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Abstract. Auctions define games of incomplete information for which itis often
too hard to compute the exact Bayesian-Nash equilibrium. Instead, the infinite
strategy space is often populated withheuristic strategies, such as myopic best-
response to prices. Given these heuristic strategies, it can be useful to evaluate
the strategies and the auction design by computing a Nash equilibrium across the
restricted strategy space. First, it is necessary to compute the expected payoff for
each heuristic strategy profile. This step involves sampling the auction and aver-
aging over multiple simulations, and its cost can dominate the cost of computing
the equilibrium given a payoff matrix. In this paper, we propose two informa-
tion theoretic approaches to determine the next sample through an interleaving of
equilibrium calculations and payoff refinement. Initial experiments demonstrate
that both methods reduce error in the computed Nash equilibrium as samples are
performed at faster rates than naive uniform sampling. The second, faster method,
has a lower metadeliberation cost and better scaling properties. We discuss how
our sampling methodology could be used withinexperimentalmechanism design.

1 Introduction

Agent-mediated electronic commerce advocates the design of markets in which auto-
mated trading agents will engage in dynamic negotiation over the prices and attributes
of goods and services. Trading agents promise to remove the monitoring and transaction
costs that make dynamic negotiation impractical in traditional commerce. However, be-
fore these automated markets are widely deployed, it will benecessary to design trading
agents that can follow useful (perhaps even optimal) strategies.

Certainly, careful market design and mechanism design can help, through the de-
sign of systems with simple but useful agent strategies (e.g. [8, 9, 12]). However, many
real-world problems are simply too complex to be amenable tothe theoretical approach
of mechanism design. First, the problem of optimal mechanism design is often not ana-
lytically tractable. Second, the result can be a mechanism that is not practical to deploy,
either for reasons of communication complexity (e.g. [13])or for reasons of computa-
tional complexity (e.g. [11]). Third, mechanism design is subject to known theoretical



impossibilities, and attempts to engineer tradeoffs has thus far produced somewhat lim-
ited results (e.g., [1, 14]). Simply stated, the cost of simplifying the strategic problem
of agents through careful mechanism design is often too high.

For this reason we should expect electronic markets in whichthe equilibrium trading
strategy for an agent is not a straightforward strategy, such as myopic best-response to
prices or truthful bidding. As an example, consider a continuous double auction (CDA)
in which agents dynamically enter a marketplace and trade goods over time. Comput-
ing the Bayesian-Nash equilibria directly for interestingauctions (e.g. the CDA) often
proves to be impossible with current methods. Instead, a typical approach is to compute
a Nash equilibrium across a space ofheuristictrading strategies[5, 17]. Heuristic strate-
gies define the actions an agent will take within the auction,e.g. “bidb at timet.” For
example, in an earlier study of CDAs, we generated aheuristic payoff table–an analog
of the usual payoff table, except that the entries describe expected payoffs to each agent
as a function of the strategies played by all other agents [22]. The heuristic payoff table
was then used as the basis for several forms of analysis, including computation of the
Nash equilibria with respect to the restricted strategy space, and the market efficiency
at those equilibria.

Common across previous work on the evaluation of heuristic trading strategies is the
problem of measuring the expected payoff to each agent in theauction for all strategy
profiles and populating a payoff table. This step involves sampling from a distribution
of agent preferences, and then running the auction mechanism with a particular profile
of heuristic strategies, in order to generate an additionalsample in one cell of the payoff
matrix. This step can bemuchmore costly than computing the equilibrium. In the 2000
Trading Agent Competition [24], for instance, each run of the game requires 15 minutes
for play and data collection, and the game must be run many times to fill out a payoff
table. In contrast, it is possible to compute all equilibriawithin minutes [22]. Yet, simu-
lations are typically performed statically and with the same number of samples for each
entry in the payoff table.

In this paper, we address this problem of selecting simulations more intelligently.
We describe methods tointerleavethe sampling of the payoff in the underlying market
game with the calculation of Nash equilibrium, and present an information-theoretic
methodology to the sampling problem. The high-level idea isquite standard. The meth-
ods are designed to sample the strategy profile that is expected to provide the most
value of information, measured in terms of beliefs about theeffect that one more sample
might have on the current decision about the equilibrium of the system. The difficulty
in applying the framework is in the development of appropriate models with which to
base these information-theoretic decisions, that are bothprincipled yet fast enough to
be useful in practice.

It is useful to place this work in the context of a wider agendaof an experimen-
tal approach to computational mechanism design. Just asexperimental economics[18]
provides a “wind tunnel” to measure the performance of auctions with human partic-
ipants, we need our own wind tunnel for an experimental approach to the design of
agent-mediated mechanisms. Central to this experimental approach to agent-mediated
mechanism design is the ability to compute the performance of a particular market-
based system, given a realistic population of trading agents. There is already a rich



tradition in performing experiments with automated trading agents, and more recently
in using methods from evolutionary computing to compute approximate equilibrium
strategies [7, 17, 22]. We believe that sophisticated methods to effectively sample the
underlying heuristic strategy space provide one componentin developing a framework
for effective experimental mechanism design for automatedagents.

Following is an outline for the rest of this paper. Section 2 delineates how the heuris-
tic payoff table is created, the costs involved, and how the table is used it to compute
the underlying Nash equilibria. Section 3 discusses our information-theoretic approach
to the problem of determining how to sample the payoffs of theheuristic strategy space.
In Section 4 we present a more computationally efficient method to sample the strategy
space. Section 5 provides empirical results of our samplingmethods as applied to two
specific games, and compares the performances with those from a uniform sampling
approach. We conclude with a discussion of how our methodology could be used to aid
experimental mechanism design.

2 Heuristic-Strategy Nash
Equilibrium

We start with a game, such as an auction, that may include complex, repeated inter-
actions betweenN agents. The underlying rules of the game are well-specified and
common knowledge, but each agent has uncertain informationabout the types of the
other agent. The rules specify particularactionsthat agents may take as a function of
the state of the game. Thetypeof an agent specifies individual, private characteristics
of the agent, which, in the games we consider, specifies the agent’s payoff for different
outcomes in the game. It is instructive to consider anascending-price auction: therules
specify closing rules and price dynamics; theactionsallow an agent to bid at or above
the current price; thetypeof an agent specifies its value for the item.

Many interesting and important games are too complex to compute Nash equi-
libria on the atomic actions with current game theory tools (at least no-one has yet
been able too). This has led a number of researchers to deviseinnovative heuristic
strategies—typically employing economic reasoning, optimization, and artificial intel-
ligence techniques—to complex games including the TradingAgent Competitions [6,
20, 23], market-based scheduling [17], and the continuous double auction [3, 4, 21]. The
key point is that the heuristic strategies are a subset of the(generally enormous) space
of all strategies, and the set of heuristic strategies do notnecessarily contain strategies
that constitute an equilibrium of the underlying game (hence heuristic).

A heuristic strategy is simply an action policy specifying (generally complex) be-
havior for atomic actions in an underlying game. To give an example, in a continuous
double auction (CDA), an agent’s type specifies its value forthe goods in the market.
The underlying rules of the CDA allow agents to take actions of the form form “bidb at
time t”, while the heuristic strategies can be complex functions,expressed in hundreds
or thousands of lines of code, that specify what bids are placed over the course of trad-
ing. One component of a CDA strategy could specify, for instance, to “place buy bid
s+ ε when the lowest sell bids is at mostδ greater than the highest buy bidb.



Thus, diverging from standard Bayesian-Nash equilibrium analysis, we can assume
that each of theN agents has a choice of thesame Mexogenously specified,heuristic
strategies, and compute a Nash equilibrium across this restricted strategy space. Given
the heuristic strategies, we transform the underlying gameto one in which the agents’
payoffs are the expected payoffs obtained by the heuristic strategies in the underly-
ing game, computed with respect to the distribution of utility functions (or types) in
the underlying game [17, 22]. We note that the approach we descibe applies equally
to any game in which there actually are a only small number of strategies but whose
payoffs cannot, in practice, be determined analytically.3 An example is a proxy agent
auction [15, 25], in which participating agents are allowedthe choice of only a small set
of proxy strategies, which are in turn implemented by proxy agents controlled by the
auction.

LetH denote the space of heuristic strategies. A purestrategy profile a= (a j1, · · · ,a jN)
specifies, for each agenti, the pure strategya j i ∈ H played by the agent. Apayoff ma-
trix specifies the payoff to each agent for all possible strategy profiles. The standard
payoff table requiresMN entries which can be extremely large, even whenM andN
are moderate. To mitigate this problem, we restrict our analysis to symmetric games in
in which each agent has the same set of strategies and the samedistribution of types
(and hence payoffs). Hence, we can merely compute the payofffor each strategy as a
function of thenumberof agents playing each strategy, without being concerned about
the individual identities of those agents. This gives us a much smaller payoff matrices
of size

(N+M−1
N

)

. Standard auction analyses often rely on this symmetry assumption to
simplify the problem. With the symmetry assumption, we generally dispense with the
agent index.

Given aheuristic strategy payoff matrixmapping joint heuristic strategy choices to
agent payoffs, we then compute a Nash equilibrium in the restricted space of heuris-
tic strategies. Goldman et al. [5] have referred to this as anexperimental equilibrium.
We allow agenti to play a mixed strategy, and choose to play pure strategya j ∈ H

according to probabilityxi j . Let xi = (xi1, . . . ,xiM ) denote the complete mixed strategy,
with xi j ∈ [0,1] and∑M

j=1xi j = 1. The vector of all agents’ mixed strategies is denoted
x and the vector of mixed strategies for all agents excepti is denotedx−i . We indicate
by xi = a j , the special case when agenti plays pure strategyj with probability one.

We denote byu(a j ,x−i) the expected payoff to an agenti for playing pure strategyj,
given that all other agents play their mixed strategiesx−i . The expected payoff to agenti
with mixed strategyxi is thenu(xi ,xi−1)= ∑M

j=1u(a j ,xi−1)xi, j . In a Nash equilibrium,no
one agent can receive a higher payoff by unilaterally deviating to another strategy, given
fixed opponents’ strategies. Formally, probabilitiesx∗ constitute aNash equilibriumiff
for all agentsi, and allxi 6= x∗i , u(xi ,x∗−i) ≤ u(x∗i ,x

∗
−i). To simplify the computation

of equilibrium, in the remainder of this paper, we restrict our attention to symmetric
mixed strategy equilibria, wherebyx∗i = x∗k = x∗ for all agentsi andk. It is known that
symmetric Nash equilibria always exist for symmetric games.

An equilibrium computed with respect to expected payoffs, in the restricted strat-
egy space, is not a Bayesian-Nash equilibrium (BNE) in the restricted strategy space
because a full BNE would allow an agent tochoosea different heuristic strategy for

3 We thank Tuomas Sandholm for brining this to our attention atthe AMEC V workshop.



different realizations of its own type. Instead we require an agent to adopt the same
heuristic strategy (e.g. “always bid at the price if the price is below my value and I
am not currently winning”) whatever its actual value. Thus,an agent plays anex ante
Nash equilibrium instead of aninterim, or Bayesian-Nash, equilibrium. As the heuristic
strategy spaceH becomes rich and contains arbitrarily complex strategies this distinc-
tion disappears because a heuristic strategy can simulate the effect of mapping from
the multiple possible types of an agent in multiple different underlying strategies (e.g.
“if my value is less than $5, then always bid at price if the price is below my value;
otherwise, wait until the end of the auction and then snipe at80% of my value.”)4

To reiterate, the heuristic strategy approach is an approximation in which the de-
signer of an auction consider only a very small subset of all possible strategies. As
such, a Nash equilibrium in heuristic strategy space isnot guaranteed to constitute an
equilibrium in the underlying game.

Looking ahead to the sampling problem, before equilibrium can be computed we
require information about the payoffs of heuristic strategy profiles. But, because the
underlying game is complex theex antepayoffs are not analytically derivable and must
be computed instead as average payoffs over repeated simulations. It can be necessary
to perform a large number of simulations to obtain sufficiently accurateex antepayoff
estimates to calculate the Nash equilibria accurately. This is particularly expensive for
games that must be run in real time. For instance, the TradingAgent Competition re-
quires 15 minutes for each game, which practically limits the number of payoff samples
that can be collected. However, it is not generally necessary to estimate all payoffs to the
same degree of accuracy. For instance, if the one equilibrium is for all agents to play the
pure strategya j , then we will not need to accurately estimate the payoff for all agents
playing any other pure strategy to determine thata j is the equilibrium. Instead, we only
need toboundthe payoffs available from alternative heuristic strategiesak 6= a j when
every other agent playsa j . Thus, taking samples uniformly for all strategy profiles may
not be the most efficient method to arrive at an accurate equilibrium.

In the remainder of this paper we present information-theoretic methods for select-
ing which strategy profiles to sample from.

3 An Information-Theoretic
Approach

In this section, we outline an information-theoretic approach to the problem of deter-
mining how to sample the underlying space of heuristic strategies to build the payoff
matrix and compute equilibrium strategies.

Let S denote the space of all sample actions, and letθ ∈ SL denote a sequence of
sample actions of lengthL. An example of a sample action could be “perform 10 exper-
iments in which agents follow (pure) strategy profilea”, wherea = (a j1, . . . ,a jN) with
a j i ∈ H to indicate the heuristic strategy selected by agenti. We find it convenient to
overloadθ, and useθ to also denote theinformationthat results from the new samples.

An information-theoretic approach to sampling requires three modeling assump-
tions. First, we need adecision model, x(θ), to denote the equilibrium selected, given

4 We thank Michael Wellman for explaining this latter point.



informationθ. Second, we need afuture information modelto predict the cumulative
information that will be available after additional samples s, given current information
θ. Third, we need anerror modelto estimate the error of the equilibrium selected due
to current beliefs about the payoffs, with respect to the true equilibrium in the auction.

Looking ahead, we will choose to define the error in our setting in terms of the gain
in expected payoff that an agent can receive by deviating from the current equilibrium
decision to a pure strategy, summed across all pure strategies. Clearly, in equilibrium
this payoff from deviation is zero and the agent has the same expected payoff for all
pure strategies in the support (i.e., pure strategies with non-zero probabilities) of its
mixed strategy and less for any other strategy. Letf̂θ(x), denote the estimated error
from decisionx, as estimated with respect to informationθ. Notice that we can only
estimate the true error, which we denote asfπ(x), whereπ are the true payoffs.

The framework introduced by Russell & Wefald [19] for metadeliberation in time-
critical decision problems with bounded-rational agents proposes to predict thevalue of
information, EVI(s|θ), for sampling strategysgiven informationθ as:

EVI(s|θ) = Es|θ
[

f̂θ.s(x(θ))− f̂θ.s(x(θ.s))
]

where Es|θ takes the expectation with respect to a model of the future sampless given
current informationθ. Here,θ.s indicates the informationθ with the additional informa-
tion acquired from sampless. Intuitively, EVI(s|θ) measures, in expectation, the degree
to which further sampless will reduce the estimated error in the equilibrium choice.
Notice that the first term iŝfθ.s(x(θ)) and not f̂θ(x(θ)), so that any effect that the infor-
mation has on refining theaccuracy with which the error is computedis factored out of
this analysis. As observed by Russell & Wefald, this is important to maintain the useful
property that the estimated value of information is positive for all possible sampling
strategies.

In our model, the informationθ that has already been accumulated through current
samples provides a set of samples for each entrya in the payoff matrix. With this, the
maximum likelihood estimator (MLE) for thetrue mean, µ(a), of strategy profilea,
writtenµθ(a) is computed as the sample mean. By the central limit theorem,5 with suf-
ficient number of samples (generally, 30 is considered sufficient) from any distribution,
the true mean becomes normally distributed, with meanµθ(a), and standard deviation
σµθ(a) = σ(a)/

√
ta, whereσθ(a) is the standard deviation of the samples collected for

a andta is the number of samples collected fora. We find it useful to refer toµθ(a)
andσµθ(a) as theobserved mean, and thestandard deviation over the observed mean,
given informationθ. In the sequel, we drop thea indicator when the specific profile is
understood or immaterial to the discussion.

An optimal sampling strategy would take this definition of the expected value of in-
formation, and formulate an optimalsequentialsampling strategy with future decisions
contingent on the information returned from earlier decisions, and for a fixed number of
total samples. The objective would be to select a sequentialsampling strategy to max-
imize the expected total decrease in decision error by the end of the sampling period.

5 The central limit theorem assumes that samples are independent and of finite variance. The
first assumption holds if strategies are static (they do not adapt) and the second assumption
holds if payoffs in the underlying game are bounded.



Only the first step of the contingent sequential sampling strategy would be executed
(e.g.perform one experiment in which agents follow strategy profile a), at which point
the complete sequential strategy would be reoptimized based on the new information.
Berger [2, chapter 7] provides an extensive discussion of this methodology, which is
central to statistical decision theory.

In practice, the best one can hope for is an approximation to this approach. Clearly
metareasoning is valuable only to the extent that the time spent in metareasoning is
less than the time saved through making better-informed sampling decisions. Russell
& Wefald make a number of assumptions to keep metareasoning tractable for their
setting. Most importantly, they make asingle-stepassumption, which in our setting is
equivalent to assuming that only one more experiment will ever be performed. This
reduces the sampling decision to choosing the single best sampling action, to maximize
EVI(s|θ).

The main problem with the single-step assumption in our setting is that it is quite
possible that no single additional sample will be expected to have an effect on the de-
cision made about the equilibrium. Yet, we want to avoid deciding to commit to a long
sequence of additional samples without a chance to reconsider. To resolve this dilemma
we: (1) assume that the space of sampling actions,S, allows the system to choose sam-
ple strategys∈ Sa total ofK times, for some fixedK; and (2) within metareasoning we
consider the informational effect for along sequences∞ of the same sampling action,
s, but then only execute the first of the sequence with the greatest EVI before repeating
the calculation of EVI.

Given this, we define the three components of our information-theoretic model as
follows:

decision model. The equilibriumx(θ), given informationθ, is computed asoneof the
mixed equilibria given themeanpayoffsµθ in each entry in the payoff matrix. In
particular, we select the equilibrium with the lowest errorestimated from current
information f̂θ(x).

future information. Given the current information(µθ,σθ), we need a model for the
effect that a large number of additional sampless∞ on profile a will have on
the future observed mean payoff,µθ.s∞ , and the future standard deviation on ob-
served mean,σµθ.s∞ . We adopt two models for the future observed mean: (a) a
point-estimate, withµθ.s∞ = µθ; and (b) adistributional-estimate, withµθ.s∞ ∼
N(µθ,σµθ). We model the future standard deviation on the observed meanas
σµθ.s∞ = σθ/

√

ta + |s∞|, whereta is the number of samples collected fora so far
and|s∞| is the number of samples ins∞.

error. We define the true error functionfπ(x) with respect to payoffsπ as fπ(x) =

∑M
j=1max(0,ui(a j ,x−i)−ui(x)). That is, fπ(x) is the sum of incentives for an agent

to unilaterally deviate from the mixed strategyx to any pure strategy, given the
payoffs. It is well-known thatx is a Nash equilibrium (with respect toπ) iff fπ(x) =
0. We compute the estimated errorf̂θ(x) given informationθ from Monte Carlo
simulations on the actual error, as described below.

Looking at the models of future information, the point-estimate of the future ob-
served mean reflects the fact that our estimate of the true mean will remain the same



in expectation. In comparison, the distributional-estimate considers that we expect the
observed mean will converge to the true mean after many additional samples, and rec-
ognizes that the current information(µθ,σµθ) is the best current estimate for the true
mean. The model for the future standard deviation on observed mean reflects an as-
sumption that the standard deviation on the underlying payoff samples will remain the
same as that for the current samples.

The complete algorithm for selecting the next samples is as follows. First, compute
the set of Nash equilibria NE givenθ, and choose thex(θ) ∈ NE that minimizes esti-
mated errorf̂θ(x(θ)). Then choose thes that maximizes EVI(s|θ). If EVI (s|θ) is greater
than the cost of performing the firstK samples ins, perform those sample simulations
and continue the process. Otherwise, stop and returnx as the chosen equilibrium. The
model of cost and information value will depend heavily on the particular details of
the problem, with the cost depending on the run time of simulations and the value of
information depending on the importance of making an accurate decision. For example,
in the context of an experimental approach to mechanism design we can interpret the
value of a decision with respect to the goals of a mechanism designer, such as alloca-
tive efficiency. In this paper, we sidestep this issue and compare the decision accuracy
across alternative sampling methods for the same total number of samples.

To compute the estimated errorf̂θ.s(x(θ)) for the current decision after additional
information, we adopt the point-estimate model for the future observed mean after a
large numbers∞ of additional experiments, together with the point-estimate model
for the future standard deviation on observed mean. We average the results fromCf

Monte Carlo simulations, with each simulation computingfπ̂(x(θ)) for a drawπ̂ of
specific payoffs from the distributionN(µθ.s∞ ,σµθ.s∞ ) on true payoffs, withµθ.s∞ = µθ
andσµθ.s∞ = σθ/

√

ta + |s∞|.
To compute the estimated errorf̂θ.s(x(θ.s)) for the new and improved decision after

additional information, we must first estimate the future decision. For this, we adopt the
distributional-estimate,µθ.s∞ ∼N(µθ,σµθ), for the future observed mean. We sampleCE

mean payoffsπ′ from this distribution, and compute a new equilibriumx(π′) for each.
Then, we measure the estimated error for each of these decisions using the same model
for future information as was adopted to compute the estimated error f̂θ.s(x(θ)) for the
current decision, taking an additionalCf samples for eachπ′. Finally, we average this
estimated error for future decisionx(π′) across allCE equilibrium samples.

We note that an alternative model to compute the estimated error f̂θ.s(x(θ.s)) for
the new decision after additional information would use a hybrid of the two mod-
els for future information. We could adopt thesamesampleπ′ that is used to com-
pute a future equilibrium decisionx(π′) to model the future observed mean for the
purposes of computing the estimated error on that decision,but continue to adopt
σµθ.s∞ = σθ/

√

ta + |s∞|) to generateCf samples for this error calculation. We plan to
investigate this hybrid model in future work.

4 A Faster Approach

As we demonstrate in Section 5, EVI(s|θ) is an effective criterion for selecting a pure
strategy profile to sample next. Unfortunately, EVI(s|θ) is slow to compute for even



very small games, and impractically slow for moderately sized games. The problem
lies in the fact that EVI(s|θ) must perform multiple equilibrium computations for each
possible sample sequence. For eachs we must compute multiple sample future equi-
libria to estimate the distribution of future equilibria. Although we have tricks to fairly
quickly compute a future equilibrium based on the current equilibrium (see Section 5),
the computational cost can be prohibitively high, given that we performCE equilibrium
computations for each strategy profile.

We have developed a much faster method for computing the value of performing
a set of further samples that requires no additional equilibrium computations. The al-
gorithm is the same as before, except that, instead of EVI(s|θ), we use the estimated
confirmational value of information, ECVI(s|θ), of sampling policysgiven information
θ, defined as:

ECVI(s|θ) = Es|θ
[

f̂θ(x(θ))− f̂θ.s(x(θ))
]

.

Intuitively, ECVI(s|θ) measures, in expectation, the degree to which further samples
s would decrease the estimated error of the current equilibrium choice. Put another
way, thes that maximizes ECVI(s|θ) provides the best evidence to confirm our current
equilibrium choice.

We need not compute any future equilibria with this approach, but need only per-
form Monte Carlo simulations to estimate the expected errorof the current equilibrium.
Furthermore, we need perform significantly fewer of these Monte Carlo simulations
than for EVI(s|θ). If we performCf Monte Carlo simulations to estimate the error
for each future equilibrium, then EVI(s|θ) requiresCECf simulations offπ(x), while
ECVI(s|θ) requires onlyCf .

Using ECVI(s|θ) appears to run counter to the methodology of Russell and Wefald,
who argue that further samples are valuable only to the extent to which they maychange
the equilibrium choice. Still, based on some informal arguments, we can view the ap-
proach as a reasonable heuristic to indirectly choose thes that will likely most change
the decision. That is, ECVI(s|θ) can be viewed as a fast approximation of Russell and
Wefald’s approach for our problem.

Recall that there is a continuum of mixed strategies that could potentially comprise
a Nash equilibrium. Thus, so long as there remains “sufficient” uncertainty in the value
of the payoffs in a cellc of the game matrix, we should expect that further samples of
c will change the chosen equilibrium, however slightly. Thus, although we chooses to
confirm thatx is the correct equilibrium, samplings will, in fact, generally change our
decision.

Why should we expect that choosings to increase our confidence inx would best
help change the decision for the better? Sinceshas the highest direct impact on reducing
error forx, we should expect that it also reduces error for some mixed strategies in the
probability region aroundx. And sincex is our best estimate of the correct equilibrium,
given current information, then we should expect the true equilibrium x∗ to lie in the
probability region aroundx. Thus,s can be considered our best guess for reducing the
error in x∗, hence making it a more promising candidate for equilibriumselection by
our method.



Ultimately, the value of using ECVI(s|θ) is clearly borne out in our experiments.
It is much faster than EVI(s|θ), yet reduces error in the chosen equilibrium at a rate
comparable to EVI(s|θ).

5 Experiments

This section describes empirical results of our methods forchoosing samples of payoffs
from the space of heuristic strategy profiles, and compares their approach to the stan-
dard approach of sampling uniformly. To chart the progress of the approaches as more
simulations are performed, we perform the uniform samples in a round-robin fashion.
We report on results from two artificial games: (i) one withN = 1 agent andM = 5
strategies, and (ii) one withN = 8 agents andM = 3 strategies. So that we could com-
pare the results of the methods with the true equilibria of the games, we generated
payoff samples directly from specified distributions, rather than from simulation of a
complex auction game.

For each game and each method, EVI(s|θ) and ECVI(s|θ), we performed 10 ini-
tial simulations on each strategy profile to seed the payoff table, before applying the
methods. The length ofs∞, which is used to estimate the value of additional sampling
within metadeliberation, was 1000, and the length ofs, the samples actually performed
on one profile, was 10. We perform the same number of total samples with each sam-
pling method and compare the error in the equilibrium decision. For game (i), we per-
formed 1000 total samples, and game (ii) we performed 2000 total samples. We ran
each method 200 times on game (i), each time with a different random seed. Comput-
ing EVI(s|θ) is prohibitively expensive for game (ii), hence we ran only ECVI(s|θ) and
uniform sampling (both for 200 times) but not EVI(s|θ).

For the purpose of the analysis, we graph two error measures of the chosen equilib-
rium x. Both are calculated with respect to thetruegame information, and as a function
of the number of simulations performed and averaged over allruns. The first error mea-
sure is fπ(x) discussed before, whereπ are the true payoffs. The second measure is
the L2 Norm, defined as∑(x j − x∗j )

2, wherex j is the probability of playing heuristic
strategya j in profile x, and likewise forx∗, the true equilibrium. When multiple true
equilibria exist, we compute the minimal L2 Norm across all equilibria.6

Recall that our approaches require repeated computation ofNash equilibrium. Nash
equilibria can be formulated and computed in a variety of ways [10]. We use a formula-
tion of Nash equilibrium as a non-linear optimization problem, in which the equilibria

6 We note one twist in the implementation of our methods for these experiments. In game (i)
methods EVI(s|θ) and ECVI(s|θ) both almost always predict that additional sampling has
zero value long before 1000 simulations are performed (within an average of 163 simulations
for EVI(s|θ) and 304 simulations for ECVI(s|θ)). To provide a useful experimental compar-
ison, we choose to continue sampling until 1000 experiments, choosing the profile with the
smallest L2 Norm distance to the current equilibrium. In this situation, there other possibilities
for allocating the new simulations. For example, the new simulations could be assigned to a
randomly chosen profile. In fact, such a randomized approachmay help a sampling strategy to
avoid premature convergence to a solution which is not a trueNash equilibrium. We note that
ECVI(s|θ) does not reach zero in game (ii) within 2000 simulations, hence this issue does not
arise.



lie at the zero points of the objective function. We used amoeba [16], a direct search
method to find the zero points. Although amoeba (and indeed any Nash equilibrium
solver) is not guaranteed to find all, or even any equilibria,we have found it effective
in finding all equilibria for even reasonably large problems(e.g. 20 agents and 3 strate-
gies) [22]. We find that the expensive part is not finding an equilibrium, but verifying to
our satisfaction that all equilibria have been found, requiring that we restart at a number
of random points. However, in our sample selection algorithms, performing new sam-
ples does not move the equilibria too far from their previouslocation. Thus, we can start
the search at the previously computed equilibrium points and the gradient descent most
often quickly converges to the nearby new equilibrium (although, at times we do have
to recompute the equilibria from scratch).

5.1 1-agent 5-strategies game

This is a degenerate game with only one agent, where each strategy corresponds to a
unique profile and the unique equilibrium is simply the (pure) strategy with the highest
mean payoff. This feature is computationally advantageousthough, for we are able to
very quickly compute the equilibrium by bypassing amoeba and simply finding the
highest payoff strategy. Since there are only 5 strategy profiles, the cost of computing
EVI(s|θ) and ECVI(s|θ) is further reduced. Furthermore, it is easy to get some informal
validation of our methods by inspection in this simple game.

We model the true payoff distribution in each of the 5 entriesin the payoff table as
normal, with the parameters (µ, σ) as follows:

Strategy µ σ
1 1.0 0.5
2 0.9 0.5
3 0.5 0.1
4 0.3 0.3
5 0.35 0.4

We can imagine that the variation in payoffs come from variations in the value
of the agent, and or in the agent’s environment. It is evidentthat the expected-utility
maximizing strategy is to play strategy 1 (i.e.,x∗ = (1,0,0,0,0)), which has the highest
mean. Clearly, strategy 2, with its high mean and large standard deviation, is by far the
most likely candidate for the Nash equilibrium after strategy 1. A few samples would
distinguish quickly that strategy 1 and 2 are the top two strategies, hence we would
expect a good sampling method would assign most experimentsto these strategies in an
effort to distinguish which is clearly the one with the highest payoff.

Figure 1 shows thefπ(x) error measure for the three methods. As expected, after the
initial 50 experiments, all three methods find equilibria that have roughly the same mag-
nitude of fπ(x). After this initial stage,fπ(x) of the ECVI(s|θ) and EVI(s|θ) methods
decrease more rapidly and reach zero error faster than the for the uniform sampling
method, demonstrating the effectiveness of our approach. Moreover, until the stage
at which our sampling methods achieve zero error, our methods achieve significantly
lower fπ(x) than the uniform sampling approach, for a given number of experiments. In
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Fig. 1. True error fπ(x) of the computed equilibriumx with respect to true mean payoffs from
the three sampling methods on the 1-agent 5-strategies game. The three sampling methods are
uniform, EVI(s|θ), and ECVI(s|θ). Results shown here are averaged over 200 separate runs,
where each run consist of a total of 1000 samples.

our experiments, method EVI(s|θ) has a somewhat lowerfπ(x) than ECVI(s|θ) through
most of the simulations, although both methods reach near zero error at near the same
point.

For this particular game the L2-Norm is identical to thefπ(x) after scaling. This is
because, given the true payoff distributions, the computedequilibria is most likely to be
at strategy 1 (i.e.,x∗ = (1,0,0,0,0)), or at strategy 2 (i.e.,x∗ = (0,1,0,0,0)).

We also notice that the sampling methods are selective in assigning new simulations.
While the EVI(s|θ) method continues to define samples, it assigns on average 50.3%
and 49.6% of the total number of experiments allocated up to that point to strategy 1
and strategy 2, respectively. The remaining 0.1% of the experiments are assigned to
the other strategies. The ECVI(s|θ) method exhibits a similar emphasis by assigning
51.2% and 46.5% of the total number of experiments to strategy 1 and and strategy 2
respectively. Thus, the methods make decisions that correspond to the intuitively correct
distribution of simulations.

5.2 8-agents 3-strategies game

This is a more complex game with a total of 45 strategy profiles. The trueµ for each
payoff was chosen randomly from a uniform distribution [300, 600], withσ = 50 for all
payoffs. Again, the distribution over payoff is adopted as amodel over the distribution
over types of agents. The three mixed-strategy Nash equilibria computed from the true
mean payoffs are{(0.4114,0.0000,0.5886),(0.0000,0.5213,0.4787),(0.0268,0.0877,0.8856)}.
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Fig. 2. True error fπ(x) of the computed equilibriumx with respect to true mean payoffs from
sampling methods uniform and ECVI(s|θ) on the 8-agents 3-strategies game. Results shown here
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Fig. 3. L2-Norm of two sampling methods on the 8-agents 3-strategies game. Results shown here
are averaged over the same 200 runs reported in Figure 2.

Figure 2 plotsfπ(x) for the ECVI(s|θ) and uniform sampling methods. As with
the 1-agent, 5-strategy game, using ECVI(s|θ) gives a smaller error for any number of
simulations than does the uniform method.

We see similar, but more pronounced results when comparing with the L2 Norm, as
shown in Figure 3. The rather small L2 Norm of≈ 0.0005 after 1050 simulations with
the ECVI(s|θ) method indicates that the computed mixed-strategy equilibrium in each



run is indeed very close to one of the Nash equilibria determined from the true means.
In other words, even though there remains some benefit to an agent for deviation to
another strategy, the actual mixed equilibrium is very close to the true equilibrium.

A closer analysis of each run also indicate that for this game, the ECVI(s|θ) method
chooses samples very non-uniformly between the strategy profiles. Strategy profiles
that are closer to one of the true Nash equilibria (in terms ofL2 Norm) received 5%
to 10% of the 2000 experiments, while some profiles were assigned virtually no new
experiments after their initial set of 10 experiments. We conclude that we can choose
simulations selectively (i.e., non-uniformly) and get lower error using ECVI(s|θ).

6 Discussion

We have presented two methods for choosing the samples necessary to compute a Nash
equilibrium with respect to ex ante payoffs of heuristic strategies. The first method is
a direct application of an information-theoretic methodology proposed by Russell and
Wefald, but is impractically slow. We were not able to run themethod even on our 8-
agents and 3-strategies problem. The second method approximates the first method, but
at a much lower computational cost. Both methods are designed to select samples to
perform that are most likely to improve our estimation of theequilibrium. Our initial
experiments suggest that these selective approaches give us an equilibrium with less
error from fewer simulations than a uniform sampling method. Moreover, the fast, ap-
proximate method reduces error nearly as quickly as the direct information-theoretic
method on the small single-agent problem.

The most interesting direction in which to extend and apply this work is to the prob-
lem of experimentalmechanism design, in which computational methods are used in a
closed loop to evaluate the designs of alternative electronic markets. In this setting, the
relevant question becomes:how should the system allocate experiments across multi-
ple market designs, in addition to within a particular market design. Our information-
theoretic methodology can be extended quite naturally to this new problem, in which
costly simulations help tochoosea market design. In this setting the goals of the mech-
anism designer, for example allocative efficiency, providea compelling method with
which to define the value of information with respect to the decision error. For exam-
ple, rather than measure theaccuracyof the equilibrium in terms of individual agent
utilities, we can measure theloss in efficiencyimplied by making a decision with cur-
rent information, and weigh the cost of further experimentswith the possible efficiency
gains of a better design.

Looking ahead, we believe an interesting research agenda for agent-mediated elec-
tronic commerce is to relax some of the requirements of mechanism design (in particu-
lar incentive-compatibilityanddirect-revelation), but still seek to design market-based
systems that enjoy desirable economic properties when populated by realistic (and nec-
essarily bounded-rational) trading agents. In particular, notice that it is not necessary
to give up ondesignwhen giving up on the formal mathematics of mechanism de-
sign. Instead, one moves from an off-line and analytic approach to mechanism design
to anexperimentalapproach to mechanism design. Rather than modeling the behavior
of agents offline, and designing a mechanism with respect to this model we can design



a market mechanism from a space of mechanisms and thenexperimentally validatethe
performance of the mechanism with respect to a set of desiderata. This is attractive be-
cause we can explicitly design for automated trading agents, since these agents can be
usedexplicitly to evaluate the performance of a proposed market design.
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