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Abstract. Auctions define games of incomplete information for whicis ipften
too hard to compute the exact Bayesian-Nash equilibriusteld, the infinite
strategy space is often populated wlithuristic strategiessuch as myopic best-
response to prices. Given these heuristic strategiesnibeauseful to evaluate
the strategies and the auction design by computing a Naslibegun across the
restricted strategy space. First, it is necessary to cosrtpetexpected payoff for
each heuristic strategy profile. This step involves samggiire auction and aver-
aging over multiple simulations, and its cost can dominlagecost of computing
the equilibrium given a payoff matrix. In this paper, we poep two informa-
tion theoretic approaches to determine the next samplaghran interleaving of
equilibrium calculations and payoff refinement. Initiapeximents demonstrate
that both methods reduce error in the computed Nash equitibas samples are
performed at faster rates than naive uniform sampling. €herwd, faster method,
has a lower metadeliberation cost and better scaling piepeiWe discuss how
our sampling methodology could be used witbkperimentamechanism design.

1 Introduction

Agent-mediated electronic commerce advocates the desigrarkets in which auto-
mated trading agents will engage in dynamic negotiatiom theprices and attributes
of goods and services. Trading agents promise to removedhé&oning and transaction
costs that make dynamic negotiation impractical in trad&l commerce. However, be-
fore these automated markets are widely deployed, it witideessary to design trading
agents that can follow useful (perhaps even optimal) giiase

Certainly, careful market design and mechanism design ef through the de-
sign of systems with simple but useful agent strategies [@,8, 12]). However, many
real-world problems are simply too complex to be amenabtle¢dheoretical approach
of mechanism design. First, the problem of optimal mechmuigsign is often not ana-
lytically tractable. Second, the result can be a mecharfisiris not practical to deploy,
either for reasons of communication complexity (e.g. [18]jor reasons of computa-
tional complexity (e.g. [11]). Third, mechanism designubject to known theoretical



impossibilities, and attempts to engineer tradeoffs has tar produced somewhat lim-
ited results (e.g., [1, 14]). Simply stated, the cost of difying the strategic problem
of agents through careful mechanism design is often too. high

For this reason we should expect electronic markets in wthiglkequilibrium trading
strategy for an agent is not a straightforward strategyh stsomyopic best-response to
prices or truthful bidding. As an example, consider a cardgirs double auction (CDA)
in which agents dynamically enter a marketplace and tradelgover time. Comput-
ing the Bayesian-Nash equilibria directly for interestagctions (e.g. the CDA) often
proves to be impossible with current methods. Instead,iaayppproach is to compute
a Nash equilibrium across a spacéetilristictrading strategies[5, 17]. Heuristic strate-
gies define the actions an agent will take within the auctog, “bidb at timet.” For
example, in an earlier study of CDAs, we generatéxaristic payoff tablean analog
of the usual payoff table, except that the entries descrpedated payoffs to each agent
as a function of the strategies played by all other agents T2 heuristic payoff table
was then used as the basis for several forms of analysisidimg) computation of the
Nash equilibria with respect to the restricted strategyspand the market efficiency
at those equilibria.

Common across previous work on the evaluation of heuristing strategies is the
problem of measuring the expected payoff to each agent iadhton for all strategy
profiles and populating a payoff table. This step involveaping from a distribution
of agent preferences, and then running the auction mechamith a particular profile
of heuristic strategies, in order to generate an additisaalple in one cell of the payoff
matrix. This step can beuchmore costly than computing the equilibrium. In the 2000
Trading Agent Competition [24], for instance, each run e glame requires 15 minutes
for play and data collection, and the game must be run margstim fill out a payoff
table. In contrast, it is possible to compute all equilibvithin minutes [22]. Yet, simu-
lations are typically performed statically and with the samumber of samples for each
entry in the payoff table.

In this paper, we address this problem of selecting simaratimore intelligently.
We describe methods toterleavethe sampling of the payoff in the underlying market
game with the calculation of Nash equilibrium, and presenirdormation-theoretic
methodology to the sampling problem. The high-level ideguise standard. The meth-
ods are designed to sample the strategy profile that is eegbéatprovide the most
value of information, measured in terms of beliefs aboutfifect that one more sample
might have on the current decision about the equilibriumrhefgystem. The difficulty
in applying the framework is in the development of appraerimodels with which to
base these information-theoretic decisions, that are jaticipled yet fast enough to
be useful in practice.

It is useful to place this work in the context of a wider agewndan experimen-
tal approach to computational mechanism design. Juskparimental economi¢$8]
provides a “wind tunnel” to measure the performance of anstiwith human partic-
ipants, we need our own wind tunnel for an experimental aggrdo the design of
agent-mediated mechanisms. Central to this experimeppabach to agent-mediated
mechanism design is the ability to compute the performare marticular market-
based system, given a realistic population of trading agértiere is already a rich



tradition in performing experiments with automated tradagents, and more recently
in using methods from evolutionary computing to computerapipnate equilibrium
strategies [7,17,22]. We believe that sophisticated nusho effectively sample the
underlying heuristic strategy space provide one companetgveloping a framework
for effective experimental mechanism design for automatgzhts.

Following is an outline for the rest of this paper. Sectiorefirtbates how the heuris-
tic payoff table is created, the costs involved, and how #idetis used it to compute
the underlying Nash equilibria. Section 3 discusses oarimétion-theoretic approach
to the problem of determining how to sample the payoffs ohtberistic strategy space.
In Section 4 we present a more computationally efficient mdtb sample the strategy
space. Section 5 provides empirical results of our sampliethods as applied to two
specific games, and compares the performances with thaseaneniform sampling
approach. We conclude with a discussion of how our methagyatould be used to aid
experimental mechanism design.

2 Heuristic-Strategy Nash
Equilibrium

We start with a game, such as an auction, that may include lexxnepeated inter-
actions betweemN agents. The underlying rules of the game are well-specified a
common knowledge, but each agent has uncertain informatont the types of the
other agent. The rules specify particuationsthat agents may take as a function of
the state of the game. Thypeof an agent specifies individual, private characteristics
of the agent, which, in the games we consider, specifies thetagayoff for different
outcomes in the game. Itis instructive to consideascending-price auctiatherules
specify closing rules and price dynamics; #ietionsallow an agent to bid at or above
the current price; theypeof an agent specifies its value for the item.

Many interesting and important games are too complex to coenplash equi-
libria on the atomic actions with current game theory toa@isléast no-one has yet
been able too). This has led a number of researchers to diewviegative heuristic
strategies—typically employing economic reasoning,rojgation, and artificial intel-
ligence techniques—to complex games including the Tradiggnt Competitions [6,
20, 23], market-based scheduling [17], and the continuoublé auction [3, 4, 21]. The
key point is that the heuristic strategies are a subset dfgdeerally enormous) space
of all strategies, and the set of heuristic strategies dmaogéssarily contain strategies
that constitute an equilibrium of the underlying game (lesineuristic).

A heuristic strategy is simply an action policy specifyirge(erally complex) be-
havior for atomic actions in an underlying game. To give aanagle, in a continuous
double auction (CDA), an agent’s type specifies its valughergoods in the market.
The underlying rules of the CDA allow agents to take actidrte® form form “bidb at
timet”, while the heuristic strategies can be complex functi@exgressed in hundreds
or thousands of lines of code, that specify what bids aregplawer the course of trad-
ing. One component of a CDA strategy could specify, for instg to “place buy bid
s+ € when the lowest sell bidis at mos® greater than the highest buy tid



Thus, diverging from standard Bayesian-Nash equilibrimadysis, we can assume
that each of thé&\l agents has a choice of tsame Mexogenously specifietheuristic
strategiesand compute a Nash equilibrium across this restrictetegtysspace. Given
the heuristic strategies, we transform the underlying genmome in which the agents’
payoffs are the expected payoffs obtained by the heuristitegjies in the underly-
ing game, computed with respect to the distribution of ytifunctions (or types) in
the underlying game [17,22]. We note that the approach weildespplies equally
to any game in which there actually are a only small numbetrategies but whose
payoffs cannot, in practice, be determined analytichlyn example is a proxy agent
auction [15, 25], in which participating agents are allowlegichoice of only a small set
of proxy strategies, which are in turn implemented by proggrats controlled by the
auction.

Let # denote the space of heuristic strategies. A strategy profile a= (a1, --- ,alv)
specifies, for each agentthe pure strateggli € # played by the agent. payoff ma-
trix specifies the payoff to each agent for all possible strategfiles. The standard
payoff table requiredIN entries which can be extremely large, even whemndN
are moderate. To mitigate this problem, we restrict ourysigto symmetric games in
in which each agent has the same set of strategies and thedsstnileution of types
(and hence payoffs). Hence, we can merely compute the ptyrofach strategy as a
function of thenumberof agents playing each strategy, without being concernedtab
the individual identities of those agents. This gives us amamaller payoff matrices
of size (NN ~1). Standard auction analyses often rely on this symmetrynassan to
simplify the problem. With the symmetry assumption, we gate dispense with the
agent index.

Given aheuristic strategy payoff matrimapping joint heuristic strategy choices to
agent payoffs, we then compute a Nash equilibrium in theiotstl space of heuris-
tic strategies. Goldman et al. [5] have referred to this asxqerimental equilibrium
We allow ageni to play a mixed strategy, and choose to play pure stratégy H
according to probabilityj. Letx = (Xi1,...,Xm) denote the complete mixed strategy,
with x;j € [0,1] and Z?A:J_Xij = 1. The vector of all agents’ mixed strategies is denoted
x and the vector of mixed strategies for all agents excéptlienotedk_;. We indicate
by x; = al, the special case when agéplays pure strategywith probability one.

We denote byi(al, x_;) the expected payoff to an agérior playing pure strategy,
given that all other agents play their mixed strategigsThe expected payoff to ageint
with mixed strategy; is thenu(x;,xi_1) = Z'jv':lu(aj,Xj,l)Xi’j. In a Nash equilibrium,no
one agent can receive a higher payoff by unilaterally dewgab another strategy, given
fixed opponents’ strategies. Formally, probabilitté€onstitute d&Nash equilibriuniff
for all agentsi, and allx # X", u(xi,x";) < u(x‘,x*;). To simplify the computation
of equilibrium, in the remainder of this paper, we restriat attention to symmetric
mixed strategy equilibria, whereby = x; = x* for all agentd andk. It is known that
symmetric Nash equilibria always exist for symmetric games

An equilibrium computed with respect to expected payofighie restricted strat-
egy space, is not a Bayesian-Nash equilibrium (BNE) in tistricted strategy space
because a full BNE would allow an agentdboosea different heuristic strategy for

3 We thank Tuomas Sandholm for brining this to our attenticmatAMEC V workshop.



different realizations of its own type. Instead we requineagent to adopt the same
heuristic strategy (e.g. “always bid at the price if the eris below my value and |
am not currently winning”) whatever its actual value. Thais,agent plays aex ante
Nash equilibrium instead of anterim, or Bayesian-Nash, equilibrium. As the heuristic
strategy spacé{ becomes rich and contains arbitrarily complex stratedjiessdistinc-
tion disappears because a heuristic strategy can simblateffect of mapping from
the multiple possible types of an agent in multiple différenderlying strategies (e.g.
“if my value is less than $5, then always bid at price if thecpris below my value;
otherwise, wait until the end of the auction and then snif@&t of my value.”}

To reiterate, the heuristic strategy approach is an appraton in which the de-
signer of an auction consider only a very small subset of adisible strategies. As
such, a Nash equilibrium in heuristic strategy spaasoisguaranteed to constitute an
equilibrium in the underlying game.

Looking ahead to the sampling problem, before equilibrian be computed we
require information about the payoffs of heuristic strgt@gofiles. But, because the
underlying game is complex thex antepayoffs are not analytically derivable and must
be computed instead as average payoffs over repeated sonaldt can be necessary
to perform a large number of simulations to obtain suffidieatcurateex antepayoff
estimates to calculate the Nash equilibria accuratelys Ehparticularly expensive for
games that must be run in real time. For instance, the Trafigent Competition re-
quires 15 minutes for each game, which practically limisstiamber of payoff samples
that can be collected. However, it is not generally necgdeastimate all payoffs to the
same degree of accuracy. For instance, if the one equitibisdor all agents to play the
pure strategy;, then we will not need to accurately estimate the payoff foagents
playing any other pure strategy to determine #as the equilibrium. Instead, we only
need toboundthe payoffs available from alternative heuristic stratsgic # a; when
every other agent playg. Thus, taking samples uniformly for all strategy profilesyma
not be the most efficient method to arrive at an accurateibguii.

In the remainder of this paper we present information-tegomethods for select-
ing which strategy profiles to sample from.

3 An Information-Theoretic
Approach

In this section, we outline an information-theoretic amio to the problem of deter-
mining how to sample the underlying space of heuristic atyiass to build the payoff
matrix and compute equilibrium strategies.

Let Sdenote the space of all sample actions, an®letS- denote a sequence of
sample actions of length An example of a sample action could be “perform 10 exper-
iments in which agents follow (pure) strategy profile wherea = (al1,.. ., alv) with
ali € #{ to indicate the heuristic strategy selected by ageWe find it convenient to
overloadd, and used to also denote thmformationthat results from the new samples.

An information-theoretic approach to sampling requireg¢hmodeling assump-
tions. First, we need decision modelx(6), to denote the equilibrium selected, given

4 We thank Michael Wellman for explaining this latter point.



information®. Second, we needfature information modeto predict the cumulative
information that will be available after additional samgdegiven current information
6. Third, we need aerror modelto estimate the error of the equilibrium selected due
to current beliefs about the payoffs, with respect to the &quilibrium in the auction.

Looking ahead, we will choose to define the error in our sgftirterms of the gain
in expected payoff that an agent can receive by deviating tiee current equilibrium
decision to a pure strategy, summed across all pure steate@learly, in equilibrium
this payoff from deviation is zero and the agent has the satpeoted payoff for all
pure strategies in the support (i.e., pure strategies wothvzero probabilities) of its
mixed strategy and less for any other strategy. ngt(), denote the estimated error
from decisionx, as estimated with respect to informati®nNotice that we can only
estimate the true error, which we denotefa&), wherem are the true payoffs.

The framework introduced by Russell & Wefald [19] for metiaeration in time-
critical decision problems with bounded-rational agemtgppses to predict thealue of
information EVI(s|8), for sampling strategg given informatiorf as:

EVI(58) = Egp [ fos(X(8)) — fos(X(6.9))]

where Eg takes the expectation with respect to a model of the futurgsess given
currentinformatior®. Here B.sindicates the informatiof with the additional informa-
tion acquired from samples Intuitively, EVI(s|8) measures, in expectation, the degree
to which further samples will reduce the estimated error in the equilibrium choice.
Notice that the first term ifg s(x(8)) and notfg(x(8)), so that any effect that the infor-
mation has on refining theccuracy with which the error is computedfactored out of
this analysis. As observed by Russell & Wefald, this is inb@atrto maintain the useful
property that the estimated value of information is posifier all possible sampling
strategies.

In our model, the informatiof that has already been accumulated through current
samples provides a set of samples for each emirythe payoff matrix. With this, the
maximum likelihood estimator (MLE) for theue mean p(a), of strategy profilea,
written pg(a) is computed as the sample mean. By the central limit theGreith suf-
ficient number of samples (generally, 30 is considered seiffizfrom any distribution,
the true mean becomes normally distributed, with magn), and standard deviation
Oue(a) = 0(a)/\/ta, Whereag(a) is the standard deviation of the samples collected for
a andt, is the number of samples collected farWe find it useful to refer tqg(a)
andoy, (a) as theobserved megrand thestandard deviation over the observed mean
given informationB. In the sequel, we drop theindicator when the specific profile is
understood or immaterial to the discussion.

An optimal sampling strategy would take this definition of txpected value of in-
formation, and formulate an optimséquentiasampling strategy with future decisions
contingent on the information returned from earlier dexisi and for a fixed number of
total samples. The objective would be to select a sequesatiapling strategy to max-
imize the expected total decrease in decision error by theoéthe sampling period.

5 The central limit theorem assumes that samples are indepemid of finite variance. The
first assumption holds if strategies are static (they do dapf and the second assumption
holds if payoffs in the underlying game are bounded.



Only the first step of the contingent sequential samplingtstry would be executed
(e.g.perform one experiment in which agents follow strategy ferali, at which point
the complete sequential strategy would be reoptimizeddasdhe new information.
Berger [2, chapter 7] provides an extensive discussionisfrttethodology, which is
central to statistical decision theory.

In practice, the best one can hope for is an approximatiomiscaipproach. Clearly
metareasoning is valuable only to the extent that the tinemtsim metareasoning is
less than the time saved through making better-informegbagdecisions. Russell
& Wefald make a number of assumptions to keep metareasoraatable for their
setting. Most importantly, they makesingle-stepassumption, which in our setting is
equivalent to assuming that only one more experiment wilrdve performed. This
reduces the sampling decision to choosing the single begilsgy action, to maximize
EVI(s]6).

The main problem with the single-step assumption in ouirgets that it is quite
possible that no single additional sample will be expecteliave an effect on the de-
cision made about the equilibrium. Yet, we want to avoid diegj to commit to a long
sequence of additional samples without a chance to recem3ig resolve this dilemma
we: (1) assume that the space of sampling acti§naljows the system to choose sam-
ple strategys € Sa total ofK times, for some fixe&; and (2) within metareasoning we
consider the informational effect forlang sequenca” of the same sampling action,
s, but then only execute the first of the sequence with the gse&tVI before repeating
the calculation of EVI.

Given this, we define the three components of our informatti@oretic model as
follows:

decision model. The equilibriumx(8), given informatior, is computed asneof the
mixed equilibria given theneanpayoffspg in each entry in the payoff matrix. In
particular, we select the equilibrium with the lowest erestimated from current
information fg(x).

futureinformation. Given the current informatiofpg, 0g), we need a model for the
effect that a large number of additional samp#son profile a will have on
the future observed mean payqff, <, and the future standard deviation on ob-
served meang,, ... We adopt two models for the future observed mean: (a) a
point-estimate, withyg « = pg; and (b) adistributionatestimate, withpg g ~
N(e,0p,). We model the future standard deviation on the observed nasan
O« = Og/+/ta+ [S”|, Wherety is the number of samples collected fso far
and|s”| is the number of samples &¥.

error. We define the true error functiofy(x) with respect to payoffst as fr(x) =
szzlmax(O, ui(al,x i) —ui(x)). That s, fr(x) is the sum of incentives for an agent
to unilaterally deviate from the mixed strategyo any pure strategy, given the
payoffs. It is well-known thak is a Nash equilibrium (with respect @) iff fr(x) =
0. We compute the estimated errfy(x) given informationd from Monte Carlo
simulations on the actual error, as described below.

Looking at the models of future information, the point-gsite of the future ob-
served mean reflects the fact that our estimate of the true mélaremain the same



in expectation. In comparison, the distributional-estenzonsiders that we expect the
observed mean will converge to the true mean after manyiaddltsamples, and rec-
ognizes that the current informatigpg, o) is the best current estimate for the true
mean. The model for the future standard deviation on obdemean reflects an as-
sumption that the standard deviation on the underlying fi@gaonples will remain the
same as that for the current samples.

The complete algorithm for selecting the next samples isk®As. First, compute
the set of Nash equilibria NE give®) and choose the(8) € NE that minimizes esti-
mated erroif(x(8)). Then choose thethat maximizes EMs|B). If EVI (s|0) is greater
than the cost of performing the firkt samples irs, perform those sample simulations
and continue the process. Otherwise, stop and retasithe chosen equilibrium. The
model of cost and information value will depend heavily oa frarticular details of
the problem, with the cost depending on the run time of sitraria and the value of
information depending on the importance of making an adewtecision. For example,
in the context of an experimental approach to mechanisngdegé can interpret the
value of a decision with respect to the goals of a mechanissigder, such as alloca-
tive efficiency. In this paper, we sidestep this issue andpaomthe decision accuracy
across alternative sampling methods for the same total euoflsamples.

To compute the estimated erréys(x(8)) for the current decision after additional
information, we adopt the point-estimate model for the fatabserved mean after a
large numbers” of additional experiments, together with the point-estemanodel
for the future standard deviation on observed mean. We geetee results fronCs
Monte Carlo simulations, with each simulation computifzgx(8)) for a drawft of
specific payoffs from the distributioN(pg.s», 0y, ) ON true payoffs, withug «» = Mo
andoy, » = 0g//ta+ (S|

To compute the estimated errfbrs(X(e.s)) for the new and improved decision after
additional information, we must first estimate the futureigien. For this, we adopt the
distributional-estimatgyp = ~ N(Ug, Oy, ), for the future observed mean. We sanipie
mean payoffgt from this distribution, and compute a new equilibrivam’) for each.
Then, we measure the estimated error for each of these dexissing the same model
for future information as was adopted to compute the esématrorfe_s(x(e)) for the
current decision, taking an additior@ samples for eaclt. Finally, we average this
estimated error for future decisioimt) across alCg equilibrium samples.

We note that an alternative model to compute the estimated ﬁ{s(X(e.s)) for
the new decision after additional information would use #&rig/ of the two mod-
els for future information. We could adopt tsamesamplert that is used to com-
pute a future equilibrium decisiox(1’) to model the future observed mean for the
purposes of computing the estimated error on that decisiohcontinue to adopt
O = 0p/+/ta+[S”|) to generate&s samples for this error calculation. We plan to
investigate this hybrid model in future work.

4 A Faster Approach

As we demonstrate in Section 5, E¥|B) is an effective criterion for selecting a pure
strategy profile to sample next. Unfortunately, E&/®) is slow to compute for even



very small games, and impractically slow for moderatelyedigames. The problem
lies in the fact that EMls|0) must perform multiple equilibrium computations for each
possible sample sequence. For eaate must compute multiple sample future equi-
libria to estimate the distribution of future equilibrialtdough we have tricks to fairly
quickly compute a future equilibrium based on the curreniléagium (see Section 5),
the computational cost can be prohibitively high, givert the performCg equilibrium
computations for each strategy profile.

We have developed a much faster method for computing thee\a@flperforming
a set of further samples that requires no additional equilibb computations. The al-
gorithm is the same as before, except that, instead of 8)| we use the estimated
confirmational value of informatiqiieCVI(s|8), of sampling policysgiven information
0, defined as:

ECVI(s|8) = Ege [fo(x(8)) — fos(x(8))] -

Intuitively, ECVI(5|8) measures, in expectation, the degree to which further ssmpl
s would decrease the estimated error of the current equilibrighoice. Put another
way, thes that maximizes EC\(l5|8) provides the best evidence to confirm our current
equilibrium choice.

We need not compute any future equilibria with this appro&cit need only per-
form Monte Carlo simulations to estimate the expected @ftire current equilibrium.
Furthermore, we need perform significantly fewer of thesentddCarlo simulations
than for EV(s|6). If we performCs Monte Carlo simulations to estimate the error
for each future equilibrium, then EY4|0) requiresCeCs simulations offy(x), while
ECVI(s|8) requires onlyCs.

Using ECVI(s|0) appears to run counter to the methodology of Russell andliyefa
who argue that further samples are valuable only to the etdevhich they mayhange
the equilibrium choice. Still, based on some informal arguis, we can view the ap-
proach as a reasonable heuristic to indirectly chooss that will likely most change
the decision. That is, ECV4|6) can be viewed as a fast approximation of Russell and
Wefald's approach for our problem.

Recall that there is a continuum of mixed strategies thalidcpotentially comprise
a Nash equilibrium. Thus, so long as there remains “suffitiemcertainty in the value
of the payoffs in a celt of the game matrix, we should expect that further samples of
¢ will change the chosen equilibrium, however slightly. Thalshough we choosgto
confirm thatx is the correct equilibrium, samplirgwill, in fact, generally change our
decision.

Why should we expect that choosisgo increase our confidence ¥would best
help change the decision for the better? Sileas the highest directimpact on reducing
error forx, we should expect that it also reduces error for some mixatesfies in the
probability region around. And sincex is our best estimate of the correct equilibrium,
given current information, then we should expect the trugldgium x* to lie in the
probability region around. Thus,s can be considered our best guess for reducing the
error inx*, hence making it a more promising candidate for equilibraetection by
our method.



Ultimately, the value of using ECV4$|0) is clearly borne out in our experiments.
It is much faster than EV(§|8), yet reduces error in the chosen equilibrium at a rate
comparable to EV(K|6).

5 Experiments

This section describes empirical results of our methodsHobsing samples of payoffs
from the space of heuristic strategy profiles, and compéeis &pproach to the stan-
dard approach of sampling uniformly. To chart the progrésh@approaches as more
simulations are performed, we perform the uniform sampies iound-robin fashion.
We report on results from two artificial games: (i) one wNh= 1 agent andM = 5
strategies, and (ii) one with = 8 agents anil = 3 strategies. So that we could com-
pare the results of the methods with the true equilibria ef games, we generated
payoff samples directly from specified distributions, gatthan from simulation of a
complex auction game.

For each game and each method, B{) and ECV(5|8), we performed 10 ini-
tial simulations on each strategy profile to seed the pawdiiiet before applying the
methods. The length &f°, which is used to estimate the value of additional sampling
within metadeliberation, was 1000, and the lengtk,dhe samples actually performed
on one profile, was 10. We perform the same number of total ksmyith each sam-
pling method and compare the error in the equilibrium deaisior game (i), we per-
formed 1000 total samples, and game (ii) we performed 20G0 samples. We ran
each method 200 times on game (i), each time with a diffe@mdom seed. Comput-
ing EVI(g|0) is prohibitively expensive for game (ii), hence we ran onG\H(s|0) and
uniform sampling (both for 200 times) but not B¥P).

For the purpose of the analysis, we graph two error measfithe ochosen equilib-
rium x. Both are calculated with respect to tinee game information, and as a function
of the number of simulations performed and averaged oveuadl. The first error mea-
sure isfr(x) discussed before, whereare the true payoffs. The second measure is
the L2 Norm, defined a§ (x; —x]-‘)z, wherex; is the probability of playing heuristic
strategyal in profile x, and likewise forx*, the true equilibrium. When multiple true
equilibria exist, we compute the minimal L2 Norm across gliiéibria.®

Recall that our approaches require repeated computatidasif equilibrium. Nash
equilibria can be formulated and computed in a variety ofsfd]. We use a formula-
tion of Nash equilibrium as a non-linear optimization pehl in which the equilibria

6 We note one twist in the implementation of our methods fos¢hexperiments. In game (i)
methods EV(s|0) and ECVI(s|0) both almost always predict that additional sampling has
zero value long before 1000 simulations are performed (wih average of 163 simulations
for EVI(s|6) and 304 simulations for ECV4|8)). To provide a useful experimental compar-
ison, we choose to continue sampling until 1000 experimeaitsosing the profile with the
smallest L2 Norm distance to the current equilibrium. I ituation, there other possibilities
for allocating the new simulations. For example, the newusitions could be assigned to a
randomly chosen profile. In fact, such a randomized approshhelp a sampling strategy to
avoid premature convergence to a solution which is not aNiagh equilibrium. We note that
ECVI(s|0) does not reach zero in game (i) within 2000 simulationsckehis issue does not
arise.



lie at the zero points of the objective function. We used amadéd 6], a direct search
method to find the zero points. Although amoeba (and indegd\&msh equilibrium
solver) is not guaranteed to find all, or even any equilibsia,have found it effective
in finding all equilibria for even reasonably large problgieg. 20 agents and 3 strate-
gies) [22]. We find that the expensive part is not finding anldmium, but verifying to
our satisfaction that all equilibria have been found, reggithat we restart at a number
of random points. However, in our sample selection algorghperforming new sam-
ples does not move the equilibria too far from their previmeation. Thus, we can start
the search at the previously computed equilibrium pointstae gradient descent most
often quickly converges to the nearby new equilibrium @lthh, at times we do have
to recompute the equilibria from scratch).

5.1 1-agent 5-strategiesgame

This is a degenerate game with only one agent, where eadbggstreorresponds to a
unique profile and the unique equilibrium is simply the (pwteategy with the highest
mean payoff. This feature is computationally advantagéooggh, for we are able to
very quickly compute the equilibrium by bypassing amoebd simply finding the
highest payoff strategy. Since there are only 5 strategfilespthe cost of computing
EVI(/8) and ECVI(s]|0) is further reduced. Furthermore, it is easy to get some inébr
validation of our methods by inspection in this simple game.

We model the true payoff distribution in each of the 5 entitethe payoff table as
normal, with the parameterg, (o) as follows:

Strategy 4 ©

1.0 0.5
0.9 0.5
0.5 0.1
0.3 0.3
0.350.4

b~ wWNPF

We can imagine that the variation in payoffs come from vaiat in the value
of the agent, and or in the agent’s environment. It is evidieat the expected-utility
maximizing strategy is to play strategy 1 (i.¢.= (1,0,0,0,0)), which has the highest
mean. Clearly, strategy 2, with its high mean and large stahdeviation, is by far the
most likely candidate for the Nash equilibrium after stgyté. A few samples would
distinguish quickly that strategy 1 and 2 are the top twotsgjias, hence we would
expect a good sampling method would assign most experirteetitsse strategies in an
effort to distinguish which is clearly the one with the highpayoff.

Figure 1 shows théq(x) error measure for the three methods. As expected, after the
initial 50 experiments, all three methods find equilibriatthave roughly the same mag-
nitude of fr(x). After this initial stage,fy(x) of the ECVI(s|6) and EVIs|8) methods
decrease more rapidly and reach zero error faster than thedauniform sampling
method, demonstrating the effectiveness of our approadre®er, until the stage
at which our sampling methods achieve zero error, our meathgtieve significantly
lower fr(x) than the uniform sampling approach, for a given number oégrpents. In
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Fig. 1. True errorfy(x) of the computed equilibriurx with respect to true mean payoffs from
the three sampling methods on the 1-agent 5-strategies. gamehree sampling methods are
uniform, EVI(s|8), and ECV(s|8). Results shown here are averaged over 200 separate runs,
where each run consist of a total of 1000 samples.

our experiments, method EY46) has a somewhat lowér(x) than ECV(s|8) through
most of the simulations, although both methods reach nearezeor at near the same
point.

For this particular game the L2-Norm is identical to th€x) after scaling. This is
because, given the true payoff distributions, the competgdlibria is most likely to be
at strategy 1 (i.ex* = (1,0,0,0,0)), or at strategy 2 (i.ex* = (0,1,0,0,0)).

We also notice that the sampling methods are selective igrasg new simulations.
While the EVI(s|8) method continues to define samples, it assigns on averag®50.
and 49.6% of the total number of experiments allocated upabpoint to strategy 1
and strategy 2, respectively. The remaining 0.1% of the mxy@ats are assigned to
the other strategies. The EQ¥IB) method exhibits a similar emphasis by assigning
51.2% and 46.5% of the total number of experiments to styategnd and strategy 2
respectively. Thus, the methods make decisions that gunelto the intuitively correct
distribution of simulations.

5.2 8-agents3-strategiesgame

This is a more complex game with a total of 45 strategy profilée truep for each

payoff was chosen randomly from a uniform distribution [3600], withc = 50 for all

payoffs. Again, the distribution over payoff is adopted an@del over the distribution

over types of agents. The three mixed-strategy Nash eqailtlomputed from the true

mean payoffs ar§(0.41140.0000 0.5886), (0.00000.52130.4787), (0.0268 0.0877,0.8856) }.
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Fig.2. True errorfy(x) of the computed equilibriurx with respect to true mean payoffs from
sampling methods uniform and EC\¢|8) on the 8-agents 3-strategies game. Results shown here
are averaged over 200 separate runs, where each run cdresistal of 2000 experiments.
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Fig. 3. L2-Norm of two sampling methods on the 8-agents 3-strasagfene. Results shown here
are averaged over the same 200 runs reported in Figure 2.

Figure 2 plotsfr(x) for the ECVKs|8) and uniform sampling methods. As with
the 1-agent, 5-strategy game, using EGA) gives a smaller error for any number of
simulations than does the uniform method.

We see similar, but more pronounced results when compaiithgie L2 Norm, as
shown in Figure 3. The rather small L2 Norm=f0.0005 after 1050 simulations with
the ECVI(s|8) method indicates that the computed mixed-strategy edgjifibin each



run is indeed very close to one of the Nash equilibria deteechifrom the true means.
In other words, even though there remains some benefit to ant &or deviation to
another strategy, the actual mixed equilibrium is very eltwsthe true equilibrium.

A closer analysis of each run also indicate that for this gaheeECV|s|6) method
chooses samples very non-uniformly between the strategfiiqs. Strategy profiles
that are closer to one of the true Nash equilibria (in termk2Norm) received 5%
to 10% of the 2000 experiments, while some profiles were asdigirtually no new
experiments after their initial set of 10 experiments. Wadaode that we can choose
simulations selectively (i.e., non-uniformly) and get Ewerror using EC\s|0).

6 Discussion

We have presented two methods for choosing the samplessaegés compute a Nash
equilibrium with respect to ex ante payoffs of heuristi@agtgies. The first method is
a direct application of an information-theoretic methaxpl proposed by Russell and
Wefald, but is impractically slow. We were not able to run thethod even on our 8-
agents and 3-strategies problem. The second method apyates the first method, but
at a much lower computational cost. Both methods are dedigmselect samples to
perform that are most likely to improve our estimation of dwgiilibrium. Our initial
experiments suggest that these selective approaches gize aquilibrium with less
error from fewer simulations than a uniform sampling methddreover, the fast, ap-
proximate method reduces error nearly as quickly as thetdinéormation-theoretic
method on the small single-agent problem.

The most interesting direction in which to extend and apipilywork is to the prob-
lem of experimentaimechanism design, in which computational methods are usad i
closed loop to evaluate the designs of alternative electioarkets. In this setting, the
relevant question becomesow should the system allocate experiments across multi-
ple market designsn addition to within a particular market design. Our infation-
theoretic methodology can be extended quite naturallyitortew problem, in which
costly simulations help tohoosea market design. In this setting the goals of the mech-
anism designer, for example allocative efficiency, provadeompelling method with
which to define the value of information with respect to theisien error. For exam-
ple, rather than measure thecuracyof the equilibrium in terms of individual agent
utilities, we can measure thess in efficiencymplied by making a decision with cur-
rent information, and weigh the cost of further experimevith the possible efficiency
gains of a better design.

Looking ahead, we believe an interesting research agendaémt-mediated elec-
tronic commerce is to relax some of the requirements of mashadesign (in particu-
lar incentive-compatibilitanddirect-revelation), but still seek to design market-based
systems that enjoy desirable economic properties whenlaiggiby realistic (and nec-
essarily bounded-rational) trading agents. In particulatice that it is not necessary
to give up ondesignwhen giving up on the formal mathematics of mechanism de-
sign. Instead, one moves from an off-line and analytic apgindo mechanism design
to anexperimentahpproach to mechanism design. Rather than modeling thevioeha
of agents offline, and designing a mechanism with respetisaiodel we can design



a market mechanism from a space of mechanisms ancettprimentally validatéhe
performance of the mechanism with respect to a set of degalerhis is attractive be-
cause we can explicitly design for automated trading agsirtee these agents can be
usedexplicitly to evaluate the performance of a proposed market design.
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