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Abstract
Moulin [1980] characterizes the single-facility, de-
terministic strategy-proof mechanisms for social
choice with single-peaked preferences as the set of
generalized median rules. In contrast, we have only
a limited understanding of multi-facility strategy-
proof mechanisms, and recent work has shown neg-
ative worst-case results for social cost. Our goal
is to design strategy-proof, multi-facility mecha-
nisms that minimize expected social cost. We first
give a PAC learnability result for the class of multi-
facility generalized median rules, and utilize neu-
ral networks to learn mechanisms from this class.
Even in the absence of characterization results, we
develop a computational procedure for learning al-
most strategy-proof mechanisms that are as good as
or better than benchmarks from the literature, such
as the best percentile and dictatorial rules.

1 Introduction
In many multi-agent systems, the use of payments is ei-
ther not possible or unethical, for example in deciding about
a public good, or in organizational settings where norms
preclude payments. Moreover, mechanism design without
money is essentially impossible outside of structured do-
mains: by the Gibbard-Sattherwaite theorem [Gibbard, 1973;
Satterthwaite, 1975], any strategy-proof mechanism that
chooses between two or more outcomes and for which agents
can have all possible strict preferences must be dictatorial.

The most studied domain for which there are positive re-
sults is that of single-peaked preferences. Given a space
Ω ⊆ Rd of locations, consider the problem of locating one
or more facilities at one of these locations. An agent i has
single-peaked preferences if she has one location, τi ∈ Ω (the
peak), where she most prefers a facility to be located, and if
her preference decreases as the location of the closest facility
moves farther away from her peak. The facility location prob-
lem can occur in many real-world scenarios. For instance, if
Ω ⊆ R2, it could represent the problem of deciding where to
place a public facility, such as a swimming pool, in a town.

We have a complete understanding of this problem when
only one facility must be chosen. If the outcome space is 1-
dimensional (e.g. Ω = [0, 1]) it has long been known [Black,

1948] that choosing the median of the agents’ peaks is the
strategy-proof mechanism that minimizes the sum of the
agents’ distances to the outcome. Moulin [1980] devel-
oped a complete characterization of all strategy-proof social
choice rules in the 1-dimensional, 1-facility setup, which was
later generalized to multi-dimensional outcome spaces [Bor-
der and Jordan, 1983; Barberà et al., 1993].

The design problem for the multi-facility setting is both
less well understood, and has negative approximation re-
sults. For n agents and 2-facilities, Procaccia and Ten-
neholz [2013] give a lower-bound of 3/2 − O(1/n) and an
upper-bound of n−1, for deterministic, strategy-proof mech-
anisms. Amongst follow-on work [Lu et al., 2010; Wang
and Lu, 2009; Alon et al., 2010; Fotakis and Tzamos, 2014;
Sui et al., 2013], of particular note is a proof that tightens
the result of Procaccia and Tenneholz to show that the best
approximation ratio is exactly n − 2 [Fotakis and Tzamos,
2014]. Moreover, for K > 2 facilities and anonymous
strategy-proof mechanisms, the approximation ratio becomes
unbounded [Fotakis and Tzamos, 2014].

In light of these negative, worst-case approximation re-
sults, we adopt the goal of minimizing expected social cost,
both unweighted and weighted. We assume that there is
a joint distribution D over the agents’ single-peaked utility
functions (u1, . . . , un). As with most works in the multi-
facility literature, we take Ω to be a subset of the real line.

Our solution approach uses the framework of machine
learning to find optimal mechanisms. While there have been
previous works that have used machine learning for the de-
sign of mechanisms without money [Narasimhan et al., 2016;
Narasimhan and Parkes, 2016], none of them present a prac-
tical, flexible approach for designing general mechanisms.

Building on the recent success of using deep learning for
the design of revenue-optimal auctions [Dütting et al., 2017;
Feng et al., 2018], we model a mechanism as a feed-forward
network, and optimize its parameters with the social cost as
the loss function. The following are our contributions:

• We show that the class of multi-facility generalized me-
dian rules is PAC learnable under product distributions
(Section 3). This result leverages the characterization
result of Moulin [1980] as well as the recent framework
of Cai and Daskalakis [2017] to take advantage of the
independence of agents’ reports.



• We develop a neural network, MoulinNet, for learning
from the class of generalized median rules (Section 4).
This is analogous to characterization-based approach of
Dütting et al. However, unlike their networks, we need
to deal with an exponential blow-up in parameters, re-
quiring new tricks to make the training tractable. For a
single facility problem, our network can represent to an
arbitrary accuracy any strategy-proof mechanism. This
is however not the case for K > 1 facilities.

• For K > 1, we provide a more general approach
that does not rely on characterization results and learns
mechanisms that yield very low ex-post regret (Section
5). We model a mechanism as a fully-connected net-
work, the RegretNet-nm, and impose explicit constraints
for strategy-proofness on the training problem. Our ap-
proach builds on the agnostic framework of Dütting et
al. and is the first to successfully apply deep learning for
the design of mechanisms without money.

• In our experiments (Section 6), RegretNet-nm learns
mechanisms that are essentially strategy-proof, with so-
cial costs comparable to or lower than the best percentile
and dictatorial rules. The RegretNet-nm mechanisms
are often better than the ones learned by MoulinNet.
The generality of RegretNet-nm is particularly benefi-
cial when the design objective is the weighted social
cost, or when the utility distribution is non-independent.
These are settings where the less flexible mechanisms in
the literature do not perform as well.

1.1 Related Work
Conitzer and Sandholm [2002] introduced the paradigm of
automated mechanism design (AMD). In this work, design
was achieved through integer linear programming techniques,
with explicit, enumerative representation of functions and in-
centive constraints. This made their approach difficult to
scale. Since then, several papers have adopted machine learn-
ing for economic design problems.

Procaccia et al. [2009] showed learnability of specific
classes of voting rules, but without requiring strategy-
proofness. Xia [2013] introduced specific axiomatic prop-
erties still without incentive considerations. The first paper
to use learning in the context of design under incentive con-
straints is Dütting et al. [2015], who use support vector ma-
chines (SVMs) to learn payment rules that are maximally
strategy-proof with respect to a given outcome function.

Our paper builds on the framework of Dütting et al. [2017],
extending it for the design of mechanisms without money. In
regard to facility location, Narasimhan et al. [2016] have pre-
viously adopted an SVM-based approach to automated design
without money, but specialize to a specific family of rules,
and to single facility only. We search over a richer space of
mechanisms and handle multiple facilities.

Recent work has also studied the sample complexity of
learning revenue-optimal auctions [Cai and Daskalakis, 2017;
Morgenstern and Roughgarden, 2016], and assignment mech-
anisms with and without money [Narasimhan and Parkes,
2016]. To the best of our knowledge, we provide the first
sample complexity results for the facility location problem.

2 Preliminaries
There are a set of agents N = {1, . . . , n} and a set of lo-
cations Ω. In this paper, we work with Ω = [0, 1]. We are
interested in the problem of locating K facilities among lo-
cations in Ω. Each agent i has a preference over Ω for where
a facility needs to be located, represented by a utility func-
tion ui : Ω → R that associates a real value with each lo-
cation. Let Ui be the set of permissible utility functions.
Let u = (u1, . . . , un) denote a profile of utilities, and de-
note the set of all such tuples by U =

∏n
i=1 Ui. Further, let

u−i = (u1, . . . , ui−1, ui+1, . . . , un) denote all utility func-
tions other than ui, and U−i =

∏n
j 6=i Uj .

Each agent cares about the location of its closest facility.
As such, an agent’s utility function induces a utility for an
outcome, o = (o1, . . . , oK), which specifies a location for
each facility. By a slight abuse of notation, we write ui(o) =
maxk∈{1,...,K} ui(ok). We require single peaked preferences.

Definition 1 (Single-peaked preferences). For locations Ω ⊆
R, a function ui : Ω → R≥0 is single-peaked if and only if
there exists a unique point a ∈ Ω (the peak of u), denoted by
a = τ(ui), such that for all x, y ∈ Ω, if either y > x > a or
y < x < a, then ui(y) < ui(x) < ui(a).

As one moves away from the peak τ(ui) of utility func-
tion ui, the location becomes less preferred. Following from
Procaccia and Tennenholtz [2013] and subsequent work, we
assume u(x) = −|x− a|, where a = τ(u) is the peak.

A mechanism for facility location f : U → ΩK takes re-
ports of agent utilities as inputs, and outputs the locations in
Ω for the K facilities. We use fk(u) to denote the location
of the k-th facility for input u. A mechanism is strategy-
proof if agent i cannot strictly increase her utility by misre-
porting her utility, whatever the inputs from others, i.e. for all
i ∈ N, u ∈ U, u′i ∈ Ui, we have ui(f(u′i, u−i)) ≤ ui(f(u)).

We denote by Msp ⊆ M the space of all strategy-proof
mechanisms for the facility location problem (leaving K im-
plicit). We assume that the agent utilities are sampled from
a joint distribution D over U , with full support on U . We
will sometimes assume that D is a product distribution, i.e.
D =

∏n
i=1Di for independent distributions Di on Ui.

The design objective is to find the strategy-proof mecha-
nism f ∈ Msp that minimizes expected social cost (or a

weighted variant): gsc(f ;D) = −Eu∼D
[
1
n

∑n
i=1 ui(f(u))

]
.

We do not have direct access to D, but are provided a sample
of profiles S = {u(1), . . . , u(R)} drawn i.i.d. from D.

3 Learnability of Generalized Median Rules
As a first step, we ask if known classes of strategy-proof
mechanisms in the literature are learnable. Moulin provided
a characterization of unanimous strategy-proof mechanisms
for a single facility, later generalized by Border and Jordan:

Theorem 1 (1-facility generalized median rules [Moulin,
1980; Border and Jordan, 1983]). A unanimous mechanism
f : U → Ω is strategy-proof if and only if it is a generalized
median rule, i.e. for each S ⊆ {1, . . . , n}, there exists some



aS ∈ Ω s.t. for all (u1, . . . , un) ∈ U ,

f(u) = min
S⊆{1,...,n}

max

{
max
i∈S
{τ(ui)}, aS

}
. (1)

There is no complete characterization of strategy-proof
mechanisms for multi-facility location.1 Still, we can lever-
age Moulin’s result and consider a rich (if incomplete) family,
by combining single-facility mechanisms in the natural way.
Definition 2 (Multi-facility generalized median rules). Let
MGM denote the class of multi-facility generalized median
rules given by f = (f1, . . . , fK), where each fk is a 1-facility
generalized median rule for parameters akS ∈ Ω, S ⊆ N .

The set of multi-facility generalized median rules is a strict
superset of the set of multi-facility percentile rules consid-
ered in [Sui et al., 2013]; all multi-facility percentile rules are
anonymous, but this is not true of all rules inMGM. It is im-
mediate that MGM is strategy-proof for all K ≥ 1. To see
this, suppose an agent i can improve her cost by misreporting
her utility. Let fk(u) and fk′((u′i, u−i)) be the closest facility
to the agent under a truthful report and the misreport. Clearly,
fk′((u

′
i, u−i)) also yields lower cost to the agent than fk′(u),

which is a contradiction to the strategy-proofness of fk′ .
Definition 3 (PAC learnability). A class of mechanisms M
on U is probably approximately correct (PAC) learnable over
product distributions if there exists an algorithm A, such that
for any product distribution D over U , any ε > 0, and any
δ ∈ (0, 1), running A on an i.i.d. sample from D of size
poly(1/ε, 1/δ) gives a function f̂ ∈ F s.t. gsc(f̂ ;D) ≤
inff∈M gsc(f ;D)+ε, with probability 1−δ over the sample.

Despite there being an exponential number of parameters
akS in defining a mechanism in classMGM, we have:
Theorem 2. MGM is PAC learnable over prod. distributions
with O

(
n2(K2 log2K+n2)

ε2 · log
(
n3(K logK+n)

εδ

))
samples.

Proof Sketch. Consider the class of social cost func-
tions {u 7→

∑n
i=1 min1≤k≤K |τ(ui)− fk(u)| : f ∈M}

from mechanisms in M. The proof involves estab-
lishing a uniform convergence sample complexity
bound for this class. Specifically, we use the recent
framework of Cai and Daskalakis [2017] to exploit
the product structure of D and break down the over-
all analysis into an analysis of the following projected
functions from the class for each i, j ∈ [n]: Hi,j =
{uj 7→ min1≤k≤K |τ(ui)− fk(uj , u−j)| : f ∈M, u−i ∈ U−i}

Each function in Hi,j captures the effect agent j’s reports
have on agent i’s social cost, fixing the reports of agents
other than j. It can be shown that the functions in Hi,j are
piece-wise linear with O(K) pieces if i = j and O(1) pieces
if i 6= j, and correspondingly have a pseudo-dimension2

O(K logK) if i = j and O(1) if i 6= j. Standard results
[Anthony and Bartlett, 2009] allow us to derive a uniform
convergence bound for each Hi,j . An application of the re-
sult of Cai and Daskalakis then completes the proof.

1Ehlers and Gordon [2011] and Heo [2013] provide characteri-
zations for the special case K = 2 under different assumptions.

2The pseudo dimension of a class F of functions f : X → R is
the VC-dimension of the class {(x, y) 7→ sign(f(x)−y) : f ∈ F}.
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Figure 1: Modeling aS using a monotone network hw,b. The input
ν(S) is a boolean encoding of a set S ⊆ N .

4 MoulinNet for Generalized Median Rules
Equipped with the above learnability result, we now develop
a computational procedure for learning from the class of gen-
eralized median rules, by modeling these rules using neural
networks. We start with the case of a single facility.

Recall that a generalized median rule depends only on the
agent peaks τ(ui). For the single facility location on [0, 1] it
is w.l.o.g. to only consider mechanisms that operate on agent
peaks [Border and Jordan, 1983]. It is also w.l.o.g. to assume
that the parameters aS are monotone, i.e. aS ≥ aT , ∀S ⊂ T .

One computational approach would search direclty over
the space of parameters {aS}S⊆N . But this does not scale
because there are exponentially many parameters. Instead we
parametrize each aS using a monotone feed-forward neural
network. For this, we use a neural network h : {−1, 1}n → R
that maps a n-dimensional binary representation of set S to
a real value. Any S ⊆ N can be represented as a binary
vector x ∈ {−1, 1}n, with xi = 1 if and only if i ∈ S.
We use ν(S) to denote the binary encoding of S, and define
aS = h(ν(S)). With this, the parameters to optimize are
those that parametrize neural network h.

We say h is monotonically decreasing if ∀x, x′ ∈
{−1, 1}n, i ∈ [n], (xi ≥ x′i) ∧ (x−i = x′−i) =⇒ h(x) ≤
h(x′). If h is monotone then the resulting {aS}S⊆N are also
monotone. We appeal to a characterization of Sill [1998]
to construct monotone neural networks. Sill shows that any
bounded, monotone function h : {−1, 1}n → R can be ap-
proximated to arbitrary precision using the following param-
eterization, for suitable choice of positive integers L, J , pa-
rameters wlj ∈ Rn−, blj ∈ R, l ∈ [L], j ∈ [J ]:

aS = hw,b(ν(S)) = min
l∈[l]

max
j∈[J]

{〈wlj , ν(S)〉+ blj} . (2)

Figure 1 contains a representation of this function as a feed-
forward network, taking ν(S) as input and outputting aS .

Thus for any choice of wlj ∈ Rn−, blj ∈ R, j ∈ [J ], l ∈
[L], L, J ∈ N, the following single-facility mechanism is
strategy-proof:

fw,b(u) = min
S⊆N

{
max
i∈S

{
τ(ui), h

w,b(ν(S))
}}

. (3)

By choosing parameters L and J to tune the complexity
of the function class, (3) gives us a way to parametrize all
1-facility generalized median rules.
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Figure 2: MoulinNet for 1 facility. hw,b is shown in Fig 1. We pre-
compute π and Sπ,i for each example during training.

The method in (3) still involves a minimum over |S| = 2n

functions of wlj , blj . We can compute (3) efficiently by ex-
ploiting the fact that the aS values are monotone. In particu-
lar, let π denote a permutation of the reported peaks in sorted
order, i.e. τ(uπ(1)) ≤ · · · ≤ · · · ≤ τ(uπ(n)). For 1 ≤ i ≤ n,
we let Sπ,i = {π(1), . . . , π(i)}. We can show that:

fw,b(u) = min
1≤i≤n

[
max[hw,b(ν(Sπ,i)), τ(uπ(i))]

]
.

Theorem 3. (3) can be computed in time O(z · n+ n log n),
where z is the time taken for a single invocation of hw,b.

The proof is omitted due to lack of space. The resulting
mechanism for a single facility is given by a feed-forward
neural network that takes peaks τ(u1), . . . , τ(un) as inputs
and outputs the location of the facility. This architecture, re-
ferred to as MoulinNet, is shown in Figure 2. When there are
K ≥ 2 facilities, we use K replicas of the network, with K
parameter sets, each deciding the location of a facility. We
know that this K-facility generalized median rule is strategy-
proof. We optimize the network parameters with the social
cost as the loss function, which is estimated from sample S.

5 RegretNet-nm for General Mechanisms
We now develop a general approach that is not limited by ex-
isting characterization results, and which learns mechanisms
that have low ex-post regret. For this, we extend the agnostic
framework of Dütting et al. [2017]. We model a mechanism
as a feed-forward neural network, which may not be strategy-
proof for all parameter assignments. We optimize the network
parameters to minimize a given cost objective, while seeking
to achieve strategy-proofness. The search space can be con-
trolled by varying the depth and width of the neural network.

To measure the deviation of a mechanism f from strategy-
proof, we adapt the notion of regret to facility location mech-
anisms [Dütting et al., 2015; 2017]. We define the expected ex
post regret from a mechanism f to an agent i as the (expected)
maximum gain in utility that the agent can get by misreport-
ing her preferences:

rgti(f) = Eu∼D
[

max
u′i∈Ui

ui(f(u′i, u−i))− ui(f(ui, u−i))

]
.

The network architecture for a mechanism is described in
Figure 3. The network is fully-connected, has L hidden lay-
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Figure 3: RegretNet-nm Architecture

ers, takes n agent peaks τ(u1), . . . , τ(un) as input and out-
puts the locations of the K facilities z1, . . . , zK . Specifically,

fw(u) := wLσ̄(wL−1 · · ·w2(σ̄(w1 · τ(u))) · · · ), (4)

where τ(u) = (τ(u1), . . . , τ(un)), wi ∈ RHi×Hi−1 , with
H0 = n,HL+1 = K, are the parameters of the network,
H1, . . . ,HL are the number of units in each hidden layer of
the network, and σ : R → R is a nonlinear activation func-
tion, and σ̄(A) applies σ to every entry of a real matrixA. We
use the ReLU activation function σ(x) = max{0, x}.

Let w ∈ Rd denote all the network parameters. The loss
function L(w) is the expected social cost or a weighted vari-
ant. Our goal is to minimize the loss subject to the expected
ex post regret being zero for all agents. Since D has full
support on U , this implies that the network is strategy-proof
(except for events with zero measure):

min
w∈Rd

L(w) s.t. rgti(f
w) = 0, ∀i ∈ N.

Following Dütting et al. [2017], one way to estimate the
regret from a sample u(1), . . . , u(R) is to search over a subset
of misreport peaks in [0, 1] for agent i, say at a certain gran-
ularity 1/M ; we denote the average of this quantity over the
sample by ˆrgti(f

w). While training, searching overM misre-
ports can be expensive, so we adopt a new, pairwise estimate
for training that makes better use of each utility calculation:

ˆprgti(f) =
1

R

R∑
j=1

max
τ(u′i),τ(u

′′
i )∈

{β1,...,βM′}

(?) (5)

(?) = u′i(f(u
′′
i , u

(j)
−i ))− u

′
i(f(u

′
i, u

(j)
−i )),

where β1, . . . , βM ′ ∼ [0, 1] are sampled independently and
uniformly. For each example j, (5) computes the maxi-
mum utility agent i could gain if her true peak was one
of β1, . . . , βM ′ and she chose to misreport it as one of
β1, . . . , βM ′ . To include T misreports per agent, the standard
definition requires us to performR(T +1) utility evaluations,
whereas (5) requires at most R

√
T + 1 utility evaluations.

During training, we adopt the augmented Lagrangian
solver in Dütting et al. [2017]. We minimize the empirical
loss L̂(w) = − 1

Rn

∑R
j=1

∑n
i=1 u

(j)
i (fw(u(j))), while seek-

ing to satisfy the constraints ˆprgti(f) = 0 for each i. The
following is the Lagrangian for the above optimization prob-
lem, augmented with a quadratic penalty term:

L̂(w) + λt ·max
i∈N

ˆprgti(f
w) + ρ

(
max
i∈N

ˆprgti(f
w)
)2
, (6)



K Perc. Dict. Cons. MoulinNet RegretNet-nm NonSP
sc maxi ˆrgti

1 0.200 0.267 0.253 0.201 0.201 0.0003 0.200
2 0.0833 0.126 0.126 0.0837 0.0833 0.0003 0.0708
3 0.0335 0.0609 0.0834 0.0353 0.0376 0.0009 0.0278
4 0.0171 0.0236 0.0635 0.0188 0.0177 0.0024 0.0083

Table 1: n = 5, unweighted social cost. Compares the benchmark
mechanisms (percentile, dictator and constant), MoulinNet, Regret-
Net, and the socially optimal, non-strategyproof mechanism. The
best results (to within 0.001) are in bold. For RegretNet, we also
provide the expected ex post regret.

where ρ > 0 controls the weight on the quadratic term.
The solver alternates between updates on the parameter λt:

λt+1 = λt + ρ ·maxi∈N ˆprgti(f
w), and using stochastic gra-

dient descent (SGD) to optimize the network parameters w
to minimize the Lagrangian. The SGD involves multiple up-
dates on w, each computing the gradient of (6) w.r.t. w.

Since the optimization problem (5) is non-convex, and the
solver works with estimates of the loss and regret from a
sample, the learned mechanism may have a small, residual
regret.3 In our experiments, we find that the mechanisms
learned by RegretNet-nm have a non-zero regret on the test
sample, but the regret is often negligibly small, indicating that
the mechanisms are essentially strategy-proof.

6 Experimental Results
We describe the results of our experiments on learning mech-
anisms for multi-facility location problems using MoulinNet
and RegretNet-nm. MoulinNet serves as as a benchmark for
the best that can be achieved with characterization results.

We implement RegretNet-nm with L = 4 hidden layers,
each with 40 units. In the augmented Lagrangian solver, we
performed 1000 updates on λ and 50 gradient updates on w
for every one update on λ. We implement MoulinNet with
L = K = 3. In both cases we make use of the Tensorflow
library. We use the Adam algorithm for optimizing w (with
mini-batches of size 500).4 We repeat training with 5 ran-
dom initializations, and choose the network from the run with
smallest regret (based only on the training data).

We train RegretNet with M ′ = 5 by generating new in-
stances and misreports for each mini-batch. We train Moulin-
Net with multiple passes through a single batch of 1000 ex-
amples. Both networks take less than half hour to train on
a Tesla K20Xm GPU. Both networks are evaluated based
on their social cost on a held-out test set of 2000 examples.
For RegretNet, we also report its empirical regret: maxi ˆrgti,
where ˆrgti is computed using 50 misreports from [0, 1].

We compare our approach against standard mechanisms
from the literature: the best percentile rule [Sui et al., 2013],
the best dictatorial rule, and the best constant rule, all found
by a brute-force search, which is quick for these rules.5

3See Nocedal and Wright [1999] for convergence properties of
the augmented Lagrangian method on non-convex problems.

4The learning rate in Adam was initialized to 0.005 for
RegretNet-nm (and decayed by a factor 0.99 every 100 updates) and
to 0.1 in MoulinNet. Weights were initialized as i.i.d. draws from
N (0, 0.01). The offsets in RegretNet-nm were initialized to 0.1.

5A percentile rule locates each facility at a fixed percentile of the

(a) K = 2 (b) K = 4

Figure 4: Social cost and regret ( ˆrgt) on test set as a function of
run-time. We compare RegretNet-nm (red), which uses ˆprgt in the
learning formulation (6), with the approach of Dütting et al. [2017]
(blue) that uses ˆrgt instead.

(a) K = 2 (b) K = 3 (c) K = 4

MoulinNet

(d) K = 2 (e) K = 3 (f) K = 4

RegretNet-nm
Figure 5: n = 5, unweighted social cost. Histograms of facility
percentiles chosen by RegretNet and MoulinNet mechanisms. For
each training instance, the 4 facility percentiles chosen by the net-
work are sorted and shown in different colors. The blue bar denotes
the smallest of the 4 facilities, orange the second smallest, and so
on.

Unweighted Social Cost
We begin with social cost as the design objective. We con-
sider n = 5 agents, whose peaks are distributed i.i.d. uni-
formly on [0, 1]. We focus primarily on K = 2, 3 and 4 facil-
ities; forK = 1 both MoulinNet and RegretNet-nm nearly al-
ways place the facility very close to the median of the agents’
peaks.

Table 1 shows the social cost on the test set for the mech-
anisms learned by RegretNet-nm, MoulinNet and the other
baselines. We also report the social cost for the optimal
(non-strategy-proof) mechanism. Both kinds of networks
yield similar performance as the best percentile rule. The
RegretNet-nm mechanisms have negligible regret, indicating
that they are essentially strategy-proof.

Figure 4 plots the average social cost and empirical regret
for RegretNet-nm on the test set as a function of running time.
With increasing number of solver updates, the regret can be
seen to approach zero. The plot also includes the approach of
[Dütting et al., 2017], which uses the standard regret defini-
tion ˆrgt in the Lagrangian formulation (6). This method was
trained with 20 misreports per agent, which is effectively the
number of misreports per agent RegretNet-nm obtains with

reported peaks. A dictatorial rule locates each facility at the peak of
a fixed agent. A constant rule locates each facility at a fixed point.



(a) i = 1 (b) i = 2 (c) i = 3

RegretNet-nm (maximum regret)

(d) i = 1 (e) i = 2 (f) i = 3

RegretNet-nm (75th percentile regret)

(g) i = 1 (h) i = 2 (i) i = 3

MoulinNet
Figure 6: n = 5,K = 3, unweighted social cost. Plots of mecha-
nism outputs as a function of report of a single agent i ∈ {1, 2, 3},
keeping the reports of other agents fixed. The location of each facil-
ity is shown in a different color. (a)–(c): Plots for RegretNet-nm on
instances where ˆprgti, i = 1, 2, 3 are respectively maximum (in a
sample of size 40). (d)–(f): Plots for RegretNet-nm on instances
where ˆprgti, i = 1, 2, 3 are in the 75-th percentile of the regret
values. (g)–(i): Plots for MoulinNet (strategy-proof) on a random
instance.

M ′ = 5, Clearly, by using the pairwise regret ˆprgt in (6),
RegretNet-nm achieves a notable speed-up.

We next take a closer look at the learned mechanism. Fig-
ure 5 shows the histograms of the percentiles of the facili-
ties chosen by the RegretNet-nm and MoulinNet mechanisms
for the test set examples for K = 2, 3, 4.6 The peaks on
percentiles 0, 1/(K − 1), 2/(K − 1), . . . , 1 indicate that the
networks use the percentiles of agent reports to make deci-
sions. For K = 2, 3, the mechanisms learned by RegretNet-
nm approximate the best percentile rules. For K = 4, the
percentiles at which RegretNet-nm and MoulinNet place fa-
cilities are not the same for all instances.

To understand the inputs on which the RegretNet-nm
mechanisms incur a small regret, we visualize the misreports
that are useful for agents, for K = 3. Figure 6 plots the loca-
tions of the 3 facilities as a function of the report of a single
agent i, holding the reports u−i of all other agents fixed.

For fixed u−i, letRu−i denote the set of all locations where
a facility is placed by a mechanism f for some report ui of
agent i. Then f is strategy-proof iff for every ui, f(ui, u−i)
places one facility at the location in Ru−i

closest to τ(ui).
In other words, strategy-proof rules have facilities along

the line y = x, and y = const elsewhere. The plots in row

6If p1, . . . , pn are the agent peaks in sorted order, then a facility
at location x has percentile 0 if x ≤ p1, has percentile 1 if x ≥ pn,
and has percentile i−1

n−1
+ x−pi

(n−1)(pi+1−pi)
if pi ≤ x < pi+1.

Distr. Perc. Dict. Cons. MoulinNet RegretNet-nm NonSP
sc maxi ˆrgti

Unif 0.056 0.053 0.085 0.043 0.041 0.0005 0.032
D1
dep 0.0216 0.0351 0.0937 0.0232 0.0204 0.0003 0.0124
D2
dep 0.0333 0.0173 0.0943 0.0194 0.0174 0.0001 0.0157

Table 2: Row 1: uniform distribution, n = 9,K = 3, weighted so-
cial cost. Rows 2 and 3: non-independent distribution, n = 5,K =
3, unweighted social cost.

1 (inputs with max. regret in RegretNet) do not satisfy this
property. Suppose in (c), agent 3’s true peak is at 0.06. Then
there is a value in [0.4, 0.6] that she can deviate to and have
one of the facilities (orange) placed at her peak. In row 3
(strategy-proof MoulinNet), all the plots satisfy this property.

Weighted Social Cost
In order to demonstrate the flexibility of our framework, we
also consider weighted social cost as the design objective:
−Eu∼D

[
1∑n

i=1 γi
·
∑n
i=1 γiui(f(u))

]
, where γi is a weight

on agent i and may correspond to the importance of agent
i to society. In this setup, there are n = 9 agents, and all
valuations are i.i.d. uniform on [0, 1]. Agents 1 and 2 are as-
signed a weight of 5, while the remaining agents are assigned
a weight of 1. As shown in Table 2 (first row), RegretNet-nm
and MoulinNet yield significantly smaller social cost than the
baseline mechanisms.

Non-Independent Valuations
Finally, we show that our approach can be used to find op-
timal mechanisms for non-product distributions. Let n =
4,K = 3. We consider two distributions D1

dep and D2
dep,

where it is not immediately clear what the optimal strategy-
proof mechanism is. In both, the peakX1 for agent 1 is drawn
from U([0, 1]), and the peak for each agent i = 2, 3, 4 is set
to one of the following piece-wise linear functions: X1 + σi,
f1(X1)+σi, f2(X1)+σi, where σi ∼ N (0, 0.01).7 InD1

dep,
the agent chooses one of the 3 functions with equal probabil-
ity, independent of the others. In D2

dep, the selection is made
uniformly over all possibilities where each function is chosen
by exactly one agent. The results are shown in Table 2 (rows
2–3). The flexibility of RegretNet-nm allows it to outperform
all the benchmarks. For D2

dep, the dictatorial rule that places
the facilities at the peaks of agents 2, 3, 4 performs well since
each of the functions X1, f1(X1), f2(X1) is chosen by ex-
actly one agent.

7 Conclusion
We have shown that neural networks can be successfully ap-
plied to design near-optimal, low ex-post regret mechanisms
for the multi-facility location problem. This opens the door
for using deep learning to design mechanisms for other set-
tings without money such as matching and allocation prob-
lems. In the future, it would be interesting to consider cost
functions that are general functions of distance to nearest fa-
cility, to study generalization properties of the ex post regret,

7f1(x) = 2/3 · 1[0 ≤ x < 1/3] + 1/4 · 1[1/3 ≤ x < 2/3], and
f2(x) = 1/3 + 2/3 · 1[0 ≤ x < 1/3] + 5/12 · 1[1/3 ≤ x < 2/3].



to develop networks that are invariant to the number of agents,
and to allow for randomized mechanisms.
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de Montréal, 2011.
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