
Tolerable Manipulability in Dynamic Assignment without Mo ney

James Zou
School of Engineering
and Applied Sciences
Harvard University

jzou@fas.harvard.edu

Sujit Gujar
Dept of Computer Science

and Automation
Indian Institute of Science

sujit@csa.iisc.ernet.in

David Parkes
School of Engineering
and Applied Sciences
Harvard University

parkes@eecs.harvard.edu

Abstract

We study a problem of dynamic allocation without money.
Agents have arrivals and departures and strict preferences
over items. Strategyproofness requires the use of an arrival-
priority serial-dictatorship (APSD) mechanism, which is ex
post Pareto efficient but has poorex anteefficiency as mea-
sured through average rank efficiency. We introduce the
scoring-rule (SR) mechanism, which biases in favor of al-
locating items that an agent values above the population con-
sensus. The SR mechanism is not strategyproof but has tol-
erable manipulability in the sense that: (i) if every agent op-
timally manipulates, it reduces to APSD, and (ii) it signif-
icantly outperforms APSD for rank efficiency when only a
fraction of agents are strategic. The performance of SR is
also robust to mistakes by agents that manipulate on the basis
of inaccurate information about the popularity of items.

Introduction
We are interested in assignment problems to a dynamic
agent population where it is undesirable to use money; e.g.,
because of community norms, legal constraints, or inconve-
nience. Consider the allocation of tasks to agents that arrive
and depart and have preferences on tasks and a time window
within which they can be allocated a task. The problem can
also be one of resource allocation, where agents arrive and
demand access to a resource before departure. Motivating
domains include those of car pooling in which the agents
are commuters and the resources are seats in shared cars, or
science collaborators in which the agents are people looking
to perform useful work for the community.

For static assignment problems without money, the class
of strategyproof mechanisms is more or less restricted to
serial dictatorships in which each agent in turn selects its
most preferred item from the unclaimed items. For the dy-
namic problem considered here, the additional requirement
of strategyproofness with respect to arrival (i.e., preventing
manipulation by reporting later arrival) necessitates theuse
of anarrival-priority serial dictatorship(APSD). Although
APSD isex postPareto efficient it is unsatisfactory in an-
other, more refined sense. If we considerex anteefficiency,
that is average utility received by agents under the mecha-
nism, then its performance is quite poor. For risk-neutral

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

agents for which the difference in utility for any pair of con-
secutive items in a preference ordering is constant, then the
expected average rank (orrank-efficiency) measures theex
anteefficiency. APSD has poor rank efficiency because an
early arrival may pick its most preferred item over its second
most preferred item even if this leaves a later arrival with its
least preferred item rather than its most preferred item.

This motivates our study oftolerable manipulability, an
agenda for computational mechanism design first suggested
by Feigenbaum and Shenker (2002). We introduce the
scoring-rule(SR) mechanism, which biases in favor of al-
locating items that an agent values atypically highly. The
SR mechanism is not strategyproof but has tolerable manip-
ulability in the following sense: (i) if every agent optimally
manipulates SR then it reduces to APSD, and thus the per-
formance of the only strategyproof mechanism; and (ii) the
SR mechanism significantly outperforms APSD for rank ef-
ficiency when only a fraction of agents are strategic. The
performance of SR is also robust in the following sense: the
optimal manipulation is a dominant strategy, and thus invari-
ant to strategies of other agents, and SR continues to outper-
form APSD even when agents have inaccurate information
about the distribution on preferences in the population and
thus the rules of the SR mechanism.

Our simulation results on the SR mechanism demonstrate
that for 10 agents, SR has 10% greater rank-efficiency than
APSD when all agents are truthful and non-strategic. When
5 of the 10 agents are strategic, SR still maintains 5% greater
rank-efficiency than APSD. Furthermore, the advantage of
SR over APSD increases as the number of agents increase.
With 25 agents, SR has 19% greater rank-efficiency over
APSD. To further benchmark the performance of the SR
mechanism we also compare against the rank efficiency of
a sample-based stochastic optimization algorithm (Henten-
ryck and Bent 2006), namely, Consensus. When all the
agents are truthful, SR outperforms Consensus by 4% when
there are 10 agents. Even with up to four out of the ten
agents acting strategically SR outperforms Consensus.

Related Work. For the house allocation problem, which
is a static assignment problem in which agents and items are
fixed and each agent has strict preferences over the assign-
ment of one item, Svensson (1999) establishes that the only
non-bossy, neutral and strategyproof mechanisms are serial
dictatorships. Papai (2001) relaxes the requirement of neu-



trality and achieves a richer characterization.
Abdulkadiroglu and Loertscher (2005) study a dynamic

house allocation problem that is quite different from our
problem. It is a two period problem in which the agents
and items are fixed and dynamics occur because agent
preferences in period two are unknown in period one.
Kurino (2009) considers a dynamic house allocation prob-
lem with fixed items and a dynamic (overlapping genera-
tions) agent population. His problem is again different from
ours because each agent demands an item in every period.
Another difference is that items are not consumed but rather
returned to the market when an agent departs.

We are not aware of any prior work on tolerable manipula-
bility in the context of dynamic mechanism design. Othman
and Sandholm (2009) define the notion ofmanipulation-
optimal mechanisms, in which: (i) the mechanism is un-
dominated by any strategyproof mechanism when all agents
are rational; and (ii) the performance is better than any
strategyproof mechanism if any agent fails to be rational
in any way. Their results are essentially negative, in that
a manipulation-optimal mechanism is impossible whenever
there is an agent and a joint type profile of other agents,
such that there are two types of the agent for which its best-
response is to be non-truthful and moreover its optimal mis-
report depends on its true type. This is a very weak condition
and holds for our problem. Othman and Sandholm (2009)
demonstrate positive results only in the case of an agent
with two possible types.1 Our definition of tolerable manip-
ulability is weaker than that of manipulation-optimal mech-
anisms, in that we retain (i) but replace (ii) with (ii’) the
performance is better than any strategyproof mechanism if
a sufficient fraction of agents fail to be rational by being
truthful. With this approach we are able to achieve positive
results. In a dynamic auction setting with money, Lavi and
Nisan (2005), in studying the performance of mechanisms
for a class of (set-Nash) equilibria, consider another formof
tolerable manipulability in the sense that good propertiesare
achieved as long as agents play strategies from a set that is
closed under rational behavior.

The Model

There areA = {A1, . . . , An} agents,I = {I1, . . . , Im}
items, and each agentAk ∈ A has an arrivalαk ∈ T ,
departureβk ∈ T , demands one item and has preferences
φk ∈ Φ on items, whereT = {1, 2, . . .} is the set of
discrete time periods andΦ the set of preferences. Alto-
gether this defines an agent’s typeθk = (αk, βk, φk) ∈ Θ
whereΘ is the set of types. Preferencesφk are strict and
define a rankr(k, j) ∈ {1, . . . ,m}, wherer(k, 1) is the
index of the most preferred item and so on. We write
φk : Ir(k,1) ≻k Ir(k,2) ≻k . . . ≻k Ir(k,m) to denote an
agent’s preferences. Each agentAk only cares about its al-
located item in interval{αk, . . . , βk}, and is indifferent to
the allocation to other agents. We consider a fixed set of
items, all available from period one.

1See also Conitzer and Sandholm (2004) who first introduced
an example to demonstrate the existence of a manipulation-optimal
mechanism.

In a direct-revelation mechanism, the message space al-
lows an agentAk to reportθ′k = (α′

k, β
′
k, φ

′
k) 6= θk in some

periodt = α′
k. We assumeα′

k ≥ αk andβ′
k ≤ βk, which

together withβ′
k ≥ αk implies thatt ∈ {αk, . . . , βk}.2 A

mechanism is defined by a functionf : Θn → X , where
x = (x1, . . . , xn) ∈ X denotes an allocation of items
xk ∈ I to each agentAk andX is the set offeasibleal-
locations, such thatxk 6= xℓ if k 6= ℓ. We only consider
deterministic mechanisms. Letfk(θ) ∈ I denote the al-
location to agentAk in period t ∈ {αk, . . . , βk}, where
θ = (θ1, . . . , θn) is the joint type profile. Letθ−k =
(θ1, . . . , θk−1, θk+1, . . . , θn) and f(θ′k, θ−k) is shorthand
for f(θ1, . . . , θk−1, θ

′
k, θk+1, . . . , θn).

To meet the requirements of an online mechanism, which
cannot know future type reports, we requirefk(θk, θ−k) =
fk(θk, θ

′
−k) wheneverθ≤βk

= θ′≤βk
, for all k ∈ {1, . . . , n},

whereθ≤t is the restriction of type profileθ to include only
those agents that arrive no later than periodt.

Some desiderata of online assignment mechanisms:

• Strategyproof: Mechanism f is strategyproof if
fk(θk, θ−k) ≻k fk(θ

′
k, θ−k) for all θ′k = (α′

k, β
′
k, φ

′
k)

whereα′
k ≥ αk andβ′

k ≤ βk, all k, and allθ. Truthful
reporting is a dominant-strategy equilibrium.

• Non-Bossy. Mechanism f is non-bossy if
(fk(θk, θ−k) = fk(θ

′
k, θ−k)) ⇒ (f(θk, θ−k) =

f(θ′k, θ−k)), for all θ′k = (α′
k, β

′
k, φ

′
k) whereα′

k ≥ αk

andβ′
k ≤ βk, all k, and allθ.

• Neutrality. Mechanism f is neutral if fk(θ) =
π−1(fk(πθ(θ))) for all agentsAk, type profiles θ,
and item permutationsπ, whereπ : {1, . . . ,m} →
{1, . . . ,m} is bijective,π−1 is the inverse, andπθ(θ) =
θ′ is a type profile induced in the straightforward way
by the permutation on items, so that rankr′(k, j) =
r(k, π(j)) for all Ak and all itemsIj , with arrival and
departure times unchanged.

• Pareto Efficient (PE). Mechanismf is ex postPareto ef-
ficient if for all θ ∈ Θn, then there is no feasible alloca-
tionx′ that is weakly preferred by all agents tox = f(θ)
and strictly preferred by at least one agent.

Strategyproof Mechanisms

A serial dictatorship has a priority rankingh : {1, . . . , n} →
{1, 2, . . . , n}, such that agents are orderedh(1), h(2), . . .,
and assigned the most preferred item still available given the
allocation to higher priority agents.

Definition 1. An online serial dictatorship is a serial dicta-
torship in which(h(i) < h(j)) ⇒ αi ≤ βj .

This follows from the online setting and what we term
schedulability; i.e., we can only guarantee agentAi a higher

2The arrival assumption (α′

k ≥ αk) is standard in problems
of dynamic mechanism design (Parkes 2007), and can be moti-
vated easily if the arrival is the period in which an agent realizes
its demand or discovers the mechanism. The departure assumption
(β′

k ≤ βk) is made for convenience; all our mechanisms allocate
upon reported departure in any case and so an agent never has a
useful strategy that involves reportingβ′

k > βk.



priority in the sense of serial dictatorship than agentAj if it
arrives before agentj departs.

Lemma 1. Let f be a deterministic, strategyproof, neutral,
non-bossy, online assignment mechanism. Thenf must be
an online serial dictatorship.
Proof. Let f be any strategyproof, neutral, non-bossy on-
line mechanism and given any reported schedule of agent
arrival and departures,σ = {α′

1, β
′
1, ..., α

′
N , β′

N}. Now
f |σ(φ1, ..., φN ) = f̂(θ1, ..., θN ) defines an off-line mech-
anism f̂ , mapping a preference profile to an allocation
of items. The restricted mechanismf |σ is Non-Bossy
sincefk|σ(φk, φ−k) = fk|σ(φ′

k, φ−k) ⇒ fk(θk, θ−k) =
fk(θ

′
k, θ−k). It is also neutral since any items permutation

of f |σ is also an items permutation off . Lastly,f |σ is strate-
gyproof since any profitable misreport of preferences would
carry over into a manipulation off . Therefore by Svens-
son (1999),f |σ must be a offline serial dictatorship. For,f
to be online feasible, any agentAk should receive an object
before departure. So, all the agents having higher priority
thanAk must be allocated beforeAk ’s departure. and the
priority structure inf must be such that, ifh(i) < h(j),
thenαi ≤ βj . That is,f is online serial dictatorship.

Definition 2. The Arrival-Priority Serial Dictatorship
(APSD) or Greedy mechanism assigns priority by arrival,
with an earlier arrival having a higher priority and with ties
broken arbitrarily. An item is assigned upon an agent’s ar-
rival, and released (and thus allocated) upon departure.

Theorem 1. A deterministic online mechanism is strate-
gyproof, neutral and non-bossy if and only if it is the APSD
mechanism.
Proof. (⇐) It is immediate to check that APSD is neutral
and non-bossy. To establish that it is strategyproof, note that
since it is a serial dictatorship an agentAk should report its
true preferenceφk whatever its(α′

k, β
′
k) report. Moreover,

for any reported arrivalα′
k, the outcome is invariant to its

reported departureβ′
k ≥ α′

k (still with β′
k ≤ βk). Reporting

a later arrivalα′
k > αk only reduces its priority rank and

reduces its choice set of items.
(⇒) Consider a strategyproof mechanism that is neutral

and non-bossy, and thus an online serial dictatorship by
Lemma 1, but is not an arrival-priority serial dictatorship.
In particular, there is some preference profileφ ∈ Φn and
some agent arrival/departure schedule such thatαi < αj but
h(i) > h(j) for some pair of agentsAi, Aj . To be schedula-
ble, we must also haveαj ≤ βi. But now, agentAi can re-
portβ′

i = αi < αj , and forceh(i) < h(j), again by schedu-
lability. Now suppose in particular thatφi = φj , so that the
itemAj receives whenAi is truthful is strictly preferred by
Ai to its own allocation. AgentAi will receive an item that
is at least as good as that allocated to agentAj when agenti
is truthful, and thus this is a useful deviation.

An online serial dictatorship isex postPareto efficient
(PE) because agent preferences are strict. For agents except
the top priority agent, a change in allocation to a more pre-
ferred item would require that an agent with higher priority
be allocated a less preferred item than its current allocation.

Ex ante efficiency. A mechanism isex antePE if there is
no function from types to allocations that induces greater ex-
pected utility than the distribution induced by a mechanism
f and the type distribution. This is a stronger requirement
than ex postPE. Following Budish and Cantillon (2009),
one way to evaluateex anteefficiency is further assume
risk neutral agents, each with a constant difference in util-
ity across items that are adjacent in their preference list.Let
R(x) = 1

n

∑
k r(k, xk) define the average-rank score for al-

locationx ∈ X , wherer(k, xk) is agentA′
ks rank for his

allocated itemxk. Under this assumption, then the expected
average-rank score measuresex anteefficiency.

Heuristic Allocation Methods
In this section, we compare the performance of APSD with
two other algorithms, the scoring-rule (SR) and Consen-
sus algorithms, considering for now only truthful inputs and
without concern to manipulations. By assuming that ties are
broken arbitrarily if multiple agents arrive together, we keep
the presentation simple and consider the case of only one
agent arriving in each period.

The Scoring-rule Algorithm. The general idea of the
scoring-rule (SR) algorithm is to bias in favor of allocat-
ing an item to an agent that he values above the population
consensus. For this, we define the score of itemIj , given
that there arem items, asS(Ij) =

∑m
k=1 Pr(j, k)k, where

Pr(j, k) is the probability that itemIj is ranked inkth po-
sition by a random agent. For a uniform preference model,
Pr(j, k) = 1/m for all itemsIj , but this will typically be
skewed in favor of some items over.

The SR algorithm works as follows:

1. Suppose that agentAk arrives, withφk : Ir(k,1) ≻k

Ir(k,2) ≻k . . . ≻k Ir(k,m).

2. Assign item Ij to agent Ak, where j ∈
argminℓ∈avail [r

−1(k, ℓ) − S(Iℓ)], where avail is
the set of available items given prior allocations and
r−1(k, ℓ) is the inverse rank function, giving agentA′

ks
rank for itemIℓ. Release itemIj to Ak upon departure.

If agentAk has a less popularIℓ item as one of his top
choices (lowr−1(k, ℓ)−S(Iℓ)), then SR will tend to allocate
this item and save popular items for other agents; this is how
the algorithm is designed to improveex antePE.

The Consensus algorithm. The Consensus algorithm is a
sampled-based method of stochastic optimization (Henten-
ryck and Bent 2006).

1. When agentAk arrives, generateL samples of the types of
possible future agent arrivals; i.e.,L samples of the types
of n− k agents where agentAk is thekth agent to arrive.
LetAℓ denote the set of agents in theℓth such sample.

2. For each sampleℓ ∈ {1, . . . , L}, compute an allocation
x∗
l of the available items to agents{Ak}∪Aℓ to minimize

the average rank of allocated items.

3. Determine the itemIj that is allocated to agentAk most
often in theL solutions{x∗

1, . . . , x
∗
L}, breaking ties at

random, and assign this item to the agent. Release the
item to the agent upon its departure.



Rank Efficiency Analysis
To evaluate the rank efficiency of APSD, SR and the Con-
sensus algorithm we adopt a simple model of the distribution
on agent preferences that is parameterized by(p1, . . . , pm),
with pj > 0 to denote thepopularity of item Ij . Given
this, we have the following generative model forweighted-
popularitypreferences: For each agentAk:

• Initialize R1 = {1, 2, ...,m}. In the first round, an
item is selected at random fromR1 with probability
pj/

∑
i∈R1

pi. Let Ik1
denote the item selected in this

round.

• Let R2 = R1 \ {k1} describe the remaining items. In
this round ItemIj is selected fromR2 with probability
pj/

∑
i∈R2

pi.

• Continue, to construct a preference rankφk : Ik1
≻k

Ik2
≻k . . . ≻k Ikm

for the agent.

In our experiments, we adjust the popularity profile on
items by adjusting asimilarity parameter,z. For each item
Ij , we setpj = Ψz(

2j
m
), where there arem items andΨz is

the density function for Normal distributionN (1, z). High
similarity corresponds to an environment in which all items
are of similar popularity. Low similarity corresponds to an
environment in which a few items are significantly more
popular than other items. Rank-efficiency is evaluated over
1000 independent simulations, with the average rank for a
run normalized to the rank of the optimal off-line allocation
that minimizes the average rank based on true preferences.
Smaller rank efficiency is better, and 1 is optimal.

Figure 1 provides representative results for 10 agents and
10 items.3 SR outperforms APSD for all similarities, with
improvement at least10% for similarity z ≤ 0.3. In ab-
solute terms, an improvement of 10% in (normalized) rank
efficiency for 10 agents and 10 items corresponds to an av-
erage absolute rank improvement of 0.4; so, roughly equiva-
lent to an agent expecting to receive an average improvement
of rank position of one every other time. For high similar-
ity the performance of all algorithms becomes quite similar.
Figure 2 considers increasing the number of agents, holding
the number of items equal to the number of agents, and for
similarity 0.3. The SR algorithm again has the best average
rank-efficiency for all numbers of agents. Forn = 15 and
n = 30, the performance of APSD (or Greedy) is 40% and
60% worse, respectively, than the off-line solution, whileSR
is 20% and 35% worse.

What is The Scoring Rule Doing Right?
When all items have equal popularity, the SR algorithm
agrees exactly with APSD. In this case, the score is equal
for every item andargminℓ∈avail [r

−1(k, ℓ) − S(Iℓ)] =
argminℓ∈avail r

−1(k, ℓ), and selects the item for agentAk

with the smallest rank. Now consider a simple scenario
where there are only two agents{A1, A2} and two items
{I1, I2}. A1 arrives first and has preference ranksφ1 :
I1 ≻1 I2. Suppose that SR allocatesA1 → I1, so that

3In all experiments, agents arrive in sequence, and this sequenc-
ing is sufficient to simulate; note that the performance of all algo-
rithms are invariant to departure.
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Figure 1: Rank efficiency under truthful agents as the similarity
in item popularity is adjusted, for 10 items and 10 agents.
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Figure 2:Rank efficiency under truthful agents as the population
increases, for 10 items, 10 agents and similarity of 0.3.

r(1, 1)− S(I2) < r(1, 2)− S(I1). Because the score of an
item is precisely the expected rank for allocation that item,
S(I1) = Eφ2

r(2, 1) andS(I2) = Eφ2
r(2, 2). Now, we see

that SR allocatesI1 to A1 exactly whenr(1, 1) + S(I1) =
r(1, 1) + Eφ2

r(2, 1) < r(1, 2) + Eφ2
r(2, 2) = r(1, 2) +

S(I2), and makes the allocation decision to minimize total
expected rank. To test this intuition, we track the first oc-
casion when SR and APSD make different allocations. let
SR allocateI1 while APSD allocatesI2. In being greedy,
APSD achieves an average rank of 1.4 forI2, but SR still
achieves 1.62. On the other hand, while SR achieves an
average rank of 3.54 onI1, APSD struggles and achieves
only 4.92 on this item. Looking at the score, we see that
S(I1) = 6.43 > S(I2) = 3.09. SR made the right decision
in allocating the less popularI1 when a good opportunity
arises while holding on to the more popularI2.

Tolerable Manipulability

We focus now on the SR algorithm, which is effective in
meeting theex anteefficiency performance target but is ma-
nipulable by agents. The question that we ask in this section
is whether the mechanism is tolerably manipulable?



Example 1. Consider a simple example with three items
{I1, I2, I3}. Most agents agree thatI1 is the best,I2 is
the second best, andI3 is the least desirable. Therefore,
S(I1) = 1 + ǫ, S(I2) = 2 andS(I3) = 3 − ǫ, for ǫ > 0
small. Suppose the first agent to arrive,A1, has prefer-
encesφ1 : I1 ≻1 I3 ≻1 I2. The SR mechanism computes
{1−S(I1), 2−S(I3), 3−S(I, 2)} = {−ǫ,−1+ǫ, 1}and al-
locatesI3 to A1. This is the right decision. With high prob-
ability, the agentsA2 andA3 will have the common prefer-
enceφ2(= φ3) : I1 ≻ I2 ≻ I3. Then the SR mechanism
would have allocationA1 → I3, A2 → I1, A3 → I2 for
an average rank of 1.67. The APSD mechanism would have
allocatedA1 → I1, A2 → I2 andA3 → I3 for an average
rank of 2. However,A1 could misreport his preferences to
beφ′

1 : I1 ≻′
1 I2 ≻′

1 I3. Then the SR mechanism would
compute{1 − S(I1), 2 − S(I2), 3 − S(I3)} = {−ǫ, 0, ǫ}
and allocateA1 → I1, which is his top choice.

Having seen that SR is not strategyproof, we now analyze
the optimal manipulation for an agentAk in the SR mech-
anism. Supposeφ′

k = I1 ≻′
k I2 ≻′

k . . . ≻′
k Im yields the

allocation ofIj , and that this is the best obtainable item for
Ak under SR. Clearly,φ′′

k : Ij ≻
′′
k I1 ≻′′

k I2 . . . ≻
′′
k Ij−1 ≻′′

k

Ij+1 ≻′′
k . . . Im also leads to the same allocation. In fact, we

show that if the agent can win itemIj with some misreport,
then it can always win the item by placing it first, followed
by the claimed items, followed by the other items in order of
ascending score. Letavail denote the set of available items,
andclaimed the rest of the items. We propose the following
manipulation algorithm for agentAk:

1. Select the most preferred itemI1 ∈ avail.

2. Consider a preference profileφ′
k, with items ordered,

from most preferred to least preferred, as

[I1, claimed , sorted(avail \ {I1})] (1)

This reportsI1 as the most preferred item, followed by
the claimed items in any order, followed by the rest of the
items sorted in ascending order of score.

3. Apply the SR calculation toφ′
k. If SR allocatesI1, then

reportφ′
k. Else, repeat steps 1-2 for the second preferred

item, I2, third preferred item and so on until an item is
obtained, and report the correspondingφ′

k.

Lemma 2. The preference report generated by this manipu-
lation is the agent’s best response to the current state of the
SR mechanism and given a particular set of item scores.

Proof. It is sufficient to show that for anyIj , the ordering
of the remaining itemsIl will is optimal in the sense of
minimizing their adjusted scorer−1(k, ℓ) − S(Iℓ). To see
this, consider two adjacent items{I1, I2} (not equal toIj )
in a reported preference order, for whichS(I2) < S(I1).
Let u denote the reported rank of the item in the first po-
sition. We claim thatmin(u − S(I2), u + 1 − S(I1)) >
min(u − S(I1), u + 1 − S(I2)), and therefore it is best
to report I2 before I1. This is by case analysis. Case
(i): S(I1) − S(I2) ≤ 1. Now we haveu − S(I2) ≤
u+1−S(I1), and alsou−S(I1) ≤ u+1−S(I2). Therefore,
min(u−S(I2), u+1−S(I1)) = u−S(I2) > u−S(I1) =
min(u−S(I1), u+1−S(I2)). Case (ii):S(I1)−S(I2) > 1.
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Figure 3:Rank efficiency of SR as the fraction of strategic agents
varies, compared to SR with entirely truthful agents and to Greedy.
10 agents, 10 items, similarity=0.3.

Now we haveu+ 1− S(I1) ≤ u− S(I2) andu− S(I1) ≤
u + 1 − S(I2). Then,min(u − S(I2), u + 1 − S(I1)) =
u+1−S(I1) > u−S(I1) = min(u−S(I1), u+1−S(I2)).
Finally, it is easy to see that it is always just as good to list
the unavailable items immediately after itemIj .

Theorem 2. If the difference in scores between successive
items in SR is less than 1, and all agents are strategic, then
the allocation under SR is identical to the APSD allocation.

Proof. We show that agentAk that follows its best response
will receive its most preferred available item. The hardest
case is when the agent’s top ranked item is also the mini-
mum score item. Label this itemI1. The optimal reported
preference order is to sort the items in order of ascending
score, e.g.φ′

k : I1 ≻′
k I2 ≻′

k . . . ≻′
k Im. By assumption

about consecutive scores, we have1−S(I1) < 2−S(I2) <
3 − S(I3) < ... < m − S(Im) and SR would allocate the
agentI1. If the agent’s top-ranked item is not the minimum
score item, then the inequalities would still follow.

This sufficient condition on adjacent scores can be inter-
preted within the weighted-popularity model. Sort the items,
so thatI1 is the highest popularity,I2 the second highest and
so on. The condition on the gap between scores induces a
simple requirement on popularity{p1, p2, ..., pm}:

Proposition 1. The scoring-gap condition is satisfied, and
SR reduces to APSD under strategic behavior, in the
weighted-popularity preference model if, forj = 1, 2, ...m−
1, we have pj∑

m
i=j pi

<
pj+1∑
m
i=j+1

pi

The proof follows from series expansions and is omitted
in the interest of space.

Experimental Results

Having established the first criteria that we introduce for tol-
erable manipulability (that the mechanism reduces to APSD
when every agent is strategic) we now establish the second
criteria: that theex anteefficiency is better under SR than
under ASPD when a sufficient fraction of agents fail to be
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Figure 4:Rank efficiency of SR as the fraction of strategic agents
varies and with errors in agent beliefs. 10 agents, 10 items,simi-
larity =0.3.

rational and are instead truthful. In fact, the simulation re-
sults show that this holdsfor anyfraction of strategic agents
as long as they are well informed. We vary the fraction
q ∈ [0, 1] of agents that are strategic.

Figure 3 gives results for a simulation of 10 agents with
10 items and similarity of 0.3 (averaged over 5000 indepen-
dent runs). The average rank-efficiency of SR worsens as
the fraction of strategic agents increases, but is always better
than APSD (i.e., Greedy) for any fractionq < 1 of strategic
agents and equal to APSD when the fraction is one. Similar
behavior is observed for other similarity values. We break
down the performance of SR in terms of the average rank to
strategic agents and to truthful agents. Strategic agents per-
form better than truthful agents and the gap is significant.
However, when the fraction of strategic agents is less than
a threshold (in this example 0.3), the truthful agents stilldo
better than they would under APSD. Strategic agents receive
better objects than they would receive in offline optimal.

We also consider the sensitivity of SR to strategic agents
with imperfect information{p̂j} about the relative popular-
ity, and thus score, of items. Given a true profile of item
popularities{p1, . . . , pm} we consider two types of pertur-
bations:First experiment.For each manipulating agent, for
each itemIj , perturb the popularity so that̂pj/pj = ∆j ∼
N (1, z′), where the variance,z′ ∈ {0.1, 0.3}. This mod-
els “local” errors, in which the estimate for the popularity
of each item is off by some random, relative amount.Sec-
ond experiment.The true popularity profile,{pj}, is con-
structed by evaluating the Normal pdfΨz(

2j
m
) for each of

j ∈ {1, . . . ,m}, whereΨz is the density function for Nor-
mal distributionN (1, z). Here, we construct̂pj = Ψ′

z(
2j
m
),

whereΨ′
z is the density function for NormalN (1 + ∆, z)

where∆ ∼ U [−z′′/2, z′′/2]. We considerz′′ ∈ {0.1, 0.3}.
This models “large-scale” errors, in which an agent has a
systematic bias in popularity across all items.

Figure 4 presents the average rank-efficiency in the two
experiments, for 10 agents, 10 items and similarity 0.3. We
focus onz′ = 0.3 andz′′ = 0.3. The results are very simi-
lar for z′ andz′′ set to 0.1. The local perturbation turns out
to not affect the performance much since{p̂i} introduces a

multiplicative error with zero expected bias. On the other
hand, the large-scale perturbation can significantly reduce
the rank-efficiency of SR under manipulative agents, intro-
ducing an additive error with bias; even here, SR still out-
performs Greedy with less than 40% strategic agents.4

Conclusions
We have considered a dynamic mechanism design problem
without money from the perspective of tolerable manipu-
lability. This is an interesting domain because the unique
strategyproof mechanism is easy to identify but has poorex
anteefficiency. Tolerable manipulability seems to be an in-
teresting direction for practical, computational mechanism
design, relaxing from the worst-case requirements of strate-
gyproofness and providing better performance when only a
fraction of agents are strategic and the rest are truthful. An
appealing direction is to achieve stronger guarantees, find-
ing a compromise between the framework we adopt and that
of Othman and Sandholm (2009).
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