
Expressive Power-Based Resource Allocation for Data Centers

Benjamin Lubin
Harvard University∗

Jeffrey O. Kephart
IBM Thomas J. Watson

Research Center

Rajarshi Das
IBM Thomas J. Watson

Research Center

David C. Parkes
Harvard University

Abstract

As data-center energy consumption continues to
rise, efficient power management is becoming in-
creasingly important. In this work, we examine the
use of a novel market mechanism for finding the
right balance between power and performance. The
market enables a separation between a ‘buyer side’
that strives to maximize performance and a ‘seller
side’ that strives to minimize power and other costs.
A concise and scalable description language is de-
fined for agent preferences that admits a mixed-
integer program for computing optimal allocations.
Experimental results demonstrate the robustness,
flexibility, practicality and scalability of the archi-
tecture.
Keywords: Autonomic Computing; Auctions and
Market-Based Systems

1 Introduction

In 2006, US data centers used about 61 billion kWh; that is,
1.5% of the 4 trillion kWh consumed in total. This is the
amount of energy used by 5.8 million average US households
(5% of all households). Producing this power resulted in 37
million metric tons of CO2, or .6% of the 5.9 billion metric
tons released from all sources. That is roughly 16% of that
produced by the burning of jet fuel and more than that used
to power TVs. This electricity cost US $4.5 billion and re-
quired a peak load capacity of about 7GW, more than double
the level of consumption in 2000. Peak load capacity is ex-
pected to double again by 2011 to 12GW, requiring the con-
struction of 10 additional 500MW power plants.1 Given the
rapid, unabated rise in electrical power consumption and the
associated financial and environmental costs, data center op-
erators realize that the established practice of running large
numbers of significantly under-utilized servers is no longer
acceptable, and are eager for energy-saving solutions.

Market paradigms have often been proposed as a useful
paradigm for allocating limited computational resources and
satisfying multi-criteria objectives. The earliest work on such
markets was for time sharing on the PDP-11 in the 1960s by
Sutherland[1968]. In the intervening years there have been

∗Work completed while an intern at IBM Research
1Carbon Dioxide Emissions from the Generation of Electric

Power in the United States, US DOE and EPA Report, July 2000;
Report to Congress on Server and Data Center Energy Efficiency,
US EPA Report, August 2007;Emissions of Greenhouse Gases Re-
port: Carbon Dioxide Emissions, US EIA Report, December 2008.

proposals to use such methods in high performance comput-
ing, grid computing, as well as in data centers.

However, existing proposals have deficiencies that can ren-
der them impractical for modern data centers. We propose a
general method for overcoming these concerns, and illustrate
its applicability to one specific environment. We offer a:
Realistic model of resources:We support a finer granular-

ity of computational entity (e.g. core vs server which
is especially important as multi-core machines become
the norm) and finer control over power state of machines
(e.g. Dynamic Voltage and Frequency Scaling (DVFS),
not just on/off). We also handle heterogeneous applica-
tions running on heterogeneous classes of servers.

Realistic representation of goals:We use a less restricted
form of utility function that supports distributional (and
percentile) considerations, not just means. These func-
tions are derived from standard long-term Service Level
Agreements (SLAs) that are programatically interpreted
as short-term utility functions in a dynamic environment.

Principled optimization: We use Mixed Integer Program-
ming, and, unlike previous systems, we do not rely on
heuristic solvers but instead present a carefully formu-
lated MIP model that can scale to large problem sizes.2

We show that a market-based approach provides a natural,
feasible, and advantageous framework for representing the
milieu of physical and computational resources, and the ap-
plications that consume these resources, in modern-day data
centers. Experimental results indicate that our system can
robustly and scalably improve net profits of our data center
prototype by up to 137%. For large instances of 1000 ma-
chines and 10 applications (each associated with a customer),
each with a demand of 2700 transactions a second, when lim-
iting MIP solve time to 10 minutes we achieve an average
solve time of 5.16 minutes, with a negligible approximation
imposed on the instances that timeout. Thus a single machine
is capable of optimizing the usage on 1000 others, giving us
a very acceptable .1% overhead factor.
Related Work: Chaseet al. [2005] present a compelling
market-based system for data center resource allocation, and
are able to experimentally demonstrate significant energy sav-
ings over static allocations. However, their greedy clearing
mechanism imposes restrictions on the form of utility that
can be modeled, SLAs are not directly represented, and de-
mand/utility computations occur with respect to the mean,
not distributional information. Their model does not handle

2We leverage recent advances in MIP solving that enable com-
plex combinatorial markets to be solved quickly in practice, even
though they address NP-hard problems[Sandholm, 2007].

the heterogeneity of data-center machines or modern power-
throttling architectures (instead simply turning machines on
and off), and their allocation is at the level of servers and not
cores. The non-linear costing model that we use is related to
the one provided by Chenet al. [2005]. But rather than iden-
tify total-value maximizing allocations with respect to SLAs,
they treat SLAs as constraints and attempt to find the cheapest
allocation subject to meeting implied quality constraints.

Recent work on resource allocation in data centers has
focused onUtility Computing, which seeks to provide ac-
cess to the data center in a way analogous to that of a pub-
lic utility (e.g., gas, water, power)[Low and Byde, 2006;
Byde, 2006]. In general, Utility Computing views compu-
tational resources as more fungible than in the present work,
where we assume that only particular machines are suitably
configured for, and capable of running, certain applications.
Rather then argue for a more radical shift in how computation
is bought, sold, and deployed, in this work we propose a more
gradual evolutionary step by creating a market that handles
this heterogeneity in present data centers and which encom-
passes and generalizes the present contract format (SLAs).
There is an extensive literature on using market-based meth-
ods in related contexts, includingComputational Gridsand
in High Performance Computing. Yeo and Buyya[2006] and
Broberget al. [2007] are good surveys of this work, which
can be informative here as well.

A market in our setting is combinatorial in nature; partici-
pants must be able to bid (indirectly, via SLAs) on ‘packages’
of items, where the value for a package may not be a lin-
ear combination of the value for its constituent items. There
is a long literature on combinatorial auctions; an excellent
overview is in the book by Cramtonet al. [2006].

2 A Market Model of Data Center Allocation
Typical data centers have hundreds to thousands of servers,
many of which will share the same hardware and software
configuration. We call such equivalence classes‘machine
groups’ and assume that this partitioning is performed by a
separate offline process. The owner of a data center typically
contracts (either internally or externally) to provide these re-
sources to a set of applications (each associated with a cus-
tomer), each with time-varying load and utility and a range of
resource requirements and importance.

In present use, each application is associated with an SLA
that is negotiated between customer and data-center provider.
Such an agreement specifies a price, a performance objec-
tive (e.g. a cap on the 95th percentile of response time),
and a penalty for failing to meet the objective. The SLA
is useful for assigning a relative importance to the applica-
tions, but despite its quantitative feel it is generally used at
present in only a qualitative way, as a guideline for person-
nel when manually configuring data-center operations. Yet,
SLAs suggest a direction towards application utility functions
that are highly relevant to obtaining reasonable performance
in a power-constrained environment[Kephart and Das, 2007;
Steinderet al., 2008]. In this work, we introduce a system that
adopts SLAs for the purpose of utility-based optimization of
resource configurations.

When allocating resources in the data center we seek to op-
timize the operator’s business value for the data center: i.e.,

Figure 1: The Data Center Market Model

the revenue net of costs. This means assigning (portions of)
the machines from discrete machine groups to the various ap-
plications as well as specifying the power for each machine,
and thus restraining overall consumption. For this, we use a
sophisticated model of the power saving modes available to
modern servers and assume access to monitors of both power
consumption and application demand.

Our market allocates goods (cores of machines from the
various machine groups) to applications, as illustrated inFig-
ure 1. The market is repeatedly cleared over brief periods, by
using predictions about future supply and demand to translate
applications’ long-term SLAs into short-term bids.

The winner-determination problem for this market requires
optimization, and is potentially solved in many different
ways. We choose to formulate it as a Mixed Integer Program
and solve it via ILog CPLEX 11.1. The form of the buyer (or
customer’s) value model and seller cost model have been cho-
sen to ease formulation of the problem as a MIP, as sketched
below.3

For each period, we use a myopic net revenue maximiza-
tion objective:

max
∑

a∈A

Va − κETOTAL − HTOTAL

whereVa is the value of the chosen allocation of machines
to application (associated with a particular buyer)a ∈ A, κ
is the dollar cost of a kW-hour of energy,ETOTAL is the to-
tal energy used to establish and maintain the chosen alloca-
tion for the current period, andHTOTAL is the dollar cost for
the hardware. The objective is thus quite straightforward–the
complexity comes from the constraints. We begin by defining
the buyer value,Va, i.e. the value associated with application
a of some buyer.

2.1 Buyer Valuation Model
Today, the contracts signed for data center provisioning are
typically in terms of SLAs. We model a per-application SLA
contract as a piecewise linear function for the value of re-
ceiving a given response time at a given demand percentile.
Figure 2 shows an example of an SLA value curve of this

3The size of the formulation will grow linearly with the number
of applications and machine groups. However, it will grow with the
square of the number of power modes (since it encodes a transition
matrix from one mode to the next). Fortunately, polynomial growth
in the size of the MIP need not imply exponential growth in practical
computation time, and we examine scalability in Section 3.1.

form for two different applications A and B. A bidding proxy
represents each application within the market, and takes such
an SLA and combines it with supply and demand prediction
and an application performance model, to represent the SLA
as a short-term bid; i.e. a bid that is appropriate for the period
of time for which the market is cleared.

Value for 95th Percentile Response Time

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 0.2 0.4 0.6 0.8 1 1.2
Response Time per Transaction in Seconds

V
al

u
e

p
er

 M
o

n
th

 (
$)

A Value
B Value

Figure 2: SLAs as Provided by two Different Applications

The bidding proxy needs a model of how a given supply
of machines (and thus transaction capacity) and application
demand for the next planning episode will translate to the
long-term response time distribution (and in turn to its, e.g.,
95th percentile), and thus to the value curve associated with
an SLA. Here, as a very simple example, we consider that
transaction processing is described as an M/M/1 queue (ex-
ponential inter-arrival and service times). In this case, the
response time distribution is exponential with mean response
time 1/(µ − λ), whereµ is the supply andλ is the demand,
both in transactions per unit time. The fraction of response
times above a percentileP is given by the exponential quar-
tile function:− ln(1−P)

(µ−λ) . The proxy composes the customer’s
SLA (Figure 2) with this response time model, resulting in a
value function over both supply and demand at, e.g., the 95th
percentile (Figure 3).4

0
0.5

1
1.5

2
2.5

x 10
7

0

1

2

3

4

x 10
7

0

5

10

15

20

25

Demand in MCycles / PeriodSupply in MCycles / Period

V
al

ue
 in

 D
ol

la
rs

 /
P

er
io

d

Figure 3: Application Value by Supply and Demand

Next the bidding proxy needs a predictive model of appli-
cation demand over the next period. We have found it suf-
ficient to simply use statistics gathered over a small window
of previous periods to provide a Gaussian model of the dis-
tribution of possible demand in the next period via a Maxi-
mum Likelihood Estimation (MLE) prediction of mean and

4The value is also scaled by the demand relative to the mean,
aligning the one-period bid with the long-term (SLA) statistics.

standard deviation. The bidding proxy draws equal weighted
samples from this Gaussian demand prediction model and
takes a slice from the value model (Figure 3) for each. Then,
these slices are averaged to produce a single supply-value
curve, under our demand model. By taking a piecewise linear
approximation of this curve (obtained by chaining the control
points of the originally supplied response-time/value curve
through these transformations) we arrive at the utility curve
provided to the market in a given period as a bid, an example
of which is shown in Figure 4.

0

2

4

6

8

10

12

0 5 10 15 20 25
Supply in TCycles / Period

$
/ P

er
io

d

Figure 4: Expected Short-term Value for a Single Application

If we apply this function to the cycles provided by a po-
tential allocation, then we have specified a utility function as
needed by the winner determination algorithm, and with a
significant dimensionality reduction:5

Va = Fa(Qa),

for applicationa, whereFa is this piecewise linear function
andQa is the quantity of cycles provided to applicationa by
the chosen allocation. To formulate this function, any stan-
dard MIP representation for a piecewise linear function can
be used, which will induce auxiliary constraints and variables
in order account for the various segments of the function.

In turn, the total quantity of cycles provided to application
a can in a period be defined as:

Qa =
∑

g∈Ga

∑

f∈Mg

∑

t∈Mg

γg,t(τ − δg,f,t)C
SOLD
g,f,t,a ∀ a ∈ A

whereGa is the set of machine groups that can support appli-
cationa, Mg is the set of power modes available to machines
in group g, γg,t(∆) is the number of cycles provided by a
machine from groupg in modet over a period of time∆, τ is
the amount of time in the current period,δg,f,t is the amount
of time it takes to transition from modef to modet and each
CSOLD

g,f,t,a variable defines a quantity of cores (i.e. goods) allo-
cated from groupg that were in modef and are now in mode
t (described in more detail below).

2.2 Defining The Goods in the Market
Within each machine group, we track only the number of
cores in each power state. An allocation of some quantity of
such cores is ultimately mapped into an assignment of cores
on physical machines in post-processing.6 This avoids the

5Our queuing model permits a reduction from the|Ga × Mg ×
Mg| variables to the single variableQa. More complex models
may require additional dimensions, though in general a significant
diminution should be possible.

6We currently use a fast but potentially only approximate greedy
assignment; however, more sophisticated methods could be used if
the identities of machines in a group has importance.

creation of immaterial distinctions that would only compli-
cate winner determination. However, to properly encode the
data-center cost model, described in the next section, we need
a representation that captures power-state transitions enabling
us to account for resultant changes in energy usage, cycle loss
and increases in failure rate. Consequently, theCSOLD

g,f,t,a vari-
ables capture the number of cores in a given machine group
starting in modef in the last period, transitioning to (the pos-
sibly identical) modet in the current period for a given appli-
cationa.

Constraints are defined to ensure that an allocation of these
goods will be physically implementable; e.g., on present day
platforms it is required that all cores on the same physical
machine be at the same power level:

|CORESg|
∑

f∈Mg

M SOLD
g,f,t =

∑

f∈Mg

∑

a∈A

CSOLD
g,f,t,a + CPARTUNSOLD

g,t

|CORESg|
∑

f∈Mg

M UNSOLD
g,f,t =

∑

f∈Mg

CUNSOLD
g,f,t − CPARTUNSOLD

g,t

∀ t ∈ Mg ∀ g ∈ G

where |CORESg| is the number of cores per machine in
groupg, CUNSOLD

g,f,t are variables counting the unassigned cores,
M SOLD

g,f,t andM UNSOLD
g,f,t count sold and unsold machines respec-

tively and CPARTUNSOLD
g,t count the unsold cores on partially

sold machines. Additionally, we need to restrain available
supply, through the machine counts:

|MACHINESg| =
∑

f∈Mg

∑

t∈Mg

M SOLD
g,f,t + M UNSOLD

g,f,t ∀ g ∈ G

where|MACHINESg| is the number of machines in groupg.

2.3 Seller Cost Model
On the supply side of the market, we explicitly model both the
hardware and energy costs of running the data center’s ma-
chines in their various power states. Our model captures the
power consumed and performance attained by each machine
as a function of the number of active and inactive cores, as
measured empirically on an IBM BladeCenter HS21 Server
(Figures 5a and 5b). ModernDynamic Voltage and Frequency
Scaling(DVFS) enabled machines can have their most effi-
cient state at less than full power: e.g. a maximum of 64 vs.
50 MCycles/Watt with 4 cores active (taking the ratio of the
curves in each figure).

We define the energy requirements (i.e. power over the
time period) of the active cores as follows (omitting that for
idle hardware in the interest of space):

ESOLD =
∑

g∈G

∑

f∈Mg

∑

t∈Mg

EMULT (ETRANS
g,f,t + EBASE,ACTIVE

g,τ,t)M SOLD
g,f,t

+
∑

g∈G

∑

f∈Mg

∑

t∈Mg

∑

a∈A

EMULT ECORE,ACTIVE
g,τ,t CSOLD

g,f,t,a

whereETRANS
g,f,t is the energy required to go from power-statef

to t, EBASE,ACTIVE
g,τ,t is the base power for an active machine, and

ECORE,ACTIVE
g,τ,t is the incremental energy needed to run a fully

loaded core in this power-state. HereEMULT accounts for the
typically two- to three-fold increase in energy needed to run
power supply units, uninterruptible power supplies, network

30

140 145 150 155

0

2500

5000

7500

10000

0

50

100

150

200

250

0 1 2 3 4
Active Cores

P
o

w
er

 (
W

at
ts

)

0

2000

4000

6000

8000

10000

12000

14000

M
C

yc
le

s
/ S

ec
o

n
d

Figure 5a: Power and Speed Under Low Power

30

165
190

215
240

0

3000

6000

9000

12000

0

50

100

150

200

250

0 1 2 3 4
Active Cores

P
o

w
er

 (
W

at
ts

)

0

2000

4000

6000

8000

10000

12000

14000

M
C

yc
le

s
/ S

ec
o

n
d

Figure 5b: Power and Speed Under High Power

switches and storage, and most importantly, cooling equip-
ment.

We stipulate the hardware costs for active cores (again
omitting the similar expression for idle hardware) as follows:

HSOLD =
∑

g∈G

∑

f∈Mg

∑

t∈Mg

(HBASE
g,τ,g + HTRANSITION

g,f,t)M SOLD
g,f,t

whereHBASE
g,τ,g is the pro-rated cost for each core, and includes

not only the amortized server cost, but also supporting equip-
ment, buildings and personnel;HTRANSITION

g,f,t accounts for the
cost associated with in an increased failure rate upon a state
transition due to e.g. spinning up/down hard drives. We ex-
pect each of these numbers to be easily obtainable through a
principled evaluation of existing business practices and capi-
tal investments.

Episodic formulations have a common problem in that they
may not bear large transition costs when they create a tempo-
rary loss, despite a long-term gain. Consequently, we also
find it useful to include a predictor on the sell side that tracks
the allocation over previous periods (similarly to the buyer
demand prediction) and tweaks the optimizers’ view of the
power state prior to the new period to better match the pre-
dicted demand than the actual power state as selected in the
previous period. A full explanation of this component is post-
poned for a longer version of this paper.

A system administrator might, in addition, wish to spec-
ify additional restrictions on the allocation to ensure imple-
mentability. Considerable flexibility is possible; some exam-
ples include: min/max cores/machines for a given applica-
tion, min/max energy used in a given machine group or for
a given application, and max cores in a given machine group
that can be allocated to a given application if a certain number
are already allocated to specific alternative application (anti-
colocation).

3 Experimental Results
We have evaluated our market-based system in a set of sim-
ulation experiments to show both computational tractability
and to show effective allocative behavior over a wider range

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000
Mean Power Bought and 95th−Percentile Response Time by Energy Price

Price per kilowatt−hour

M
ea

n
P

ow
er

 B
ou

gh
t i

n
K

ilo
w

at
t−

H
ou

rs

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ea

n
95

−
P

er
ce

nt
ile

 R
es

po
ns

e
in

 S
ec

on
ds

Market Power Usage
Static Power Usage
Market Response Time
Static Response Time

(a) Energy Used and Response Time

0 0.2 0.4 0.6 0.8 1
0

1000

2000

Buyer Value by Energy Price

Price per Kilowatt−Hour

V
al

ue
 in

 D
ol

la
rs

Market
Static

0 0.2 0.4 0.6 0.8 1
0

1000

2000

Seller Cost by Energy Price

Price per Kilowatt−Hour

C
os

t i
n

D
ol

la
rs

Market
Static

(b) Buyer Value and Seller Cost
Figure 5: Varying Energy Cost Under Market and Heuristic (Static) Algorithms

of environments. Each experiment has been performed on
a 3.2GHz dual-processor dual-core workstation with 8GB of
memory and CPLEX 11.1. Each data point is the mean of 10
randomly generated time-dependent demand traces.

Our realistic but synthetic traces are the sum of two si-
nusoid curves (e.g. 1 day period with 9000 peak transac-
tions/minute plus 1 week period with 36000 peak transac-
tions/minute) and a noise term drawn from a Gaussian with a
s.d. equal to 25% of the signal. These match well with real
customer traces, where request density is time-dependent and
oscillates over both days and weeks.7 Each transaction is as-
sumed to use 300 MCycles, which is representative of the
processing needed to e.g. produce a custom report. Lastly,
each allocation period is 10 minutes, which is fast enough to
react to dynamic changes in the load but without thrashing.

Because no allocator in the literature has comparable ca-
pabilities, we adopt as a benchmark a sophisticatedgreedy
allocator, which operates as follows:

1. Put all the machines in their highest efficiency state.
2. Determine the target supply for each application by cal-

culating what is required to produce its ideal response
time at its 95th percentile of demand.

3. Allocate cores (from feasible machine groups) to the ap-
plications, weighted by the marginal value of supply to
each application. If an application’s supply of high ef-
ficiency cores is exhausted, then instead bump one of
the machines supporting it into a higher power state.
Stop when either all the targets have been met or all the
cores/states have been allocated.

4. Consider each application in turn and trim the allocation
until the expected value at the 95th percentile of demand
is greater than or equal to the expected cost.

5. Place remaining machines into their lowest power state.

For exposition purposes we consider a simple scenario
with two applications (i.e. two customers) and three ma-
chine groups (each capable of supporting the first, second
and both applications respectively), for a simulated week of
time-varying demand. Figure 5a shows the effect of vary-
ing the price of energy under both the market and the static
allocation algorithm. We can see that, as expected, under

7Unlike captured data, robustness to load-structure can be tested.

both algorithms the energy used falls and consequently the
mean response time rises as the price of energy is increased.
However, bidding proxies in the market find it profitable to
purchase enough energy to maintain a near-optimal response-
time until the price finally reaches such a point that such high
energy usage can no longer be sustained, and more energy-
frugal allocations are chosen. In Figure 5b, we see the impact
of the choice of these allocations on buyer (i.e. customer)
and seller value, as judged by SLAs and revenue net of cost
respectively. The greedy allocation is cheaper to provide be-
cause of the static power levels, but also results in signifi-
cantly lower buyer value over a wide range of prices. The
maximum revenue net cost improvement is 137% higher in
the market model, though margins become slim when energy
is expensive.

It is also important to consider distributive effects to cus-
tomers in the data-center setting. In this scenario, the ‘A’ap-
plication induces a larger load then ‘B’, but with a smaller
marginal value for cycles. Consequently, as energy prices
rise, the static allocator quickly devotes the limited resources
that can be afforded to the ‘B’ allocation, thereby starving
the ’A’ application, as seen in Figure 6a. The market alloca-
tion maintains the allocation for the ‘B’ application, but also
recognizes that some resources can profitably be given to ‘A’.
This is possible by switching machines between their most ef-
ficient modes to conserve energy, and their high-power modes
to track spikes in demand. Figure 6b shows that in this setting
the static allocator has placed all of the machines in the high
efficiency ‘Low Power’ mode, whereas the market has made
use of both modes. When the price for power is low, the most
efficient allocation is to maintain quite a few machines in the
high power state. However, as the price crosses 40 cents a
kWh, there is a phase change and it becomes much more ef-
ficient to run mostly in the low-power mode. Beyond about
60 cents per kWh, it becomes impossible to afford the energy
needed to maintain a supply sufficient to keep a low response
time, and the optimal allocation shrinks.

3.1 Scalability and Complexity

To evaluate the scalability of our MIP formulation we evalu-
ated 10 instances of a scenario with 200 quad-core machines
in each of five groups for a total of 1000 machines. We con-

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

60
Allocation by Energy Price

Price per Kilowatt−Hour

M
ea

n
C

or
es

 U
se

d

Market A
Market B
Static A
Static B

(a) By Application

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

60

70

80
Allocation by Energy Price

Price per Kilowatt−Hour

M
ea

n
C

or
es

 U
se

d

Market High
Market Low
Static High
Static Low

(b) By Power Mode
Figure 6: Allocation By Energy Cost Under Market and Static Algorithms

figured 10 applications, each with a demand for some 2700
transactions a second, to draw upon these resources with each
group supporting three of the applications in a ring topology.
We restricted the optimizer to no more then 10 minutes of
computation per instance, taking advantage of the anytime
nature of modern MIP solvers. Including the four instances
thus capped, the average solve time was 5.16 minutes, well
within the time of a single period. Further, the approxima-
tion resulted in only a 0.08% revenue loss when compared to
the optimal solution, which would have taken an additional
29 minutes on average for these difficult cases. Thus a single
machine is capable of optimizing the usage on 1000 others,
giving us a very acceptable .1% overhead factor. For a data
center with many more machines, one could then decompose
into multiple machine pools, each of size around 1000.

We have also investigated the effect on run-time of the
structure of the bipartite graph that defines which application
can be supplied by each machine group. For this, we use a
scenario with five applications and five machine groups and
where supply is set so as to be just sufficient to meet demand.
The complexity of the winner-determination problem rises as
a sigmoid as we vary the number of edges in the bipartite
graph. A graph with 30% of the edges (already highly con-
nected for current data centers) takes only 3.8% of the time
needed to clear the market with a complete graph. With 50%
connectivity the computation time has risen to 58.8%, and by
60% connectivity the timing has already risen to 86.6%. Fur-
ther, the increasing complexity is matched by a correspond-
ing decrease in application response time. With 60% of the
edges, we are only 8% above the response time of the com-
plete graph.

4 Conclusions
We have established that suitably designed combinatorial
markets can find practical application to power-managed re-
source allocation in corporate data centers. Further, it ispos-
sible to inject revenue-based utility functions directly into
the present data center business/allocation model without
the large changes associated with Utility Computing, a re-
quirement for rapid industry adoption. Such markets facili-
tate agent information isolation, quantifying the trade-offs of

multi-objective optimization, and facilitate the use of combi-
natorial optimization in a scalable way, provided carefully-
designed models are used. Future work should address the
economic and game-theoretic considerations that follow from
the ability to enable dynamic competition between customers
via such a market-based allocation paradigm, and also con-
sider the possibility of richer SLA models and hierarchical
allocation paradigms.

References
[Broberget al., 2007] J. Broberg, S. Venugopal, and R. Buyya.

Market-oriented grids and utility computing: The state-of-the-art
and future directions.Grid Computing, 2007.

[Byde, 2006] A. Byde. A comparison between mechanisms for se-
quential compute resource auctions.Proc. AAMAS, 8(12):1199–
1201, 2006.

[Chaseet al., 2001] J.S. Chase, D.C. Anderson, P.N. Thakar, A.M.
Vahdat, and R.P. Doyle. Managing energy and server resources
in hosting centers. InProc. SOSP, pages 103–116. ACM New
York, NY, USA, 2001.

[Chenet al., 2005] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam,
Q. Wang, and N. Gautam. Managing server energy and oper-
ational costs in hosting centers. InProc. SIGMETRICS, pages
303–314. ACM New York, NY, USA, 2005.

[Cramtonet al., 2006] P. Cramton, Y. Shoham, and R. Steinberg,
editors. Combinatorial Auctions. MIT Press, Jan 2006.

[Kephart and Das, 2007] J.O. Kephart and R. Das. Achieving Self-
Management via Utility Functions.IEEE Internet Computing,
pages 40–48, 2007.

[Low and Byde, 2006] C. Low and A. Byde. Market-based ap-
proaches to utility computing. Tech. Rep. 23, HP, Feb 2006.

[Sandholm, 2007] T. Sandholm. Expressive Commerce and Its
Application to Sourcing: How We Conducted $35 Billion of Gen-
eralized Combinatorial Auctions.AI Magazine, 28(3):45, 2007.

[Steinderet al., 2008] M. Steinder, I. Whalley, J. E. Hanson, and
J. O. Kephart. Coordinated management of power usage and
runtime performance. InNOMS, pages 387–394, 2008.

[Sutherland, 1968] I. E. Sutherland. A futures market in computer
time. Commun. ACM, 11(6):449–451, 1968.

[Yeo and Buyya, 2006] C.S. Yeo and R. Buyya. A taxonomy
of market-based resource management systems for utility-
driven cluster computing.Software, Practice & Experience,
36(13):1381–1419, 2006.

