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Abstract

We consider the truthful implementation of an efficient decision policy when
agents have dynamic type and are periodically-inaccessible, with agents unable
to report type information or make payments while inaccessible. This concept
of inaccessibility includes arrival-departure dynamics as a special case. We
generalize the dynamic-VCG (or pivot) mechanism [Bergemann and Välimäki,
2010] to this environment, emphasizing its position within a family of dynamic
Groves mechanisms. In considering the special case of arrival-departure dy-
namics and dynamic type, the mechanism is within-period ex post incentive
compatible so long as arrivals are independent of past arrivals, conditioned
on actions of the center. For arrival-departure dynamics and static types,
the mechanism is payoff equivalent upon arrival to the online-VCG mecha-
nism [Parkes and Singh, 2003], serving to unify two previously disparate mech-
anisms and highlighting a tradeoff between ex post participation and ex post
no-deficit properties.

∗This paper subsumes a previous version entitled “Efficient Online Mechanisms for Persistent,
Periodically Inaccessible Self-Interested Agents”, dating from June, 2007. Thanks to the referees
and editor of an earlier version for valuable feedback, seminar participants at Dagstuhl, Stonybrook,
GAMES, Cornell, Yale, EPFL, NYU Stern, Aarhus, and Stanford, and Sven Seuken for useful
comments.
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1 Introduction

Many interesting problems of mechanism design are dynamic; for instance, a re-
peated allocation problem in which agents are learning their value for a resource,
selling a time-sensitive good such as a theater ticket to impatient buyers that ar-
rive at different times, or allocating a dynamic stream of user impressions to a
shifting population of online advertisers. In designing incentive compatible mecha-
nisms for dynamic and uncertain environments, existing models generally consider
either a dynamic population with static, private information [Lavi and Nisan, 2004;
Parkes and Singh, 2003] or a static population of agents with dynamic, privately
revealed information [Athey and Segal, 2007; Cavallo et al., 2006; Bergemann and
Välimäki, 2010]. The former problems have been described as those of online auc-
tions or online mechanism design (emphasizing the connection to online algorithm
problems of computer science and operations research), while the latter have been
described as problems of dynamic mechanism design (and allow for agents with
uncertain local problems, including agent learning.)

In this paper, we present a unified model that covers both dynamic populations and
dynamic types, by allowing agents to transition between states that may be inacces-
sible to a mechanism center. While inaccessible, an agent is unable to communicate
with the center or receive payments. This model includes arrival-departure dynam-
ics as a special case (where an agent becomes accessible for a contiguous number
of periods), while extending efficient mechanism design to environments of practi-
cal interest in which agents may become disconnected from a mechanism because
of faulty technology or reasons of limited attention or costly communication. For
example, a bidder in an online auction becomes inaccessible when he is offline (but
may remain interested in some goods in the market), a worker in an online labor
market becomes inaccessible when he is focused on completing an assigned task (but
may remain interested in being assigned a new task), and so forth. To motivate
models of arrival-departure dynamics, consider a tourist who arrives in a new city
and competes for theater tickets, a firm that decides on Monday to seek a temporary
clerical assistant for a couple of days, or an R&D organization bidding for access to
an on-demand computational ‘cloud’ facility.

Our results extend the dynamic-VCG (or pivot) mechanism [Bergemann and
Välimäki, 2010] to this environment of dynamic populations and dynamic types.
The generalized mechanism is within-period ex post incentive compatible, provid-
ing truthful reporting for accessible agents who form beliefs about the types of
inaccessible agents that are consistent with the most recent reports of these agents.
Specializing to arrival-departure dynamics and static types we also unify two dis-
parate strands in the literature, by establishing payoff equivalence upon arrival be-
tween an instantiation of the dynamic-VCG mechanism [Bergemann and Välimäki,
2010] (originally described for a dynamic type, static population model) and the
online-VCG mechanism [Parkes and Singh, 2003]. The two mechanisms are both
within period ex post incentive compatible in this special case, but incomparable in
terms of participation and no-deficit properties.
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Our technical results emphasize that these mechanisms are all instances of a family
of dynamic Groves mechanisms, insisting that the flow payoff to an agent in any
period in which it is accessible is aligned with the total expected payoff of the sys-
tem and some offset that is independent of its report in this or any future period.
In addition to providing a simple explanation for incentive compatibility, familiar
from standard Groves [Groves, 1973] intuitions, this yields a new proof of incen-
tive compatibility of dynamic-VCG mechanisms. It is known that the incentive
compatibility of the dynamic-VCG mechanism requires private values, and type
transitions that are independent, conditioned on the actions of the center. Special-
ized to arrival-departure dynamics, we observe that this equates to arrivals that are
independent of previous arrivals, conditioned on actions of the center. For example,
the mechanisms described here fail to be incentive compatible if the probability that
a high bid will be made on Tuesday depends on whether or not a high bid was made
on Monday. We expect this observation to be important in practical applications.

1.1 Related work

We categorize the related work by the kind of dynamics considered. First, we review
related work for a problem in which there is a persistent population of agents each
with a dynamic type. This includes the general purpose, efficient mechanisms of
Athey and Segal [2007], Bergemann and Välimäki [2010] and Cavallo et al. [2006],
along with mechanisms that have been developed for special cases. Then we re-
view related work for problems with a dynamic population of agents each with
a static type. This includes the general purpose, efficient mechanism of Parkes
and Singh [2003], as well as a number of mechanisms for special cases including
both revenue-maximizing mechanisms and prior-free mechanisms that are analyzed
within a worst-case rather than Bayesian framework.

Static population, dynamic type. Athey and Segal [2007] obtain a Bayes-Nash
incentive compatible, efficient and budget-balanced mechanism for a persistent-
population, dynamic type environment with private values and independent type
transitions. The mechanism is ex ante individual rational, extending the expected
externality mechanism [Arrow, 1979; d’Aspermont and Gérard-Varet, 1979]. The
authors also provide sufficient conditions for interim participation in an infinite
horizon setting with sufficiently patient agents. Bergemann and Välimäki [2010] in-
troduce the dynamic-VCG (pivot) mechanism for the same environment, providing
within-period ex post incentive compatibility and within-period ex post individual-
rationality. The dynamic-VCG mechanism is ex post no deficit in economic envi-
ronments without positive externalities (e.g., one-sided auctions and social-choice
problems, but not double auctions or exchanges). The mechanism is unique when
an efficient exit property is imposed, which requires that no transfers should occur
once an agent’s reports are no longer pivotal.1 Applications are given to a schedul-

1The uniqueness result holds for static population, dynamic type environments but not for
dynamic population, static type environments, in which incentive-compatibility constraints are
only required upon arrival.
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ing problem, and also to a problem with Bayesian learning by agents, modeled as a
multi-armed bandits auction.2 Cavallo et al. [2006] independently develop a varia-
tion on the dynamic-VCG mechanism for the same environment, modifying the team
mechanism to provide within-period ex post incentive compatibility but achieving
ex ante rather than (essentially) interim individual rationality. An application is
given to a multi-armed bandits auction. Pavan et al. [2009] identify necessary and
sufficient conditions for Bayes-Nash incentive compatibility, while requiring only ex
ante participation. In addition to obtaining a general revenue-equivalence result, the
analysis is applied to develop optimal dynamic mechanisms for problems in which
agent type transitions are modeled as an auto-regressive process. Cavallo [2008]

introduces a redistribution mechanism for multi-armed bandits auctions, returning
payments to agents while retaining ex post no deficit and within-period ex post in-
centive compatibility, and in emphasizing the family of efficient, dynamic Groves
mechanisms shows the revenue optimality of dynamic-VCG within this class.

An earlier literature developed dynamic mechanisms for persistent agents with time-
separable types. For example, Atkeson and Lucas [1992] consider a continuum
population in which agents receive new i.i.d. types each period, and character-
ize incentive-compatible distribution policies for a time-sensitive good. Athey et
al. [2004] adopt a dynamic mechanism design approach in analyzing the equilib-
rium behavior of two competing firms, each with a private cost sampled i.i.d. in
each period. Also related is the literature on dynamic contracting models, where
the focus is on the role of commitment in limiting what a principal can achieve in
problems with moral hazard; see Athey and Segal [2007] for a recent survey.

Dynamic population, static type. Parkes and Singh [2003] obtain the online-
VCG mechanism for an environment with a dynamic population and static type,
with a known probabilistic model of the arrival process and agents with private
values on sequences of decisions.3 The online-VCG mechanism allows for temporal
strategies, with an agent “lurking” before reporting its type. Static type means that
the value to an agent for all possible sequences of decisions by the center is known
to the agent upon its arrival. The online-VCG mechanism is within-period ex post
incentive compatible and efficient, collecting a single payment from an agent at, or
subsequent to, its commitment period, which is the first period in which all decisions
with respect to the agent’s value are determined. The mechanism satisfies ex post
participation and is ex ante no deficit in economic environments without positive

2Cremer et al. [2009] independently develop a special case of the Bergemann and Välimäki [2010]

dynamic-VCG mechanism for an application with one-time type transitions, modeling costly in-
formation acquisition by agents. In an application in which each agent has instead a general,
sequential process for costly value refinement, Cavallo and Parkes [2008] apply the dynamic-VCG
mechanism, obtaining a reduction to a multi-armed bandits auction problem and extending to
handle settings in which one agent can deliberate about the value of another agent.

3The authors establish that the online-VCG mechanism is Bayes-Nash incentive compatible. In
the current paper, we emphasize that the online-VCG mechanism achieves this stronger, ex post

incentive-compatibility property, and also formalize the requirement that arrivals be independent
of past arrivals, conditioned on actions.
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externalities.4 Parkes et al. [2004] relax to ε-incentive compatibility and present an
application to a scheduling problem. Mierendorff [2008] presents an application to
bidders that have a value schedule for receiving an item in different time periods,
obtaining a mechanism that is efficient and both ex post no deficit and ex post
individual-rational by refactoring the payment flows across periods.5

Considering also revenue optimality, together with impatient buyers (that depart
upon arrival and need an immediate decision), there are results selling identical
items by a deadline to unit-demand buyers [Vulcano et al., 2002] (see also [Gal-
lien, 2003]), selling commonly ranked, distinct items to sell by a deadline to buy-
ers with unit demand [Gershkov and Moldovanu, 2008a; 2008b], selling one unit
of an identical good each period [Said, 2009], and for an adaptive mechanism
that learns about the arrival process, under Bayesian and non-Bayesian learning
paradigms [Gershkov and Moldovanu, 2008c; 2009].6 For patient buyers, identi-
cal goods, and unit-demand, Pai and Vohra [2008] obtain regularity conditions for
provably revenue-optimal auctions and Mierendorff [2009] studies the irregular case.
For dynamic knapsack auctions, with a finite number of identical items to allocate
by a deadline to buyers that demand a particular quantity, Dizdar et al. [2009]

design efficient and revenue-optimal auctions for impatient buyers and Constantin
and Parkes [2009] develop a tractable, heuristic approach for patient buyers.

A sequence of papers adopt worst-case rather than expected-case analysis for the
design of online mechanisms. The objective is to develop mechanisms that can
do well relative to what would be possible in a static problem with all type in-
formation available in the first period, and whatever the actual (dynamic) real-
ization of agent types. Initiating this line of research, and adopting dominant-
strategy incentive compatibility as a solution concept, Lavi and Nisan [2004] pro-
vide a worst-case analysis for an online auction in which a number of identi-
cal goods are sold by some deadline to agents with marginal-decreasing values
for each additional good. Subsequent papers consider non-preemptive schedul-
ing [Ng et al., 2003], preemptive scheduling [Porter, 2004; Hajiaghayi et al., 2005;

4The mechanism is developed in the context of a finite time horizon, but it is a simple matter
to generalize it to an environment with an infinite time horizon and discounting, as we do in this
paper.

5In a remarkable early contribution, Dolan [1978] developed an efficient mechanism for a schedul-
ing problem with Poisson arrivals and agents with different delay costs. No consideration is given
to temporal strategies, and agents are only able to misreport their cost of delay, not their time of
arrival. The author characterizes the efficient policy and proposes to charge an agent the expected
externality it imposes on the system upon its arrival. Dolan also observes that the dynamic mech-
anism will not be dominant strategy incentive compatible because it requires agreement about the
probabilistic model of the arrival process, but offers no alternative equilibrium model.

6Also related is a literature that studies the problem of a monopolist selling multiple items of a
durable good via posted price mechanisms to dynamic arrivals of impatient, unit-demand agents.
For continuous time models, revenue-optimal price schedules are developed in a series of papers by
Kincaid and Darling [1963], Gallego and Van Ryzin [1994] for an exponential demand model, and
McAfee and te Velde [2008] for a Pareto demand model. Board [2008] develops revenue-optimal
pricing schedules with buyers that arrive over time and discount the future, in a discrete time
setting with time-varying demand.
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Cole et al., 2008], learning by the center via connections to the secretary prob-
lem [Hajiaghayi et al., 2004], for an uncertain supply of expiring items to a static
population [Mahdian and Saberi, 2006],7 for general combinatorial valuations [Juda
and Parkes, 2009], and in application to dynamic double auctions [Bredin et al.,
2007]. The scheduling problem has also been studied under alternative solution con-
cepts, including set-Nash [Lavi and Nisan, 2005] and undominated strategies [Lavi
and Segev, 2008].

2 The Model

We consider an environment with agents I = {1, . . . , n}, and an action a ∈ A

selected by a center in each of a sequence of discrete time periods, perhaps infinite,
from an action set A. Each agent i ∈ I has a dynamic type θi = (si, τi, ri) ∈ Θ,
where Θ is the set of possible types, that consists of state, si ∈ Si in state space Si,
a stochastic transition function, τi : Si×A → Si, such that for all si ∈ Si and a ∈ A,∑

s′
i
∈Si

Pr(τi(si, a) = s′i) = 1 (for probability function Pr), and a reward function,

ri : Si × A → <, which defines the value ri(si, a) to the agent for action a in state
si. Whether or not an agent is accessible depends on its state. Let At(si) ∈ {0, 1}
denote whether or not agent i is accessible given state si.

This is a private-values model, with reward ri(si, a) and next state τi(si, a), inde-
pendent of the state of other agents, conditioned on action a.8 An agent’s transition
and reward functions are invariant across time. It is the stochastic nature of tran-
sition function τi that makes this a dynamic type model, and requires receiving
multiple reports from an agent (e.g., a report of the agent’s current state in each
period that it is accessible). For the special case in which τi is deterministic, each
agent has a static type and its value is defined for all possible sequences of actions
by reporting its type in the first period.

State s0 ∈ S0 and stochastic transition function τ0 : S0 × A → S0, both known
to the center, allow the feasible actions in each period to depend on the history of
actions (which can be captured through this state variable.) For example, in an
auction this state includes information about which items have been allocated. A
reward to the center (or designer) of r0(s0, a) can be easily included and presents
no additional technical difficulty. To keep our presentation simple, we ignore r0 and
adopt fixed action set A in what follows, but both can be easily included.

7Working in this model, Babaioff et al. [2009] provide a hybrid analysis that is worst-case with
respect to agent valuations, but average-case with respect to a probabilistic model of supply and
requires dominant-strategy incentive compatibility with regard to any possible supply realization,
precluding the use of an online-VCG mechanism.

8Without inaccessibility, and thus precluding a setting with agent arrivals and departures, there
are no additional technical difficulties in also allowing for serially correlated types, where tran-
sitions τi(s

k

i , a, ω
k) ∈ Si and rewards ri(s

k

i , a, ω
k) also depend on an exogenous random process

ω0, ω1, . . . observable to all agents. Serially correlated types are considered, for example, in, Athey
and Segal [2007] and Cavallo [2008]. But this presents a problem with periodic inaccessibility, in-
cluding arrival-departure dynamics, because it presents an information externality [Gershkov and
Moldovanu, 2008c].
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Let θ0 ∈ Θ0 define (s0, τ0), and Θ = Θ0 × Θn denote the joint type space, with
Θn =

∏n
i=1Θ and θ ∈ Θ a joint type profile. Similarly, let S = S0 × S1 × . . . × Sn

denote the joint state space. Let τ(s, a) = (τ0(s0, a), τ1(s1, a), . . . , τn(sn, a)) ∈ S

denote the joint transition function, and adopt θ−i = (θ0, . . . , θi−1, θi+1, . . . , θn),
analogously for s−i. We assume discount factor 0 ≤ γ ≤ 1, common to all agents
and the designer, and let K denote a time horizon, perhaps infinite, with decision
periods indexed as t ∈ {0, 1, . . . ,K}. For K infinite we require γ < 1.

2.1 Always accessible agents

If every agent is always accessible, the associated social planner’s problem is a multi-
agent Markov decision process (MDP). Each action taken by the center creates
stochastic type transitions local to each agent, and generates a reward to each
agent. A decision policy π : S → A specifies an action for every joint state profile
s ∈ S.9 Fixing transition functions τ , the expected discounted reward, or flow value,
to agent i of policy π in state st is

Vi(s
t, π) = Est..K

[
K∑

k=t

γk−t rki (s
k
i , π(s

k))
∣∣ st, τ

]
, (1)

with sk = τ(sk−1, π(sk−1)) for k > t. Let V (st, π) =
∑

i∈I Vi(s
t, π). An efficient

decision policy, π∗, solves

π∗ ∈ argmax
π∈Π

V (s, π), ∀s ∈ S, (2)

where Π is the space of feasible policies. Let V−i(s
t, π) =

∑
j 6=i Vj(s

t, π) and
let π∗

−i denote a policy that is efficient for agents other than i, i.e., π∗
−i ∈

argmaxπ∈Π V−i(s, π),∀s ∈ S. The efficient policy depends on reward and tran-
sition functions, and we adopt notation π∗

θ (and similarly π∗
θ−i

) when this context
is not clear.

2.2 Periodically inaccessible agents

For environments with agents that are periodically inaccessible, there is a loss in
efficiency to the social planner, who must make decisions based on probabilistic
information about an inaccessible agent’s state. For this, we define a belief state in
period t, sti ∈ ∆(Si), where ∆(Si) is the set of probability distributions on agent i’s
states. This is the belief of an observer about the state of agent i, given knowledge
of the state when the agent was last accessible and through Bayesian inference
based on the subsequent sequence of actions and the agent’s transition function.
For an accessible agent, the belief state s

t
i assigns probability 1 to state sti. Let

s
t = (st0, s

t
1, . . . , s

t
n) ∈ ∆(S) = S0 × ∆(S1) × . . . × ∆(Sn) denote the belief-state

profile, where we include state st0 ∈ S0, which is always known with certainty.

9In a finite time-horizon setting the decision policy should also depend on the current period t,
but this is a detail we omit for notational simplicity.
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The reward and transition functions can be extended in the natural way, with
ri(s

t
i, a) = Est

i

[
ri(s

t
i, a)

∣∣
s
t
i

]
, with r(st, a) =

∑
i ri(s

t
i, a), and transition function τi :

∆(Si)×A → ∆(Si) defined to extend the stochastic transition function from states
to belief states, so that τi(s

t
i, a) transitions to the belief state induced by Bayes rule

and τi(s
t
i, a). Altogether, this defines a belief type, ϑi = (si, τi, ri) ∈ Θ, with joint

belief type space, Θ = Θ0 ×Θ
n.10 A decision policy is similarly extended to belief

states, with π : ∆(S) → A, and we have flow value

V (st, π) = E
s
t..K

[
K∑

k=t

γk−t
r(sk, π(sk))

∣∣
s
t, τ

]
, (3)

with analogous variants for Vi and V−i. The efficient policy π∗, for periodically-
inaccessible agents, solves π∗ ∈ argmaxπ∈Π V (st, π), ∀st ∈ ∆(S), where Π denotes
the space of feasible policies.11 Let π∗

−i denote the policy that is efficient for the
system of periodically-inaccessible agents 6= i. As in the always-accessible case, the
efficient policy depends on the transition and reward functions, we typically write
π∗
θ and π∗

θ−i
to make this dependence clear.

An agent’s accessibility depends on its state, and thus on the actions taken by
the center. Therefore, an efficient policy will inherently consider the value-of-
information from an action that will make an agent accessible (e.g., allocating
communication resources to an agent), thus revealing to the planner the state of a
currently inaccessible agent.

3 The Generalized Dynamic-VCG Mechanism

A dynamic mechanism, M = (πθ, xθ), is defined by a decision policy πθ : ∆(S) → A

and a transfer policy xθ = {xθ,1, . . . , xθ,n}, with xθ,i : ∆(S) → <, for all i ∈ I. We
focus on direct-revelation mechanisms.12 Each agent can make a report about its
type in each period in which it is accessible. In the usual case, it is only a change in
state that an agent will wish to report but the formal set-up also allows an agent to
report a change in transition or reward function. Note: in the special case of agents
that are always accessible, these policies are defined on S instead of ∆(S).

In defining a mechanism’s policies, πθ, and xθ, we make the type profile θ explicit
because the type profile enters into the actions and payments of the mechanism in
two different ways. To be concrete, consider a mechanism with an efficient decision
policy. First, the transition and reward functions determine which policy is efficient
because they define the MDP. Second, the state profile determines the action selected
for a given, efficient policy.

10Note that ri(s
t

i, a) and τi(s
t

i , a) remain conditionally-independent of the belief states of other
agents given the action of the center.

11For a computational approach to solve these belief-state MDP problems, see the survey of
algorithms for Partially Observable MDPs in [Kaelbling et al., 1996].

12Myerson [1986] and Green and Laffont [Green and Laffont, 1986] give a general revelation
principle for dynamic communication games; see also [Athey and Segal, 2007; Parkes, 2007].
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Type reports by agents and actions selected by the mechanism in each period are
assumed to be public, although in a truthful equilibrium the strategies are invariant
to this history. Thus, our results hold whether or not agents have information about
this history. Let ht ∈ Ht denote a sequence of type reports, actions and transfers,
up to and including period t, from a set of possible histories Ht. A strategy,

σt
i : H

t−1 ×Θ → {Θ ∪ φ}, (4)

defines the type report made by agent i given this history and given the agent’s
current type, where we use φ to indicate that the agent claims to be inaccessible.13

For an inaccessible agent, so that A(si) = 0, we require σi(h
t−1, θi) = φ.

Let σt(ht−1, θ) = (θ0, σ
t
1(h

t−1, θ1), . . . , σ
t
n(h

t−1, θn)) ∈ Θ, denote the reported type
profile in period t. Let σ∗

i denote a truthful strategy, with

σ∗
i (h

t−1, θti) =

{
θti , , if A(si) = 1
φ otherwise,

(5)

We first review the dynamic-VCG mechanism, which is defined for always accessible
agents. Let Vi(h

t−1, st, πθ, σi) denote the expected discounted value to agent i from
the decisions under policy πθ, after history ht−1, in state st, given strategy σi,
when the other agents are truthful. Let Xi(h

t−1, st, πθ, xθ, σi) denote the analogous,
expected discounted transfer to agent i. Agents have quasi-linear utility functions,
so that an agent’s expected discounted utility (or flow payoff) from state st under
strategy σi is Vi(h

t−1, st, πθ, σi) +Xi(h
t−1, st, πθ, xθ, σi).

Definition 1 (w.p. ex post IC). A dynamic mechanism M = (πθ, xθ) in an en-
vironment with a fixed, accessible population and dynamic type, is within-period ex
post incentive-compatible if, for every period t, for every agent i ∈ I, for every type
profile θt ∈ Θ, for every history ht−1, and every σ′

i 6= σ∗
i , for truthful σ∗

i ,

Vi(h
t−1, st, πθ, σ

∗
i )+Xi(h

t−1, st, πth, xθ, σ
∗
i ) ≥ (6)

Vi(h
t−1, st, πθ, xθ, σ

′
i) +Xi(h

t−1, st, πθ, xθ, σ
′
i).

In a within-period ex post incentive-compatible (wp-EPIC) mechanism [Bergemann
and Välimäki, 2010; Athey and Segal, 2007], truthful revelation of state, transition
and reward function is the best-response of an agent regardless of the current type
profile, if all other agents are truthful in the current period and all future periods.
This solution concept provides a strengthening of perfect Bayesian equilibrium [Fun-
denberg and Tirole, 1991], holding whatever the current beliefs of agents as long as
agents play in equilibrium forward from the current period.

Definition 2 (Dynamic-VCG mechanism). A dynamic mechanism M = (π∗
θ , xθ)

defined for an environment with a static population and dynamic type. In each

13The strategy of agent i can also depend, in principle, on its own past types. We leave this out
of the notation in the interest of simplicity. It does not change any of the results.
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period t, given a type report θti = (sti, τi, ri) (perhaps untruthful) from each agent
i: action at = π∗

θ(s
t) is taken, where π∗

θ is the efficient policy given θt; and the
following transfer is made to each agent i:

xtθ,i(s
t) = r−i(s

t, at) + γ · Es′

[
V−i(s

′, π∗
θ−i

)
∣∣ s′ = τ(st, at)

]
− V−i(s

t, π∗
θ−i

). (7)

The second term is the expected optimal flow value to agents 6= i forward from the
next period given that action at = π∗

θ(s
t) is taken in the current period. Taken

together, the transfer to agent i in each period is the flow marginal externality
imposed on the other agents by its presence in the current period only.

Theorem 1. [Bergemann and Välimäki, 2010] The dynamic-VCG mechanism is ef-
ficient and wp-EPIC in an environment with a fixed, accessible population, dynamic
type, private values and independent type transitions conditioned on actions.

We provide a new proof of this theorem in the appendix, emphasizing the positioning
of the dynamic-VCG mechanism within a class of dynamic Groves mechanisms.

The dynamic-VCG mechanism is also within period ex post individual rational, with
flow payoff Vi(h

t−1, st, π∗
θ , σ

∗
i )−Xi(h

t−1, st, π∗
θ , xθ, σ

∗
i ) ≥ 0 for all t, any type profile

θt (and thus state st), and any history ht−1. In particular, agent i’s flow payoff in
equilibrium forward from any type profile θt is equal to V (st, π∗

θ)−V−i(s
t, π∗

θ−i
), and

is non-negative because of private values and since the feasible actions in a state
are independent (conditioned on earlier actions) of the private types of agents.

For the general case, we define consistent belief-type profile ϑ̆
t as the true type for

accessible agents, with the belief state for an inaccessible agent as implied through
Bayesian updates given the most recent state report (perhaps untruthful) received
from the agent, and the transition and reward function for inaccessible agents equal
to those in the most recent report (perhaps untruthful).

Given this, Vi(h
t−1, s̆t, πθ, σi) denotes the expected discounted value to an agent, i,

accessible in period t, when it follows strategy σi, and adopts belief-state profile s̆
t

(from ϑ̆
t). We can similarly define the expected discounted transfer to agent i as

Xi(h
t−1, s̆t, πθ, xθ, σi). For notational simplicity, and to be consistent with (3), we

keep the dependence on the transition and reward profiles of agents hidden.

For belief states to be well-defined in every period, we assume in the sequel that all
agents are accessible in the first period and insist that every agent makes an initial
type report.14

Definition 3 (w.p. ex post IC with periodic inaccessibility). Consider an en-
vironment with periodic inaccessibility and dynamic types. Dynamic mechanism
M = (πθ, xθ), is within-period ex post incentive-compatible if, for every period t, for

14This is without loss of generality, because we could instead adopt additional machinery, with
a prior distribution assumed on initial agent types.
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every accessible agent i, for every consistent belief-type profile ϑ̆
t (and associated

belief-state profile s̆
t), for every history ht−1, and for every σ′

i 6= σ∗
i ,

Vi(h
t−1, s̆t, πθ, σ

∗
i )+Xi(h

t−1, s̆t, πθ, xθ, σ
∗
i ) ≥ (8)

Vi(h
t−1, s̆t, πθ, σ

′
i) +Xi(h

t−1, s̆t, πθ, xθ, σ
′
i)

For an accessible agent, regardless of the current type of other accessible agents,
and given consistent beliefs about the types of inaccessible agents, the agent’s best-
response is to be truthful given that other agents are also truthful forward from
the current period.15 We think of this as a communication-restricted within-period
ex post Nash equilibrium, for a model in which agents ‘know everything knowable’
consistent with the communication constraints. No requirements are made of the
mechanism in regard to incentive compatibility for an inaccessible agent because
such an agent cannot make a type report in any case.

We are now ready to define the generalized dynamic-VCG mechanism.

Definition 4 (Generalized Dynamic-VCG Mechanism). A dynamic mechanism

M = (π∗
θ , x

#
θ ) defined for an environment with periodic inaccessibility and dynamic

type. In each period t, given type reports from some subset of accessible agents:
belief-type profile ϑ

t (and associated belief-state profile s
t) is updated based on these

reports and according to Bayes rule for inaccessible agents; action at = π∗
θ(s

t) is
selected, where π∗

θ is the efficient policy given ϑ
t; and the following transfer is made

to each agent i that makes a report:

x
#
θ,i(s

t) =
t∑

k=t−δ(t)

xθ,i(s
k)

γt−k
, where (9)

xθ,i(s
k) = r−i(s

k, ak)+γ · Es
′

[
V−i(s

′, π∗
θ−i

)
∣∣
s
′ = τ(sk, ak)

]
− V−i(s

k, π∗
θ−i

), (10)

where π∗
θ−i

in (10) is efficient for agents 6= i given belief-type profile ϑ
k
−i, and δ(t) ≥

0 is the number of contiguous periods before period t that agent i claimed to be
inaccessible.

Belief-state profile s′ in the second term of (10) is obtained through Bayes rule given
s
k and ak, where the transition model and reward model adopted in V−i(s

′, π∗
θ,−i)

is given by ϑ
k
−i in period k. The two flow value terms to agents 6= i in (10) are

evaluated with respect to the transition and reward functions associated with belief-
type profile ϑ

k
−i held by the center in period k.

15Truthful reporting is an equilibrium when accessible agents cannot know more about the state
of inaccessible agents than implied by their most recent report. Suppose an agent j misreports
its type in period t and goes inaccessible. Truthful reporting is not an equilibrium if one or more
accessible agents has knowledge of the true type of j in period t, right before becoming inaccessible.
On the other hand, as soon as agent j becomes accessible again (e.g., in some period t′) then truthful
reporting is an equilibrium even when all accessible agents know the current type of agent j, and
even in period t′ + 1 following a misreport in period t′ by agent j, because agent j will be truthful
in period t+ 1 in equilibrium.
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We say that an agent (perhaps inaccessible, or reported inaccessible) is pivotal in
period t if its presence affects the action selected by the mechanism. In order to
establish wp-EPIC we require the following assumption:

Assumption 1. An agent that reports itself to be inaccessible in period t, and is
pivotal in period t, must report itself as accessible in some future period.

This ensures that agents cannot benefit from actions selected by the mechanism
without eventually returning and making the catch-up payment, x#θ,i(s

t).16

Theorem 2. The generalized dynamic-VCG mechanism is efficient and wp-EPIC
for a fixed population of periodically-inaccessible agents given Assumption 1, private
values, and independent type transitions conditioned on actions.

To prove this result we establish that the mechanism is a generalized dynamic Groves
mechanism, the class of which we now define formally. We defer the proof that the
mechanism belongs to this class of mechanisms to the appendix. The essential idea
is that the catch-up payment makes the mechanism payoff equivalent, for accessible
agents, to a mechanism in which transfers xθ,i(s

t) are made in every period, whether
or not an agent is accessible.

In defining the class of generalized dynamic Groves mechanisms, let
Vj(h

t−1, s̆t, πθ, σi) denote an accessible agent’s belief (given ϑ̆
t) about the expected

discounted value to another agent j, perhaps inaccessible, when i adopts σi and the
other agents are truthful. Define V−i(h

t−1, s̆t, πθ, σi) =
∑

j 6=i Vj(h
t−1, s̆t, πθ, σi) and

V (ht−1, s̆t, πθ, σi) =
∑

j∈I Vj(h
t−1, s̆t, πθ, σi).

Definition 5 (generalized dynamic Groves mechanism). A generalized dynamic
Groves mechanism M = (πθ, xθ) in an environment with a fixed population of
periodically-inaccessible agents and dynamic types,

(i) receives type reports θti = (sti, τi, ri) (perhaps untruthful) from some
subset of accessible agents in each period t, and updates belief-type
profile ϑ

t (and associated belief-state profile s
t) based on these reports

and according to Bayes rule for inaccessible agents,

(ii) adopts a policy πθ that is efficient with respect to the belief-type
profile,

(iii) adopts a transfer policy xθ so that, for every accessible agent i,
for every consistent belief-type profile, ϑ̆t (and associated belief-state
profile s̆

t), for every history ht−1 and every σi, and given that agents
6= i are truthful in this and future periods, the expected discounted
transfer is V−i(h

t−1, s̆t, πθ, σi)−Ci(s̆
t
−i), where Ci(s̆

t
−i) is independent

of agent i’s strategy in this period and forward.

16For strategic agents, one way to justify this assumption is to require an agent to post a bond
that is returned over time, but only if the agent reports itself as accessible.
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end end

A B C end

t = 0 t = 1 t = 2

8 2

(a) Agent 1’s type.

end

E G end

D end

F H end

t = 0 t = 1 t = 2

p = 0.2

4

p = 0.8 20

(b) Agent 2’s type.

Figure 1: A dynamic allocation problem with two agents, a single item, and 3
time steps. Agent 1 has a static type (deterministic transitions) and agent 2 has a
dynamic type. Rewards are shown in bold where non-zero, and correspond to the
item being allocated to the agent.

Lemma 1. A generalized dynamic Groves mechanism is efficient and wp-EPIC
in an environment with a fixed population of periodically-inaccessible agents and
dynamic types.

Proof. Let π∗
θ denote an efficient policy on belief states. Fix agent i. Assume for

contradiction that wp-EPIC fails. By the one-shot deviation principle,17 there is
some history ht−1, some consistent belief type profile ϑ̆t, and some strategy σi 6= σ∗

i

that provides more flow payoff to agent i than being truthful, while deviating only
in period t (when agent i is accessible.) Assume that the other agents are truthful
in period t and forward. By properties (i) and (ii), we have

V (ht−1, s̆t, π∗
θ , σi)− Ci(s̆

t
−i) > V (s̆t, π∗

θ)− Ci(s̆
t
−i), (11)

and so V (ht−1, s̆t, π∗
θ , σi) > V (s̆t, π∗

θ). Construct policy π′ : ∆(S) → A by setting
π′(s) = π∗

θ(s) in every belief state except for s̆t, where π∗
θ is the efficient policy given

ϑ̆
t (which, recall, adopts agent i’s true type whenever it is accessible). For belief state

s̆
t, then π′(s̆t) = a′, where action a′ is selected by the mechanism given agent i’s mis-
report, as prescribed by σi. By construction, V (s̆t, π′) = V (ht−1, s̆t, π∗

θ , σi) (where

these flow values are all evaluated with respect to ϑ̆
t) and V (s̆t, π′) > V (s̆t, π∗

θ) and
a contradiction with the efficiency of π∗

θ .
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3.1 Example

To illustrate the generalized dynamic-VCG mechanism, we consider a simple ex-
ample in which the center has a single item to allocate, there are two agents, and
there is no discounting. As illustrated in Figure 1, agent 1’s type is deterministic
with value 8 for the item in period 1 and value 2 in period 2. Agent 2’s type is
dynamic, and is either value 4 or 20 for the item in period 2 depending on whether
it is in state G or H. The system follows state dynamics AD → BE → CG or
AD → BF → CH. First assume that both agents are always accessible. In this
case, the efficient policy allocates the item to agent 1 in state BE, to agent 2 in
states {CG,CH}, and makes no allocation in states {AD,BF}. Consider state
BE. If agent 2 is truthful, then agent 1 is allocated the item and receives transfer
0 + 0 − 4 = −4 (i.e., makes payment 4). Now, if agent 2 lies and reports state F

then no allocation is made and agent 2 receives transfer 0 + 2 − 8 = −6. Agent
2 will actually transition to state G and the next joint state will be CG. Now,
whatever the report of agent 2 (as long as it’s > 2), it will be allocated the item
and its transfer will be 0 + 0 − 2 = −2. The actual value of the item to agent 2 is
4 and its total payoff is 4 − (6 + 2) = −4, and worse than the zero payoff received
when truthful. A similar analysis can be completed for state BF , and for agent
1, to confirm the incentive compatibility of the dynamic-VCG mechanism in this
example.

Suppose now that agent 1 is accessible in every period with very high probability,
while agent 2 is inaccessible in period 1 with high probability and becomes accessible
in period 2 with high probability. Both agents are initially accessible in period
0. To gain intuition, first consider a naive mechanism with a policy that simply
ignores inaccessible agents, picking actions as though such agents do not exist. The
mechanism makes simple Groves payments: making a transfer to accessible agents
in each period that is equal to the (reported) value received by other accessible
agents. This is not incentive compatible. If agent 2 is inaccessible in period 1 then
the mechanism will allocate to agent 1 (for a value of 8 to the agent.) But, if agent
1 also pretends to be inaccessible, the item will be allocated to agent 2 in period
2, for expected value (0.2)4 + (0.8)20 = 16.8. Agent 1’s expected payoff for this
strategy is 16.8 because it receives the value to agent 2 as a transfer. The problem
arises because the policy is inefficient, ignoring the existence of agent 2, which is
inaccessible in period 1.

Now consider the generalized dynamic-VCG mechanism. Let us suppose that agent
2 is accessible in period 1, and in state E. Suppose agent 1 is truthful. If agent
2 is truthful, then agent 1 would be allocated the item in period 1 and agent 2’s
payoff would be zero. But if agent 2 lies and pretends to be inaccessible in period
1, the efficient policy will delay making an allocation until period 2 because 8 <

(0.2)4 + (0.8)20 = 16.8 (ignoring the low probability of continued inaccessibility).

17For the one-shot deviation principle to hold it is sufficient that agents’ beliefs off equilibrium
satisfy updating consistency, which is a weakening of the requirements imposed by perfect Bayesian
equilibrium [Fundenberg and Tirole, 1991; Hendon et al., 1996; Perea, 2002].

14



Both agents’ transfers in period 1 will be zero (agent 2’s because it is inaccessible).
Agent 2 can then report state G in period 2 and receive the item. But what about
its transfer? It will receive a transfer of −6 − 2 = −8 (i.e., make a payment of 8)
when becoming accessible in period 2, which is more than its value for the item
when its true state sequence is E and then G. (Note that if the agent could avoid
its catch-up payment, it would have transfer −2 and obtain a net payoff of 4−2 = 2,
which would have been a worthwhile manipulation).

4 Special Case: Arrival and Departure Dynamics

We now consider a special case of periodic inaccessibility, in which each agent is first
inaccessible, then accessible, and then inaccessible again, and where agents only have
value for actions when they are accessible. This models an environment with arrival-
departure dynamics and dynamic type. An arrival model provides the analogue
to a belief state about the state of as yet unarrived agents, and the requirement
that type transitions be independent, conditioned on actions, is interpreted here
as a requirement that arrivals must be independent of past arrivals, conditioned
on actions of the center.18 A further specialization, to agents with a static type,
provides a payoff equivalence (upon arrival) between the dynamic-VCG mechanism
and the online-VCG mechanism [Parkes and Singh, 2003], unifying two disparate
threads in the literature.

As a motivating example for arrival-departure dynamics, consider a tourist who
arrives in New York City and is interested in buying theater tickets for multiple
shows during a week; his type is dynamic while in town because he updates his
value for different shows based on his experience attending earlier shows, or other
unpredictable events such as the weather. However, once he leaves town at the end
of the week, he is agnostic to subsequent actions of the mechanism.

To model arrival-departure dynamics within the periodically inaccessible model, we
consider a potentially infinite set of agents I = {1, 2, . . . ,∞} (enough to model
all possible arrivals), all initially inaccessible. It is convenient to introduce spe-
cial states, start and end, to denote before arrival and after departure. Each
agent i remains in its initial state start until the period in which it arrives, and
ri(start, a) = 0 for all a ∈ A, and transitions into some state si ∈ Si upon ar-
rival, before finally transitioning into the end state upon departure, whereupon
ri(end, a) = 0 for all a.

A new state, stz ∈ Sz, is introduced to state profile st = (stz, s
t
0, {s

t
i : i ∈ I}),

where Θ(stz) ⊂ Θ|I| denotes the set of agent types that arrive in period t. In this
way, state sz models the arrival process, and has associated transition function
τz : Sz ×A → Sz. Transition function τz is known to the mechanism while state stz,

18For example, the arrival of a high bidder on Tuesday should not depend on whether or not a
high bidder arrived on Monday. On the other hand, the arrival of a high bidder on Tuesday could
depend on whether or not a resource was allocated on Monday, and this itself could depend on the
types that arrive on Monday.
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end end

start A B end

8 2

(a) Type 1.

end

start C D end
4

(b) Type 2.

end

start E end
3

(c) Type 3.

end

start F end
20

(d) Type 4.

Figure 2: An example with arrival-departure dynamics, one item to allocate, two
periods, and four possible types that an agent can have upon arrival. An agent with
type 1 always arrives in period 1. One other agent arrives, with high probability, its
arrival is in period 2 with type 4. With low probability, its arrival is in period 1 with
either type 2 or type 3. Non-zero rewards are indicated in bold, and correspond to
an allocation of the item to an agent with the associated type.

in any period t, and thus which agents, and with which types, arrive is unknown.
Once an agent arrives, then its departure process conditioned on arrival is modeled
by an eventual transition into the end state.

Note that agent i’s strategy, σi, allows it to continue to claim to be inaccessible when
it is accessible, and therefore includes the possibility of ‘hiding’ from the mechanism
by delaying a report of its arrival, as well as claiming an early departure.

A natural mechanism to consider for this problem is to implement the efficient
policy (based on reported types, and knowledge of the arrival process), and make the
dynamic-VCG transfers (7) in periods where an agent reports itself to be accessible.
But without a restriction on the arrival process, this (dynamic-VCG) mechanism is
not incentive-compatible.

To see this, consider Figure 2, in which there are four possible agent arrival types,
two periods, and there is one item to allocate. The arrival process is as follows. A
first agent (agent 1) arrives in period 1 with (arrival) type 1, so that it is in state A

upon arrival and it has value 8 and 2 for the item in periods 1 and 2 respectively.
At most one additional agent arrives. With high probability, an agent with type
4 in period 2 (and in state F ), with value 20 for the item. With low probability,
either (i) an agent of type 2 arrives in period 1, in state C, and with value 4 for the
item in period 2, or (ii) an agent of type 3 arrives in period 2, in state E, and with
value 3 for the item. Suppose agent 1 is truthful, and that agent 2 has type 2 and
therefore arrives in period 2. If truthful, the efficient policy will allocate to agent 1
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in period 1 (knowing that an agent of type 4 will not arrive). But, if agent 2 hides
and claims to arrive in period 2 and with type 3, the efficient action in period 1 is
to hold the item, planning to allocate to a type 4 arrival in period 2. When agent
2 submits its report, pretending to be a type 3 agent in period 2, it receives the
item and makes a transfer of 2 to the center, representing the externality imposed
on agent 1, and achieve a payoff of 2.

The arrival process in the example fails to satisfy a necessary independence property.
The probability that an agent transitions from start to F in period 2 (and thus
a type 4 arrives) depends on whether or not an agent transitions from start to
C in period 1 (and thus a type 2 arrives) because only one agent of type 2–4 can
arrive. This independence property, where transitions are independent of states of
other agents conditioned on actions, is critical for dynamic VCG to be incentive
compatible.

To fix this, let zt = Θ(stz) ⊂ Θ|I| denote the set of types that arrive in period t, and
insist on the following conditional independence property on the transition function
associated with the arrival process:

Assumption 2. An arrival process satisfies the conditional-independence on ar-
rivals (CIA) property when

Pr(zt
∣∣ z0, . . . , zt−1, a0, . . . , at−1) = Pr(zt

∣∣ z′0, . . . , z′t−1, a0, . . . , at−1), (12)

for all z0, . . . , zt−1, all z′0, . . . , z′t−1, all a0, . . . , at−1, and all zt.

This excludes the kind of arrival dynamics in the example. Still,whether or not a
high type arrives in some period can depend on whether or not an item has been
allocated, and this can in turn depend on the earlier types of agents.

The social planner’s problem can now adopt state (zt, st0, {s
t
i : i ∈ I}) ∈ S, with

zt ⊂ Θ|I| to represent the types of new arrivals in period t. The CIA property
requires that transition zt+1 = τz(z

t, a) is independent of the current arrival state
zt, conditioned on action a.

The efficient policy is denoted π∗
θ , and depends on the arrival process τz as well

as the transition and reward types of accessible agents. The efficient policy, π∗
θ−i

,
without agent i is identical to the efficient policy with agent i except when agent i
is present (i.e., arrived and not yet departed). To see this, note that: (a) excluding
an agent that has yet to arrive has no effect on the efficient policy because the
arrival process determines the impact of possible arrivals on the policy; and (b)
excluding an agent that has departed has no effect because a departed agent has no
ongoing value for actions, and does not affect the probability of future arrivals by
CIA. Moreover, all agent types satisfy Assumption 1.

Based on this observation, that an agent is only pivotal when present in the system,
the catch-up payments in the generalized dynamic-VCG mechanism are zero. From
this, we have a simplified mechanism, that is exactly the natural dynamic-VCG
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mechanism suggested earlier, in which the efficient policy given knowledge of the
arrival process is adopted by the center, and the transfers (7) are made to each
agent that makes a report in a period.

Theorem 3. The dynamic-VCG mechanism for a population with arrival-departure
dynamics and dynamic types, is efficient and wp-EPIC given private values, inde-
pendent type transitions, the CIA property, and a center with a correct model of
agent arrivals.

The proof is deferred until the appendix. The crux of the argument is to recognize
that the catch-up payments are always zero and therefore the transfers are equivalent
to those that would be made to an agent if they could be made in every period.
By wp-EPIC, truthful reporting is an equilibrium whatever the current type profile
and whatever the arrival process, as long as other agents report their true types
upon arrival, the center’s model of the arrival process is correct, and it is common
knowledge that the center’s model is correct.19 Note that the arrival model itself
does not need to be known to agents.

4.1 Static Types and Arrival-Departure Dynamics

A special case with considerable practical importance is that of a dynamic pop-
ulation of agents with static types, that is an agent for whom the value for any
sequence of actions is fixed, and known to the agent upon arrival. For example,
an agent might have an invariant, time-separable valuation function or assign a
value to a particular bundle of goods if received by a deadline. A static type has
a deterministic transition function, τi : Si × A → Si. With this, a single report of
type θti = (sti, τi, ri) upon arrival provides knowledge to an observer (such as the
center) of the agent’s state, and thus value for actions, in all future periods. Figure
3 provides a simple illustration of simple static types.

The dynamic-VCG mechanism is wp-EPIC and efficient in this domain, under the
CIA property. Our interest in this section is to establish the same result for the
online-VCG mechanism. The online-VCG mechanism is also wp-EPIC and efficient,
but offers a different compromise between individual-rationality and no-deficit prop-
erties than the dynamic-VCG mechanism for dynamic, multi-unit auctions with val-
ues that are complements. These distinct economic properties may be important in
some practical settings.

With static types, it is sufficient to consider report-once mechanisms, in which an
agent can make only one report of its type. Given this, we can further specialize
wp-EPIC so that it only needs to hold up until the period in which an agent reports
its arrival (and not subsequent periods.) We need to define a partially-truthful type
profile θ̆t (and associated state profile s̆t), which combines earlier reports (perhaps
untruthful) received from agents with the true type of agents that either arrive in

19The ‘communication-restricted’ variation on wp-EPIC for the generalized dynamic-VCG mech-
anism in Definition 3 is irrelevant here because agents that are inaccessible are never pivotal.
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5
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(a) linear
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100

*
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(b) must get all
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5

*
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(c) unit demand

Figure 3: Example valuations for agents with a static type in a dynamic, multi-
unit allocation problem. An allocation of one unit is indicated by ‘*’ with non-zero
values in bold. The agent valuations are: (a) additive, with value 5 for each of up
to three units of the item; (b) complements, with value 100 for three units; and (c)
value 5 for a single unit.

period t or are present but did not yet submit a report. An agent is active in period
t if the agent has arrived and not yet departed.

Definition 6 (w.p. ex post IC for arrival-departure dynamics and static type). A
report-once dynamic mechanism, M = (πθ, xθ), is within-period ex post incentive-
compatible in a population with arrival-departure dynamics and static types if, for
any period t, any agent i active in t but yet to report, any partially-truthful type θ̆t

(with associated state s̆t), any history ht−1, and for all σ′
i 6= σ∗

i ,

Vi(h
t−1, s̆t, πθ, σ

∗
i )+Xi(h

t−1, s̆t, πθ, xθ, σ
∗
i ) ≥

Vi(h
t−1, s̆t, πθ, σ

′
i) +Xi(h

t−1, s̆t, πθ, xθ, σ
′
i), (13)

where σ∗
i is truthful and immediate reporting upon arrival.

By (13), truthful reporting is at least as good as any other strategy σ′
i, including

delaying an agent’s report by one or more periods. In the same way, a dynamic
Groves mechanism for this problem only needs to align an agent’s flow transfer up
until the agent has submitted a type report:

Lemma 2. A report-once dynamic mechanism (πθ, xθ) in an environment with
arrival-departure dynamics and static types is efficient and wp-EPIC if:

(i) policy πθ is efficient for the correct arrival process, given agents’
reported types, and
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(ii) the expected discounted transfer to any agent i, active in period t and
still to report (including a new arrival), given any partially-truthful
type profile θ̆t (and associated state profile s̆t), history ht−1, strategy
σi, and given that agents 6= i (still to report) are truthful going for-
ward, is V−i(h

t−1, s̆t, πθ, σi)−Ci(s̆
t
−i), where Ci(s̆

t
−i) is independent

of agent i’s strategy in this period and forward.

The proof of this lemma is omitted, but follows the same outline as earlier.20 We
now review the online-VCG mechanism.21

Definition 7 (online-VCG mechanism). In the online-VCG mechanism, M =
(π∗

θ , xθ), for arrival-departure dynamics and static types, π∗
θ is the efficient policy

given the known arrival process, and each agent can make a single report (perhaps
untruthfully) about its type θti = (sti, τi, ri) in some period t (its reported arrival). In
every period t, given reported type θt, the mechanism selects action at = π∗

θ(s
t). In

every period t between an agent i’s reported arrival and departure, the mechanism
makes transfer to i:

xθ,i(s
t) =

{
−ri(s

t, at) +
[
V (st, π∗

θ)− V−i(s
t, π∗

θ−i
)
]
, if arrived in period t

−ri(s
t, at) otherwise,

(14)

Theorem 4. The online-VCG mechanism is efficient and wp-EPIC in an environ-
ment with arrival-departure dynamics, static types, private values, the CIA property,
and a center with a correct model of the arrival process.

The key to establishing the wp-EPIC of the online-VCG mechanism is that it is
sufficient to show that the transfers satisfy property (ii) of Lemma 2 in the single
period in which an agent could report its type. The online-VCG mechanism does
not align incentives in the same way in subsequent periods, but at that point it
matters not because the agent’s type report is committed. The proof is deferred
until the appendix.

Both the online-VCG and dynamic-VCG mechanisms are efficient and wp-EPIC
with arrival-departure dynamics and static type. But they are different mechanisms,
distributing transfers differently across states. This affects their properties in regard
to individual rationality and no-deficit. The online-VCG mechanism, but not the
dynamic-VCG mechanism, is ex post individual rational, with the payoff to an agent

20Suppose that the mechanism is not wp-EPIC, and establish a contradiction with the efficiency
of the policy by showing that the center could instead adopt the actions taken by the policy given
agent i’s misreports and obtain a policy with greater total expected discounted value.

21The online-VCG mechanism was originally proposed by Parkes and Singh [2003] in a setting
without discounting, with a transfer that is zero except upon departure, when an agent’s transfer

is −
∑

`

k=`
ri(s

k

i , π
∗

θ(s
k)) + V (s`, π∗

θ) − Vθ
−i

(s`, π∗

θ
−i

), where ` and ` are the reported arrival and
departure period of the agent. The online-VCG mechanism presented here is a simple variant that
provide the analogous payoffs in a setting with discounting by refactoring transfers across periods.
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Agent 1 Agent 3

Online VCG Win 0.145 Win v3 − 0.7
Lose 0.145 Lose 0

Dynamic VCG Win 0.6− v3 Win v3 − 0.7
Lose -0.1 Lose 0

Table 1: Case analysis of payoff to agents 1 and 3 in the online-VCG and dynamic-
VCG mechanisms in Example 1.

equal to the marginal expected product contributed by the agent at its arrival. The
dynamic-VCG mechanism is within-period ex post individual rational, meaning it
guarantees expected utility going forward is positive, but an agent may end up with
negative utility depending on how random transitions are realized.

Example 1. Consider a problem with two periods, one item to allocate, and three
agents. In period 1, there is an agent with value 0.7 and arrival-departure (1,2)
so it is patient. Another agent has value 0.6 and arrival-departure (1,1) so it is
impatient. In period 2, there is an agent with value v3 ∼ U(0, 1). Suppose there
is no discounting (γ = 1). The efficient policy is to wait until period 2 and then
allocate to agent 1 if v3 ≤ 0.7, and to agent 3 otherwise.

(a) Online-VCG. We have V (θ1, π∗) = (0.7)(0.7) + (0.3)(0.85) = 0.745 and
V−1(θ

1, π∗) = 0.6. If agent 1 wins, then its total transfer is −0.7 + (0.745 − 0.6) =
−0.555. If agent 1 loses, then its total transfer is 0+(0.745−0.6) = 0.145. Agent 2
makes no transfer because it is not pivotal. Agent 3 receives no transfer if it loses,
and its transfer is −v3 + (v3 − 0.7) = −0.7 if it wins.

(b) Dynamic-VCG. We have Eθ′ [V−1(θ
′, π∗

−1) | don’t allocate] = 0.5 (the expected
value to other agents in period 2 given that the item is not allocated in period 1),
and V−1(θ

1, π∗
−1) = 0.6. In period 1, agent 1’s transfer is 0+ (0.5− 0.6) = −0.1. In

period 2, if agent 1 wins (i.e., if v3 ≤ 0.7) then its transfer is 0+(0−v3); otherwise,
if agent 1 loses then its transfer is 0. Agent 2 makes no transfer because it is not
pivotal. Agent 3’s transfer is 0 in period 1 because it has not arrived. If agent 3
wins, then it receives transfer 0 + (0− 0.7) = −0.7 and has no transfer if it loses.

The payoff to agents 1 and 3 is tabulated in Table 1. Although the expected payoff
is the same in both mechanisms, in dynamic-VCG agent 1’s payoff is negative when
it loses, or even if it wins and value v3 ∈ (0.6, 0.7]. The ex post payoff in the
online-VCG mechanism is always non-negative.

On the other hand, the dynamic-VCG mechanism but not the online-VCG mech-
anism is ex post no-deficit in economic environments without positive externalities
(e.g., social choice and one-sided auction problems). The online-VCG mechanism
satisfies ex ante no-deficit in these same environments.

Example 2. Consider a problem with two periods and two units of an item to
allocate. In period 1, there is a patient agent with value 100 for both units together
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Period 2 Agent 1 Other Total
arrivals transfer agents transfer

Online VCG 0 (−2ε+ ε2)100 0 (−2ε+ ε2)100
1 100 + (−2ε+ ε2)100 -100 (−2ε+ ε2)100
2 100 + (−2ε+ ε2)100 0 100 + (−2ε+ ε2)100

Dynamic VCG 0 0 0 0
1 0 -100 -100
2 0 0 0

Table 2: Case analysis of the transfers in the online-VCG and dynamic-VCG mech-
anisms in Example 2.

and arrival-departure (1,2). In period 2, up to two agents might arrive, each with
low probability ε > 0 of arriving and with value 150 for one unit. There is no
discounting. The efficient policy is to wait until period 2 and allocate to agent 1
unless one or both of the high-value agents arrive, in which case these agent(s) are
allocated instead.

(a) Online-VCG. We have V (θ1, π∗) = (1− 2ε+ ε2)(100) + 2ε(1− ε)(150) + ε2(300)
and V−1(θ

1, π∗) = 2ε(1− ε)(150)+ ε2(300). If agent 1 wins, then its total transfer is
−100+ ((1− 2ε+ ε2)(100) + 2ε(1− ε)(150) + ε2(300))− (2ε(1− ε)(150) + ε2(300)) =
(−2ε+ε2)(100). If agent 1 loses, then its total transfer is 100+(−2ε+ε2)(100). If one
agent arrives in period 2, it wins and its transfer is −150 + (150− 100) = −100. If
two agents arrive in period 2, they each win and have transfer −150+(300−150) = 0.

(b) Dynamic-VCG. If agent 1 wins or loses, its transfer is 0. If one agent arrives
in period 2, then it wins and its transfer is 0 + (0 − 100) = −100. If two agents
arrive in period 2, then they each win and have transfer 150 + (0− 150) = 0.

The transfers that occur in each mechanism, as they depend on the number of agents
that arrive in period 2, are detailed in Table 2. Whereas the total expected transfer is
the same in the two mechanisms, the online-VCG mechanism incurs a deficit of 100
(as ε → 0) when 2 agents arrive in period 2, while the dynamic-VCG mechanism
always runs without a deficit.

5 Closing Remarks

In this paper, we have extended the dynamic-VCG mechanism [Bergemann and
Välimäki, 2010] to environments in which agents are periodically-inaccessible, and
used this extension to derive a mechanism that is wp-EPIC and efficient for problems
with dynamic populations and dynamic agent type. For our results we require
private values and type transitions that are conditionally independent of the types
of other agents, when conditioned on actions by the center. From this, agent arrivals
must be conditionally-independent of earlier arrivals, when conditioned on actions
of the center. For the practically importance case of dynamic population and static
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type (capturing dynamic auctions, for example), we showed that the dynamic-VCG
mechanism is payoff equivalent upon arrival to the online-VCG mechanism [Parkes
and Singh, 2003], while differing in the exact timing of payments, with the former
providing ex post no-deficit and the latter ex post individual rationality.

There are many interesting directions in developing a theory that can be instruc-
tive in the design of practical mechanisms for dynamic environments. Amongst
the most exciting are (a) a theory for when dynamic VCG mechanisms satisfy core
properties in dynamic combinatorial auctions to parallel results for the static VCG
mechanism [Bikhchandani and Ostroy, 2002; Ausubel and Milgrom, 2006], (b) de-
veloping indirect mechanisms with efficient elicitation properties (see [Said, 2009]

for initial work on this), (c) developing dynamic auctions that satisfy both ex post
no-deficit and ex post individual-rationality in combinatorial domains, (d) develop-
ing representation languages to facilitate compact and expressive representations of
dynamic agent types, (e) developing scalable computational methods to implement
the mechanisms in real-world domains.

References

[Arrow, 1979] Kenneth J. Arrow. The property rights doctrine and demand revela-
tion under incomplete information. In M. Boskin, editor, Economics and Human
Welfare. Academic Press, 1979.

[Athey and Segal, 2007] Susan Athey and Ilya Segal. An efficient dynamic mech-
anism. Working paper, Stanford University. Earlier version circulated in 2004.,
2007.

[Athey et al., 2004] Susan Athey, Kyle Bagwell, and Chris Sanchirico. Collusion
and price rigidity. The Review of Economic Studies, 71:317–349, 2004.

[Atkeson and Lucas, 1992] Andrew Atkeson and Robert E Lucas. On efficient dis-
tribution with private information. The Review of Economic Studies, 59:427–453,
1992.

[Ausubel and Milgrom, 2006] Lawrence M. Ausubel and Paul Milgrom. The lovely
but lonely vickrey auction. In Peter Cramton, Yoav Shoham, and Richard Stein-
berg, editors, Combinatorial Auctions, chapter 1, pages 17–40. MIT Press, 2006.

[Babaioff et al., 2009] Moshe Babaioff, Liad Blumrosen, and Aaron Roth. Auctions
with online supply. In Fifth Workshop on Ad Auctions, 2009.
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Appendix

Definition 8 (dynamic Groves mechanism). A dynamic mechanism M = (πθ, xθ)
in an environment with a fixed, accessible population and dynamic type is a dynamic
Groves mechanism, if:

(i) policy πθ is efficient with respect to the reported type profile, and

(ii) each agent i’s expected discounted transfer given state profile θt (in-
cluding state profile st), strategy σi, history ht−1, and given that
agents 6= i follow a truthful strategy in period t and forward, is
V−i(h

t−1, st, πθ, σi)−Ci(θ
t
−i), where Ci(θ

t
−i) is independent of agent

i’s strategy in this period and forward.

Lemma 3. A dynamic Groves mechanism in an environment with a fixed, accessible
population and dynamic type is efficient and wp-EPIC.

Proof. Let π∗
θ denote the efficient policy given type profile θ. Assume for contra-

diction that wp-EPIC fails. In particular, we can assume by the one-shot deviation
principle (see the proof of Lemma 1 for a discussion) that there is some history ht−1,
some type profile θt, and some strategy σi 6= σ∗

i that provides more flow payoff than
being truthful while deviating only in the current period, where the other agents
are truthful in period t and forward. Let θ̂ti = σi(h

t−1, θti) denote this type report,
with ŝti the state report. Then by properties (i) and (ii), we must have

Vi(h
t−1, st, π∗

θ , σi) + [V−i(s
t−1, θt,π∗

θ , σi)− Ci(θ
t
−i)] >

Vi(s
t, π∗

θ) + [V−i(s
t, π∗

θ)− Ci(θ
t
−i)], (15)

where the terms on the RHS follow from the efficiency of the policy when agent i

is truthful. Collecting terms on both sides, we have V (ht−1, st, π∗
θ , σi) > V (st, π∗

θ).
But now, we can construct policy π′, by setting π′ equal to π∗

θ in every state profile
except for st, where we define π′(st) = π∗

θ(ŝ
t
i, s

t
−i). With this, we have V (st, π′) =

V (ht−1, st, π∗
θ , σi) > V (st, π∗

θ), these flow values evaluated with respect to the state
dynamics associated with type profile θ, and a contradiction with the efficiency of
π∗
θ .

Proof of Theorem 1. Property (i) in Lemma 3 holds by construction. Fix some
agent i, period t, type profile θt (including state profile st), and assume the other
agents are truthful. The flow transfer to agent i, given strategy σi, is

Est..K

[
K∑

k=t

γk−t
(
r−i(s

k
−i, a

k) + γ · Es′ [V−i(s
′, π∗

θ−i
)
∣∣ ŝk, ak]− V−i(ŝ

k, π∗
θ−i

)
) ∣∣ st, τ, σi

]
,

(16)

where sk = τ(sk−1, ak) for k > t, ak = π∗
θ(ŝ

k), ŝk = (ŝki , s
k
−i), ŝ

k
i is agent i’s reported

state in period k given strategy σi, s
′ = τ̂k(ŝk, ak), τ̂k = (τ̂ki , τ−i), and τ̂ki is agent

i’s reported transition function in period k.
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The second term simplifies as,

γ · Es′

[
V−i(s

′, π∗
θ−i

)
∣∣ s′ = τ̂k(ŝk, ak)

]
= γ · Es′

[
V−i(s

′, π∗
θ−i

)
∣∣ s′ = τ(sk, ak)

]
, (17)

by private values and independent state transitions, conditioned on the action ak,
and can be evaluated on the true distribution of next states given ak. Similarly, the
third term is equivalent to V−i(s

k, π∗
θ−i

) because agent i’s reported state does not
affect the flow value to other agents.

Returning to (16) and extracting out the sum over the first term, reversing the
second and third terms, and simplifying the second term in this way, we have flow
transfer,

V−i(h
t−1, st, π∗

θ , σi)− Est..K

[
K∑

k=t

γk−t
(
V−i(s

k, π∗
θ−i

)− γV−i(s
k+1, π∗

θ−i
)
) ∣∣ st, τ, σi

]
,

(18)

and telescoping out, and noting that V−i(s
K+1, π∗

θ,−i) is necessarily zero, we have
flow transfer,

V−i(h
t−1, st, π∗

θ , σi)− V−i(s
t, π∗

θ−i
), (19)

and this completes the proof, because V−i(s
t, π∗

θ−i
) is independent of agent i’s strat-

egy forward from this period.

Proof of Theorem 2. Property (i) in Lemma 1 holds by construction. In establishing
property (ii), consider first a simplified mechanism in which transfer xθ,i(s

t) can be
made directly, in every period, irrespective of whether or not an agent is accessible.
Noting that private values and independent type transitions, conditioned on actions,
are retained, and the equivalent form of (7) and (10), it is straightforward (by
symbolic substitution) to adopt the proof of Theorem 1 to establish that the flow
transfer to agent i is, V−i(h

t−1, s̆t, π∗
θ , σi) − V−i(s̆

t, π∗
θ−i

), where the second term is
independent of agent i’s strategy in period t and forward.

We now establish through a simple accounting argument that catch-up payments
make the expected discounted transfer to agent i, forward from any period t in which
it is accessible, equivalent, for any strategy σi, to the expected discounted transfer
if it received transfers xθ,i(s

t) in every period. For this, consider any sequence of
belief types, ϑt−i, . . . ,ϑ

K
−i, held by the center about agents 6= i over periods t, . . . ,K,

under policy π∗
θ , and given that agent i follows strategy σi while the other agents

are truthful. Let θti , . . . , θ
K
i denote the corresponding sequence of agent i types. Let

F (σi) ⊆ {t, . . . ,K} denote the time periods in which agent i first becomes accessible
again, after one or more periods of (reported) inaccessibility. LetH(σi) ⊆ {t, . . . ,K}
denote the time periods when agent i reports a non-null type. The realized, total
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discounted transfer to agent i forward from period t, in the generalized dynamic-
VCG mechanism is,

K∑

k=t

k∈H(σi)\F (σi)

γk−t · xθ,i(Γ(σi(θ
k
i )), s

k
−i) +

K∑

k=t

k∈F (σi)

γk−t ·
k∑

k′=k−δ(k)

xθ,i(Γ(σi(θ
k′

i )), sk
′

−i)

γk−k′

=
K∑

k=t

γk−t · xθ,i(Γ(σi(θ
k
i )), s

k
−i), (20)

where δ(k) > 0 is the number of contiguous periods the agent reported itself inac-
cessible before becoming accessible, Γ(σi(θi)) assigns probability 1 to the reported
state when σi(θi) 6= φ and is defined by Bayes rule otherwise, belief state sk−i is that
associated with belief type ϑk−i, and where the dependence of strategy σi on history
is dropped for notational simplicity. Eq. (20) follows from simple algebra, together
with Assumption 1 and observing that xθ,i(s) = 0 when agent i is not pivotal given
belief state s, and so it is immaterial if agent i remains inaccessible in period K

because by Assumption 1 its catch-up transfer would be zero in any case. Given
that this equivalence holds for any realized sequence of belief types then it also holds
in expectation, and this completes the proof.

Proof of Theorem 3. Interpreting the requirements of Lemma 1 in this environment,
we need (i) that the policy π followed by the mechanism is efficient with respect
to reported types and the center’s model of the arrival process, and (ii) the flow
transfer to an accessible agent i forward from any type profile θt, for any history
ht−1 and for any strategy σi, and given that agents 6= i follow a truthful strategy
from this period forward and that the center’s model of the arrival process is correct,
is V−i(h

t−1, st, πθ, σi) − Ci(s
t
−i), where Ci(s

t
−i) is independent of agent i’s strategy

in this period and forward. Property (i) holds by construction. To establish prop-
erty (ii), consider a modified dynamic-VCG mechanism in which the transfer (7) is
collected in every period. Given this, it follows by notational substitution into the
proof of Theorem 1 that the flow transfer to an agent forward from some period t

in which it is accessible is,

V−i(h
t−1, st, π∗

θ , σi)− V−i(s
t, π∗

θ−i
), (21)

observing that the independent type transitions property continues to hold because
of CIA. This flow transfer satisfies property (ii), with term V−i(s

t, π∗
θ−i

) agent-
independent because of the CIA property. Then, the transfer (7) is zero in any
period before an agent’s reported arrival because the agent’s effect on the actions
of the efficient policy is only through the arrival process until its reported arrival.
In addition, the transfer is zero after an agent’s reported departure because it has
zero value for actions, and by CIA, has no effect on the belief about future arrival
types. This completes the proof.

Proof of Theorem 4. The decision policy is efficient and satisfies property (i) of
Lemma 2 by construction. For property (ii), fix agent i (still to report its type)
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and consider a period t in which the agent is active, strategy σi, history ht−1 and
partially-truthful type profile θ̆t (with associated state profile s̆t). The expected
discounted transfer to i, forward from period t, is

Est..K


γk(σi)−t


V (ŝk(σi), π∗

θ)− V−i(s
k(σi)
−i , π∗

θ−i
)−

K∑

k=k(σi)

γk−k(σi) · r̂i(ŝ
k
i , a

k)


∣∣θ̆t, σi


 (22)

= Est..K

[
γk(σi)−t

(
V−i(ŝ

k(σi), π∗
θ)− V−i(s

k(σi)
−i , π∗

θ−i
)
) ∣∣ θ̆t, σi

]
, (23)

where k(σi) is the period in which agent i reports its type given strategy σi. The
expectation is taken with respect to a sequence of states, sk = τ̆(sk−1, ak) for k > t,
and st = s̆t, where τ̆ and s̆t are the transition function and state associated with θ̆t.
For action ak = π∗

θ(ŝ
k), this is selected according to π∗

θ , the efficient policy given θ̆t

and agent i’s type as reported under σi, and with joint state ŝk = (ŝki , s
k
−i), where

ŝki is the state reported by agent i in period k. Reward r̂i is that reported by agent
i. Finally, π∗

θ−i
is efficient given θ̆t. By algebra, this flow becomes,

= Est..K


γk(σi)−t · V−i(ŝ

k(σi), π∗
θ) +

k(σi)−1∑

k=t

γk−t · r̆−i(s
k
−i, a

k)
∣∣ θ̆t, σi




− Est..K


γk(σi)−t · V−i(s

k(σi)
−i , π∗

θ−i
) +

k(σi)−1∑

k=t

γk−t · r̆−i(s
k
−i, a

k)
∣∣ θ̆t, σi


 , (24)

where r̆−i is the reward profile to agents 6= i associated with θ̆t, and this simplifies
to V−i(h

t−1, s̆t, π∗
θ , σi)− V−i(s̆

t, π∗
θ−i

), where the first term is equal to the first term
in (24) by definition, and the second term follows by private values and CIA, which
provides that the actions selected by the efficient policy between the current period
and period k(σi) are the same as would be made under π∗

θ−i
.
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