
Applying Learning Algorithms to Preference Elicitation

Sebastien M. Lahaie
Division of Engineering and Applied Sciences

Harvard University
Cambridge, MA 02138

slahaie@eecs.harvard.edu

David C. Parkes
Division of Engineering and Applied Sciences

Harvard University
Cambridge, MA 02138

parkes@eecs.harvard.edu

ABSTRACT
We consider the parallels between the preference elicitation
problem in combinatorial auctions and the problem of learn-
ing an unknown function from learning theory. We show
that learning algorithms can be used as a basis for prefer-
ence elicitation algorithms. The resulting elicitation algo-
rithms perform a polynomial number of queries. We also
give conditions under which the resulting algorithms have
polynomial communication. Our conversion procedure al-
lows us to generate combinatorial auction protocols from
learning algorithms for polynomials, monotone DNF, and
linear-threshold functions. In particular, we obtain an al-
gorithm that elicits XOR bids with polynomial communica-
tion.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complex-
ity]: General; J.4 [Social and Behavioral Sciences]:
Economics; I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Economics, Theory

Keywords
combinatorial auctions, preference elicitation, learning

1. INTRODUCTION
In a combinatorial auction, agents may bid on bundles of

goods rather than individual goods alone. Since there are
an exponential number of bundles (in the number of goods),
communicating values over these bundles can be problem-
atic. Communicating valuations in a one-shot fashion can
be prohibitively expensive if the number of goods is only
moderately large. Furthermore, it might even be hard for
agents to determine their valuations for single bundles [14].
It is in the interest of such agents to have auction protocols

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’04,May 17–20, 2004, New York, New York, USA.
Copyright 2004 ACM 1-58113-711-0/04/0005 ...$5.00.

which require them to bid on as few bundles as possible.
Even if agents can efficiently compute their valuations, they
might still be reluctant to reveal them entirely in the course
of an auction, because such information may be valuable to
their competitors. These considerations motivate the need
for auction protocols that minimize the communication and
information revelation required to determine an optimal al-
location of goods.

There has been recent work exploring the links between
the preference elicitation problem in combinatorial auctions
and the problem of learning an unknown function from com-
putational learning theory [5, 19]. In learning theory, the
goal is to learn a function via various types of queries, such
as “What is the function’s value on these inputs?” In pref-
erence elicitation, the goal is to elicit enough partial infor-
mation about preferences to be able to compute an optimal
allocation. Though the goals of learning and preference elici-
tation differ somewhat, it is clear that these problems share
similar structure, and it should come as no surprise that
techniques from one field should be relevant to the other.

We show that any exact learning algorithm with member-
ship and equivalence queries can be converted into a pref-
erence elicitation algorithm with value and demand queries.
The resulting elicitation algorithm guarantees elicitation in
a polynomial number of value and demand queries. Here
we mean polynomial in the number of goods, agents, and
the sizes of the agents’ valuation functions in a given en-
coding scheme. Preference elicitation schemes have not tra-
ditionally considered this last parameter. We argue that
complexity guarantees for elicitation schemes should allow
dependence on this parameter. Introducing this parameter
also allows us to guarantee polynomial worst-case commu-
nication, which usually cannot be achieved in the number
of goods and agents alone. Finally, we use our conversion
procedure to generate combinatorial auction protocols from
learning algorithms for polynomials, monotone DNF, and
linear-threshold functions.

Of course, a one-shot combinatorial auction where agents
provide their entire valuation functions at once would also
have polynomial communication in the size of the agents’
valuations, and only require one query. The advantage of
our scheme is that agents can be viewed as “black-boxes”
that provide incremental information about their valuations.
There is no burden on the agents to formulate their valu-
ations in an encoding scheme of the auctioneer’s choosing.
We expect this to be an important consideration in practice.
Also, with our scheme entire revelation only happens in the
worst-case.

For now, we leave the issue of incentives aside when de-
riving elicitation algorithms. Our focus is on the time and
communication complexity of preference elicitation regard-
less of incentive constraints, and on the relationship between
the complexities of learning and preference elicitation.

Related work. Zinkevich et al. [19] consider the problem
of learning restricted classes of valuation functions which can
be represented using read-once formulas and Toolbox DNF.
Read-once formulas can represent certain substitutabilities,
but no complementarities, whereas the opposite holds for
Toolbox DNF. Since their work is also grounded in learning
theory, they allow dependence on the size of the target val-
uation as we do (though read-once valuations can always be
succinctly represented anyway). Their work only makes use
of value queries, which are quite limited in power. Because
we allow ourselves demand queries, we are able to derive an
elicitation scheme for general valuation functions.

Blum et al. [5] provide results relating the complexities
of query learning and preference elicitation. They consider
models with membership and equivalence queries in query
learning, and value and demand queries in preference elici-
tation. They show that certain classes of functions can be
efficiently learned yet not efficiently elicited, and vice-versa.
In contrast, our work shows that given a more general (yet
still quite standard) version of demand query than the type
they consider, the complexity of preference elicitation is no
greater than the complexity of learning. We will show that
demand queries can simulate equivalence queries until we
have enough information about valuations to imply a solu-
tion to the elicitation problem.

Nisan and Segal [12] study the communication complex-
ity of preference elicitation. They show that for many rich
classes of valuations, the worst-case communication com-
plexity of computing an optimal allocation is exponential.
Their results apply to the “black-box” model of computa-
tional complexity. In this model algorithms are allowed to
ask questions about agent valuations and receive honest re-
sponses, without any insight into how the agents internally
compute their valuations. This is in fact the basic frame-
work of learning theory. Our work also addresses the issue
of communication complexity, and we are able to derive al-
gorithms that provide significant communication guarantees
despite Nisan and Segal’s negative results. Their work mo-
tivates the need to rely on the sizes of agents’ valuation
functions in stating worst-case results.

2. THE MODELS

2.1 Query Learning
The query learning model we consider here is called exact

learning from membership and equivalence queries,
introduced by Angluin [2]. In this model the learning algo-
rithm’s objective is to exactly identify an unknown target
function f : X → Y via queries to an oracle. The target
function is drawn from a function class C that is known to
the algorithm. Typically the domain X is some subset of
{0, 1}m, and the range Y is either {0, 1} or some subset
of the real numbers R. As the algorithm progresses, it con-
structs a manifest hypothesis f̃ which is its current estimate
of the target function. Upon termination, the manifest hy-
pothesis of a correct learning algorithm satisfies f̃(x) = f(x)
for all x ∈ X.

It is important to specify the representation that will be
used to encode functions from C. For example, consider the
following function from {0, 1}m to R: f(x) = 2 if x con-
sists of m 1’s, and f(x) = 0 otherwise. This function may
simply be represented as a list of 2m values. Or it may be
encoded as the polynomial 2x1 · · ·xm, which is much more
succinct. The choice of encoding may thus have a significant
impact on the time and space requirements of the learning
algorithm. Let size(f) be the size of the encoding of f with
respect to the given representation class. Most representa-
tion classes have a natural measure of encoding size. The
size of a polynomial can be defined as the number of non-zero
coefficients in the polynomial, for example. We will usually
only refer to representation classes; the corresponding func-
tion classes will be implied. For example, the representation
class of monotone DNF formulae implies the function class
of monotone Boolean functions.

Two types of queries are commonly used for exact learn-
ing: membership and equivalence queries. On a membership
query, the learner presents some x ∈ X and the oracle replies
with f(x). On an equivalence query, the learner presents

its manifest hypothesis f̃ . The oracle either replies ‘YES’ if
f̃ = f , or returns a counterexample x such that f̃(x) 6= f(x).

An equivalence query is proper if size(f̃) ≤ size(f) at the
time the manifest hypothesis is presented.

We are interested in efficient learning algorithms. The fol-
lowing definitions are adapted from Kearns and Vazirani [9]:

Definition 1. The representation class C is polynomial-
query exactly learnable from membership and equiv-
alence queries if there is a fixed polynomial p(·, ·) and an
algorithm L with access to membership and equivalence que-
ries of an oracle such that for any target function f ∈ C, L
outputs after at most p(size(f), m) queries a function f̃ ∈ C
such that f̃(x) = f(x) for all instances x.

Similarly, the representation class C is efficiently ex-
actly learnable from membership and equivalence
queries if the algorithm L outputs a correct hypothesis in
time p(size(f), m), for some fixed polynomial p(·, ·).
Here m is the dimension of the domain. Since the target
function must be reconstructed, we also necessarily allow
polynomial dependence on size(f).

2.2 Preference Elicitation
In a combinatorial auction, a set of goods M is to be allo-

cated among a set of agents N so as to maximize the sum of
the agents’ valuations. Such an allocation is called efficient
in the economics literature, but we will refer to it as optimal
and reserve the term “efficient” to refer to computational
efficiency. We let n = |N | and m = |M |. An allocation
is a partition of the objects into bundles (S1, . . . , Sn), such
that Si ∩ Sj = ∅ for all distinct i, j ∈ N . Let Γ be the set
of possible allocations. Each agent i ∈ N has a valuation
function vi : 2M → R over the space of possible bundles.
Each valuation vi is drawn from a known class of valuations
Vi. The valuation classes do not need to coincide.

We will assume that all the valuations considered are nor-
malized, meaning v(∅) = 0, and that there are no external-
ities, meaning vi(S1, ..., Sn) = vi(Si), for all agents i ∈ N ,
for any allocation (S1, ..., Sn) ∈ Γ (that is, an agent cares
only about the bundle allocated to her). Valuations satis-
fying these conditions are called general valuations.1 We
1Often general valuations are made to satisfy the additional

also assume that agents have quasi-linear utility functions,
meaning that agents’ utilities can be divided into monetary
and non-monetary components. If an agent i is allocated
bundle S at price p, it derives utility ui(S, p) = vi(S)− p.

A valuation function may be viewed as a vector of 2m − 1
non-negative real-values. Of course there may also be more
succinct representations for certain valuation classes, and
there has been much research into concise bidding languages
for various types of valuations [11]. A classic example which
we will refer to again later is the XOR bidding language.
In this language, the agent provides a list of atomic bids,
which consist of a bundle together with its value. To deter-
mine the value of a bundle S given these bids, one searches
for the bundle S′ of highest value listed in the atomic bids
such that S′ ⊆ S. It is then the case that v(S) = v(S′).
As in the learning theory setting, we will usually only refer
to bidding languages rather than valuation classes, because
the corresponding valuation classes will then be implied. For
example, the XOR bidding language implies the class of val-
uations satisfying free-disposal, which is the condition that
A ⊆ B ⇒ v(A) ≤ v(B).

We let size(v1, . . . , vn) =
∑n

i=1 size(vi). That is, the size
of a vector of valuations is the size of the concatenation of
the valuations’ representations in their respective encoding
schemes (bidding languages).

To make an analogy to computational learning theory, we
assume that all representation classes considered are polyno-
mially interpretable [11], meaning that the value of a bundle
may be computed in polynomial time given the valuation
function’s representation. More formally, a representation
class (bidding language) C is polynomially interpretable if
there exists an algorithm that given as input some v ∈ C
and an instance x ∈ X computes the value v(x) in time
q(size(v), m), for some fixed polynomial q(·, ·).2

In the intermediate rounds of an (iterative) auction, the
auctioneer will have elicited information about the agents’
valuation functions via various types of queries. She will
thus have constructed a set of manifest valuations, denoted
ṽ1, . . . , ṽn.3 The values of these functions may correspond
exactly to the true agent values, or they may for example
be upper or lower bounds on the true values, depending
on the types of queries made. They may also simply be
default or random values if no information has been acquired
about certain bundles. The goal in the preference elicitation
problem is to construct a set of manifest valuations such
that:

arg max
(S1,...,Sn)∈Γ

∑
i∈N

ṽi(Si) ⊆ arg max
(S1,...,Sn)∈Γ

∑
i∈N

vi(Si)

That is, the manifest valuations provide enough information
to compute an allocation that is optimal with respect to the
true valuations. Note that we only require one such optimal
allocation.

condition of free-disposal (monotonicity), but we do not
need it at this point.
2This excludes OR∗, assuming P 6= NP, because interpret-
ing bids from this language is NP-hard by reduction from
weighted set-packing, and there is no well-studied represen-
tation class in learning theory that is clearly analogous to
OR∗.
3This view of iterative auctions is meant to parallel the
learning setting. In many combinatorial auctions, manifest
valuations are not explicitly maintained but rather simply
implied by the history of bids.

Two typical queries used in preference elicitation are value
and demand queries. On a value query, the auctioneer
presents a bundle S ⊆ M and the agent responds with
her (exact) value for the bundle v(S) [8]. On a demand
query, the auctioneer presents a vector of non-negative prices
p ∈ R(2m) over the bundles together with a bundle S. The
agent responds ‘YES’ if it is the case that

S ∈ arg max
S′⊆M

(
v(S′)− p(S′)

)
or otherwise presents a bundle S′ such that

v(S′)− p(S′) > v(S)− p(S)

That is, the agent either confirms that the presented bundle
is most preferred at the quoted prices, or indicates a bet-
ter one [15].4 Note that we include ∅ as a bundle, so the
agent will only respond ‘YES’ if its utility for the proposed
bundle is non-negative. Note also that communicating non-
linear prices does not necessarily entail quoting a price for
every possible bundle. There may be more succinct ways of
communicating this vector, as we show in section 5.

We make the following definitions to parallel the query
learning setting and to simplify the statements of later re-
sults:

Definition 2. The representation classes V1, . . . ,Vn can
be polynomial-query elicited from value and demand
queries if there is a fixed polynomial p(·, ·) and an algo-
rithm L with access to value and demand queries of the
agents such that for any (v1, . . . , vn) ∈ V1 × . . . × Vn, L
outputs after at most p(size(v1, . . . , vn), m) queries an allo-
cation (S1, . . . , Sn) ∈ arg max(S′

1,...,S′
n)∈Γ

∑
vi(S

′
i).

Similarly, the representation class C can be efficiently
elicited from value and demand queries if the algo-
rithm L outputs an optimal allocation with communication
p(size(v1, . . . , vn), m), for some fixed polynomial p(·, ·).

There are some key differences here with the query learn-
ing definition. We have dropped the term “exactly” since
the valuation functions need not be determined exactly in
order to compute an optimal allocation. Also, an efficient
elicitation algorithm is polynomial communication, rather
than polynomial time. This reflects the fact that communi-
cation rather than runtime is the bottleneck in elicitation.
Computing an optimal allocation of goods even when given
the true valuations is NP-hard for a wide range of valua-
tion classes. It is thus unreasonable to require polynomial
time in the definition of an efficient preference elicitation
algorithm. We are happy to focus on the communication
complexity of elicitation because this problem is widely be-
lieved to be more significant in practice than that of winner
determination [11].5

4This differs slightly from the definition provided by Blum
et al. [5] Their demand queries are restricted to linear prices
over the goods, where the price of a bundle is the sum of
the prices of its underlying goods. In contrast our demand
queries allow for nonlinear prices, i.e. a distinct price for
every possible bundle. This is why the lower bound in their
Theorem 2 does not contradict our result that follows.
5Though the winner determination problem is NP-hard for
general valuations, there exist many algorithms that solve
it efficiently in practice. These range from special pur-
pose algorithms [7, 16] to approaches using off-the-shelf IP
solvers [1].

Since the valuations need not be elicited exactly it is
initially less clear whether the polynomial dependence on
size(v1, . . . , vn) is justified in this setting. Intuitively, this
parameter is justified because we must learn valuations ex-
actly when performing elicitation, in the worst-case. We
address this in the next section.

3. PARALLELS BETWEEN EQUIVALENCE
AND DEMAND QUERIES

We have described the query learning and preference elici-
tation settings in a manner that highlights their similarities.
Value and membership queries are clear analogs. Slightly
less obvious is the fact that equivalence and demand queries
are also analogs. To see this, we need the concept of Lindahl
prices. Lindahl prices are nonlinear and non-anonymous
prices over the bundles. They are nonlinear in the sense
that each bundle is assigned a price, and this price is not
necessarily the sum of prices over its underlying goods. They
are non-anonymous in the sense that two agents may face
different prices for the same bundle of goods. Thus Lindahl
prices are of the form pi(S), for all S ⊆ M , for all i ∈ N .
Lindahl prices are presented to the agents in demand que-
ries.

When agents have normalized quasi-linear utility func-
tions, Bikhchandani and Ostroy [4] show that there always
exist Lindahl prices such that (S1, . . . , Sn) is an optimal al-
location if and only if

Si ∈ arg max
S′

i

(
vi(S

′
i)− pi(S

′
i)

)
∀i ∈ N (1)

(S1, . . . , Sn) ∈ arg max
(S′

1,...,S′
n)∈Γ

∑
i∈N

pi(S
′
i) (2)

Condition (1) states that each agent is allocated a bundle
that maximizes its utility at the given prices. Condition (2)
states that the allocation maximizes the auctioneer’s rev-
enue at the given prices. The scenario in which these con-
ditions hold is called a Lindahl equilibrium, or often a com-
petitive equilibrium. We say that the Lindahl prices support
the optimal allocation. It is therefore sufficient to announce
supporting Lindahl prices to verify an optimal allocation.
Once we have found an allocation with supporting Lindahl
prices, the elicitation problem is solved.

The problem of finding an optimal allocation (with respect
to the manifest valuations) can be formulated as a linear
program whose solutions are guaranteed to be integral [4].
The dual variables to this linear program are supporting
Lindahl prices for the resulting allocation. The objective
function to the dual program is:

min
pi(S)

πs +
∑
i∈N

πi (3)

with πi = max
S⊆M

(ṽi(S)− pi(S))

πs = max
(S1,...,Sn)∈Γ

∑
i∈N

pi(Si)

The optimal values of πi and πs correspond to the maximal
utility to agent i with respect to its manifest valuation and
the maximal revenue to the seller.

There is usually a range of possible Lindahl prices sup-
porting a given optimal allocation. The agent’s manifest
valuations are in fact valid Lindahl prices, and we refer to

them as maximal Lindahl prices. Out of all possible vec-
tors of Lindahl prices, maximal Lindahl prices maximize the
utility of the auctioneer, in fact giving her the entire so-
cial welfare. Conversely, prices that maximize the

∑
i∈N πi

component of the objective (the sum of the agents’ utilities)
are minimal Lindahl prices. Any Lindahl prices will do for
our results, but some may have better elicitation proper-
ties than others. Note that a demand query with maximal
Lindahl prices is almost identical to an equivalence query,
since in both cases we communicate the manifest valuation
to the agent. We leave for future work the question of which
Lindahl prices to choose to minimize preference elicitation.

Considering now why demand and equivalence queries are
direct analogs, first note that given the πi in some Lindahl
equilibrium, setting

pi(S) = max{0, ṽi(S)− πi} (4)

for all i ∈ N and S ⊆ M yields valid Lindahl prices. These
prices leave every agent indifferent across all bundles with
positive price, and satisfy condition (1). Thus demand que-
ries can also implicitly communicate manifest valuations,
since Lindahl prices will typically be an additive constant
away from these by equality (4). In the following lemma we
show how to obtain counterexamples to equivalence queries
through demand queries.

Lemma 1. Suppose an agent replies with a preferred bun-
dle S′ when proposed a bundle S and supporting Lindahl
prices p(S) (supporting with respect to the the agent’s man-
ifest valuation). Then either ṽ(S) 6= v(S) or ṽ(S′) 6= v(S′).

Proof. We have the following inequalities:

ṽ(S)− p(S) ≥ ṽ(S′)− p(S′)

⇒ ṽ(S′)− ṽ(S) ≤ p(S′)− p(S) (5)

v(S′)− p(S′) > v(S)− p(S)

⇒ v(S′)− v(S) > p(S′)− p(S) (6)

Inequality (5) holds because the prices support the proposed
allocation with respect to the manifest valuation. Inequality
(6) holds because the agent in fact prefers S′ to S given the
prices, according to its response to the demand query. If it
were the case that ṽ(S) = v(S) and ṽ(S′) = v(S′), these
inequalities would represent a contradiction. Thus at least
one of S and S′ is a counterexample to the agent’s manifest
valuation.

Finally, we justify dependence on size(v1, . . . , vn) in elic-
itation problems. Nisan and Segal (Proposition 1, [12])
and Parkes (Theorem 1, [13]) show that supporting Lindahl
prices must necessarily be revealed in the course of any pref-
erence elicitation protocol which terminates with an optimal
allocation. Furthermore, Nisan and Segal (Lemma 1, [12])
state that in the worst-case agents’ prices must coincide with
their valuations (up to a constant), when the valuation class
is rich enough to contain “dual valuations” (as will be the
case with most interesting classes). Since revealing Lindahl
prices is a necessary condition for establishing an optimal
allocation, and since Lindahl prices contain the same infor-
mation as valuation functions (in the worst-case), allowing
for dependence on size(v1, . . . , vn) in elicitation problems is
entirely natural.

4. FROM LEARNING TO PREFERENCE
ELICITATION

The key to converting a learning algorithm to an elicita-
tion algorithm is to simulate equivalence queries with de-
mand and value queries until an optimal allocation is found.
Because of our Lindahl price construction, when all agents
reply ‘YES’ to a demand query, we have found an optimal al-
location, analogous to the case where an agent replies ‘YES’
to an equivalence query when the target function has been
exactly learned. Otherwise, we can obtain a counterexam-
ple to an equivalence query given an agent’s response to a
demand query.

Theorem 1. The representation classes V1, . . . ,Vn can
be polynomial-query elicited from value and demand queries
if they can each be polynomial-query exactly learned from
membership and equivalence queries.

Proof. Consider the elicitation algorithm in Figure 1.
Each membership query in step 1 is simulated with a value
query since these are in fact identical. Consider step 4. If all
agents reply ‘YES’, condition (1) holds. Condition (2) holds
because the computed allocation is revenue-maximizing for
the auctioneer, regardless of the agents’ true valuations.
Thus an optimal allocation has been found. Otherwise, at
least one of Si or S′

i is a counterexample to ṽi, by Lemma 1.
We identify a counterexample by performing value queries
on both these bundles, and provide it to Ai as a response to
its equivalence query.

This procedure will halt, since in the worst-case all agent
valuations will be learned exactly, in which case the opti-
mal allocation and Lindahl prices will be accepted by all
agents. The procedure performs a polynomial number of
queries, since A1, . . . , An are all polynomial-query learning
algorithms.

Note that the conversion procedure results in a prefer-
ence elicitation algorithm, not a learning algorithm. That
is, the resulting algorithm does not simply learn the valua-
tions exactly, then compute an optimal allocation. Rather,
it elicits partial information about the valuations through
value queries, and periodically tests whether enough infor-
mation has been gathered by proposing an allocation to the
agents through demand queries. It is possible to generate a
Lindahl equilibrium for valuations v1, . . . , vn using an alloca-
tion and prices derived using manifest valuations ṽ1, . . . , ṽn,
and finding an optimal allocation does not imply that the
agents’ valuations have been exactly learned. The use of
demand queries to simulate equivalence queries enables this
early halting. We would not obtain this property with equiv-
alence queries based on manifest valuations.

5. COMMUNICATION COMPLEXITY
In this section, we turn to the issue of the communica-

tion complexity of elicitation. Nisan and Segal [12] show
that for a variety of rich valuation spaces (such as general
and submodular valuations), the worst-case communication
burden of determining Lindahl prices is exponential in the
number of goods, m. The communication burden is mea-
sured in terms of the number of bits transmitted between
agents and auctioneer in the case of discrete communication,
or in terms of the number of real numbers transmitted in the
case of continuous communication.

Converting efficient learning algorithms to an elicitation
algorithm produces an algorithm whose queries have sizes
polynomial in the parameters m and size(v1, . . . , vn).

Theorem 2. The representation classes V1, . . . ,Vn can
be efficiently elicited from value and demand queries if they
can each be efficiently exactly learned from membership and
equivalence queries.

Proof. The size of any value query is O(m): the mes-
sage consists solely of the queried bundle. To communicate
Lindahl prices to agent i, it is sufficient to communicate
the agent’s manifest valuation function and the value πi, by
equality (4). Note that an efficient learning algorithm never
builds up a manifest hypothesis of superpolynomial size, be-
cause the algorithm’s runtime would then also be superpoly-
nomial, contradicting efficiency. Thus communicating the
manifest valuation requires size at most p(size(vi), m), for
some polynomial p that upper-bounds the runtime of the
efficient learning algorithm. Representing the surplus πi to
agent i cannot require space greater than q(size(ṽi), m) for
some fixed polynomial q, because we assume that the chosen
representation is polynomially interpretable, and thus any
value generated will be of polynomial size. We must also
communicate to i its allocated bundle, so the total mes-
sage size for a demand query is at most p(size(vi), m) +
q(p(size(vi), m), m)+O(m). Clearly, an agent’s response to
a value or demand query has size at most q(size(vi), m) +
O(m). Thus the value and demand queries, and the re-
sponses to these queries, are always of polynomial size. An
efficient learning algorithm performs a polynomial number of
queries, so the total communication of the resulting elicita-
tion algorithm is polynomial in the relevant parameters.

There will often be explicit bounds on the number of mem-
bership and equivalence queries performed by a learning al-
gorithm, with constants that are not masked by big-O no-
tation. These bounds can be translated to explicit bounds
on the number of value and demand queries made by the
resulting elicitation algorithm. We upper-bounded the size
of the manifest hypothesis with the runtime of the learning
algorithm in Theorem 2. We are likely to be able to do
much better than this in practice. Recall that an equiva-
lence query is proper if size(f̃) ≤ size(f) at the time the
query is made. If the learning algorithm’s equivalence que-
ries are all proper, it may then also be possible to provide
tight bounds on the communication requirements of the re-
sulting elicitation algorithm.

Theorem 2 show that elicitation algorithms that depend
on the size(v1, . . . , vn) parameter sidestep Nisan and Se-
gal’s [12] negative results on the worst-case communication
complexity of efficient allocation problems. They provide
guarantees with respect to the sizes of the instances of val-
uation functions faced at any run of the algorithm. These
algorithms will fare well if the chosen representation class
provides succinct representations for the simplest and most
common of valuations, and thus the focus moves back to one
of compact yet expressive bidding languages. We consider
these issues below.

6. APPLICATIONS
In this section, we demonstrate the application of our

methods to particular representation classes for combinato-
rial valuations. We have shown that the preference elicita-
tion problem for valuation classes V1, . . . ,Vn can be reduced

Given: exact learning algorithms A1, . . . , An for valuations classes V1, . . . ,Vn respectively.
Loop until there is a signal to halt:

1. Run A1, . . . , An in parallel on their respective agents until each requires a response to an
equivalence query, or has halted with the agent’s exact valuation.

2. Compute an optimal allocation (S1, . . . , Sn) and corresponding Lindahl prices with respect to
the manifest valuations ṽ1, . . . , ṽn determined so far.

3. Present the allocation and prices to the agents in the form of a demand query.

4. If they all reply ‘YES’, output the allocation and halt. Otherwise there is some agent i that
has replied with some preferred bundle S′

i. Perform value queries on Si and S′
i to find a

counterexample to ṽi, and provide it to Ai.

Figure 1: Converting learning algorithms to an elicitation algorithm.

to the problem of finding an efficient learning algorithm for
each of these classes separately. This is significant because
there already exist learning algorithms for a wealth of func-
tion classes, and because it may often be simpler to solve
each learning subproblem separately than to attack the pref-
erence elicitation problem directly. We can develop an elic-
itation algorithm that is tailored to each agent’s valuation,
with the underlying learning algorithms linked together at
the demand query stages in an algorithm-independent way.

We show that existing learning algorithms for polynomi-
als, monotone DNF formulae, and linear-threshold functions
can be converted into preference elicitation algorithms for
general valuations, valuations with free-disposal, and val-
uations with substitutabilities, respectively. We focus on
representations that are polynomially interpretable, because
the computational learning theory literature places a heavy
emphasis on computational tractability [18].

In interpreting the methods we emphasize the expres-
siveness and succinctness of each representation class. The
representation class, which in combinatorial auction terms
defines a bidding language, must necessarily be expressive
enough to represent all possible valuations of interest, and
should also succinctly represent the simplest and most com-
mon functions in the class.

6.1 Polynomial Representations
Schapire and Sellie [17] give a learning algorithm for sparse

multivariate polynomials that can be used as the basis for
a combinatorial auction protocol. The equivalence queries
made by this algorithm are all proper. Specifically, their al-
gorithm learns the representation class of t-sparse multivari-
ate polynomials over the real numbers, where the variables
may take on values either 0 or 1. A t-sparse polynomial
has at most t terms, where a term is a product of variables,
e.g. x1x3x4. A polynomial “over the real numbers” has
coefficients drawn from the real numbers. Polynomials are
expressive: every valuation function v : 2M → R+ can be
uniquely written as a polynomial [17].

To get an idea of the succinctness of polynomials as a
bidding language, consider the additive and single-item val-
uations presented by Nisan [11]. In the additive valuation,
the value of a bundle is the number of goods the bundle con-
tains. In the single-item valuation, all bundles have value
1, except ∅ which has value 0 (i.e. the agent is satisfied as
soon as it has acquired a single item). It is not hard to show

that the single-item valuation requires polynomials of size
2m − 1, while polynomials of size m suffice for the additive
valuation. Polynomials are thus appropriate for valuations
that are “mostly additive”, with a few substitutabilities and
complementarities that can be introduced by adjusting co-
efficients.

The learning algorithm for polynomials makes at most
mti +2 equivalence queries and at most (mti +1)(t2i +3ti)/2
membership queries to an agent i, where ti is the sparcity of
the polynomial representing vi [17]. We therefore obtain an
algorithm that elicits general valuations with a polynomial
number of queries and polynomial communication.6

6.2 XOR Representations
The XOR bidding language is standard in the combina-

torial auctions literature. Recall that an XOR bid is char-
acterized by a set of bundles B ⊆ 2M and a value function
w : B → R+ defined on those bundles, which induces the val-
uation function:

v(B) = max
{B′∈B | B′⊆B}

w(B′) (7)

XOR bids can represent valuations that satisfy free-disposal
(and only such valuations), which again is the property that
A ⊆ B ⇒ v(A) ≤ v(B).

The XOR bidding language is slightly less expressive than
polynomials, because polynomials can represent valuations
that do not satisfy free-disposal. However, XOR is as expres-
sive as required in most economic settings. Nisan [11] notes
that XOR bids can represent the single-item valuation with
m atomic bids, but 2m − 1 atomic bids are needed to rep-
resent the additive valuation. Since the opposite holds for
polynomials, these two languages are incomparable in suc-
cinctness, and somewhat complementary for practical use.

Blum et al. [5] note that monotone DNF formulae are the
analogs of XOR bids in the learning theory literature. A
monotone DNF formula is a disjunction of conjunctions in
which the variables appear unnegated, for example x1x2 ∨
x3 ∨ x2x4x5. Note that such formulae can be represented
as XOR bids where each atomic bid has value 1; thus XOR
bids generalize monotone DNF formulae from Boolean to
real-valued functions. These insights allow us to generalize
a classic learning algorithm for monotone DNF ([3] Theorem

6Note that Theorem 1 applies even if valuations do not sat-
isfy free-disposal.

1, [18] Theorem B) to a learning algorithm for XOR bids.7

Lemma 2. An XOR bid containing t atomic bids can be
exactly learned with t + 1 equivalence queries and at most
tm membership queries.

Proof. The algorithm will identify each atomic bid in
the target XOR bid in turn. Initialize the manifest valuation
ṽ to the bid that is identically zero on all bundles (this is an
XOR bid containing 0 atomic bids). Present ṽ as an equiva-
lence query. If the response is ‘YES’, we are done. Otherwise
we obtain a bundle S for which v(S) 6= ṽ(S). Create a bun-
dle T as follows. First initialize T = S. For each item i in T ,
check via a membership query whether v(T) = v(T − {i}).
If so set T = T − {i}. Otherwise leave T as is and proceed
to the next item.

We claim that (T, v(T)) is an atomic bid of the target
XOR bid. For each item i in T , we have v(T) 6= v(T −{i}).
To see this, note that at some point when generating T , we
had a T̄ such that T ⊆ T̄ ⊆ S and v(T̄) > v(T̄ − {i}), so that
i was kept in T̄ . Note that v(S) = v(T̄) = v(T) because the
value of the bundle S is maintained throughout the process
of deleting items. Now assume v(T) = v(T − {i}). Then

v(T̄) = v(T) = v(T − {i}) > v(T̄ − {i})

which contradicts free-disposal, since T − {i} ⊆ T̄ − {i}.
Thus v(T) > v(T − {i}) for all items i in T . This implies
that (T, v(T)) is an atomic bid of v. If this were not the case,
T would take on the maximum value of its strict subsets, by
the definition of an XOR bid, and we would have

v(T) = max
i∈T

{ max
T ′⊆T−{i}

v(T ′)} = max
i∈T

{v(T − {i})} < v(T)

which is a contradiction.
We now show that v(T) 6= ṽ(T), which will imply that

(T, v(T)) is not an atomic bid of our manifest hypothesis by
induction. Assume that every atomic bid (R, ṽ(R)) identi-
fied so far is indeed an atomic bid of v (meaning R is indeed
listed in an atomic bid of v as having value v(R) = ṽ(R)).
This assumption holds vacuously when the manifest valua-
tion is initialized. Using the notation from (7), let (B̃, w̃) be
our hypothesis, and (B, w) be the target function. We have

B̃ ⊆ B, and w̃(B) = w(B) for B ∈ B̃ by assumption. Thus,

ṽ(S) = max
{B∈B̃ | B⊆S}

w̃(B)

= max
{B∈B̃ | B⊆S}

w(B)

≤ max
{B∈B | B⊆S}

w(B)

= v(S) (8)

Now assume v(T) = ṽ(T). Then,

ṽ(T) = v(T) = v(S) 6= ṽ(S) (9)

The second equality follows from the fact that the value
remains constant when we derive T from S. The last in-
equality holds because S is a counterexample to the man-
ifest valuation. From equation (9) and free-disposal, we

7The cited algorithm was also used as the basis for Zinkevich
et al.’s [19] elicitation algorithm for Toolbox DNF. Recall
that Toolbox DNF are polynomials with non-negative coef-
ficients. For these representations, an equivalence query can
be simulated with a value query on the bundle containing
all goods.

have ṽ(T) < ṽ(S). Then again from equation (9) it fol-
lows that v(S) < ṽ(S). This contradicts (8), so we in fact
have v(T) 6= ṽ(T). Thus (T, v(T)) is not currently in our
hypothesis as an atomic bid, or we would correctly have
ṽ(T) = v(T) by the induction hypothesis. We add (T, v(T))
to our hypothesis and repeat the process above, perform-
ing additional equivalence queries until all atomic bids have
been identified.

After each equivalence query, an atomic bid is identified
with at most m membership queries. Each counterexample
leads to the discovery of a new atomic bid. Thus we make at
most tm membership queries and exactly t + 1 equivalence
queries.

The number of time steps required by this algorithm is
essentially the same as the number of queries performed, so
the algorithm is efficient. Applying Theorem 2, we therefore
obtain the following corollary:

Theorem 3. The representation class of XOR bids can
be efficiently elicited from value and demand queries.

This contrasts with Blum et al.’s negative results ([5], The-
orem 2) stating that monotone DNF (and hence XOR bids)
cannot be efficiently elicited when the demand queries are
restricted to linear and anonymous prices over the goods.

6.3 Linear-Threshold Representations
Polynomials, XOR bids, and all languages based on the

OR bidding language (such as XOR-of-OR, OR-of-XOR,
and OR∗) fail to succinctly represent the majority valua-
tion [11]. In this valuation, bundles have value 1 if they
contain at least m/2 items, and value 0 otherwise. More gen-
erally, consider the r-of-S family of valuations where bundles
have value 1 if they contain at least r items from a specified
set of items S ⊆ M , and value 0 otherwise. The major-
ity valuation is a special case of the r-of-S valuation with
r = m/2 and S = M . These valuations are appropriate for
representing substitutabilities: once a required set of items
has been obtained, no other items can add value.

Letting k = |S|, such valuations are succinctly represented
by r-of-k threshold functions. These functions take the form
of linear inequalities:

xi1 + . . . + xik ≥ r

where the function has value 1 if the inequality holds, and
0 otherwise. Here i1, . . . , ik are the items in S. Littlestone’s
WINNOW 2 algorithm can learn such functions using equiv-
alence queries only, using at most 8r2 + 5k + 14kr ln m + 1
queries [10]. To provide this guarantee, r must be known to
the algorithm, but S (and k) are unknown. The elicitation
algorithm that results from WINNOW 2 uses demand que-
ries only (value queries are not necessary here because the
values of counterexamples are implied when there are only
two possible values).

Note that r-of-k threshold functions can always be suc-
cinctly represented in O(m) space. Thus we obtain an al-
gorithm that can elicit such functions with a polynomial
number of queries and polynomial communication, in the
parameters n and m alone.

7. CONCLUSIONS AND FUTURE WORK
We have shown that exact learning algorithms with mem-

bership and equivalence queries can be used as a basis for
preference elicitation algorithms with value and demand que-
ries. At the heart of this result is the fact that demand
queries may be viewed as modified equivalence queries, spe-
cialized to the problem of preference elicitation. Our result
allows us to apply the wealth of available learning algorithms
to the problem of preference elicitation.

A learning approach to elicitation also motivates a dif-
ferent approach to designing elicitation algorithms that de-
composes neatly across agent types. If the designer knowns
beforehand what types of preferences each agent is likely to
exhibit (mostly additive, many substitutes, etc...), she can
design learning algorithms tailored to each agents’ valua-
tions and integrate them into an elicitation scheme. The
resulting elicitation algorithm makes a polynomial number
of queries, and makes polynomial communication if the orig-
inal learning algorithms are efficient.

We do not require that agent valuations can be learned
with value and demand queries. Equivalence queries can
only be, and need only be, simulated up to the point where
an optimal allocation has been computed. This is the prefer-
ence elicitation problem. Theorem 1 implies that elicitation
with value and demand queries is no harder than learning
with membership and equivalence queries, but it does not
provide any asymptotic improvements over the learning al-
gorithms’ complexity. It would be interesting to find exam-
ples of valuation classes for which elicitation is easier than
learning. Blum et al. [5] provide such an example when
considering membership/value queries only (Theorem 4).

In future work we plan to address the issue of incen-
tives when converting learning algorithms to elicitation al-
gorithms. In the learning setting, we usually assume that
oracles will provide honest responses to queries; in the elic-
itation setting, agents are usually selfish and will provide
possibly dishonest responses so as to maximize their utility.
We also plan to implement the algorithms for learning poly-
nomials and XOR bids as elicitation algorithms, and test
their performance against other established combinatorial
auction protocols [6, 15]. An interesting question here is:
which Lindahl prices in the maximal to minimal range are
best to quote in order to minimize information revelation?
We conjecture that information revelation is reduced when
moving from maximal to minimal Lindahl prices, namely as
we move demand queries further away from equivalence que-
ries. Finally, it would be useful to determine whether the
OR∗ bidding language [11] can be efficiently learned (and
hence elicited), given this language’s expressiveness and suc-
cinctness for a wide variety of valuation classes.

Acknowledgements
We would like to thank Debasis Mishra for helpful discus-
sions. This work is supported in part by NSF grant IIS-
0238147.

8. REFERENCES
[1] A. Andersson, M. Tenhunen, and F. Ygge. Integer

programming for combinatorial auction winner
determination. In Proceedings of the Fourth
International Conference on Multiagent Systems
(ICMAS-00), 2000.

[2] D. Angluin. Learning regular sets from queries and
counterexamples. Information and Computation,
75:87–106, November 1987.

[3] D. Angluin. Queries and concept learning. Machine
Learning, 2:319–342, 1987.

[4] S. Bikhchandani and J. Ostroy. The Package
Assignment Model. Journal of Economic Theory,
107(2), December 2002.

[5] A. Blum, J. Jackson, T. Sandholm, and M. Zinkevich.
Preference elicitation and query learning. In Proc.
16th Annual Conference on Computational Learning
Theory (COLT), Washington DC, 2003.

[6] W. Conen and T. Sandholm. Partial-revelation VCG
mechanism for combinatorial auctions. In Proc. the
18th National Conference on Artificial Intelligence
(AAAI), 2002.

[7] Y. Fujishima, K. Leyton-Brown, and Y. Shoham.
Taming the computational complexity of
combinatorial auctions: Optimal and approximate
approaches. In Proc. the 16th International Joint
Conference on Artificial Intelligence (IJCAI), pages
548–553, 1999.

[8] B. Hudson and T. Sandholm. Using value queries in
combinatorial auctions. In Proc. 4th ACM Conference
on Electronic Commerce (ACM-EC), San Diego, CA,
June 2003.

[9] M. J. Kearns and U. V. Vazirani. An Introduction to
Computational Learning Theory. MIT Press, 1994.

[10] N. Littlestone. Learning quickly when irrelevant
attributes abound: A new linear-threshold algorithm.
Machine Learning, 2:285–318, 1988.

[11] N. Nisan. Bidding and allocation in combinatorial
auctions. In Proc. the ACM Conference on Electronic
Commerce, pages 1–12, 2000.

[12] N. Nisan and I. Segal. The communication
requirements of efficient allocations and supporting
Lindahl prices. Working Paper, Hebrew University,
2003.

[13] D. C. Parkes. Price-based information certificates for
minimal-revelation combinatorial auctions. In
Padget et al., editor, Agent-Mediated Electronic
Commerce IV,LNAI 2531, pages 103–122.
Springer-Verlag, 2002.

[14] D. C. Parkes. Auction design with costly preference
elicitation. In Special Issues of Annals of Mathematics
and AI on the Foundations of Electronic Commerce,
Forthcoming (2003).

[15] D. C. Parkes and L. H. Ungar. Iterative combinatorial
auctions: Theory and practice. In Proc. 17th National
Conference on Artificial Intelligence (AAAI-00), pages
74–81, 2000.

[16] T. Sandholm, S. Suri, A. Gilpin, and D. Levine.
CABOB: A fast optimal algorithm for combinatorial
auctions. In Proc. the 17th International Joint
Conference on Artificial Intelligence (IJCAI), pages
1102–1108, 2001.

[17] R. Schapire and L. Sellie. Learning sparse multivariate
polynomials over a field with queries and
counterexamples. In Proceedings of the Sixth Annual
ACM Workshop on Computational Learning Theory,
pages 17–26. ACM Press, 1993.

[18] L. Valiant. A theory of the learnable. Commun. ACM,
27(11):1134–1142, Nov. 1984.

[19] M. Zinkevich, A. Blum, and T. Sandholm. On
polynomial-time preference elicitation with
value-queries. In Proc. 4th ACM Conference on
Electronic Commerce (ACM-EC), San Diego, CA,
June 2003.

