CM defined on
m hospitals each of size n, and with graph type profile
G = (G1, -+ ,Gp) and a strategy profile s = (s1,- -+, $m),
computes a matching CM (s, G) on graph G = @, s1(Gh).
The set of nodes on CM (s, G) that belong to hospital h will
be denoted by CM (s, G).

The wtility of a hospital from some outcome is given
by Uh(S,G) = ‘OMh(S,G” + |M(Gh — OMh(S7G))| The
implicit assumption is that hospitals will try to maximize
the matches on the patients that were not matched by the
mechanism. For a specific type G}, of h and a strategy profile
s, the expected wutility is Un(s) = Ec_, [Un(s,GnUG=1n)],
where G_p = (G1,-+ ,Gh-1,Ghy1, -+ ,Gm

The welfare W(s,G) produced by the mechanism is
thus equal to W(s,G) = >, Un(s,G). For a strat-
egy profile s, VG, an efficient CM allocates welfare

W(s, G) = [M(D, Gn)l

An outcome CM (s, G) is individually rational (IR) if Vh
CMu(s,G) > |M(sn(Gp))|- Finally, a strategy profile s =
(sh,s—n) is a Bayes-Nash equilibrium (BNE) if Vh, Vsj, it
holds that Uy (sn,5—n) > Un(sh,5—n)

4.1 Mechanisms

Definition 7. rCMis a CM which, given G, outputs a uni-
formly sampled, maximum matching M (G) A uniform sam-
ple from the maximum matchings of some graph G can be
implemented through a relabeling of V(G) and a generic

maximum matching algorithm.

Definition 8. irCM is a CM which, given G, repeatedly
calls rCM until the outcome is also IR.

Definition 9. xCM is a CM which, operates in two stages:
First, it clears internally the graphs s;,(Gp), Vh, by enforcing
the constraints of M,, (see Definition 3) and computing the
most efficient matching possible, say Lp. Second, it runs

rCM on the union of the individual remainder graphs, i.e.
CM(s, G).

It is straightforward to enforce the constraints of K/[: in
xCM through weighted matching (see [9]). Our implemen-
tation in Section 5 simply assigns larger weights to the
edges between O and U pairs and then performs maximum
weighted matching on the entire donor-patient graph.

Our first result, which stems directly from Theorem 2,
quantifies the benefit of an institution as simple as rCM. Our
baseline is the case when the mechanism is not used at all,
or equivalently when all hospitals employ selfish strategies.

COROLLARY 2. For mechanism rCM with m hospitals of
size n and the parameters v,V defined in Lemma 2, and
under the PM assumption, the welfare surplus W (s, G) when

328

hospitals employ truthful strategies compared to selfish ones
is equal to:

W(s,G) = (m—vim) | 20t (m—1)-6 (1)

ProOF. Consider equation (6) of the average maximum
matching in évn When hospitals are selfish, total welfare
is m - u(n) and when truthful welfare is p(m - n) since all
hospitals draw independently from the same random graph
model. Therefore, all we need to compute is:

W (s, G) = p(m - n) = m - u(n)

Substituting with Equation (6) for the value of u(n) we get
the desired result. []

By symmetry, the additional matches are distributed
evenly among hospitals:

COROLLARY 3. A hospital of size n that participates in
rCM with m truthful participants, and under the PM assump-
tion, will receive U more transplantations on average, for
which:

S = (1= 1/Vim) ([ 2 nt (1= 1m) 5 (8)

For large CM s where m — oo , it holds that,

[ 2r

A nationwide kidney exchange program can therefore
yield individual benefits to participating hospitals that fol-
low a square-root law to the size n of their patient lists,
given that this sharing is truthful by all participants.

Continuing, we make the following key assumption:

AssuMPTION 2. (Regularity) For every G, there exists
a mazximum matching drawn from some M,,.

In words, the regularity assumption claims the existence
of a particular type of maximum matchings in G,,. In such
a matching all O pairs are completely matched to U pairs,
and S and R pairs are self-matched. In the connectivity
analysis of Section 3, we showed that this is a fair assump-
tion to make,AE)ut simulation data is supportive as well. For
example, in GG,, with parameters n = 40, p. = 0.2, tkl\e/prob-
abilities that there exists a matching of the form M,, that
is either 0 or 1 exchange away from a maximum matching
is 0.85 and 0.98 respectively. For a crossmatch probability
pe = 0.11 as reported in [17] these numbers are even higher,
0.94 and 0.998 respectively. If we include PRA sensitivity in
our model (see Table 1) these numbers for n = 40 are 0.71
and 0.95. This hints at our model being robust even under
this extra variability.

In order to emphasize the use of our two basic assumptions
of perfect matching and regularity for studying incentives,
we will make the following definition:

Definition 10. An idealized mechanism C'M is a mecha-
nism operating under the PM and Regularity assumptions.

By definition, thg\i/dealized xCM always computes match-
ings of the form M, in the first stage of its operation.
Lemma 8 establishes that individual rationality constraints
do not affect the efficiency of our idealized mechanisms.



LEMMA 8. Under truthful strategies, the idealized irCM
and the idealized zCM are individually rational and efficient.

However, mechanism irCM is not very computationally
plausible since it searches blindly for IR and efficient
matches, and in a straightforward implementation, takes a
long time to finish. Our incentives analysis will thus focus
on the xCM mechanism.

4.2 Incentives

We start with clarifying the concept of a hospital’s devi-
ating strategy.

Definition 11. Define a proper subgraph of G, a subgraph
P(G) C G, P(G) # @, such that Yu € V(P(G)), if (u,v) €
G then v € P(G).

Definition 12. Given hospital h with graph G, a deviat-
ing strategy dp, is defined by dn(Gr) = Grn — P(Mp), where
P(Mp) is a proper subgraph of some maximum matching
My, of G. If P(Mp) = M), the strategy is called fully deviat-
ing. If maximum matching M), is of the form M;, then the
strategy is called canonically deviating.

A strategy is both fully deviating and canonically deviat-
ing when a hospital is hiding completely an internal max-
imum matching of the form M,. We will soon show that
canonical deviations are Bayes-Nash equilibria in kidney ex-
changes, however our equilibrium analysis will explore the
entire space of possible strategies.

Let us first examine cases where hospitals fully deviate.
The first natural question is whether this strategy is unde-
sirable. For clarity, we focus on the simplest case of two hos-
pitals, one being truthful and one (fully) deviating, denoted
by h: and hg respectively. We will also use the following
combinatorial definition:

Definition 13. Define J(a, b, N) to be the number of white
balls in a chain of N balls created by picking balls randomly
from a jar with a white balls and b black balls without re-
placement.

It is easy to establish that the expected value J(a,b, N)
is given by J(a,b, N) = s N

We now seek to compute dU;, the expected gain in utility
of h: being truthful compared to being selfish (i.e. reporting
nothing). Also denote with U, the gains for hospital hg.
First, we will study rCM, as a typical non-IR mechanism and
then xCM, which is IR by construction.

4.2.1 In mechanism rcM

‘We consider only pairs in the R subgraph since our analy-
sis in Section 3 showed that all other pair types will not affect
0U; as much. In particular, say h: reports s and w pairs in
the two classes, such that s > w, and that hg reports y pairs
of the some specific kind. Then there are exactly three cases,
as shown in Figure 2.

Mechanism rCM will allocate the following utilities:

J(s,y,w) —w case ()
Ue=1¢ y case ()
s—2w+ J(w,y,s) case ()
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Figure 2: Deviating agent has y pairs of one kind
(green). Truthful agent has s,w of both reciprocal
pair types

For the fully deviating agent:

J(y, s, w) case (&)
SUs =< y case ()
Iy, w, s) case (7)

It is hard to derive analytically the sign of §U;, since 6U; >
0 for () and some (y) and §U; < 0 for (8) and some (7).
However, we can adopt simulations. Figure 3 depicts the
average values of §U; and 6Uy in 1,000 test runs in rCM. Also
notice from the equations, that éUs = ©(y) and since y
V/|R| by virtue of Lemma 6, it holds that 6U; = ©(y/|R])
. This is reflected in the shape of the red utility line for the
strategic agent. A similar argument holds for the truthful
agent as well.

Non-IR mechanism
10

M truthful
M deviating

expected utilty gains

O \

0 50 100

IRl

150 200

Figure 3: Truthful strategy has expected loss in a
non-IR mechanism

It is straightforward to generalize to encompass multiple
hospitals and show that, on average, deviating strategies not
only yield benefits but also incur costs to truthful ones.

4.2.2 In mechanism xCM

We proceed to characterize the equilibrium strategies for
mechanism xCM.

LEMMA 9. Strategy profiles under idealized zCM in which,
either hospitals are truthful or all hospitals are canonically
deviating, are Bayes-Nash equilibria.

Intuitively, given an edge (u,v) in a maximum matching, a
hospital decides how to report w and v. If it reports both of



them then xCM, by construction, will match them (or some
other two of similar types). If it reports none, then they will
be matched internally, otherwise If it reports only one, then
there is some small probability that one pair will remain
unmatched which is clearly undesirable. By induction, the
first two cases can generate the truthful strategy and the
canonical deviations and these are BNE.

Observe that the selfish strategy profile is also a BNE.
However, we believe that the truthful equilibrium (or some
form of canonical deviation) is much more likely in practice.
A good reason is that the non-reporting BNE is not robust
against pairwise deviations by hospitals and so would likely
be unstable given the ability of hospitals to reach mutually
advantageous agreements.

THEOREM 3. The idealized mechanism zCM is individu-
ally rational and efficient in the truthful Bayes-Nash equi-
librium, and also in every canonical deviation Bayes-Nash
equilibrium.

ProOOF. We know that under truthful strategies the total
welfare is p(n - m). By Lemma 9, in equilibrium, Vh € H,
V(w, M (w)) € M, of that hospital, h will either report both
w and M (w) or none. In either case, these pairs will be
matched before the second stage of xCM, which is equiva-
lent in terms of efficiency to the case of all hospitals being
truthful. However, by Lemma 8 the idealized xCM is efficient
under truthful strategies and therefore it is efficient in all
BNE with truthful or canonical deviation strategies. [

The average case analysis concluded with Theorem 3,
proves that individual rationality enables efficiency under
reasonable assumptions. Ashlagi & Roth [2] get a similar
result for their “Bonus” mechanism. In fact, the first steps
of their algorithm are similar to the first step of xCM, in
the way that matches in the S and R subgraphs are imple-
mented. From that point, their algorithm diverges since in
3-way kidney exchanges, matches between O, U and R pairs
become available.

S. EXPERIMENTAL RESULTS

We used Perl to implement the 6;1 random graph model
and test the theoretical results. In particular, maximum
matchings were determined by an implementation of the
Galil algorithm [7] that runs in O(|V|?) time, which proved
faster than open-source LP libraries. Currently, on a dual-
core PC with 2.4 Ghz/CPU, the donor-patient graph of
1,000 pairs is cleared in approximately 10 seconds.? -

In our first experiments we generate random graphs G,
through the process defined in Section 2.1. The first two
tables refer to the matching properties of the S and R sub-
graphs, in which we report the number of matched patients
compared to the individual sizes of the subgraphs averaged
over 1,000 samples.

The expected values for optimal matchings of the sub-
graph S (Table 3) are given by Lemma 5 and for the ex-
pected matchings in R by Lemma 6. The realized values are
very close to what our analysis predicts. Notice also the in-
creasing standard deviation for matchings in R, which stems
from the properties of the folded binomial.

3The Perl source code is available for download from
http://www.eecs.harvard.edu/econcs/code/rgke.zip
Detailed instructions on how to reproduce the results of
this section can be found in the package.
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#pairs #matches (|S|—fF) sd
20 18.12 18.0 1.15
40 38.1 38.0 1.06
60 57.91 58.0 1.14
80 77.93 78.0 1.11
100 97.92 98.0 1.07

Table 3: Maximum matching in S

#pairs  #matches (|R|—4/2-|R|) sd

20 16.64 16.43 2.64
40 34.94 34.95 3.73
60 54.16 53.82 4.79
80 72.97 72.86 5.67
100 91.76 92.02 6.12

Table 4: Maximum matching in R

For Theorem 2, which computes the expected cardinality
of the maximum matchings of G,, we simply take 1,000

samples of M(Gy,) for various values of n. The results are
shown in Table 5, and validate the analysis.

#pairs  #matches  p(n) sd
20 7.83 7.57 3.16
40 18.12 18.04 4.46
60 28.56 28.66 5.66
80 39.2 39.35 6.69
100 49.51 50.09 7.33
200 104.75 104.18 11.22

Table 5: Maximum matching in @;

5.1 Experiments with incentives

We will put our theory to test on mechanism xCM, since
irCM is not easy to implement efficiently and also lacks a
thorough incentives analysis. We start by examining the
welfare surplus of rCM with 3 truthful hospitals, each re-
porting some G,,. Again, we take 1,000 samples for various
sizes of n.

n H-1 H-2 H-3 Total Selfish | W(s,G)
20 9.63 9.36 9.45 28.44 22.77 5.94
40  20.26 20.05 20.31 60.62 54.24 6.74
60 31.05 31.22 31.23 9349 86.14 7.36
80 41.99 41.97 4231 126.26 118.27 7.88
100 52.97 52.37 5259 157.93 150.55 8.33

Table 6: Surplus from rCM with truthful hospitals

The left part of Table 6 refers to the simulation results
and the right one gives the theoretical predictions. The col-
umn titled “Selfish” gives the welfare when hospitals are not
reporting anything to the centralized mechanism. Our the-
ory predicts with high accuracy the expected welfare sur-
plus. For example, for n = 60 we have that W = 7.36 using
Corollary 2, when the real value is 93.49 — 86.14 = 7.35.
Last, notice that the surplus is distributed evenly among all



hospitals with values that are very close to u(n) + W/3, as
predicted in Corollary 2. For example, if n = 60, the pre-
dicted utility is 28.71 4 2.45 = 31.16, which is very close to
what all hospitals receive (see H-1,2,3 for n = 60)

Next, we proceed to study cases in which not all hospitals
are truthful. Here we will consider only full deviations and
for brevity we will refer to this as simply a deviation. Our
analysis in Section 4 showed that deviating strategies are
provably hurtful to the utility of truthful hospitals under a
non-IR centralized mechanism. To validate the truthfulness
of xCM, we modify our simulation so that H-1 deviates fully.
We first run on the non-IR centralized mechanism we defined
as rCM. See Table 7.

n H-14 H-2 H-3 Total
20 10.67 8.60 8.65 27.92
40 23.08 18.39 18.52 59.99
60 35.45 28.68 28.81 92.93
80 47.71 38.62 38.55 124.88
100 60.68 49.18 48.94 158.8

Table 7: H-1 deviates in rCM

We again take 1,000 samples for each value of the hospital
size n, and report the average values. First, notice that H-1
matches consistently more pairs any other truthful hospital.
Second, it is interesting to see that total welfare is not hurt
by the deviation (if we compare it to the one reported in
Table 5). This should not come as a surprise, since Theorem
3 actually builds upon this property to deliver a mechanism
that is IR and efficient on average. Next, we run xCM under
the same setting to get the results in Table 8.

n H-1, H-2 H-3 Total
20 928 946 9.2  28.01
40  19.74  19.79 20.03  59.57
60 30.65 30.51 30.54 91.69
80 41.66 41.91 41.13 124.7
100 52.02 52.39 52.36 156.76

Table 8: H-1 deviates under xCM

There are two important remarks. First, imposing IR is
effective against incentives if one looks at the individual util-
ities received by each hospital (also compare with Table 6).
Furthermore, the mechanism produces on average efficient
outcomes if we compare with Table 6, as predicted by The-
orem 3.

5.2 Robustness of results

The G,, model makes several simplifying assumptions, by
using a specific blood type distribution and treating the
tissue-type compatibilities as independent random events
with probability p. = 0.2. Here we test how relevant our
model remains with the introduction of nuisance parame-
ters.

In particular, we test two different blood-type distribu-
tions, one O(27%), A(32%), B(31%) and AB(10%) as in Ko-
rea and one set to 0(44%), A(42%), B(10%) and AB(4%) as
in the USA. Note that each distribution induces different pa-
rameters for the calculation of the p(n) formula in Lemma 2.
Let us denote with px (n) and py(n) the formulas for Korea
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and US respectively. Furthermore we endow p. with a vari-
ability as in Table 1. In particular, every pair draws a PRA
sensitivity from the distribution of Table 1 which defines its
individual crossmatch probability. Two pairs i, j are then
tissue-type compatible with probability (1 — pc,i) - (1 — pe,;)

We try to reproduce Table 5 in this more realistic scenario,
since Theorem 2 is the core of our analysis. The results on
1,000 samples are shown in Table 9:

#pairs | #(Korea) puc(n) | #(USA) puw(n)
20 7.18 8.67 5.83 7.62
40 17.21 20.6 14.4 18.11
60 28.27 32.74 23.86 28.75
80 39.54 44.99 33.89 39.46
100 51.24 57.3 44.01 50.22
200 111.16 119.41 97.6 104.39

Table 9: Matches with different ABO distributions
and with PRA sensitivity (see Table 1)

The theoretical predictions do become less accurate under
these different assumptions due mostly to the introduction
of PRA variability. However, our theoretical model remains
robust, in that it shares the approximate behavior of the
realized values. For example, one can observe that the ra-
tios of simulation over theoretical values are decreasing and
approaching 1 for large graph sizes.

Next, we would like to examine if xCM remains effective
in mitigating the impact of strategic playing under PRA
variability. To stress our analysis further, we will examine
the US blood type distribution. Our baseline is again defined
to be rCM. In the first scenario we wish to find out the best
welfare that can be achieved and we assume this to happen
when all hospitals are truthful. The results are shown in

Table 10.
n H-1 H-2 H-3 Total
20 805 788 775 @ 23.67
40 1837 18.08 18.04 54.49
60 29.15 29.13 28.99 87.27
80 39.82 39.85 394 119.06
100 50.99 50.71 51.21 152.92

Table 10: All truthful in xrCM (PRA+US blood fregs.)

Next we let hospital H-1 deviate. The results shown in
Table 11 reveal that H-1 is doing consistently better than
truthful hospitals, but at the same time appears not to hurt
much the overall efficiency (~ 1-2%).

n H-14 H-2 H-3 Total
20 9.18 7.45 7.33 23.96
40 2041 16.52 16.68 53.61
60 32.19 26.16 25.74 84.09
80 45.29 36.25 35.98 117.52
100 57.15 46.0 4597 149.12

Table 11: H-1 deviating in rCM (PRA4US)

Next we run our simulation with H-1 deviating under
mechanism xCM. The results are shown in Table 12.



n H-1; H-2 H-3 Total
20 7.78 7.3 7.56  22.64
40 17.54 1736 17.47  52.37
60 27.66 27.72 27.27 82.65
80 37.2 37.53 3748 112.20
100 48.33 47.81 48.02 144.16

Table 12: H-1 deviating in xCM (PRA4US)

We conclude that xCM restores fairness since H-14 receives
approximately the same number of transplantations with
truthful participants, while it consistently receives more
than others under rCM. Furthermore, the cost in efficiency is
small and stems mostly from the O and S subgraphs, which
under the PRA model are more likely to contain highly sen-
sitized patients. As a result, our connectivity assumptions
are violated, thus leading to a noticeable loss in efficiency.
For n = 40, that is for a CM with 120 total patients, this
loss is ~ 3.6% of the total efficiency. Therefore, our analysis
remains robust in dealing with parameters such as the PRA
variability or different blood type distributions, that were
not explicit parts of the model. Further improvements are
expected by modeling PRA sensitivity within the G,, model
and refactoring the analysis (Assumption 2).

6. CONCLUSIONS

We address efficiency and incentives in kidney exchanges
through a quantified random graph analysis which is new on
this domain. This perspective elucidates important aspects
of centralized kidney exchanges which are currently in an
experimental stage.

We started with the definition of a random graph model
of kidney exchanges, namely the model G,,. Subsequently,
we exploited the skewed connectivity among its subgraphs
to derive analytically u(n), i.e. the expected number of pa-
tients matched in a maximum matching drawn from G,.
This allowed us to explain much of early experimental results
but more importantly to study multiple-hospital, centralized
mechanisms (CM). In particular, we were able to quantify
the expected individual benefit of a hospital as being oc /1
in a CM with hospitals of size n. To the best of our knowl-
edge, this is the first formal proof of the valuable network
effect that comes from nationwide kidney exchanges.

Next, under a quantitatively and qualitatively reasonable
argument (see Assumption 2), we leveraged our analysis to
study the incentives problem. First, we showed that non-
truthful strategies do have negative effects on individual and
overall welfare. We then analyzed an archetypal IR mech-
anism, namely xCM and proved that it is efficient and IR in
equilibrium. Extensive experimental results validated our
theoretical predictions and the nice properties of xCM. Fur-
tAh/ermore, we checked for robustness on an augmented model
G.(PRA, F) which takes into account a variable PRA sen-
sitivity for patients (given in Table 1) and any ABO blood-
type distribution F.
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