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Abstract

In many natural settings, the analysis goal is not to characterize a single data set in
isolation, but rather to understand the difference between one set of observations
and another. For example, given a background corpus of news articles together
with writings of a particular author, one may want a topic model that explains
word patterns and themes specific to the author. Another example comes from
genomics, in which biological signals may be collected from different regions
of a genome, and one wants a model that captures the differential statistics ob-
served in these regions. This paper formalizes this notion of contrastive learning
for mixture models, and develops spectral algorithms for inferring mixture com-
ponents specific to a foreground data set when contrasted with a background data
set. The method builds on recent moment-based estimators and tensor decomposi-
tions for latent variable models, and has the intuitive feature of using background
data statistics to appropriately modify moments estimated from foreground data.
A key advantage of the method is that the background data need only be coarsely
modeled, which is important when the background is too complex, noisy, or not
of interest. The method is demonstrated on applications in contrastive topic mod-
eling and genomic sequence analysis.

1 Introduction

Generative latent variable models offer an intuitive way to explain data in terms of hidden structure,
and are a cornerstone of exploratory data analysis. Popular examples of generative latent variable
models include Latent Dirichlet Allocation (LDA) [1] and Hidden Markov Models (HMMs) [2],
although the modularity of the generative approach has led to a wide range of variations. One of
the challenges of using latent variable models for exploratory data analysis, however, is developing
models and learning techniques that accurately reflect the intuitions of the modeler. In particular,
when analyzing multiple specialized data sets, it is often the case that the most salient statistical
structure—that most easily found by fitting latent variable models—is shared across all the data and
does not reflect interesting specific local structure. For example, if we apply a topic model to a set
of English-language scientific papers on computer science, we might hope to identify different co-
occurring words within subfields such as theory, systems, graphics, etc. Instead, such a model will
simply learn about English syntactic structure and invent topics that reflect uninteresting statistical
correlations between stop words [3]. Intuitively, what we would like from such an exploratory
analysis is to answer the question: What makes these data different from other sets of data in the
same broad category?

To answer this question, we develop a new set of techniques that we refer to as contrastive learning
methods. These methods differentiate between foreground and background data and seek to learn
a latent variable model that captures statistical relationships that appear in the foreground but do
not appear in the background. Revisiting the previous scientific topics example, contrastive learning
could treat computer science papers as a foreground corpus and (say) English-language news articles
as a background corpus. As both corpora share the same broad syntactic structure, a contrastive
foreground topic model would be more likely to discover semantic relationships between words that
are specific to computer science. This intuition has broad applicability in other models and domains
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(a) PCA (b) Linear contrastive analysis
Figure 1: These figures show foreground and background data from Gaussian distributions. The foreground
data has greater variance in its minor direction, but the same variance in its major direction. The means are
slightly different. Different projection lines are shown for different methods, to illustrate the difference be-
tween (a) the purely unsupervised variance-preserving linear projection of principal component analysis, (b)
the contrastive foreground projection that captures variance that is not present in the background.

as well. For example, in genomics one might use a contrastive hidden Markov model to amplify the
signal of a particular class of sequences, relative to the broader genome.

Note that the objective of contrastive learning is not to discriminate between foreground and back-
ground data, but to learn an interpretable generative model that captures the differential statistics
between the two data sets. To clarify this difference, consider the difference between principal com-
ponent analysis and contrastive analysis. Principal component analysis finds the linear projection
that maximally preserves variance without regard to foreground versus background. A contrastive
approach, however, would try to find a linear projection that maximally preserves the foreground
variance that is not explained by the background. Figure 1 illustrates the differences between these.
Novelty detection [4] is also related, but it does not directly learn a generative model of the novelty.

Our contributions. We formalize the concept of contrastive learning for mixture models and
present new spectral contrast algorithms. We prove that by appropriately “subtracting” background
moments from the foreground moments, our algorithms recover the model for the foreground-
specific data. To achieve this, we extend recent developments in learning latent variable models
with moment matching and tensor decompositions. We demonstrate the effectiveness, robustness,
and scalability of our method in contrastive topic modeling and contrastive genomics.

2 Contrastive learning in mixture models

Many data can be naturally described by a mixture model. The general mixture model has the form

p({xn}Nn=1; {(µj , wj)}Jj=1) =

N�

n=1

�
J�

j=1

wjf(xn|µj)

�
(1)

where {µj} are the parameters of the mixture components, {wj} are the mixture weights,
and f(·|µj) is the density of the j-th mixture component. Each µj is a vector in some parame-
ter space, and a common estimation task is to infer the component parameters {(µj , wj)} given the
observed data {xn}.

In many applications, we have two sets of observations {xf
n} and {xb

n}, which we call the foreground
data and the background data, respectively. The foreground and background are generated by two
possibly overlapping sets of mixture components. More concretely, let {µj}j∈A, {µj}j∈B , and
{µj}j∈C be three disjoint sets of parameters, with A, B, and C being three disjoint index sets. The
foreground {xf

n} is generated from the mixture model {(µj , wf
j)}j∈A∪B , and the background {xb

n}
is generated from {(µj , wb

j )}j∈B∪C .

The goal of contrastive learning is to infer the parameters {(µj , wf
j)}j∈A, which we call the

foreground-specific model. The direct approach would be to infer {(µj , wf
j)}j∈A∪B just from {xf

n},
and in parallel infer {(µj , wb

j )}j∈B∪C just from {xb
n}, and then pick out the components specific to

the foreground. However, this involves explicitly learning a model for the background data, which
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is undesirable if the background is too complex, if {xb
n} is too noisy, or if we do not want to de-

vote computational power to learn the background. In many applications, we are only interested in
learning a generative model for the difference between the foreground and background, because that
contrast is the interesting signal.

In this paper, we introduce an efficient and general approach to learn the foreground-specific model
without having to learn an accurate model of the background. Our approach is based on a method-of-
moments that uses higher-order tensor decompositions for estimation [5]; we generalize the tensor
decomposition technique to deal with our task of contrastive learning. Many other recent spectral
learning algorithms for latent variable models are also based on the method-of-moments (e.g., [6–
13]), but their parameter estimation can not account for the asymmetry between foreground and
background.

We demonstrate spectral contrastive learning through two concrete applications: contrastive topic
modeling and contrastive genomics. In contrastive topic modeling we are given a foreground cor-
pus of documents and a background corpus. We want to learn a fully generative topic model that
explains the foreground-specific documents (the contrast). We show that even when the background
is extremely sparse—too noisy to learn a good background topic model—our spectral contrast algo-
rithm still recovers foreground-specific topics. In contrastive genomics, sequence data is modeled by
HMMs. The foreground data is generated by a mixture of two HMMs; one is foreground-specific,
and the other captures some background process. The background data is generated by this sec-
ond HMM. Contrastive learning amplifies the foreground-specific signal, which have meaningful
biological interpretations.

3 Contrastive topic modeling

To illustrate contrastive analysis and introduce tensor methods, we consider a simple topic model
where each document is generated by exactly one topic. In LDA [1], this corresponds to setting the
Dirichlet prior hyper-parameter α → 0. The techniques here can be extended to the general α > 0

case using the moment transformations given in [10]. The generative topic model for a document is
as follows.

• A word x is represented by an indicator vector ex ∈ RD which is 1 in its x-th entry and 0

elsewhere. D is the size of the vocabulary. A document is a bag-of-words and is represented
by a vector c ∈ RD with non-negative integer word counts.

• A topic is first chosen according to the distribution on [K] := {1, 2, . . . ,K} specified by
the probability vector w ∈ RK .

• Given that the chosen topic is t, the words in the document are drawn independently from
the distribution specified by the probability vector µt ∈ RD.

Following previous work (e.g., [10]) we assume that µ1, µ2, . . . , µK are linearly independent prob-
ability vectors in RD. Let the foreground corpus of documents be generated by the mixture
of |A|+ |B| topics {(µt, wf

t)}t∈A ∪ {(µt, wf
t)}t∈B , and the background topics be generated by the

mixture of |B|+ |C| topics {(µt, wb
t )}t∈B ∪ {(µt, wb

t )}t∈C (here, we assume (A,B,C) is a non-
trivial partition of [K], and that wf

t, w
b
t > 0 for all t). Our goal is to learn {(µt, wf

t)}t∈A.

3.1 Moment decompositions

We use the symbol ⊗ to denote the tensor product of vectors, so a⊗b is the matrix whose (i, j)-th en-
try is aibj , and a⊗b⊗c is the third-order tensor whose (i, j, k)-th entry is aibjck. Given a third-order
tensor T ∈ Rd1×d2×d3 and vectors a ∈ Rd1 , b ∈ Rd2 , and c ∈ Rd3 , we let T (I, b, c) ∈ Rd1 denote
the vector whose i-th entry is

�
j,k Ti,j,kbjck, and T (a, b, c) denote the scalar

�
i,j,k Ti,j,kaibjck.

We review the moments of the word observations in this model (see, e.g., [10]). Let x1, x2, x3 ∈ [D]

be three random words sampled from a random document generated by the foreground model
(the discussion here also applies to the background model). The second-order (cross) moment
matrix M f

2 := E[ex1 ⊗ ex2 ] is the matrix whose (i, j)-th entry is the probability that x1 = i
and x2 = j. Similarly, the third-order (cross) moment tensor M f

3 := E[ex1 ⊗ ex2 ⊗ ex3 ] is the
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Algorithm 1 Contrastive Topic Model estimator

input Foreground and background documents {cfn}, {cbn}; parameter γ > 0; number of topics K.
output Foreground-specific topics Topicsf .

1: Let M̂ f
2 and M̂ f

3 (M̂b
2 and M̂b

3 ) be the foreground (background) second- and third-order moment
estimates based on {cfn} ({cbn}), and let M̂2 := M̂ f

2 − γM̂b
2 and M̂3 := M̂ f

3 − γM̂b
3 .

2: Run Algorithm 2 with input M̂2, M̂3, K, and N to obtain {(ât, λ̂t) : t ∈ [K]}.
3: Topicsf := {(ât/�ât�1, 1/λ̂2

t ) : t ∈ [K], λ̂t > 0}.

third-order tensor whose (i, j, k)-th entry is the probability that x1 = i, x2 = j, x3 = k. Ob-
serve that for any t ∈ A ∪B, the i-th entry of E[ex1 |topic = t] is precisely the probability
that x1 = i given topic = t, which is i-th entry of µt. Therefore, E[ex1 |topic = t] = µt. Since
the words are independent given the topic, the (i, j)-th entry of E[ex1 ⊗ ex2 |topic = t] is the
product of the i-th and j-th entry of µt, i.e., E[ex1 ⊗ ex2 |topic = t] = µt ⊗ µt. Similarly,
E[ex1 ⊗ ex2 ⊗ ex3 |topic = t] = µt ⊗ µt ⊗ µt. Averaging over the choices of t ∈ A ∪B with the
weights wf

t implies that the second- and third-order moments are

M f
2 = E[ex1 ⊗ ex2 ] =

�

t∈A∪B

wf
t µt⊗µt and M f

3 = E[ex1 ⊗ ex2 ⊗ ex3 ] =

�

t∈A∪B

wf
t µt⊗µt⊗µt.

(We discuss how to efficiently use documents of length > 3 in Section 5.2.) We can similarly
decompose the background moments M b

2 and M b
3 in terms of tensors products of {µt}t∈B∪C . These

equations imply the following proposition (proved in Appendix A).
Proposition 1. Let M f

2, M f
3 and Mb

2 , Mb
3 be the second- and third-order moments from the fore-

ground and background data, respectively. Define
M2 := M f

2 − γMb
2 and M3 := M f

3 − γMb
3 .

If γ ≥ maxj∈B wf
j/w

b
j , then

M2 =

K�

t=1

ωt µt ⊗ µt and M3 =

K�

t=1

ωt µt ⊗ µt ⊗ µt (2)

where ωt = wf
t > 0 for t ∈ A (foreground-specific topic), and ωt ≤ 0 for t ∈ B ∪ C.

Using tensor decompositions. Proposition 1 implies that the modified moments M2 and M3 have
low-rank decompositions in which the components t with positive multipliers ωt correspond to the
foreground-specific topics {(µt, wf

t)}t∈A. A main technical innovation of this paper is a general-
ized tensor power method, described in Section 5, which takes as input (estimates of) second- and
third-order tensors of the form in (2), and approximately recovers the individual components. We
argue that under some natural conditions, the generalized power method is robust to large pertur-
bations in Mb

2 and Mb
3 , which suggests that foreground-specific topics can be learned even when it

is not possible to accurately model the background. We use the generalized tensor power method
to estimate the foreground-specific topics in our Contrastive Topic Model estimator (Algorithm 1).
Proposition 1 gives the lower bound on γ; we empirically find that γ ≈ maxj∈B wf

j/w
b
j gives good

results. When γ is too large, the convergence of the tensor power worsens. Where possible in prac-
tice, we recommend using prior belief about foreground and background compositions to estimate
maxj∈B wf

j/w
b
j , and then vary γ as part of the exploratory analysis.

3.2 Experiments with contrastive topic modeling

We test our contrastive topic models on the RCV1 dataset, which consists of ≈ 800000 news ar-
ticles. Each document comes with multiple category labels (e.g., economics, entertainment) and
region labels (e.g., USA, Europe, China). The corpus spans a large set of complex and overlapping
categories, making this a good dataset to validate our contrastive learning algorithm.

In one set of experiments, we take documents associated with one region as the foreground corpus,
and documents associated with a general theme, such as economics, as the background. The goal
of the contrast is to find the region-specific topics which are not relevant to the background theme.
The top half of Table 1 shows the example where we take USA-related documents as the foreground
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USA foreground USA foreground, Economics background
percent lbs bond million stock play research result basketball game
week usda municipal week price round science hockey game run
rate hog index sale close golf cancer nation nation hit
market gilt year export trade open cell cap la win
wheat barrow trade total index hole study ny association inn

China foreground China foreground, Economics background
china share billion shanghai yuan china panda earthquake china interest
ton market reserve yuan year east china china office bond
percent percent bank firm bank typhoon year office court million
import million balance china foreign storm xinhua richt smuggle cost
alumin trade trade exchange invest flood zoo scale ship moody

Table 1: Top words from representative topics: foreground alone (left); foreground/background contrast (right).
Each column corresponds to one topic.
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Figure 2: (a) Relative AUC as function of γ (Sec. 3.2). (b) Emission probabilities of HMM states (Sec. 4).

and Economics as the background theme. We first set the contrast parameter γ = 0 in Algorithm 1;
this learns the topics from the foreground dataset alone. Due to the composition of the corpus, the
foreground topics for USA is dominated by topics relevant to stock markets and trade; representative
topics and keywords are shown on the left of Table 1. Then we increase γ to observe the effects
of contrast. In the right half of Table 1, we show the heavily weighted topics and keywords for
when γ = 2. The topics involving market and trade are also present in the background corpus, so
their weights are reduced through contrast. Topics which are very USA-specific and distinct from
economics rise to the top: basketball, baseball, scientific research, etc. A similar experiment with
China-related articles as foreground, and the same economics themed background is shown in the
bottom of Table 1.

These examples illustrate that Algorithm 1 learns topics which are unique to the foreground. To
quantify this effect, we devised a specificity test. Using the RCV1 labels, we partition the foreground
USA documents into two disjoint groups: documents with any economics-related labels (group 0)
and the rest (group 1). Because Algorithm 1 learns the full probabilistic model, we use the inferred
topic parameters to compute the marginal likelihood for each foreground document given the model.
We then use the likelihood value to classify each foreground document as belonging to group 0 or 1.
The performance of the classifier is summarized by the AUC score.

We first set γ = 0 and compute the AUC score, which corresponds to how well a topic model
learned from only the foreground can distinguish between the two groups. We use this score as
the baseline and normalize so it is equal to 1. The hope is that by using the background data, the
contrastive model can better identify the documents that are generated by foreground-specific topics.
Indeed, as γ increases, the AUC score improves significantly over the benchmark (dark blue bars in
Figure 2(a)). For γ > 2 we find that the foreground specific topics do not change qualitatively.

A major advantage of our approach is that we do not need to learn a very accurate background
model to learn the contrast. To validate this, we down sample the background corpus to 1000, 100,
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and 50 documents. This simulates settings where the background is very sparsely sampled, so it
is not possible to learn a background model very accurately. Qualitatively, we observe that even
with only 50 randomly sampled background documents, Algorithm 1 still recovers topics specific to
USA and not related to Economics. At γ = 2, it learns sports and NASA/space as the most promi-
nent foreground-specific topics. This is supported by the specificity test, where contrastive topic
models with sparse background better identify foreground-specific documents relative to the γ = 0

(foreground data-only) model.

4 Contrastive Hidden Markov Models

Hidden Markov Models (HMMs) are commonly used to model sequence and time series data. For
example, a biologist may collect several sequences from an experiment; some of the sequences are
generated by a biological process of interest (modeled by an HMM), while others are generated by
a different “background” process—e.g., noise or a process that is not of primary interest.

Consider a simple generative process where foreground data are generated by a mixture of two
HMMs: (1− γ)HMM

A
+γHMM

B , and background data are generated by HMM
B . The goal

is to learn the parameters of HMM
A, which models the biological process of interest. As we did

for topic models, we can estimate a contrastive HMM by taking appropriate combinations of ob-
servable moments. Let xf

1, x
f
2, x

f
3, . . . be a random emission sequence in RD generated by the

foreground model (1−γ)HMM
A
+γHMM

B , and xb
1, x

b
2, x

b
3, . . . be the sequence generated by the

background model HMM
B . Following [5], we estimate the following cross moment matrices and

tensors: M f
1,2 := E[xf

1⊗xf
2], M f

1,3 := E[xf
1⊗xf

3], M f
2,3 := E[xf

2⊗xf
3], M f

1,2,3 := E[xf
1⊗xf

2⊗xf
3],

as well as the corresponding moments for the background model. This is similar to the estimation
the word pair and triple frequencies in LDA. Here we only use the first three observations in the
sequence, but it is also justifiable to average over all consecutive observation triplets [14]. Then,
analogous to Proposition 1, we define the contrastive moments as Mu,v := M f

u,v − γMb
u,v (for

{u, v} ⊂ {1, 2, 3}) and M1,2,3 := M f
1,2,3−γMb

1,2,3. In the Appendix (Sec. D and Algorithm 3), we
describe how to recover the foreground-specific model HMM

A. The key technical difference from
contrastive LDA lies in the asymmetric generalization of the Tensor Power Method of Algorithm 2.

Application to contrastive genomics. For many biological problems, it is important to understand
how signals in certain data are enriched relative to some related background data. For instance, we
may want to contrast foreground data composed of gene expressions (or mutation rates, protein
levels, etc) from one population against background data taken from (say) a control experiment, a
different cell type, or a different time point. The contrastive analysis methods developed here can be
a powerful exploratory tool for biology.

As a concrete illustration, we use spectral contrast to refine the characterization of chromatin states.
The human genome consists of ≈ 3 billion DNA bases, and has recently been shown that these bases
can be naturally segmented into a handful of chromatin states [15, 16]. Each state describes a set of
genomic properties: several states describe different active and regulatory features, while other states
describe repressive features. The chromatin state varies across the genome, remaining constant for
relatively short regions (say, several thousand bases). Learning the nature of the chromatin states
is of great interest in genomics. The state-of-the-art approach for modeling chromatin states uses
an HMM [16]. The observable data are, at every 200 bases, a binary feature vector in {0, 1}10.
Each feature indicates the presence/absence of a specific chemical feature at that site (assumed
independent given the chromatin state). This correspond to ≈ 15 million observations across the
genome, which are used to learn the parameters of an HMM. Each chromatin state corresponds to a
latent state, characterized by a vector of 10 emission probabilities.

We take as foreground data the observations from exons, introns and promoters, which account for
about 30% of the genome; as background data, we take observations from intergenic regions. Be-
cause exons and introns are transcribed, we expect the foreground to be a mixture of functional
chromatin states and spurious states due to noise, and expect more of the background observations
to be due to non-functional process. The contrastive HMM should capture biologically meaningful
signals in the foreground data. In Figure 2(b), we show the emission matrix for the foreground HMM
and for the contrastive HMM. We learn K = 7 latent states, corresponding to 7 chromatin states.
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Algorithm 2 Generalized Tensor Power Method

input M̂2 ∈ RD×D; M̂3 ∈ RD×D×D; target rank K; number of iterations N .
output Estimates {(ât, λ̂t) : t ∈ [K]}.

1: Let M̂†
2 := Moore-Penrose pseudoinverse of rank K approximation to M̂2; initialize T := M̂3.

2: for t = 1 to K do
3: Randomly draw u(0) ∈ RD from any distribution with full support in the range of M̂2.
4: Repeat power iteration update N times: u(i+1)

:= T (I, M̂†
2u

(i), M̂†
2u

(i)
).

5: ât := u(N)/|�u(N), M̂†
2u

(N)�|1/2; λ̂t := T (M̂†
2 ât, M̂

†
2 ât, M̂

†
2 ât); T := T −|λ̂t|ât⊗ ât⊗ ât.

6: end for

Each row is a chemical feature of the genome. The foreground states recover the known biologi-
cal chromatin states from literature [16]. For example, state 6, with high emission for K36me3, is
transcribed genes; state 5 is active enhancers; state 4 is poised enhancers. In the contrastive HMM,
most of the states are the same as before. Interestingly, state 7, which is associated with feature
K20me1, drops from the largest component of the foreground to a very small component of the con-
trast. This finding suggests that state 7 and K20me1 are less specific to gene bodies than previously
thought [17], and raises more questions regarding its function, which is relatively unknown.

5 Generalized tensor power method

We now describe our general approach for tensor decomposition used in Algorithm 1. Let
a1, a2, . . . , aK ∈ RD be linearly independent vectors, and set A := [a1|a2| · · · |aK ]. Let
M2 :=

�K
i=1 σiai ⊗ ai and M3 :=

�K
i=1 λiai ⊗ ai ⊗ ai, where σi = sign(λi) ∈ {±1}. The goal

is to recover {(at, λt) : t ∈ [K]} from (estimates of) M2 and M3.

The following proposition shows that one of the vectors ai (and its associated λi) can be obtained
from M2 and M3 using a simple power method similar to that from [5, 18] (note that which of the
K components is obtained depends on the initialization of the procedure). Note that the error ε is
exponentially small in 2

t after t iterations, so the number of iterations required to converge is very
small. Below, we use (·)† to denote the Moore-Penrose pseudoinverse.

Proposition 2 (Informal statement). Consider the sequence u(0), u(1), . . . in RD determined by
u(i+1)

:= M3(I,M
†
2u

(i),M†
2u

(i)
) . Then for any ε ∈ (0, 1) and almost all u(0) ∈ range(A),

there exists t∗ ∈ [K], c1, c2 > 0 (all depending on u(0) and {(µt, λt) : t ∈ [K]}) such that
�ũ(i) − at∗�2 ≤ ε and |λ̃− |λt∗ || ≤ |λt∗ |ε+maxt �=t∗ |λt|ε3/2 for ε := c1 exp(−c22i), where
ũ(i)

:= σt∗u(i)/�A†u(i)�, and λ̃ := M3(M
†
2 ũ

(i),M†
2 ũ

(i),M†
2 ũ

(i)
).

See Appendix B for the formal statement and proof which give explicit dependencies. We use the
iterations from Proposition 2 in our main decomposition algorithm (Algorithm 2), which is a variant
of the main algorithm from [5]. The main difference is that we do not require M2 to be positive semi-
definite, which is essential for our application, but requires subtle modifications. For simplicity, we
assume we run Algorithm 2 with exact moments M2 and M3 — a detailed perturbation analysis
would be similar to that in [5] but is beyond the scope of this paper. Proposition 2 shows that a single
component can be accurately recovered, and we use deflation to recover subsequent components
(normalization and deflation is further discussed in Appendix B). As noted in [5], errors introduced
in this deflation step have only a lower-order effect, and therefore it can be used reliably to recover
all K components. For increased robustness, we actually repeat steps 3–5 in Algorithm 2 several
times, and use the results of the trial in which |λ̂t| takes the median value.

5.1 Robustness to sparse background sampling

Algorithm 1 can recover the foreground-specific {µt}t∈A even with relatively small numbers
of background data. We can illustrate this robustness under the assumption that the support
of the foreground-specific topics S0 := ∪t∈A supp(µt) is disjoint from that of the other topics
S1 := ∪t∈B∪C supp(µt) (similar to Brown clusters [19]). Suppose that M f

2 is estimated accurately
using a large sample of foreground documents. Then because S0 and S1 are disjoint, Algorithm 1
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(using sufficiently large γ) will accurately recover the topics {(µt, wf
t) : t ∈ A} in Topicsf . The

remaining concern is that sampling errors will cause Algorithm 1 to mistakenly return additional
topics in Topicsf , namely the topics t ∈ B ∪ C. It thus suffices to guarantee that the signs of the λ̂t

returned by Algorithm 2 are correct. The sample size requirement for this is independent of the de-
sired accuracy level for the foreground-specific topics—it depends only on γ and fixed properties of
the background model.1 As reported in Section 3.2, this robustness is borne out in our experiments.

5.2 Scalability

Our algorithms are scalable to large datasets when implemented to exploit sparsity and low-rank
structure (each experiment we report runs on a standard laptop in a few minutes). Two important
details are (i) how the moments M2 and M3 are represented, and (ii) how to execute the power
iteration update in Algorithm 2. These issues are only briefly mentioned in [5] and without proof,
so in this section, we address these issues in detail.

Efficient moment estimates for topic models. We first discuss how to represent empirical esti-
mates of the second- and third-order moments M f

2 and M f
3 for the foreground documents (the same

will hold for the background documents). Let document n ∈ [N ] have length �n, and let cn ∈ ND

be its word count vector (its i-th entry cn(i) is the number of times word i appears in document n).
Proposition 3 (Estimator for M f

2). Assume �n ≥ 2. For any distinct i, j ∈ [D], E[(cn(i)2 −
cn(i))/(�n(�n − 1))] = [M f

2]i,i and E[cn(i)cn(j)/(�n(�n − 1))] = [M f
2]i,j .

By Proposition 3, an unbiased estimator of M f
2 is M̂ f

2 := N−1
�N

n=1(�n(�n − 1))
−1

(cn ⊗ cn −
diag(cn)). Since M̂ f

2 is sum of sparse matrices, it can be represented efficiently, and we may use
sparsity-aware methods for computing its low-rank spectral decompositions. It is similarly easy to
obtain such a decomposition for M̂ f

2 − γM̂b
2 , from which one can compute its pseudoinverse and

represent it in factored form as PQ� for some P,Q ∈ RD×K .
Proposition 4 (Estimator for M f

3). Assume �n ≥ 3. For any distinct i, j, k ∈ [D], E[(cn(i)3 −
3cn(i)2 + 2cn(i))/(�n(�n − 1)(�n − 2))] = [M f

3]i,i,i, E[(cn(i)2cn(j) − cn(i)cn(j))/(�n(�n −
1)(�n − 2))] = [M f

3]i,i,j , and E[(cn(i)cn(j)cn(k))/(�n(�n − 1)(�n − 2))] = [M f
3]i,j,k.

By Proposition 4, an unbiased estimator of M f
3(I, v, v) for any vector v ∈ RD is M̂ f

3(I, v, v) :=

N−1
�N

n=1(�n(�n−1)(�n−2))
−1

(�cn, v�2cn−2�cn, v�(cn◦v)−�cn, v◦v�cn+2cn◦v◦v) (where
◦ denotes component-wise product of vectors). Let nnz(cn) be the number of non-zero entries in
cn, then each term in the sum takes only O(nnz(cn)) operations to compute. So the time to compute
M̂ f

3(I, v, v) is proportional to the number of non-zero entries of the term-document matrix, using
just a single pass over the document corpus.

Power iteration computation. Each power iteration update in Algorithm 2 just requires the eval-
uating M̂ f

3(I, v, v) − γM̂b
3 (I, v, v) (one-pass linear time, as shown above) for v := M̂†

2u
(i), and

computing the deflation
�

τ<t λ̂τ �âτ , v�2âτ (O(DK) time). Since M̂†
2 is kept in rank-K factored

form, v can also be computed in O(DK) time.

6 Discussion

In this paper, we formalize a model of contrastive learning and introduce efficient spectral methods to
learn the model parameters specific to the foreground. Experiments with contrastive topic modeling
show that Algorithm 1 can learn foreground-specific topics even when the background data is noisy.
Our application in contrastive genomics illustrates the utility of this method in exploratory analysis
of biological data. The contrast identifies an intriguing change associated with K20me1, which
can be followed up with biological experiments. While we have focused in this work on a natural
contrast model for mixture models, we also discuss an alternative approach in Appendix E.

Acknowledgement This work was partially supported by DARPA Young Faculty Award DARPA
N66001-12-1-4219.

1For instance, if the background model consists only of one topic µ, then the analyses from [5, 10] can be
adapted to bound the sample size requirement by O(1/�µ�6).
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