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Abstract

We consider the problem of designing fast and strategyproof auction mechanisms
for dynamic resource allocation problems in distributed systems. We propose a scalable
design for an exchange for data staging between multiple request and service agents.
Incoming jobs are distributed into auction pools and matched against sequences of
auctions. We introduce a novel virtual worlds construction to extend a fast and strat-
egyproof mechanism to our setting, and retain strategyproofness over a sequence of
auctions. The goods for sale in an individual auction are selected by partitioning a ser-
vice provider’s available capacity into smaller consignments. A fair sharing method is
used to assign an individual seller to each auction. We present experimental results to
demonstrate the efficiency and strategyproofness of the mechanism in an implemented
system.

1 Introduction

Computation is increasing distributed, and performed by devices representing multiple users,
including individuals and businesses. Moreover, in many settings the devices are likely to
represent self-interested users, and as such cannot be expected to blindly follow suggested
protocols as has been assumed in traditional work on distributed systems [FS02].

Consider a data staging scenario, in which multiple users with PDAs are in Times Square
and trying to read and process email messages and access corporate databases. Each user
would like to stage their (encrypted) data within their physical environment to reduce la-

tencies. A socially-efficient allocation of data staging capabilities in Times Square would



allocate capacity to maximize the total value across all users. With cooperative users, and
other computational considerations aside, one could simply ask devices to state their utili-
ties for various outcomes and then implement this efficient allocation. However, rational and
self-interested users would overstate their utility for the ability to stage their own data, and
cause the system performance to quickly unravel.

In this paper we formulate a simplified model of this data staging scenario as a problem in
mechanism design, and propose an approximately-efficient auction-based method to match
requests for storage with seller capacity and perform dynamic resource allocation. In addition
to adopting the goal of maximizing the total value, or allocative efficiency, within a system,
by allocating resources to the users with the highest value, we choose to focus on the following

three important properties:

strategyproof We seek a mechanism in which truth-revelation is the optimal strategy for
all users, whatever the state of the system and whatever the strategy of other users.
Equilibrium in strategyproof mechanisms are robust and simple to compute. Users can
simply state their presence, and requirements and capabilities, upon arrival into such

a system.

fast We seek a mechanism that is fast and scalable, to allow widescale deployment in de-
centralized systems. From the perspective of strategyproof mechanism design this is
especially challenging, because traditional solutions, such as Vickrey-Clarke-Groves
mechanisms, often require the optimal solution of hard optimization problems and

approximations can easily break strategyproofness [NR0O].

dynamic The seek a mechanism that must operate in a dynamic environment, with agents
arriving and departing over time. This provides an additional challenge, because mech-
anism design traditionally assumes worlds in which all the agents are present for all

time.

Our solution contains some novel design ideas, that arise from handling these three

desiderata. We can make some interesting theoretical claims about our system, and initial



experimental results are quite promising.

However, we view this work as but a first step towards the development of general
infrastructure-level support for plug-and-play negotiation in computational environments.
In this vision, rational self-interested computational devices that move around in ad hoc
and pervasive systems are freed from the need to perform complex game-theoretic reasoning.
Instead, we seek to design a family of rules of interaction to promote simple truth-revealing
strategies, across a number of different types of negotiation scenarios.

The system we propose is strategyproof for agents that request service, at least with
respect to information about the value, required storage size, and required storage time. For
the moment we ignore temporal strategies, and assume that all agents truthfully announce
their arrival into the system. The system is also robust with respect to overstatement of
capacity by service providers. Although it is not strategyproof with respect to understate-
ment of capacity, and we characterize conditions when this can help, the experimental results
suggest that this effect is negligible.

Although the data staging scenario has characteristics of an exchange, with multiple
buyers and sellers, we choose to structure the mechanism around sequences of auctions.
Incoming requests are divided across multiple pools, and within each pool there is a sequence
of auctions, with each auction associated with a single service provider and particular subset
of that provider’s resources. Unsuccessful bids are retained in subsequent auctions. Such a
sequence of auctions breaks the strategyproofness of well known auctions such as Vickrey
(second-price) auctions, because an agent can influence the price that it pays by submitting
a bid that is successful in the auction with the lowest second-price. We propose a novel
“virtual world” construction to address this problem, and make truthful revelation of a
user’s requirements, e.g. value, storage capacity, and duration, a dominant strategy.

The underlying auction mechanism, used in each round, is the strategyproof and approximately-
efficient auction due to Lehmann et al. [LOS99]. Individual auctions are for a total storage
capacity, starting now, and for a particular duration. Any bids in the auction pool that would

be satisfied with the auction duration are included as bids in an auction, and allocated using



a greedy knapsack approximation algorithm. A virtual world, created for a winning agent, is
used to track the minimal price that the agent could have achieved in subsequent auctions.
This provides a simple generalization of their analysis to a sequential setting, and recovers
strategyproofness.

The basic runtime complexity is O(PM log M), where there are P pools, and M = N/P
is an upper bound on the number of requests at any time that can be active in any one
pool, given an upper bound of N on the total number of active requests at any one time. In
practice, we would expect multiple pools to run on separate servers, with additional pools
spawned as necessary to provide scalability. Currently, we utilize B-tree and secondary
indexing facilities provided by an embedded database to speed up data access.

In Section 2 we describe the data staging problem, introduce the salient features of the
corresponding mechanism design problem, and provide a high-level overview of our solution.
Section 3 describes the virtual world construction, and proves the buyer-side strategyproof-
ness properties. Section 4 describes the pooling and consignment method, which we use to
bring buyers and sellers together into a sequence of auctions, and proves the seller-side strat-
egyproofness properties. Section 5 introduces our experimental methodology. This leads to
Section 6, in which we present efficiency and strategyproofness results. Section 7 finishes

with a critical discussion of the current system, and directions suggested for future work.

1.1 Related Work

Nisan & Ronen [NR0OO, NRO1] initiated the study of algorithmic mechanism design (AMD)
within the theoretical CS (TCS) community. The approach focuses on strategyproofness, and
on the resource-bounded nature of the mechanism infrastructure, for example on a centralized
auctioneer [LOS99, BGN02]. Recently, Feigenbaum and colleagues [FPS01, FPSS02] have
initiated a research agenda in distributed algorithmic mechanism design. The goal is to

distribute the entire computation of a mechanism across a network of agents.'

LA key challenge is that the commitment provided by a mechanism to implement a particular outcome
rule is lost, and agents must also receive incentives to perform appropriate computation, and implement the
intended mechanism.



Traditional approaches to dynamic revenue and inventory management in operations re-
search are non game-theoretic, and assume exogenous bid distributions (e.g. [Bel87]). There
is some previous work in mechanism design for dynamic systems (e.g. [VvVRMO02, LN00]),
but previously the problems studied have been one-sided, and for fixed capacity auction
problems, quite different from the two-sided infinite horizon setting that we consider in this
paper.? There is a large literature on the game-theoretic analysis of dynamic queuing and
resource sharing problems in networking (e.g. [FNY89, She94, KLO95]), but the approaches
are predominantly Nash equilibrium based, and have deemphasized strategyproof implemen-
tations.

There has been much work that attempts to advocate the use of market methods within
traditional computer systems problems. Spawn [WHH'92] was a classic paper that uses
markets to support distributed allocation. In the domain of distributed database, Mariposa
[SAL'96] enables bidding for running query optimization on self-interest servers. Nemesis
[NMO1] demonstrates energy management within mobile systems using market methods.
Popcorn [NLRC98] provides a Java-based, centralized market infrastructure for distributed
computing on the Internet, and supports sequential Vickrey auctions, and a double auction

with clearing across asks and bids.

1.2 Relation to Service Discovery

We are providing an alternative to traditional service discovery protocols. Service discovery
enables client lookup of services in dynamic systems, and service advertisements of what
are available. Services can range from basic ones such as printing to advanced business web
services. Discovery is typically conducted via discovery servers, which accept and maintain
service advertisements and query client requests for services. Some popular protocols include
JINI [Mic99] and UPnP [MSR]. A service that wants to be discovered needs to submit its
advertisement to the discovery server. The advertisement is typically key/pair attributes

that describe the service in general. For a printer, its advertisement may contain: “Service:

2Blum et al. study the online winner-determination problem in a double auction, but provide no incentive
analysis.



Print,” “Type: Laser,” “Color: Yes,” etc. Similarly, a client sends a query describing its
desired service attributes.

Most protocols will return all services that can, in principle, perform the service. The
client must then select the service with the best fit. A particular problem in this selection
task is that most protocols do not provide good support for updated service state information
[FDCO1], and hence clients typically need to contact each service individually to query its
state. This gets particularly unreasonable in dynamic environments, for example in our

Times Square scenario.

2 Example: Dynamic Data Staging

In this paper we focus on a dynamic data staging problem with the following characteristics:

request agents There are multiple request agents (RAs), indexed i = 1,.... Each RA, 1,
arrives into the system at time ¢;, and has value v; for s; MB of storage for a period
of I; secs. Requests also have a timeout, A;, to indicate how long the request remains

valid.

service agents There are multiple service agents (SAs), indexed j = 1,.... Each SA, j,
arrives into the system at time ¢;, and has capacity C; MB of storage, that is available

for L; secs. All SAs are assumed to have zero marginal cost.

One of the assumptions that we make here is that the SAs have no switching costs, for
swapping RAs in and out of their capacity.

We assume self-interested agents with quasi-linear utility functions. We also assume
that there is a method to implement payments within the mechanism. With this, the utility,
u;(z4,p), to RA, i, for allocation, z; at price p, is defined as u;(x;, p) = v;—p, if t(z;) < t;+4A;,
for s(z;) > s;, and I(z;) > I;, and u;(x;, p) = —p otherwise. Notation, ¢(z;), denotes the start
time, s(z;) denotes the size, and /(x;) denotes the length. The utility to SA, j, is equal to
the total payments received in the mechanism. The SA’s are assumed to have zero marginal

cost for providing services.



We measure performance in terms of the total value to the RAs for the matches, as a
fraction of the total possible value if all RAs had been matched. This provides a challenging
comparison, in particular as the system becomes loaded. Alternative metrics would normalize
by the value computed with the optimal offline algorithm, or by the value computed with
the optimal online algorithm. We get additional insight into the performance by comparing
with the performance of a simple greedy, and non-strategyproof, matching algorithm. This
is described in Section 7.

Another useful metric is the wutilization of the system, which is the total amount of
capacity allocated to RA’s (in MB secs) divided by the total capacity over the SA’s that are
admitted into the auction.> We also measure the total capacity that is made available for
sale in an some auction, and refer to the competition of the system as the total amount of

capacity allocated to RA’s divided by the total capacity that is up for sale.

2.1 The Mechanism Design Problem

As a mechanism design problem, dynamic data staging is interesting for a number of reasons:

impossibility There is a general impossibility result [MS83], that arises purely as a result of
incentive-compatibility requirements, for implementing perfectly efficient outcomes in

two-sided markets (with buyers and sellers) without injecting money into the system.

combinatorial The winner-determination problem, even in just one auction with capacity,
C, and with multiple indivisible bids with weight w; and price p;, is the classical 0/1

knapsack problem, and among the best known of NP-complete problems.

dynamic RAs arrive dynamically, and can strategize about the timing of their bid and

which auction to join. Similarly, SAs arrive and depart dynamically.

Of course, we can add to this list the computational requirement that the mechanism be

fast and scalable.

3The number of SA’s in the system is constrained at any particular time to maintain a minimal auction
frequency for each SA.



2.2 Overall Architecture

The exchange is designed to accept SA and RA messages anytime and to conduct auctions
continuously. Figure 1 depicts an overall architecture of the exchange. All new RAs to arrive
are queued up in the system. The RAs can state a size, a duration, and a value. Before
starting a new round of auctions, each queued RA is assigned to join one of the auction

pools, in round-robin fashion. An RA can only remain in the pool until its timeout.
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Similarly, the new SAs to arrive are put in a new services queue. New SAs are imported
into the current set of active SAs every 7 seconds, and the consignment is revised for each SA.
The goal of consignment is to divide up the capacity of each SA into chunks to be auctioned
in individual auctions. The decision is based on the number of SAs in the systems, the
number of auction pools, the frequency of auctions, and also the demographics of the RAs,
in terms of the durations they request. Once consignment is calculated the SAs in the active
set are assigned to the pools in round-robin fashion. There is a limit to how many SAs can
be assigned in a single consignment. This is explained in Section 4.

All pools perform sequential auctions over time. All pools will be running at most one
auction at any time. The pools operate independently of each other and are monitored by
the exchange. The basic information a pool needs to start a new auction are the current
RAs assigned to the pool, and the SA assigned to the next auction, along with the chunk of
capacity that it will make available (as determined in consignment).

The pool maintains multiple allocation states. One state defines the actual “real world”

state— the matches that the pool has implemented between RAs and SAs. The pool also



maintains an additional “virtual world” state for each winner, w, that is still active (has not
timed out). This state defines the matches that the pool would have implemented without
that one winner, w. The virtual world state also defines the tightest current upper-bound
on the winner’s actual payment. Figure 2 shows auctions within a pool and the real and

virtual worlds associated with it.
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Figure 2: Virtual Worlds

At the start of a new auction, the pool introduces the new RAs into the real world
state and calculates the new winners in the real world and an initial value for the payment
of each winner. Next, a new virtual world is created, for each new winner, to represent
the state if the auction had been cleared without that particular winner. The payment is
initialized to the payment computed for the winner in the real world period in which it
wins. Then, each virtual world associated with a winner from a previous system that is still
active is updated, based on the new RAs to arrive in the current period. The payment for
the winner, as maintained in the virtual world, is revised downwards if the winner would
have been a winner in this period of its virtual world, and for a lower price than its current
payment. Think of this new payment as the price the RA would have paid if it had timed

its arrival and bid in this auction.



3 Component 1: Strategyproof Sequential Auctions

First, in this section we propose a fast and strategyproof design for a sequential multi-unit
auction. We consider a simplified version of the data staging problem in which bids have
two attributes— size and price —and in which there is already a fixed schedule of capacity to
sell in a sequence of auctions.

Lehmann et al. [LOS99] previously proposed a fast and strategyproof auction for a one-
time “single-minded” combinatorial auction. In the single-minded combinatorial auction,
each bidder has value for a particular bundle of items. The idea is that a winner pays, per
good in its bid, the average bid price of the first bid that is displaced from the outcome
because of her bid.

As a multi-unit auction, with C' units for sale, the auction collects bids (s;,v;) from
bidders, i = (1,..., N), for s; units at total price v;. Let p(i) = v;/s; be the average bid price
per unit. Let L be the sorted list of bids, sorted in decreasing order, with p(1) > p(2) > ....
Let © = (z1,...,2n) denote an allocation. An allocation is feasible if ), z;5, < C. Consider
a greedy allocation algorithm, that takes the sorted list, L, and allocates the first bid, and
then examines each bid of L in order and allocates it if the new allocation is still feasible.
Let 2* denote the allocation computed by the greedy allocation with all bids, and 2= denote
the allocation computed without bid 7. Now, for any winner, i, let n(z) denote the first bid
(or ¢ if no such bid exists) following i in order L that was denied in z* but is accepted in
x~%. The auction implements allocation z*, and agent 7 pays zero if her bid is denied or if
there is no bid n(7), and s; - p(n(i)) otherwise.

Lehmann et al. [LOS99] establish the strategyproofness of their auction by appeal to the

following sufficient properties:

Exactness: bids are either accepted in full or denied.

Monotonicity: if a bid (s;, v;) loses, then a bid (s, v}

L up) with ) > s; and v} < v; also loses.

Critical: the payment is exactly equal to the minimal price at which a bid, for the true

size, would have still been accepted.
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Participation: only winners make payments.

Note that the Critical property implies that the payment is independent of the bid price,
because Fzactness and Monotonicity taken together imply that the critical value is defined
by the bids of the other agents.

We state an immediate corollary of Theorem 4 [LOS99] for multi-unit auctions.

Theorem 1 [L0S99] In a multi-unit auction with single all-or-nothing bids, if the auction

satisfies Eractness, Monotonicity, Participation, and Critical, then it is strategyproof.

Let us now turn to the sequential multi-unit auction problem. Let £ = 1,2, ... denote
the sequential auctions, and suppose that bidders ¢ € Ay arrive in auction period k. Bidder ¢
has value v; for s; units, and is indifferent between receiving the units now, or in any period
k' < k+ A;, where A; is the patience of the bidder. Each auction is capacity Cj.

Consider the following auction, VIRTUALWORLDS, which is a multi-period extension of
Lehmann’s auction. VIRTUALWORLDS maintains a set of active bidders, Ny, at the start of
each period, k, which are the bidders that are within their patience and, either losing, or
winning at some price pyir(¢) > 0. This price is the virtual world price, pyirt(i), of bidder 7,
and is maintained by the auction for every winning bidder as long as it is still active. Let
Wi C Nj denote the set of active bidders that are already winners, at the start of period k.
Every winner has an associated virtual world while it is active. This virtual world maintains
the set of active bidders that would be winners, Wy (i), at the start of period, k, if winner ¢
had never submitted its bid, along with the virtual world price.

With this, the auction proceeds with the following steps, in each round k:

1. Remove all agents, 7, from the active set, whenever they exceed their patience, or they
are winning in the real world and have a zero price, pyir (i) = 0.

—whenever a winning agent is removed, then collect its final payment.
2. Add new arrivals, Ay, to the active set, Nj.

3. Run [LOS99] on the set Ni \ Wy, and add all new winners to Wy. Initialize a virtual

world for every new winner, i, with py;.(7) initialized to the price just computed in the

11



real world auction.

— implement the matching for any new winner.

4. Run [LOS99] on agents N, \ Wi (i) in each virtual world. (Note this auction includes
agent 7, now bidding as though this was the first time it entered the system.) If bidder
i is a winner, then update the price, pyirt(7), to the minimal across the current price
and the price just computed for ¢ in this virtual world. Either way, propagate the
solution to the greedy allocation algorithm run on agent Ni \ (W (i) U1), i.e. without
bidder i, to the next period.

Define the critical value, p., for agent 7 in VIRTUALWORLDS, as the minimal price that
the agent can bid in the auction and still be a winner, given a set of bids from other agents,
and given a particular size s;. Also, define the critical value, p., as the minimal price that
agent ¢ can bid in period £, and be a winner in period k, assuming that the agent can wait

and announce its arrival directly into period k.

Theorem 2 Auction VIRTUALWORLDS satisfies Eractness, Monotonicity, Participation,

and Critical, and therefore truth-revelation of v; and s; i1s a dominant strategy.

Proof:

Exactness is trivial, and Monotonicity is immediately inherited from [LOS99] because if a
bid loses it loses in each of a sequence of [LOS99] auctions. Critical follows from Lemma
1. Consider a bid, v" > p., and show that the payment computed in VIRTUALWORLDS is
exactly p.. First, we know that the bid is successful, in some period k, by the definition
of p.. Assume, without loss of generality, that the bid arrives in period 1, so that the last
period within patience is period A;. We know that p. = p. for some k' > k, and k' < A,,
because otherwise we would need p, = p. for some k' < k, by Lemma 1, and the bid
would have already been accepted in an earlier period. Now, we explicitly compute payment
min{pex, Pea, } in VIRTUALWORLDS, and implement the critical value. Participation trivially

holds. =
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Let k; denote the period in which bidder 4 arrives into the auction. Let k; = k, + A; — 1

denote the final period in which bidder ¢ is happy to receive the items.

Lemma 1 The critical value, p, in VIRTUALWORLDS, equals min{pe,, - - -, Doz, } -

Proof:

By contradiction. First, assume that there is some k', between k; and k;, for which p < pe.
This is a contradiction because an bidder in VIRTUALWORLDS can payment p’ < pq by
submitting a bid with price v] = pg. If this bid is successful in an auction before k', then
the payment can only be less than the bid price. Otherwise, this bid will be, by definition,
just competitive in auction k', and is a critical value for REALWORLDS. Second, assume
that p. < pew, for all k, < k' < k;. But, this implies that a bid, p., will be successful in some
period, k", in the interval k, < k" < k;, and therefore pyr < p..

Note carefully that we state a strategyproofness result only with respect to the (s;,v;)
part of a bidder’s type. The strategyproofness does not extend to bidders that are able to
misrepresent their arrival time, or misrepresent their patience.

First, consider the effect of announcing a larger patience. As an example, suppose that
an agent that arrives in period 1 with patience 5 is matched in period 1, and that its payment
is calculated based on the state of its virtual world in period 4. This agent can extend its
patience beyond 5 without risk, because it will always be matched in period 1 and stating a
larger patience increases the number of periods in which its virtual world payment can be
refined downwards.* Similarly, consider the effect of delaying arrival time. As an example,
suppose that an agent that arrives in period 1 with patience 5 is matched in period 4 and
makes the payment computed in period 4. This agent can hope to lower its payment by
announcing its arrival in period 4, and thus extending the horizon of its patience and the

potential for a lower virtual world payment. Thus, even if the mechanism simply assumes a

40n the other hand, if the same agent was not matched with patience 5, but was matched in some period,
7, by announcing a patience of 10, then the agent would lose utility because it would make a payment for
an allocation for which it has no value.
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fized patience for all bidders, the mechanism is still not strategyproof with respect to bidders

that can delay their arrival. This holds true even if the patience is exactly one.

4 Component 2: Pooling and Consignment

Second, we describe a method to construct consignments from SA capacity, and a method
to divide arriving RAs into pools to keep the architecture scalable.
The key differences between the data staging scenario and the problem described in the

previous section are:

1. multiple sellers, dynamically arriving, and with different numbers of units for sale and

for different lengths of time.

2. self-interested, rational, sellers that would be expected to misrepresent their available

capacity if that can improve their expected utility.
3. an additional dimension in bid space, the duration, of time that the RA requests.

Given that the incentive properties of auctions such as [LOS99] are not well understood
when there are multiple sellers in the same auction (this provides a flavor of a combinatorial
exchange [PKE(1]), we elected to assign a single SA to each auction.

One can imagine a number of schemes to assign SAs to auctions. It is helpful to consider
the following two alternatives: Scheme (A) in which each SA receives access to the auctions
within a pool in proportion to the total reported capacity of an SA; and Scheme (B) in
which each SA receives access to the same number of auctions within a pool, irrespective
of its reported capacity. In Scheme A an SA can take revenue away from other SA’s by
overstating its capacity, and getting access to more auctions. This is probably especially
useful when supply exceeds demand in the system, and this is also precisely the case in
which an SA would be able to follow such a strategy without much risk to over exposure to
RAs, with the consequent potential for detection. We follow Scheme B, and allocate SAs in

a round robin style to the auctions, as they are scheduled.
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The next task is to decide how to divide the reported capacity of an SA across the
auctions in which it is scheduled. The data staging model allows RAs to request jobs of size
s; (MB) for a period [; (s). Let us refer to the period l;, as the type of the good. So, 100 MB
of 10s capacity is the same type of good as 5 MB of 10s capacity. In the consignment step, we
divide the capacity of an RA first into different types of goods, and then into consignments
of a single type of good for individual auctions. The consignment algorithm is free to choose
the appropriate types of goods to sell in auctions, and the total division of capacity across
types (e.g. capacity available for 5s data staging vs. 1hr data staging).

Let A; define the auctions/sec assigned to SA j. Then, given classes, £, of goods, and
a top-level decision to divide total capacity, into fraction f; for each class, [ € L, and t; (s)
duration for class [, we allocate f;A; auctions/sec to type [. Setting the capacity in each
auction to meet the total capacity goals, this reduces to C;/(A;t;) MB of goods in each
class [ auction. This is valid while the auction periods are fast enough, while 1/(f;4;) < ;.
Otherwise, we need to cap the capacity by another term, to prevent an overflow in capacity

between successive auctions. We obtain the following overall consignment rule:

min (ffC’jAjtl, %) , (1)
to determine the total capacity that SA, j, to sells in each auction of good class [ with
duration {;.

We are careful to allocate an RA, i, that reports type, (s;, ;) to any auction with duration,
t; > I;. Otherwise, if we strictly matched RAs to SA auctions based on the duration, /;, then
there could be an incentive for an RA to overstate its required duration in order to get
into larger capacity auction with a lower price. Auctions of different types of goods are
just scheduled in a random sequence within each pool, and the virtual worlds methods work
seamlessly across multiple types of auctions.

There is one remaining opportunity in the Exchange for strategic behavior. An individual
SA can understate its capacity in an attempt to reduce supply in a particular auction and
drive up the second prices. However, as a pleasant side effect of the virtual worlds method,

this opportunity is mitigated in practice because the prices are determined over a sequence
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of auctions, all operated by different SAs.
In summary, we can state some theoretical properties for the combined virtual worlds

and pooling and consignment architecture, which we call here the Ezchange.

Theorem 3 The Exchange is strategyproof for RAs, with respect to value, size, and duration
(but not for delayed arrivals or extended timeouts). An SA can never benefit from stating a

larger capacity, but can sometimes benefit from understating its capacity.

5 Implementation Overview

To test the exchange concept in a realistic distributed systems settings with latency and
failures, we choose to implement the exchange, SAs, and RAs as distributed program entities
that can communicate efficiently using standard messaging formats.

We adopt Sun Microsystem’s Project JXTA platform [Gon] as our implementation ar-
chitecture. JXTA is a peer-to-peer architecture that supports formation of groups of peers,
discovery of peers and services peers provide, sending/receiving XML messages, and peer-
level message routing/multicasting mechanisms. JXTA is not an API, but a protocol that
gives us all the necessary core services yet provides flexibility. In fact, JXTA software can
be created and deployed in different programming languages and OSes and will support
heterogeneous distributed environments.

The exchange is written in Java (SDK 1.4.1) and currently runs on a stand-alone Windows
XP Professional machine with a 1.8GHz Pentium IV processor and 512MB of RAM. Berkeley
DB [Sof]is used as an embedded database that provides efficient management and operations
of the auction pool and virtual world data structures. The exchange registers itself in a JXTA
group and listens continuously for SAs and RAs messages sent within the group. SAs and
RAs are distinct Java programs on different machines that belong to the same LAN as the
exchange. SAs and RAs discover and join the same group that the exchange resides. Agents

then send messages to submit requests and service announcements to the exchange.
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6 Experimental Methodology

6.1 Goals

We want to prove that our scheme, despite its overhead compared to lightweight discovery
protocols that do not provide handshaking (i.e. matching), provides high allocative efficiency
for RAs. The main variable in our tests is RA/SA load. This is defined as the number of
RAs arriving in the exchange per second divided by the number of SAs arriving per second.
We would like to see much load the current implementation can support, and the effect of
load on allocative efficiency.

We ask the following questions in designing our experiments:

1) What is the allocative efficiency created in the system? Namely, what is the amount of
value created among all RAs due to matching? Because we normalize with the total possible
value, if all RAs are served (see Section 2), we expect the overall efficiency to fall as the load
increases.

2) How effective are the auctions at achieving a high utilization of resources? Specifically,
when the system allocative efficiency falls, does it fall because the server capacity is reaching
full utilization or because the exchange does an inefficient job of matching capacity and jobs
in auctions?

3) Does an individual RA achieve greater value in our mechanism than with a generic
discovery protocols, that simply returns a list of SAs that can in principle match its request
and leave the matching to the RA?

4) Ts the system strategyproof in practice, for both RAs and SAs? Specifically, can an
agent gain, on average by misstating its private information, such as the duration of time

that it requires for data staging?

6.2 Experimental Distributions

We setup our experiments with the following distributions for different parameters. Every-
thing is fixed, except for the load which we adjust by changing the arrival frequency of RAs

while fixing the arrival frequency of SAs.
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Exchange parameters:

We have two pools in the exchange. There will be one auction per second for the pools.
Consignments are updated every five seconds. The resource durations sold are either five
seconds or ten seconds, and in equal total capacity (in MB seconds).

SA parameters:

The SA arrival rate is one per second. The SA capacities are uniformly distributed in
[50, 100] (MB), and offer data staging for a total duration uniformly distributed in [25, 50]
(sec).

RA parameters:

The RA arrival rate varies depending on the load. The capacity requirements and the
values of the RAs are uniformly distributed in [1, 10] (MB) and [1, 10] (dollar), respectively.
The duration requirements are at random from 5, 10 (sec) with equal probabilities.

The RAs have timeouts uniformly distributed in [5, 15] seconds. For these experiments

we assume that the RAs announce these timeouts truthfully.

6.3 Naive Discovery Algorithm

We want to compare our implementation to a naive, non-strategyproof discovery protocol.
As described in Section 1.2, many current protocols do not store live states of services and
only match with the static attributes in advertisements. We assume that an RA that uses
such a protocol will look at a fixed subset of the SAs returned in the list (20% in our naive
implementation), asking for the currently available capacity and duration, until a match is
found or failing if no match is found.

We process the RAs in the queue periodically. For each RA, the RA looks at most 20% of
the SAs returned by service discovery, and either finds a match based on current capacity and
duration or fails. After a match we still factor in the non-strategyproofness of the protocol,
and assume that the SA’s actual available capacity is between 0 and 50% less than its stated

(uniformly distributed in this range). Similarly, we assume that the SA’s actual available

5We propose to actually fix the timeout within the system to some constant value for all RAs to prevent
time-based manipulation using this parameter.
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duration is between 0 and 20 (secs). If both the true size and the true duration still matches
the RA’s needs, then we have a match. After a match the SA’s capacity will be deducted

accordingly for that round. If an RA ever fails to find a match it leaves the system.

7 Results

Figure 3 depicts the first set of results, in terms of the metrics, efficiency (normalized by
total possible value), utilization (fraction of admitted capacity that is sold), and competition
(fraction of auctioned capacity that is sold), that were introduced in Section 2. Each point
on the chart represents values obtained from running the exchange for 500 seconds (or 100
consignment iterations). For each curve, we ran with ten different RA/SA ratios, between 2

to 40.
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Figure 3: Efficiency, Competition and Utilization vs. System Load. Key: -o- exchange

efficiency; -.- competition; — utilization; ... naive efficiency

The efficiency is close to 100% for low loads, and remains quite high, at around 60%
even as the competition in the system, for resources that are brought to auction, increases
to around 70%, which occurs at high RA/SA ratios. The utilization measurement shows low

utilization at low loads and gradually improving utilization as load increases. Ideally, we
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would like utilization to be higher than this as load increases, to counteract the increased
competition within auctions. We suspect that utilization can improve if the pooling technique
is smarter. An example technique will spawn new pools when certain thresholds of SAs are
exceeded.

In comparison with the exchange, the naive discovery protocol averages around 20%
efficiency, even for low loads. Increasing the search space of the agents in the naive from
20% to 30% was found to improve efficiency to about 25 to 27%. Notice, though, that in
dynamic environments it might just take too long to contact a large number of SAs and
query their state.

We also ran experiments to verify strategyproofness. First, we hold the value of an RA
fixed (at 100), and test its overall utility when it overstates its storage requirement (from
100MB). Figure 4 shows what happens when the RA overstates by 0, 25, 50, 75, and 100
percent. Utility for the RA drops as much as 40 dollars when it reports twice the storage

requirement.
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Figure 4: Strategyproofness: RAs and Size

Second, we hold the storage fixed, and let the RA understates it value. The motivation
for the RA is to try to have a receive a lower final price. Figure 5 shows that RA suffers

similarly to when overstating size.
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Figure 5: Strategyproofness: RAs and Value

We are currently running additional experiments to benchmark the virtual world over-
head, and also for SAs with lower capacities and/or RAs with more individual demand to
test performance in a high-utilization regime. Currently, with two pools and one auction
per second in each pool, and fresh consignments every five seconds, the auctions begin to
take longer to clear than allowed by the auction schedule. This prevented us from running
experiments to higher loads in order to demonstrate the behavior for higher still utilization
levels. As the number of RAs increases, and the number of winning RAs increases, the
overhead of running virtual worlds increases.

The system scales reasonably well for the current example. Currently, the system sup-
ports about 40 jobs per second, for two pools, one auction each per second. That is over
2,000 jobs per minute and is acceptable for many applications. Nonetheless, our example is
still simplistic in terms of number of attributes. Ultimately, we believe that the right way to
address future large-scale implementations is through the use of multiple pools in parallel,
and multiple distributed exchanges, as well as through open systems in which exchanges can

compete to provide services to RAs and SAs.
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8 Conclusions and Open Problems

We have proposed an architecture and mechanism for a strategyproof exchange for dynamic
resource allocation between rational and self-interested agents, and considered its application
to a dynamic data staging scenario. We have proposed a method to allow a sequence of
auctions to draw from the same pool of bids, without compromising strategyproofness for
bidders. We have also proposed a consignment protocol to partition incoming server capacity
for schedule to individual auctions, without allowing an SA to gain access to additional
auctions by overstating its capacity.

There is still much left to be done. In immediate work, we intend to perform many
additional experiments to fully characterize the performance and strategyproofness of the
system, across a rich variety of RA and SA distributions. In addition, we intend to carefully
benchmark the virtual world experiments, and to investigate the power that the ability to
dynamically introduce new pools can bring in constraining the maximal number of winners
in any one pool and keeping a control on the virtual world.

For the future, we would like to explore methods to allow limited aggregations, for ex-
ample with multiple SAs in a single auction, and to move a little further away from single-
minded bidders, for example with one more bid dimension, such as bandwidth, in addition

to capacity and duration.
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