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ABSTRACT
Finding a common time slot for a group event is a daily
conundrum and illustrates key features of group decision-
making. It is a complex interplay of individual incentives and
group dynamics. A participant would like the final time to
be convenient for her, but she is also expected to be cooper-
ative towards other people’s preferences. We combine large-
scale data analysis with theoretical models from the voting
literature to investigate strategic behaviors in event schedul-
ing. We analyze all Doodle polls created in the US from July-
September 2011 (over 340,000 polls), consisting of both hid-
den polls (a user cannot see other responses) and open polls
(a user can see all previous responses). By analyzing the dif-
ferences in behavior in hidden and open polls, we gain unique
insights into strategies that people apply in a natural decision-
making setting. Responders in open polls are more likely to
approve slots that are very popular or very unpopular, but not
intermediate slots. We show that this behavior is inconsistent
with models that have been proposed in the voting literature,
and propose a new model based on combining personal and
social utilities to explain the data.
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INTRODUCTION
Online platforms for scheduling events are used more than
ever. A recent survey has found that over 30% of Internet
users use specialized online tools to schedule their meetings.1
Among those tools, perhaps the most popular is the online
calendar and scheduling website Doodle (www.doodle.com).
In a typical Doodle poll, a poll initiator defines the possible
dates and time slots (say, for an upcoming event), and sends a
link to the poll to other participants, by e-mail or other means.

1http://en.blog.doodle.com/2011/07/13/
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Figure 1: An open Doodle poll, as seen by the fourth voter.

Upon receiving the link, each participant can mark any num-
ber of time slots as available, see Figure 1. The poll initiator
then uses the reported availability to determine the event time.

Much research has been dedicated to the adoption of schedul-
ing tools, the conditions under which people are willing to
use them, and how scheduling activities fit within the larger
context of a workflow or a relationship [22, 25, 28]. We fo-
cus on the complementary question of user behavior during
the scheduling process. Given that a group of people already
decided to use a scheduling tool and have preferences over
time slots, how do they report their availability? For example,
we are interested in whether people apply strategic consider-
ations, for example choosing to report as non-available some
slots in which they could actually attend (but prefer not to).

One way to think about Doodle polls is as a voting mecha-
nism. That is, after the possible slots have been announced,
each participant is a voter, with preferences over event times.
These preferences may be derived from constraints and con-
siderations such as convenience of commuting, other events
on the same day, and so forth. Each participant may approve
a subset of the slots by marking these as available. By doing
so, a participant discloses partial information about her pref-
erences, which is then aggregated with the votes of others.
If we assume that the option approved by most participants
gets selected, then this voting mechanism is known in the so-
cial choice literature as Approval voting [14] (where a voter
can vote for as many alternatives as she likes). Strategic vot-
ing has been widely studied and discussed within the social
choice literature, and so by rephrasing the group scheduling
problem as a voting problem, we hope to gain important in-
sights on the strategies that participants may apply.

In the simplest case, a participant may vote for exactly the
time slots for which she is available. But in reality there is a
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range of differing time slots, some of which may be feasible
but inconvenient. How would she vote in this case? She may
take into account various strategic and social considerations
when casting her vote. For example, she may hide some of
her available slots in hope that another, more convenient slot
will be selected. Alternatively, she may mark a less conve-
nient slot if she believes that this would enable more partic-
ipants to attend the meeting. Perhaps this is done in order
to be cooperative, or because she personally benefits from a
time that allows as many to attend as possible. Such sophis-
ticated behavior can depend on how earlier participants have
voted. Models from the voting literature offer predictions on
how individuals would behave under these settings.

Doodle polls provide a unique opportunity to study the range
of strategies that people apply in group scheduling situations.
Consider the following three reasons. First, there is a huge
database of polls that can be used for analysis. In this paper
we use more than 14 million votes from 2 million responders
in over 340,000 polls.

Second, the data consists of both hidden polls, where partic-
ipants do not see the other votes, and open polls, where par-
ticipants can see the votes of previous participants. By using
the hidden-poll data as a baseline, we can study how voting
behavior is affected by the group information available to the
participant and avoid other confounds (for example, changes
in responses that occur due to whether a response is placed
early or late, and thus closer to the associated event). This
also allows us to explore the implications of design decisions
made by the initiator, in terms of setting a poll to be open
versus closed.

Third, Approval voting has been extensively studied in the
economics, political science and AI literature, and there are
many models of both truthful and strategic voting. The Doo-
dle data can be used to test the assumptions underlying these
models in a particular real scenario, as well as their predic-
tions on voting outcomes.

Summary of Key Findings and Contributions
1. The average reported availability is higher in open polls

compared to hidden polls.

2. In both open and hidden polls, there is a decline in reported
availability over time. The relative rate of decline is similar
between open and hidden polls.

3. Responses in open polls have higher positive correlation
with previous responses compared to hidden polls.

4. Open polls have higher response rates for very popular and
very unpopular time slots compared to hidden polls. In-
termediate time slots have similar response rates between
open and hidden polls.

We show that some of these empirical observations are incon-
sistent with standard models of Approval voting. We propose
a new theoretical model, whereby a responder in an open poll
votes for her preferred time slots, while also voting for highly
popular slots that she does not disprefer, while also trying to
appear cooperative, to explain the data.

Related work
Reinecke et al. [27] study how cultural differences between
countries are reflected in scheduling patterns on Doodle. In
particular they show that participants in collectivist countries
tend to coordinate more with one another in open polls. Rec-
ognizing this, we use data from a single country (US) to avoid
confounding due to such cultural differences.

The phenomenon of vote coordination in open online polls
is related to a theoretical model of herding [5, 30, 17, 1],
where information revealed in early votes influences voting
dynamics and leads to a failure of information aggregation.
Herding typically refers to situations where a voter faces a
binary choice (e.g., to recommend a product or not, or choos-
ing between two alternatives), and is learning about the best
option from the responses of others rather than bringing her
own preferences to bear.

The implications of sequential voting in more complex sce-
narios have also been studied [2, 9]. However these models
deal with equilibrium analysis, thereby assuming very sophis-
ticated participants. Moreover, these models do not consider
Approval voting.

The role of incentives in scheduling has also received atten-
tion in the AI literature. However these papers focus mainly
on the design of novel scheduling systems with various guar-
antees [10, 8]; or on optimizing the behavior of automated
agents who operate on behalf of users [11, 7]. We are inter-
ested how human participants behave in an existing schedul-
ing system.

Approval voting
Brams and Fishburn [3] offered the first systematic model of
strategic behavior under Approval voting. They assume that
voters have a weak transitive preference order over alterna-
tives, and define a vote as sincere if the voter prefers all al-
ternatives on which she votes over all other alternatives. Cru-
cially, a voter may have more than one sincere way to vote.
Brams and Fishburn prove that a voter who has at most three
levels of preference2 is always better off by voting sincerely.
However, a voter may prefer to vote insincerely if she has four
or more levels of preference.

A key issue in strategic voting models is the assumption about
what information a voter has when deciding on her vote.
Brams and Fishburn assume that voters have no knowledge
whatsoever about the preferences or actions of others. A
more elaborate model for Approval voting was studied by
Weber [29], based on a general voting theory [23]. Here vot-
ers have a common prior distribution over the total number
of votes obtained by each alternative, and they each try to
maximize their expected utility w.r.t. this distribution. Weber
shows that the optimal vote (i.e., the rational best response of
a voter to any distribution) is sincere.

While the Weber model assumes that voters are highly sophis-
ticated, capable of probabilistic calculations, a heuristic strat-
egy called the leader rule has been suggested by Laslier [13].
2That is, alternatives can be partitioned to three sets, such the voter
prefers all alternative in a set to all alternatives in the next set, but is
indifferent between the alternatives in each set.



This is a simple and sincere strategy (see details in the next
sections), and Laslier was able to show that it is optimal for a
rational voter in a special case of the Weber model in which
there is a common prior on the rank order of alternatives.

Other researchers have studied social factors affecting voting
behavior, albeit not under the Approval system [6, 18]. In
particular, the MBD model, named after Manski [19], Brock
and Durlauf [4], assumes that a voter tries to meet the expec-
tations of her peers (see [18]). The MBD model completely
ignores any self-interested aspect of voting: the alternative
that actually gets selected does not factor into the utility of
the voter (assuming that the number of voters is high and thus
every single vote is negligible). The simple model that we
propose and support with the Doodle poll data combines both
social and self-interest considerations.

EMPIRICAL RESULTS

Data collection
The dataset consists of all the polls created by US users on
Doodle over the three month period July-September, 2011.
It was collected and anonymized by Doodle and shared with
the authors under a research agreement. We focus our analy-
sis on polls with at least three participants, at least four time
slots and only yes/no options. In Doodle, it is also possible
to set up a poll where the participants can choose from one
of three options (yes/no/maybe) for each time slot. However,
there are very few three-option polls and we exclude them
from our analysis. There are two types of yes/no polls: open
and hidden. In open polls, responders can see all the previ-
ous responses. In hidden polls, a responder does not see any
previous responses. We have 345,297 open polls and 7,390
hidden polls that pass this filtering. While there are fewer
hidden polls, there are sufficiently many hidden polls to per-
form meaningful statistical analysis.

Key assumption. In our analysis, we compare certain statis-
tical properties of the open polls with that of the hidden polls.
We do this to isolate the effect of observations of previous
responses and to avoid confounds. In order for this compar-
ison to be reasonable, we need open and hidden polls to be
generated from similar distributions of activities or events, so
that the main difference in response patterns are driven by the
fact that responders see previous responses in open polls. Our
collection of polls has a median of 5 responders and 12 time
slots. The patterns we discuss below are robust if we strat-
ify and compare open and hidden polls with the same number
of responders and time slots, where there is sufficient sample
size for analysis.

Hypotheses
Our goal is to investigate how responders’ behavior changes
when all previous responses are public. We state several hy-
potheses, and later test whether they are corroborated by the
data. Our first hypothesis is bidirectional, as it is not a priori
clear whether seeing previous responses would make the next
responder approve more slots:

[H 1.1]. The fraction of time slots approved by voters differs
between hidden and open polls.

Figure 2: Normalized average availability as a function of
responder position in hidden and open polls.

We hypothesize that Doodle responders, on average, will se-
lect time slots that work for other people, and will do this to
a greater extent in open polls:

[H 1.2]. The correlation of the votes of a participant and the
aggregated votes from previous participants is positive and is
higher in open polls than in hidden polls.

We also conjecture that participants in open polls will tend to
vote more for popular alternatives (i.e. time slots that have
received relatively large number of votes from previous par-
ticipants), and will be more reluctant to approve unpopular
alternatives:

[H 1.3]. The probability that a voter will approve a popular
alternative is higher in open polls than in hidden polls.

[H 1.4]. The probability that a voter will approve an unpop-
ular alternative is lower in open polls than in hidden polls.

Average availability
We define the aggregate availability of a poll to be the aver-
age proportion of ‘yes’ votes from all responders. Open polls
have average availability of 0.53, which is significantly higher
than the 0.39 average availability of hidden polls (p < 10−5).

After controlling for the number of time slots and participants
in polls as covariates in a linear regression, we still obtain
significantly higher availability in open polls. In addition, we
compute the average availability for each time slot, aggre-
gated over all polls. We observe uniform availability across
the time slots in both open and hidden polls, showing no bias
in approvals for ‘leftmost slots’ (early times) or ‘rightmost
slots’ (late times) in. Moreover, for each time slot, open polls
have higher availability than hidden polls. We conclude that
Hypothesis 1.1 is supported, in the positive direction.

We can also measure the availability for the first responder,



second responder, and so forth. The availability of an indi-
vidual is the fraction of time slots she approves. In both open
and hidden polls, we observe that the average availability de-
clines monotonically for later responders. This decline could
be due to responders of the poll becoming more constrained
the more they wait to answer the poll. It is also possible that
busier people tend to respond later to polls and are also more
constrained in the number of time slots they approve.

Both open and hidden polls have similar rate of decline. We
see this in Figure 2. This plots the normalized average avail-
ability for responders 2 through 10, in each of open and hid-
den polls. We ignore responder 1 since this person is likely to
be the poll creator and an outlier,3 and normalize availability
by dividing the availability by responder 2’s availability.

Correlation with previous responders
For each responder we compute the Pearson correlation be-
tween her availability and the aggregated availability of all
previous responses. This measures how likely she is to agree
with earlier participants.

In both open and hidden polls, the correlation increases
monotonically in response position (see Figure 3). Open polls
have significantly higher correlation than hidden polls, sup-
porting Hypothesis 1.2 (p < 0.01). This suggests that later
participants actively try to match the previous responses that
they observe. This finding is also consistent with Reinecke
et al. [27], who found that participants in open polls tend to
reach a consensus more often.

As a control, we randomize the open and hidden polls by per-
muting each row of a poll. The randomized polls, as expected,
have zero correlation for all the response positions. The small
positive correlation observed in hidden polls could be because
a subset of slots are intrinsically more popular among all re-
sponders, and they are also more likely to be selected by later
responders who have additional constraints.

Thus the Doodle data supports Hypothesis 1.3, and rejects
Hypothesis 1.4. In fact, H1.4 is inverted, as we observe sig-
nificantly higher response rates (p < 10−5) for the least pop-
ular time slots in open polls than in hidden polls.

Which time slots get the extra availability?
To understand why there is higher availability in open polls,
we investigate the distribution of votes for different types of
time slots in open and hidden polls. We compute the response
curves for the responder in position n = 11, focusing on polls
with ≥ 11 responders (32,527 open polls and 2434 hidden
polls). The response curve is computed by looking at the re-
sponse of the 11th responder, averaged across all polls. See
Figure 4. The dots show the probability that the 11th respon-
der inputs ‘available’ (y-axis) conditioned on i out of the first
10 votes ‘available’ for i = 0, 1, ..., 10 (x-axis). Both curves
are S-shaped due to mean-reversion.

Open polls show higher response rate relative to hidden polls
for time slots with both low availability and high availability
3Indeed, responder 1 shows 12% and 20% higher availability than
the poll average in hidden and open polls, respectively.

Figure 3: Correlation with previous responses in hidden and
open polls.

(p < 0.01). Both kinds of polls show similar response rates
for time slots with intermediate popularity (4/10 and 5/10).
To additionally verify this result, we also compute the re-
sponse curves at n = 6 (see Figure 5). There are 160,574
open polls and 5105 hidden polls with at least 6 participants.
Again, open polls exhibit consistently higher response rate
compared to hidden polls, with the smallest gap for the in-
termediate time slot with 2/5 popularity. The difference in
response rates for the intermediate time slots between hidden
and open polls is not statistically significant.

Conditional response rate
The response curves in Figures 4 and 5 are aggregated over
all voters. Two possible explanations for the observed pat-
terns are: (a) responders choose to mark both highly popular
and highly unpopular slots; or (b) there are two types of vot-
ers, where some tend to mark the popular slots, and others
tend to mark the unpopular ones (possibly a minority group
whose preferences differ from the rest). We compute con-
ditional response rates and show that this supports the first
explanation.

Conditioned on the n = 11 individual having approved a
10/10 time slot (i.e., a very popular one), we compute her
response rate for other time slots. In particular, we are inter-
ested in her conditional response rate for other popular (9/10,
8/10), intermediate (5/10, 4/10) and unpopular (1/10, 0/10)
time slots. See Table 1. Comparing the conditional response
rates between open and hidden polls reveals several surprises:

1. In open polls, people who have voted for a 10/10 slot are
significantly more likely to approve unpopular slots (0/10
and 1/10) than in hidden polls (p < 0.01).

2. In open polls, people who have voted for a 10/10 slot are
significantly less likely to approve an intermediate (5/10)
slot than in hidden polls (p < 0.01).



Figure 4: Response curve for the 11th responder. Each dot
represents the probability that the 11th responder approves a
slot (y-axis) if the slot has been approved by i out of the first
10 responders (x-axis), for i = 0, ..., 10. Error bars shows the
95% confidence interval. The open poll error bars are small.

Figure 5: Response curve for the 6th responder. Each dot
represents the probability that the 6th responder approves a
slot (y-axis) if the slot has been approved by i out of the first
5 responders (x-axis), for i = 0, ..., 5. In both Figures 4 and 5,
open polls show statistically higher response rates for popular
and unpopular time slots compared to hidden polls. For inter-
mediate time slots, the difference between open and hidden
polls is not statistically significant.

3. In contrast, the conditional response rates for other popular
time slots are similar between open and hidden polls.

To further validate these results, we also compute the con-
ditional response rates for the n = 11 individual who has
approved a 9/10 time slot, and observe similar patterns (Ta-
ble 2). This means that the same responders who approve
popular slots are in effect shifting some of their votes from

Table 1: Conditional response rates for individuals who have
approved a 10/10 slot.

0/10 1/10 4/10 5/10 8/10 9/10
open 0.08 0.20 0.44 0.51 0.70 0.76

hidden 0.05 0.09 0.55 0.66 0.69 0.76
Table 2: Conditional response rates for individuals who have
approved a 9/10 slot.

0/10 1/10 4/10 5/10 8/10 10/10
open 0.14 0.24 0.46 0.51 0.69 0.81

hidden 0.03 0.23 0.50 0.56 0.68 0.83

medium to unpopular slots.

ANALYSIS
The patterns observed in the previous section suggest that
in open polls responders may resort to strategic behavior,
whereby they do not simply mark all feasible time slots. In
order to analyze possible incentives for such behavior, we in-
troduce a preference model and concepts commonly used in
the theory of Approval voting. This formal notation is re-
quired for a precise presentation and analysis, however we
also explain each component in words.

Let A = {a1, a2, ..., aM} denote the time slots designated by
the initiator of the poll. We denote the responders (or voters)
by V = v1, v2, ..., vN , where voters are in temporal order
so that vn is the n’th responder to the poll. The response (or
vote) of vn, denoted as rn, is the set of slots that she approves.
We also think of rn as a binary vector, with rn(a) = 1 if she
approves slot a and rn(a) = 0 otherwise.

For a set of votes R, we denote by s(a,R) =
∑

r∈R r(a)
the score of alternative a, aggregating all votes in R. We
denote by s(R) = (s(a,R))a∈A the score vector over R.
Let R≤n = (ri)i≤n denote the collection of all votes by
voters up to and including vn. We adopt s≤n(a) and s≤n
as a shorthand for s(a,Rn) and s(Rn), respectively. Given
the first n voters, we divide the time slots with the high-
est, middle, and lowest number of votes into three sets
{Popular≤n, Intermediate≤n,Unpopular≤n}.

The preference of voter vn is a partition of {a1, ..., aM} into
sets {An

1 , ..., A
n
K} such that voter vn is indifferent about slots

in the same set An
k , and strictly prefers any slot in An

k to any
slot in An

k′ if k is less than k′. We allow the possibility that a
set is empty.

The K levels can be thought of as preference levels. A re-
sponder with K = 2 is called dichotomous, and is simply
“available” at some times and “unavailable” at others. A
responder with K = 3 may distinguish between times that
are convenient, available but inconvenient, and not available.
W.l.o.g., since levels can be empty, we assume that all the
responders have the same number of levels K.

A vote rn is sincere if for all a ∈ rn, a
′ /∈ rn, it holds that

she prefers a to a′. In words: if all of the approved slots are
preferred by the voter to all of the slots that are not approved.



A vote r′n dominates vote rn if for all actions of other voters,
voter vn prefers the outcome had she voted r′n to the outcome
had she voted rn.

A vote rn is admissible if there is no vote r′n that dominates
rn. Intuitively, if a voter has fixed preference levels and is
only interested in the outcome of the vote (that is, in which
slot is selected), then she will always submit admissible votes.

PROPOSITION 1 (BRAMS AND FISHBURN [3]). A vote
rn in an Approval voting system is admissible if and only if
An

1 ⊆ rn and An
K ∩ rn = ∅.

In words, a vote is admissible if and only if a voter approves
all top-level choices and no bottom-level choices. Given this
viewpoint, the behavior of responder vn can be described by
a response function f . This function takes as input the prefer-
ences Pn and the available information on previous responses
s≤n−1. The output of response function f is a subset of time
slots rn, taken to be the vote, and the function f may or may
not be deterministic. We say that a response function f is
sincere if it always generates a sincere vote. Different voters
may apply different response functions, but ideally we would
like to be able to explain voting behavior using a small num-
ber of simple response functions, or even a single response
function.

Testing response functions
We describe some response functions that have been sug-
gested in the literature.

In order to test some of the models (i.e., response functions),
we run social simulations of open polls, albeit very simple
ones. We assume that in hidden polls, responders submit ad-
missible votes consistent with Prop. 1. Recall that by our
other key assumption, the actual availability/preferences of
participants in hidden and in open polls follow the same un-
derlying distribution. This means we can use the open polls
to derive some information on the preferences of participants
in the hidden polls. In particular, to test a particular response
function, we generate synthetic preference profiles using data
from the hidden polls, and then run simulations of open polls
where voters vote sequentially according to a particular re-
sponse function and for each of the generated preference pro-
files. Then, we compare the patterns observed in the simula-
tion with those described in the previous sections.

Random cutoff.
The simplest response function is to mark the most preferred
q ≥ 0 candidates, where q is fixed or is sampled from some
distribution. We call such a response function q-cutoff. In the
random cutoff, q is sampled uniformly from {0, 1, 2, . . . ,M}.
Some variations of the random cutoff function have been
studied in [26]. They also describe a more general class of re-
sponse functions which they call size independent. Crucially,
all size independent functions only use the preferences Pn as
input, and all are sincere. Another variation is to choose an
availability level q > 0, and approve all slots in An

k , k < q,
plus a random subset in level An

q . We refer to this variation
as the q-level cutoff function.

Irrespective of the particular variation, the responder does
not use any information based on votes from previous respon-
ders. Hence it cannot explain the difference that we observe
between open and hidden polls.

Lazy responses.
Determining one’s own availability for a certain time slot may
require some effort. Recognizing this, we consider a sim-
ple variation of the cutoff model, where responders refrain
from even checking their own availability for time slots that
do not seem like they are going to be selected. Thus a lazy
q-level cutoff function only considers responding to plausible
time slots (each responder might have her own threshold for
what level of support makes a slot plausible). A lazy response
function requires access to s≤n−1, i.e. the votes placed so far.
Lazy responses may not be sincere, and may not even be ad-
missible if the voter refrains from assessing implausible slots
in An

1 .

In the lazy model, conditioning on voting for a Popular time
slot, we would expect the responder to be less likely to vote
for an Unpopular slot in open polls than in hidden polls. Em-
pirically we observe the opposite, and thus reject this model.

The Leader rule.
Let x and y be the leader and the challenger after the first
n − 1 votes. That is, x = argmaxa∈A s≤n−1(a), y =
argmaxa6=x s≤n−1(a). In case of tie, a leader and a chal-
lenger is randomly selected from the set of candidates with
the most votes. The Leader Rule [13] stipulates that voter vn
will approve all candidates that she strictly prefers to x, and
will approve x if and only if x is strictly preferred to y. It is
easy to see that the Leader rule is sincere.

To test the Leader Rule, we generate synthetic preference pro-
files as follows. For each hidden poll responder, we assume
all of her m approved slots are in level 1 (most preferred); this
is consistent with Prop. 1. Then we assign a random prefer-
ence ordering (starting from m+1 onward) to the other slots.
Thus for each responder, we obtain a preference ordering over
all time slots. Then we simulate an open poll with the same
number of voters and slots by adopting the Leader Rule. Fig-
ure 7 (left) shows the n = 11 response curve for these syn-
thetic open polls. It exhibits uniformly higher response rates
in open polls across all slots. In particular, simulated open
polls show significantly higher (p < 0.01) response rates for
Intermediate slots.

We conclude that the Leader Rule does not replicate the pat-
tern in Figure 4, where only Popular and Unpopular slots get
additional votes and Intermediate slots show statistically sim-
ilar response rate between open and hidden polls. Therefore
we reject this model.

A SOCIAL VOTING MODEL
In many scenarios there are factors that affect the utility of
the voter other than just the outcome. For example, voters
may prefer an outcome that is also convenient for others [15],
or vote in accordance to the expectations of their peers, as
in the MBD model [19, 4]. Other considerations may bias



voters towards a strategy that is truthful or sincere, that is, in
accordance with the voter’s own preferences [21, 24].

Social utility is one possible explanation for approving pop-
ular slots in a meeting context, as participants may prefer a
time that is convenient to more people or allows more peo-
ple to attend. But why would a responder mark an unpopular
slot? Other than being able to see the responses of the previ-
ous participants, responders in open Doodle polls can also see
their peer names, including after the poll is over. Social the-
ories suggest when workers in a group monitor one another,
they incentivize members of the group to hold up to the group
norms [12].

We conjecture that there is an implicit social expectation that
every responder will mark as many slots as possible. There-
fore a responder in open polls may be motivated to mark more
slots. In other words, bearing in mind that other participants
can see her name and vote, a participant may want to approve
more time slots to appear more cooperative and even if they
are less convenient for herself. While any additional slot that
is approved increases the social utility, voting on inconvenient
slots is also risky for a participant, since these slots may come
out as winners in the end. The risk is lower if the additional
inconvenient slots are very unpopular, as these would be un-
likely to win.

Motivated by this consideration, we propose the following
Social voting response function for a voter vn. For simplic-
ity, we consider three level preferences, K = 3, in defining
Social voting:

• Approve An
1 .

• Approve An
2 ∩ Popular.

• Approve An
2 ∩ Unpopular.

In words, a voter approves all of her most preferred slots,
irrespective of their popularity. In addition, among the slots
at her second preference level, the voter approves those slots
that are either very popular or very unpopular. No slot of the
third preference level is approved.

By this theory, the Unpopular slots are marked to appear co-
operative with the social norm, and since they have a low
chance of getting selected anyways.4

PROPOSITION 2. Social voting is admissible and (for
K = 3) sincere.

The proof follows immediately from Proposition 1 of Brams
and Fishburn [3]. The proposition shows that by following
this Social voting response function, a voter can gain addi-
tional social utility without a substantial loss of “strategic”
utility, and still remain sincere.

Simulation Results

4A variation of the Social voting model is for the responder to also
approve An

3 ∩ Unpopular (note that this variation is neither admis-
sible nor sincere). In our simulation framework (below), this leads
to much higher response rates for Unpopular slots than observed in
real open polls, hence we reject this alternative.

Figure 6: Response curve for synthetic open polls generated
by the Leader rule. Hidden polls are from the real data.

Figure 7: Response curve for synthetic open polls generated
by the Social voting rule (compare with the Leader rule in
Figure 6). The Leader rule does not generate data matching
the observed response rates, while the Social voting rule does
reproduce the observed pattern.

We show that our proposed behavioral model produces re-
sponse curves patterns qualitatively similar to that observed
in the real data. As in testing the Leader Rule, we take the
real hidden polls and generate synthetic open polls based on
this behavioral model. For each hidden poll, we assume that
a responder vn approves An

1 (all most preferred slots). To
generate a responder v̂n for the corresponding synthetic open
poll, we set: Ân

1 = An
1 ; Ân

2 to be a random subset among
the time slots not approved by vn; and Ân

3 to be the remain-
ing slots. We choose the size of the random subsets Ân

2 so
that the availability averaged over all the synthetic open polls
when participants adopt the Social voting rule matches the av-
erage availability of the real open polls. Given these assumed
preference levels, each voter vn in a synthetic open poll parti-
tions the time slots into Popular≤n−1, Intermediate≤n−1 and
Unpopular≤n−1 and approves Ân

1 ∪ (Ân
2 ∩ (Popular≤n−1 ∪



Unpopular≤n−1)), as specified by the Social voting response
function.

Figures 6 and 7 show the n = 11 response curve for these
synthetic open polls under this behavior model, combined
with the curve for real hidden polls. The synthetic open polls
have significantly higher (p < 10−5) response rates for pop-
ular and unpopular slots, and there is no statistically signifi-
cant difference with hidden polls for intermediate slots. The
pattern we see in the social simulations matches the pattern
observed in the real data (see Figure 4).

DISCUSSION
Standard models of user behavior in voting were mostly de-
veloped in the context of strategic voters who are trying to
affect the identity of the selected candidate or alternative.
However social factors beyond those that relate to the choice
of the winning candidate can play some role in voters’ deci-
sions. Our analysis demonstrates that in social settings, such
as scheduling a group meeting, voters may have other incen-
tives that are also important.

We show that responders are more likely to approve highly
popular and unpopular time slots in open polls than in hidden
polls. When a popular slot emerges, a responder might feel
the need to approve it, in order to be cooperative or because
she personally benefits from a time that allows as many to at-
tend as possible. Moreover, because votes are public in open
polls, there might be social pressure for responders to mark
as many slots as possible to appear flexible. In this case, the
‘safe’ strategy is to vote for unpopular slots that are unlikely
to win in addition to her preferred slots. We propose a social
voting model that captures this phenomenon and qualitatively
reproduces the same patterns as in the Doodle data. All of our
analysis are based on data from the Doodle platform. It would
be interesting to see if similar patterns can be found in other
online and offline scheduling systems.

In future work we intend to further explore and model social
utility. In particular, we would like to have a distinction be-
tween the social utility gained from being more cooperative
to that gained from appearing as such. A complete behavioral
model should take into account both the utility structure and
the epistemic state of the voter [23, 20]. In that respect, it is
important to mention that strategic voting in itself is not a pri-
ori harmful, and may often increase the overall social welfare
of the group [16]. Further research is required to determine
the welfare implications of various strategic behavior patters
in Doodle.

Another interesting direction is to understand more fine-
grained social dynamics in online scheduling. For example,
if one has observations of the same group of individuals over
multiple polls, then it should be possible to infer the influ-
ence of each member in terms of the effects of her votes on
other members’ votes. It would then be interesting to investi-
gate whether influential members tends to vote early or late,
as well as how members try to maximize their influence.

Finally, further understanding these social incentives and
voter behavior, through empirical or theoretical analysis, also
has important implications for the design of group interaction

mechanisms. For example, Doodle currently offers a binary
choice between hidden polls (where voters’ responses are hid-
den both throughout the poll and after it) and open polls. Our
results suggest that while open polls provide opportunity for
coordination, they also provide incentives for strategic behav-
ior that does not benefit the group and could lead to misco-
ordination (marking unpopular slots). A clear separation be-
tween these features and their effects may allow the design
of better mechanisms for preference aggregation in everyday
group decision making.
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