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Abstract. In a dynamic market, being able to update one’s value based
on information available to other bidders currently in the market can be
critical to having profitable transactions. This is the model of interdepen-

dent values (IDV): a bidder’s value can explicitly depend on the private
information of other bidders. In this paper we present preliminary results
about the revenue properties of dynamic auctions for IDV bidders. We
adopt a computational approach to design single-item revenue-optimal
dynamic auctions with known arrivals and departures but (private) sig-
nals that arrive online. In leveraging a characterization of truthful auc-
tions, we present a mixed-integer programming formulation of the design
problem. Although a discretization is imposed on bidder signals the so-
lution is a mechanism applicable to continuous signals. The formulation
size grows exponentially in the dependence of bidders’ values on other
bidders’ signals. We highlight general properties of revenue-optimal dy-
namic auctions in a simple parameterized example and study the sensi-
tivity of prices and revenue to model parameters.

1 Introduction

Suppose that every day a web content provider, such as the New York Times
(NYT), auctions the right to have a banner ad appear next to the lead sports
story the following day. The NYT has contracted with various advertisers, where
the contract defines a fixed bidding interval wherein the advertiser can choose
to bid for the right at the same time each day (the “arrival” time of the bid) and
is guaranteed a response by some subsequent time (the “departure” time of the
bid.) Only the bid of the advertiser, and indeed whether or not the advertiser
will choose to bid, is uncertain. The NYT must complete the auction by 4am
each morning, where upon the auction for the subsequent day commences.

It is reasonable to assume that advertisers will have a hard time known the
value of having their own banner ad appear because this depends, in part, on the
breaking news stories that day and on the associated user demographics. For this
reason, an advertiser may naturally be interested in other bidders’ information
regarding the value of the banner ad. The interdependent values (IDV) model
from auction theory nicely captures a model in which each bidder has private
information (his signal), but a value that depends on his own signal as well as
the signals of other bidders.

Our model concerns interdependent values in a dynamic, known-interval set-
ting. As in any domain where bidders report private information to the auction-



eer, a basic requirement is incentive compatibility (IC, also known as truthful-
ness): bidders must be best off when reporting truthfully.1 We first consider a
naive generalization of the optimal static and IC auction for interdependent bid-
ders [3] and we point out that the solution obtained fails to satisfy IC constraints.
The reason is that, in retrospect, a bidder i will regret reporting truthfully in the
following scenario: i can misreport his signal changing the value or price of an
earlier bidder h such that h is now precluded from winning and i is going to win
(maybe because the future signals turn out to be “favorable” for i to misreport).

To determine the optimal, revenue-maximizing auction in our dynamic IDV
environment we adopt a mixed-integer programming (MIP) formulation and
follow the framework of automated mechanism design [4], which builds on the
heritage of the Myerson [10] program. For practical scalability we require that the
interdependencies between bidders is of bounded degree, that the designer is able
to constrain the number of signals that must be propagated from earlier periods
into defining the price of bidders in later periods, and that a coarse discretization
of signals can be tolerated. The formulation is illustrated in a simple, three bidder
scenario. Based on this formulation we can compare the revenue from this, IC
formulation with the one obtained using the naive generalization and the one
obtained using a clairvoyant approach.

Related work Branco [3] studies static revenue-optimal auctions and shows
that under a certain regularity condition, an asymmetric critical signal-based
auction is optimal (we review this auction in Subsection 3.1). The regularity
condition is satisfied if bidders’ valuations are increasing and concave in their
own signal and the signals’ distribution has a non-decreasing hazard rate.

Aoyagi [1] investigates optimal pricing schemes in dynamic settings with
IDV bidders. Aoyagi is not concerned with incentive compatibility and adopts
an indirect approach in which a bidder infers his value from the decisions of other
bidders. If a previous bidder j accepted (respectively rejected), then a current
bidder i’s estimation of j’s signal will increase (respectively decrease), leading
to a corresponding change in i’s value. Aoyagi shows that for any simultaneous
selling scheme, there exists a sequential one with at least as high a revenue.

Hajiaghayi et al. [6, 7] provide competitive mechanisms for selling one or more
goods in an dynamic environment, but they model bidders’ values as private.
See Parkes [12] for a recent survey on mechanism design in dynamic environ-
ments. The strategy of finding optimal-revenue mechanisms through search is
in the spirit of automated mechanism design [4]. However, rather than impose
IC constraints directly our formulation amounts to an informed search, since we
search only for critical signals that support a truthful allocation policy.

2 Preliminaries

We now describe our model of interdependent values in dynamic settings. Through-
out we assume that there is a single indivisible good for sale and the auction

1 The revelation principle tells us that it is without loss to focus on IC auctions, since
any outcome that can be implemented in the equilibrium of some auction can also
be achieved in the equilibrium of an IC auction.



will end as soon as the good is sold. Of course, this might be repeated every day
(see example in the introduction).

Each bidder i is active in an interval known to the auctioneer, delimited by
his arrival ai and departure di. Bidder i’s private information about the item
is encoded in his signal si. Each bidder’s value can depend on the collection
of signals reported in the market before his departure. Misreports are therefore
significantly restricted in our model since a bidder can only misreport his signal.
The auctioneer has uncertainty about si and models each si as an independent
draw from a distribution on non-negative values with cumulative distribution
function (cdf) Fi and probability density function (pdf), fi. We consider only
deterministic auction rules and assume for simplicity that all bidders have dis-
joint departures.2

Let us define now the semantics of interdependent values in environments
where the set of signals is dynamic. By s−i we will denote the signals of bid-
ders that have arrived before i’s departure. Given this, then a bidder’s value
vi(si, s−i) ≥ 0 is well defined in all periods no earlier than the last period
t ∈ [ai, di] for which another bidder arrives. Valuation function vi is known
to the auctioneer but signals are private to bidders. In the standard online,
private-value auctions model then vi(si, s−i) = si and a bidder’s valuation is
known, with certainty, throughout his presence in the auction. The online envi-
ronment also imposes an additional constraint: an bidder’s value is zero for an
allocation decision in a period t after his departure. The departure period can
be conceptualized as the period by which an bidder must receive a decision.

Without loss of generality we can focus on auction protocols that sell to a
bidder upon his departure. Not only does this ensure that an bidder’s own value is
known but this allows the auctioneer to gain maximal information about other
demand in the market. We assume that vi is differentiable with respect to si

and: (1) v-monotonicity: vi(s
+
i , s−i) ≥ vi(si, s−i)∀ i, ∀ s−i, ∀ s+

i ≥ si. That is, a
higher private signal cannot result in a lower value for the item; (2) the single
crossing condition (SCC): an infinitesimal change in bidder i’s private signal
influences i’s value more than it influences the value of j if i’s value is equal
to j’s and at least as high as the values of the other bidders. Any non-trivial
incentive compatible auction in static IDV environments must satisfy (1) and
(2) (see [9]).

Let bidder i’s true signal be si and his reported signal be s′i. A dynamic
auction defines an allocation rule qi(s

′
i, s−i) ∈ {0, 1} to indicate whether or not

bidder i is allocated the item, and a payment rule pi(s
′
i, s−i) ≥ 0 to specify the

payment made by bidder i (the time here is implicit: di). In a dynamic environ-
ment these must be online computable, i.e. they may not depend on signals not
yet observed. Bidders are modeled with quasilinear utilities: the utility of bidder
i with type si when reporting s′i is qi(s

′
i, s−i)vi(si, s−i) − pi(s

′
i, s−i). That is,

a bidder i’s utility is his value minus price, where i’s value for the allocation is
the value given all signals (aggregated by vi) if i wins the item and 0 otherwise.

2 If two bidders depart in the same period then they are effectively taking part in an
one-shot IDV auction.



The auctioneer can take a good decision only if bidders’ reports are accurate;
therefore we require that bidders are motivated to truthfully report their signals:

Definition 1. An auction is incentive compatible (IC) if, when other bidders
report their true types, the ex post utility of any bidder is maximized if he reports
his true type as well (i.e. truthful reporting is an ex post Nash equilibrium).

This is ex post IC, meaning that a bidder’s best strategy is to truthfully report
his signal whatever the signals of other bidders. As is standard for interdependent
value auctions, this is however weaker than the dominant-strategy equilibrium
property that can be achieved in private-value settings. Intuitively, an bidder’s
best strategy critically relies on the auctioneer having the correct view of his
value and this depends on the other bidders reporting truthful signals. We also
require that the utility of any truthful bidder be non-negative when all bidders
report truthfully. This is the familiar property of individual rationality (IR).

2.1 Incentive Compatibility Characterization

Consider a dynamic auction for IDV bidders that can only misreport their signal.
Constantin et al. [5] establish three conditions that are necessary and sufficient
for IC in dynamic, IDV auctions. Two of the conditions require that a bidder’s
price does not go down if he misstates his interval– they are trivially satisfied
in the known-interval setting of this paper.3 The third condition, adapted to a
no-interval-misreports domain, requires:

Unconditional critical signal: Fix the signals of other bidders. For
bidder i there is a signal, cu

i [s−i], such that i is allocated if and only if si ≥ cu
i [s−i]

(and is ∞ if i is not allocated for any si.) When allocated, the payment by i is
vi(c

u
i [s−i], s−i).

This implies that the allocation rule is monotonic in the bidder’s signal.
The existence of an unconditional critical signal generalizes the “critical-value”
concept in private-value settings, where a bidder wins iff his value is higher than
the critical value, which is also the price he pays [12].

In designing optimal, dynamic IDV auctions we find it easier to work with an
equivalent characterization that is defined in terms of conditional critical signals,
when coupled with additional inter-temporal constraints. This will lead to more
natural multi-period optimization problems.

Conditional critical signal: Fix the signals of the other bidders. For
bidder i there is a signal, ci[s−i], such that i is allocated if and only if si ≥ ci[s−i]
and there is an item available for allocation at i’s departure. When allocated,
the payment by i is vi(ci[s−i]), s−i).

It is quite easy to see that this property is not sufficient for IC. The reason is
that it can be in a bidder’s interest to influence whether or not the item is still

3 In Constantin et al. [5] it is also shown that if departures and signals are private
then no “reasonable” IC auction is possible, but one can have a “reasonable” IC
auction with private arrivals and private signals, but known departures.



available at its departure. Consider a scenario in which i loses (before departing)
to a competitor h when reporting signal si, but in which i can misreport some
signal s′i causing h to lose (e.g. if her critical signal goes from below to above
sh when i’s signal changes from si to s′i), and resulting in i now winning at a
price less than his true value for the item. To address this we must combine
conditional critical signals ci[s−i] with additional inter-temporal constraints:

Theorem 1. A dynamic auction in the known-interval, IDV model is IC if and
only if it has conditional critical signals with the property that there are no signals
s<i, si, and s′i such that: (a) cj [si, s−ij ] ≤ sj for some j < i; (b) cj[s

′
i, s−ij ] > sj

for all j < i; and (c) ci[s−i] ≤ min{si, s
′
i}.

We refer to the constraints in Theorem 1 as the inter-temporal IC constraints
(ITIC). Given this, there is never an instance for which some bidder i loses when
reporting true signal si (a), could have prevented all earlier bidders from winning
for some s′i 6= si (b), and wins for report s′i and with a critical signal less than
its true signal and thus a payment less than its true value (by v-monotonicity).
Conditional critical signals that satisfy ITIC become unconditional: i wins if and
only if his signal is at least ci[s−i].

3 Special cases

We now present two simple dynamic IDV environments for which revenue op-
timal auctions can be easily constructed. We first review Branco’s [3] solution
for non-dynamic IDV environments and then provide a multi-step optimization
formulation for the case of disjoint intervals.

3.1 Revenue-optimal static auctions

Definition 2. If a bidder i’s valuation is vi(si, s−i) then i’s virtual valuation is

πi(si, s−i) = vi(si, s−i) −
∂vi

∂si

(si, s−i)
1 − Fi(si)

fi(si)
(1)

For example, if i = 3, signals are distributed uniformly on [0, 1] and v3(s1, s2, s3) =
s3 + s1

4 + s2

4 + 1
4 then π3(s1, s2, s3) = s3 + s1

4 + s2

4 + 1
4 −1 1−s3

1 = 2s3 + s1

4 + s2

4 − 3
4 .

Branco [3] provides a revenue-optimal static auction for IDV bidders if i’s virtual
valuation is increasing in si, for all i. This holds in particular if bidder valua-
tions are increasing and concave in their own signal and the distribution of each

bidder’s signal has a non-decreasing hazard rate ( fi(si)
1−Fi(si)

). Branco’s auction

generalizes Myerson’s [10] revenue-optimal private-value optimal auction, and is
thus based on the fact that in equilibrium, virtual valuation = revenue. This
insight suggested the virtual valuation-based heuristic for the non-clairvoyant
mechanism that we present in Subsec. 5.1. In Branco’s solution, the bidder with
the highest virtual valuation πi wins, but only if πi is non-negative. The winner
pays his value computed at the lowest signal for which he still wins.

Branco’s result extends to any dynamic setting in which all bidders’ intervals
have at least one point in common, making the auction a static one.



3.2 Disjoint intervals

In this subsection we analyze the case of disjoint intervals when the number of
bidders n is known in advance and we show that the revenue-optimal auction
can be obtained as a solution to a multi-period decision problem.

From our earlier characterization, we know that an IC auction in this envi-
ronment must define a critical signal schedule, (cj)1≤j≤n, where cj denotes the
critical signal for bidder j conditioned on the item still being available, and com-
puted with knowledge of the signals s<j reported by earlier bidders but not with
knowledge of the signal of bidder j himself (else it would not be IC). In this case
the ITIC constraints are vacuously satisfied because no bidder can influence the
critical signal faced by an earlier bidder.

We can compute an optimal schedule by adopting dynamic programming:
bidder j’s critical signal should optimally balance the revenue from selling to him
now (at a price of vj(cj , s<j)) and waiting. Let cj ∈ argmaxc Rj(c, s<j), where
Rj(c, s<j) = E[vj(c, s<j)|sj ≥ c] + E [Rj+1(cj+1, s≤j)| sj < c] and Rn+1(·) = 0.
Rj(c, s<j) is the expected revenue from selling to bidder j at a price defined by
critical signal c and selling to future bidders under the optimal critical signal
schedule. For the last bidder, we get cn ∈ argmaxc{(1 − F (c)) · vj(c, s<n)}.

Recall that fi and Fi define, respectively, the pdf and cdf on the signal
distribution of bidder i. This probabilistic model is used in defining the base
case for the last bidder, and also provides the distributional information with
which the expected revenue is computed in earlier periods.

4 Working with a Specific Problem instance

For the remainder of the paper we will work with a set of four specific 3-bidder
scenarios as shown in Fig. 1. In all scenarios bidders’ arrivals and departures
are known and fixed, with a slight variation for the scenarios in which bidder
3 is supposed to arrive later than time d1. In those scenarios, if bidder 3 has
not arrived yet, the auctioneer only knows the (correct) probability of bidder 3
arriving 0 ≤ p3A ≤ 1. These simple scenarios capture, we think, the essence of
interactions in dynamic environments for IDV bidders.

Each scenario is labeled X12X13X23 where Xij is ‘T’ or ‘F’ (shorthand for
‘True’ and ‘False’) and Xij specifies whether sj can be used in vi, i.e. whether
bidder j arrives before bidder i departs. For instance, in scenario TFT bidder 1
uses his signal and 2’s while bidders 2 and 3 use the signal of both other bidders.
Note that because of the bidder ordering, one cannot have scenarios FTF, FTT
or TTF – bidders’ arrival and departure order is the same: 1,2,3. We omitted
scenario FFT as we expect it to be analogous to TFF.

For simplicity, we will model the signal of any bidder as being uniformly
distributed on [0, 1]. In the continuous Branco formulation, the distribution-
dependent part of i’s virtual valuation (see Eq. (1)) will then be 1 − si.

4.1 MIP formulation

We present a mixed-integer programming (MIP) formulation for the TFT sce-
nario. This formulation can be extended to any other dynamic scenario.
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Fig. 1. Bidder configuration as known a priori (at a1) in each of the four scenarios. At
d1 or d2, if 3’s scheduled arrival a3 is later, the probability that 3 will arrive at all is
p3A. If bidder 3 arrives, then his interval is known to be [a3, d3].

We discretize the signal space of each bidder b such that sb can take on values
sb1, . . . , sbmb

. We will hereafter assume that bidders’ valuations are weighted-
linear in the signals available vi(si, s−i) = si +

∑

j 6=i vijsj . In Section 5 we will
use specific numeric values for the vij weights, i.e. for the weight that bidder i

assigns to the signal of some bidder j 6= i. This discretized type space provides
an approximation to a continuous one.

To use a mechanism defined on a discrete type space in a continuous one,
compute the critical signal for a bidder 1 ≤ i ≤ 3 as follows: let sj and sk be the
other bidders’ signals and sj and sk be the highest discrete signals lower than sj

and sk respectively. Bidder i’s critical signal is then the discrete critical signal
that was computed for (sj , sk).

Decision variables As seen in Theorem 1, any IC auction can be defined
by conditional critical signals when coupled with ITIC constraints. The MIP
includes decision variables ci, instantiated for each bidder i on the discretized
signals of the other relevant bidders, and defining the conditional critical signals
(just “critical signals” here after). A bidder gets the item if no earlier bidder
won the item and the bidder’s signal satisfies ci ≥ ci(s−i) upon its departure.
Given critical signals, binary variables λ, µ and ν encode whether each bidder
(1, 2 and 3 respectively) does not win the item:

λij = 1 ⇐⇒ s1i < c1(s2j) (2)

µijk = 1 iff s2j < c2(s1i, s3k) µ¬3
ij = 1 iff s2j < c¬3

2 (s1i)

νijk = 1 ⇐⇒ s3k < c3(s1i, s2j)

Within the MIP, one can capture logic such as λij = 1 ⇐⇒ s1i < c1(s2j)
via linear constraint −Mλij ≤ s1i − c1(s2j) < M(1 − λij) where a “big M”
is adopted, and set to the smallest constant that can be proved to be larger
than the maximal absolute value of s1i − c1(s2j). We also impose monotonicity



constraints, λij ≤ λi−1,j , µijk ≤ µi,j−1,k, µ¬3
ij ≤ µ¬3

i,j−1, and νijk ≤ νi,j,k−1 on
the indicator variables.

These indicator variables are used both in the ITIC constraints and in the
objective function. For example, λij indicates whether bidder 1 does not win the
item when its signal is s1i and bidder 2’s signal is s2j . Note that in TFT bidder
1’s critical signal depends on s2, bidder 3’s on (s1, s2) and bidder 2’s depends on
whether or not bidder 3 arrives. Variables c2(s1i, s3k) and µijk capture the be-
havior of the auction in respect to bidder 2 when bidder 3 arrives while variables
µ¬3

ij and c¬3
2 (s1i) are for the case without bidder 3.4

ITIC constraints In the TFT scenario the ITIC constraints are encoded as:

– If p3A < 1, bidder 2 does not have a useful signal misreport when 3 does not
arrive: he cannot report a signal s2j′ instead of s2j such that he loses with j,
wins with j′ and his critical signal is less than his true signal s2j (note that
bidder 2 can only lose to bidder 1). In critical signal notation,

6 ∃s1i, s2j , s2j′ s.t.

{

c1(s2j) ≤ s1i and s1i < c1(s2j′) and
c¬3
2 (s1i) ≤ s2j and c¬3

2 (s1i) ≤ s2j′

which, using the variables in Eq. (2), can be written as

6 ∃i, j, j′ such that (¬λij) ∧ λij′ ∧ (¬µ¬3
ij ) ∧ (¬µ¬3

ij′ )

or still: ∀ i, j, j′ (1 − λij) + λij′ + (1 − µ¬3
ij ) + (1 − µ¬3

ij′ ) ≤ 3, as a linear
constraint.

– If p3A > 0, bidder 2 does not have a useful signal misreport when 3 arrives:
he cannot report a signal s2j′ instead of s2j such that he loses with j, wins
with j′ and his critical signal is less than his true signal s2j (note that in
this case bidder 2 can only lose to bidder 1). In critical signal notation,

6 ∃s1i, s2j , s2j′ , s3k s. t.

{

c1(s2j) ≤ s1i and s1i < c1(s2j′ ) and
c2(s1i, s3k) ≤ s2j and c2(s1i, s3k) ≤ s2j′

which is easily expressed into linear constraints as above.
– If p3A > 0, bidder 3 does not have a useful misreport when 3 arrives:

6 ∃s1i, s2j , s3k, s3k′ s.t.

{

c2(s1i, s3k) ≤ s2j and s2j < c2(s1i, s3k′) and
c3(s1i, s2j) ≤ s3k and c3(s1i, s2j) ≤ s3k′

The TFT scenario misses one type of ITIC constraint that is present in
scenarios where a bidder i can influence the ability of more than one earlier
bidder to win the item. For example, if there is a bidder 4 that is visible to
both 2 and 3: a3 < a4 < d2 < d3 < d4 then the ITIC constraints for bidder
4 would require: he cannot report a signal s4l′ instead of s4l such that he loses

4 Note that
P

i
λijk may be different than 1 for some j and k as long as

[min s1i, max s1i] does not cover s1’s domain: e.g. if c1(s2j , s3k) < min s1i. A similar
observation holds for

P

j
µijk and

P

k
νijk.



with l, wins with l′ and his critical signal is less than his true signal s4l. Note
that bidder 4 could lose to bidder 2 or bidder 3. In critical signal notation,

6 ∃s1i, s2j , s3k, s4l, s4l′ such that















[c2(s1i, s3k, s4l) ≤ s2j or c3(s1i, s2j , s4l) ≤ s3k] and
s2j < c2(s1i, s3k, s4l′) and
s3k < c3(s1i, s2j , s4l′) and

c4(s1i, s2j , s3k) ≤ s4l and c4(s1i, s2j , s3k) ≤ s4l′

(3)

which can also be easily expressed in linear constraints.

Objective function The objective is to maximize the expected revenue given
the probabilistic model on bidder signals and whether or not bidder 3 will arrive.
Let P(sil) denote the discrete probability mass assigned to discrete signal level
l for bidder i by evenly distributing pdf fi. We write the objective as:

∑

k,j,i

P[s3k]P[s2j ]P[s1i]
(

R1(i, j) + (1 − p3A)R¬3
2 (i, j) + p3A(R2(i, j, k) + R3(i, j, k))

)

where
R1(i, j) = (1 − λij) (c1(s2j) + v12s2j + v10)

R¬3
2 (i, j) = λij(1 − µ¬3

ij )
(

c¬3
2 (s1i) + v21s1i + v20

)

R2(i, j, k) = λijk(1 − µijk) (c2(s1i, s3k) + v21s1i + v23s3k + v20)

R3(i, j, k) = λijkµijk(1 − νijk) (c3(s1i, s2j) + v31s1i + v32s2j + v30)

Recall that vij is a constant, denoting the weight that the bidder assigns to
the signal of some other bidder j 6= i. To linearize the objective, note that an
objective term such as R1(i, j) = (1−λij) (c1(s2j) + v12s2j + v10) can be reduced
to R1(i, j) ≤ c1(s2j) + v12s2j + v10 and R1(i, j) ≤ M(1 − λij) for a suitable big
M constant. Similar tricks can be used for the other terms in the objective. The
Rh(·) quantities measure the revenue obtained when signals take the specific
values s1i, s2j and s3k and bidder h wins the item. For instance R2(i, j, k) is only
activated if bidder 1 has not won the item (λij = 0 i.e. s1i < c1(s2j)) but bidder
2 wins the item (µij = 1 i.e. s2j ≥ c2(s1i, s3k)). The winning bidder pays his
valuation at the critical signal and the signals of other bidders.

Formulation size In considering the size of the MIP in a general scenario we
consider the following problem characteristics:

– D+ (≤ m): the maximum number of earlier bidders’ signals that can influ-
ence a bidder’s value

– D−: the maximum number of earlier bidders whose value can be influenced
by any single bidder’s signal

– S: the maximum size of the discrete signal space of any bidder
– n: the number of bidders
– m: the maximum number of other bidders’ signals that can influence the

critical signal to some bidder.



By generalizing Eq. (2), one can see that for each bidder i, each discrete
signal si and each possible signal tuple of bidders that influence i’s value, there
is a variable controlling whether si is smaller than the critical signal ci computed
at that particular tuple. Since in the tuple there can be at most D+ bidders, the
number of variables is O(nSD++1).

To analyze the number of constraints, one needs to extrapolate Eq. (3) since
the bulk of constraints will be of this form. Each such ITIC constraint must
ensure that no bidder i (i = 4 in Eq. (3)) can misreport his signal such that:
all earlier bidders (2 and 3 in Eq. (3)) who should be winning when i is honest
do not win anymore and furthermore, i wins. There are n bidders in total.
Each bidder i can influence the value of at most D− earlier bidders and each of
those other bidder’s ITIC constraint depends on its own signal, together with
perhaps m other signals, where m is the maximal number of other signals that
can influence its critical signal. Thus, the number of constraints is O(nD−Sm+1).
Note that there are no ITIC constraints when D− = 0, which occurs either in
the IDV but disjoint interval case or in the non-disjoint but private-values case.
In both of these cases it is sufficient for IC to simply formulate the decision
problem as one of setting critical signals.

Remarks: Signals are discrete and critical signals are only constrained by
inequalities of the form si < ci, from the ITIC constraints. Because critical-
signals have non-negative weights in the objective function, if a critical signal
ci is in between two consecutive discrete points sa and sa+1 then a solution as
least as good as the current one can be obtained by setting ci = sa+1, without
affecting any ITIC constraints. From this, we see that critical signals will only
be defined at discrete points.

While it is reasonable to consider structured problems in which D− and D+

are small, the main bottleneck in encoding MIPs for large instances is in the
dependence of the number of constraints on Sm+1. For practical formulations
the designer will need to impose some limit to the number of earlier signals
that can factor into setting the critical signal for the current bidder, or adopt
an alternate formulation that restricts this dependence to some other derived
statistic; e.g., the maximal earlier value of a departing bidder, or the maximal
signal of an earlier bidder.

5 Instantiation

We now go on to instantiating particular numbers for the valuation model de-
scribed above. This leads to our simulation study. Let s1, s2, s3 ∼ U [0, 1] and
assume the following valuations (whose choice we will motivate shortly):

v3(s1, s2, s3) = s3 +
s1

4
+

s2

4
+

1

4

v2(s1, s2, s3) =

{

s2 + s1

4 + s3

4 + 1
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s2 + s1

2 + 1
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v1(s1, s2, s3) =
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4 , if 1 can see both 2 and 3



The virtual valuations are

π1(s1, s2, s3) =











3s1 −
5
4 , , if 1 cannot see 2 or 3

2s1 + s2

2 − 3
4 , if 1 can see 2, but not 3

2s3 + s1

4 + s2

4 − 3
4 , if 1 can see both 2 and 3

π¬3
2 (s1, s2, s3) = 2s2 +

s1

2
−

3

4

π2(s1, s2, s3) = 2s2 +
s1

4
+

s3

4
−

3

4

π3(s1, s2, s3) = 2s3 +
s1

4
+

s2

4
−

3

4

The valuations were chosen to be symmetric and such that:

– they depend linearly on the signals available,
– ∂vi

∂si
> ∂vi

∂sj
∀ i, j, implying the v-monotonicity and SCC conditions

– v1 = v2 = v3 and π1 = π2 = π3 when s1 = s2 = s3 in all scenarios, except
π1 < π2 = π3 in scenario FFF.

The final property ensures that there is no a priori bias between bidders and
it is meant to facilitate the analysis of the interaction of interdependent values
and uncertainty about the future. One cannot have, however, v1 = v2 = v3 and
π1 = π2 = π3 when s1 = s2 = s3 in all scenarios unless values are private. For
the weights we have chosen, E[π1(s1)] = 0.25 in scenario FFF, less than 0.5, the
expected value of any bidder’s virtual valuation in all other scenarios.

5.1 Experimental Results

We compare the performance of the MIP-based auction with two additional auc-
tions as summarized in Table 1. The continuous, clairvoyant (ContCV) auction
provides a best-case revenue. Here, we allow the auctioneer to observe the signals
of all bidders from the start, regardless of the scenario. Bidder i’s critical signal
is then computed as the least signal for which i has the highest non-negative
virtual valuation πi (recall that πi depends on the scenario). In other words,
ContCV implements Branco’s auction as if the auctioneer could have perfect
knowledge of all signals.

The continuous, non-clairvoyant (Cont NonCV) auction is a naive general-
ization of Branco’s offline auction that is not IC in general. At each departure
di, the item is sold to i iff i’s virtual valuation πi is higher than the maximum of
the expectations of the virtual valuations of bidders still to arrive and zero (as
in Eq. (4)). If any bidder j has already departed, πi is not compared with πj .
For example, in scenario TFT, this solution requires selling to:

Bidder 1, if π1 ≥ (1 − p3A)max(π¬3
2 , 0) + p3AE[max(π2, π3, 0)]

Bidder 2, if π¬3
2 ≥ 0 when 3 does not arrive and haven’t sold to 1 (4)

Bidder 2, if π2 ≥ max(π3, 0) when 3 arrives and haven’t sold to 1

Bidder 3, if π3 ≥ 0 when 3 arrives and haven’t sold to 1 or 2



Auction CV Cont IC

ContCV
√ √ √

Cont NonCV X
√

X
MIP policy X X

√

FFF TFF TFT TTT

Cont CV 0.8875 0.9471 0.9474 0.9448
Cont NonCV 0.8848 0.8551 0.85 0.9448
MIP policy 0.8843 0.9015 0.9018 0.9175

Table 1. Auctions used for evaluation (left), as characterized by whether or not the
auctioneer is clairvoyant (CV), whether or not a discretization is imposed when de-
signing the auction (Cont == “continuous,” no discretization), and whether or not the
auction is IC. The expected revenue is summarized by scenario (right) in an environ-
ment where bidder 3 always arrives.

For scenario TFT in particular however, this is not IC: one can verify that for
s1 = 0.6, s2 = 0.3 and any s3 ≤ 0.3 bidder 2 is better off reporting s′2 = 0.5.

For the MIP-based policy, recall that there are mi discrete signals for each
bidder i. We chose them to be 1

1+mi
through mi

1+mi
, where m1 = 14, m2 =

9, m3 = 7. These numbers were calibrated so as to balance solution quality in
the time allotted with the granularity of the discretization. A higher emphasis
was placed on bidders 1 and 2 since the critical signals vary the most for them.
In the MIP formulation, 3’s critical signals are usually not used for high values
of s1: if s3 ≥ c3 then 1 wins the item since s1 ≥ c1 as well (in other words, the
unconditional critical signal of bidder 3 for high values of s1 is ∞). As mentioned
before, critical signals c1 will only take values at discrete signals s1i. Allowing
bidder 1 the most discrete signals makes the solution more informative.

The MIP formulation was encoded using CPLEX and JOpt, a simplified
Java Wrapper for mixed integer or linear programming [8]. It was run on each
scenario and auction for three hours on a Pentium IV at 3GHZ, allowing 256MB
of memory for CPLEX. For comparison, 256MB is not enough memory in the
TTT scenario for m1 = m2 = m3 = 19. Note that the CPLEX solution was
stopped before reaching its tolerance level of 99.9%; any feasible solution to the
MIP is however IC, because it must satisfy the ITIC constraints.

Throughout the experiments we fix p3A = 1, meaning that bidder 3 always
arrives and consider the four scenarios from before. All critical signal sets were
evaluated using sampling of signals: 500000 independent uniform samples of
(s1, s2, s3) ∈ [0, 1]3 were taken for the clairvoyant tests and 10000 for the non-
clairvoyant, due to these taking significantly longer.

5.2 Empirical Results

The average revenue for the MIP formulation and the Clairvoyant and Non-
Clairvoyant settings are shown in Table 1, right. Let us take a closer look at
these numbers. We see that, in all 3 auctions, as the bidders intervals’ overlap
increases, so does the revenue – we should expect this since the uncertainty in
the model decreases with the amount of overlap.

The MIP solution generates a higher revenue than the non-clairvoyant one
in scenarios TFF and TFT. Thus, it appears that tackling the online problem
directly provides a better solution despite having to impose ITIC constraints
and having the auction limited to be defined at discrete points. Scenarios TFF
and TFT have produced close revenues for all auctions.
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Fig. 2. Critical signals of bidder 1 as a function of bidder 2’s signals in scenario TFT
for several values of p3A (shown in legend). The critical signals obtained from the MIP
policy are on the left, while the ones obtained from the (Branco) ContNonCV heuristic
are on the right.

We also experimented with varying p3A in scenario TFT. Recall that in
scenario TFT, bidder 1 can only observe bidder 2’s signal, but bidders 2 and
3 observe every bidder’s signal. At d1 only the probability p3A of 3 arriving is
known – whether 3 arrives will be known before d2. This scenario offers the
most interesting IC considerations (for bidder 2), at least without bidders fully
overlapping.

As expected, as the probability p3A of bidder 3 arriving goes down, so does
the expected revenue of the optimal auction as approximated by our MIP for-
mulation. The table below was obtained by sampling, in the same way as above,
100000 triples of signals:

p3A 1.0 0.75 0.5 0.25 0.0
revenue 0.902 0.868 0.848 0.815 0.807

The critical signals for bidders 2 and 3 computed at time d1 are basically
identical for all values of p3A. What differs are the critical signals of bidder 1,
plotted in Fig. 2, left. The signals have an increasing, convex shape and appear
to become flatter as p3A increases.5 The similarity with the signals predicted by
the Branco non-clairvoyant (on the right in the same Figure) is striking. Recall
though that the Branco non-clairvoyant are not IC! We are currently investi-
gating, through additional computation, whether the phenomenon we see here
is actually monotonicity ironing in order to achieve IC (in the sense of Myer-
son [10]) or due to the discretizations imposed in the MIP methodology together
with suboptimal solutions. We conjecture that we are in fact seeing ironing, in
this case leveling of critical signals in regions of the signal space that may violate

5 The variance in this picture is probably due to CPLEX stopping in each instance on
one of the many approximately optimal solutions.



IC (in our case, pairs of low s1 and s2 in Fig. 2). By way of comparison, we also
ran our formulation on the TTT scenario, which is effectively a one-shot, non-
dynamic scenario. The (approximate) optimal auction was almost identical to
the optimal IC auction predicted by Branco’s result, as described in Subsec. 3.1.

6 Discussion and future work

In this paper we adopt a computational approach to the design of dynamic,
interdependent-value auctions. We formulate the design problem as a mixed-
integer program defined on discretized signals. The formulation has reasonable
size if the amount of interdependence between bidders’ valuations is small, a
coarse signal discretization can be tolerated, and the a bound is imposed on
the maximal dependence on earlier signals of the price to any bidder. Our for-
mulation leverages a “critical-signal based” characterization for truthful, online
auctions and we formulate the design problem as one of setting appropriate
critical signals, which in turn induce an optimal decision policy.

In future work we intend to use our optimization approach to better under-
stand the relationship between Branco/Myerson-style virtual valuation-based
methods and the IC solutions generated through optimization. Another relevant
extension includes identifying graphical, interdependent value models that can
provide structure to leverage computationally. It would also be nice to extend to
allow for uncertainty both in the number of bidders, and also the time intervals
that define bids.
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