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Abstract

We consider a two-agent MDP framework where

agents repeatedly solve a task in a collaborative

setting. We study the problem of designing a

learning algorithm for the first agent (A1) that

facilitates successful collaboration even in cases

when the second agent (A2) is adapting its pol-

icy in an unknown way. The key challenge in our

setting is that the first agent faces non-stationarity

in rewards and transitions because of the adaptive

behavior of the second agent.

We design novel online learning algo-

rithms for agent A1 whose regret decays as

O
(

Tmax{1− 3
7 ·α,

1
4 }
)

, for T learning episodes,

provided that the magnitude in the change in

agent A2’s policy between any two consecutive

episodes is upper bounded byO(T−α). Here, the

parameter α is assumed to be strictly greater than

0, and we show that this assumption is necessary

provided that the learning parity with noise prob-

lem is computationally hard. We show that sub-

linear regret of agent A1 further implies near-

optimality of the agents’ joint return for MDPs

that manifest the properties of a smooth game.

1. Introduction

Recent advancements in AI have the potential to change our

daily lives by boosting productivity (e.g., via virtual per-

sonal assistants), augmenting human capabilities (e.g., via

smart mobility systems), and increasing automation (e.g.,

via auto-pilots and assistive robots). These are settings of

intelligence augmentation, where societal benefit will come

not from complete automation but rather from the interac-

tion between people and machines, in a process of a pro-

ductive human-machine collaboration.
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sws.org>.
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We expect that useful collaboration will come about

through AI agents that can adapt to the behavior of users.

As an example, consider self-driving cars where auto-pilots

can be overridden by human drivers. In an initial period, a

human driver would likely change their behavior until ac-

customed with new features of an auto-pilot mode. Without

accounting for this changing behavior of users, the perfor-

mance of the AI agent could considerably deteriorate, lead-

ing to, for example, hazardous situations in an auto-pilot

mode. Hence, it is important that the AI agent updates its

decision-making policy accordingly.

We formalize this problem through a two-agent, reinforce-

ment learning (RL) framework. The agents, hereafter re-

ferred to as agent A1 and agent A2, jointly solve a task in

a collaborative setting (i.e., share a common reward func-

tion and a transition kernel that is based on their joint ac-

tions). Our goal is to develop a learning algorithm for agent

A1 that facilitates a successful collaboration even in cases

when agent A2 is adapting its own policy. In the above

examples, agent A1 could represent the AI agent whereas

agent A2 could be a person with time-evolving behavior.

We primarily focus on an episodic Markov decision pro-

cess (MDP) setting, in which the agents repeatedly interact:

(i) agent A1 decides on its policy based on historic infor-

mation (agent A2’s past policies) and the underlying

MDP model;

(ii) agent A1 commits to its policy for a given episode

without knowing the policy of agent A2;

(iii) agent A1 updates its policy at the end of the episode

based on agent A2’s observed behavior.

When agent A2’s policy is fixed and known, one can find

an optimal policy for agent A1 using standard MDP plan-

ning techniques. In our setting, however, we do not assume

agent A2’s behavior is stationary, and we do not assume

any particular model for how agent A2 changes its policy.

This differs from similar two-agent (human-AI) collabo-

rative settings (Dimitrakakis et al., 2017; Nikolaidis et al.,

2017) that prescribe a particular behavioral model to agent

A2 (human agent).

1.1. Overview of Our Approach

The presence of agent A2 in our framework implies

that the reward function and transition kernel are non-

http://arxiv.org/abs/1901.08029v2
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stationary from the perspective of agent A1. Vari-

ants of the setting have also been studied in the learn-

ing literature (Even-Dar et al., 2005; 2009; Yu & Mannor,

2009b;a; Yu et al., 2009; Abbasi et al., 2013; Wei et al.,

2017). However, these approaches do not directly ap-

ply because: (i) they focus on a particular aspect

of non-stationarity (e.g., changing rewards with fixed

transitions) (Even-Dar et al., 2005; 2009), (ii) require

that the changes in the transition model are bounded

(Yu & Mannor, 2009a;b), (iii) make restrictions on the pol-

icy space (Abbasi et al., 2013), and (iv) consider a com-

petitive or adversarial setting instead of cooperative set-

ting with shared reward (Wei et al., 2017). Instead, we

will assume that agent A2 does not abruptly change its

policy across episodes, and prove that the problem be-

comes computationally intractable otherwise. Our ap-

proach is inspired by the problem of experts learning in

MDPs (Even-Dar et al., 2005), in which each state is as-

sociated with an experts algorithm that derives the policy

for that state using Q-values. However, to compensate

for the non-stationarity of transitions and facilitate a faster

learning process, we introduce novel forms of recency bias

inspired by the ideas of Rakhlin & Sridharan (2013) and

Syrgkanis et al. (2015).

Contributions. We design novel algorithms for agent

A1 that lead to sub-linear regret of O(Tmax{1− 3
7 ·α,

1
4}),

where T is the number of episodes. We assume the mag-

nitude of agent A2’s policy change w.r.t. T is O(T−α),
for parameter α that we require to be strictly positive. We

show via a reduction from the learning parities with noise

problem (Abbasi et al., 2013; Kanade & Steinke, 2014)

that this upper bound on the rate of change in agent A2’s

policy is necessary, in that it is computationally hard to

achieve sub-linear regret for the special case of α = 0.

Furthermore, we connect the agents’ joint return to the

regret of agent A1 by adapting the concept of smoothness

from the game-theory literature (Roughgarden, 2009;

Syrgkanis et al., 2015), and we show that the bound on

the regret of agent A1 implies near optimality of the

agents’ joint return for MDPs that manifest a smooth game

(Roughgarden, 2009; Syrgkanis et al., 2015). To the best of

our knowledge, we are the first to provide such guarantees

in a collaborative two-agent MDP learning setup.

2. The Setting

We model a two-agent learning problem through an

MDP environment.1 The agents are agent A1 and agent

A2. We consider an episodic setting with T episodes

(also called time steps) and each episode lasting M rounds.

Generic episodes are denoted by t and τ , while a generic

1An MDP with multiple agents is often called multiagent
MDP (Boutilier, 1996).

round is denoted by m. The MDP is defined by:

• a finite set of states S, with s denoting a generic state.

We enumerate the states by 1, ..., |S|, and assume this

ordering in our vector notation.

• a finite set of actions A = A1×A2, with a1 ∈ A1 denot-

ing a generic action of agent A1 and a2 ∈ A2 denoting

a generic action of agent A2. We enumerate the actions

of agent A1 by 1, ..., |A1| and agent A2 by 1, ..., |A2|,
and assume this ordering in our vector notation.

• a transition kernel P (s, a1, a2, snew), which is a tensor

with indices defined by the current state, the agents’ ac-

tions, and the next state.

• a reward function r : S × A → [0, 1] that defines the

joint reward for both agents.

We assume that agent A1 knows the MDP model. The

agents commit to playing stationary policies π1
t and π2

t

in each episode t, but do so without knowing the commit-

ment of the other agent. At the end of the episode t, the

agents observe each other’s policies (π1
t, π2

t) and can

use this information to update their future policies.2 Since

the state and action spaces are finite, policies can be repre-

sented as matrices π1
t(s, a

1) and π2
t(s, a

2), so that rows

π1
t(s) and π2

t(s) define distributions on actions in a given

state. We also define the reward matrix for agent A1 as

rt(s, a
1) = Ea2∼π

2
t(s)

[

r(s, a1, a2)
]

, whose elements are

the expected rewards of agent A1 for different actions and

states. By bounded rewards, we have 0 ≤ rt(s, a
1) ≤ 1.

2.1. Objective

After each episode t, the agents can adapt their policies.

However, agent A2 is not in our control, and not assumed

to be optimal. Therefore, we take the perspective of agent

A1, and seek to optimize its policy in order to obtain good

joint returns. The joint return in episode t is:

Vt =
1

M
· E

[

M
∑

m=1

r(sm, a1m, a2m)|d1,π
1
t,π

2
t

]

=
1

M
·

M
∑

m=1

dt,m ·
〈

π1
t, rt

〉

,

where sm is the state at round m. For m = 1, sm is sam-

pled from the initial state distribution d1. For later peri-

ods, sm is obtained by following joint actions (a11, a
2
1),

(a12, a
2
2), ..., (a1m−1, a

2
m−1) from state s1. Actions are

obtained from policies π1
t and π2

t. The second part of

2We focus on the full information setting as it allows us to do
a cleaner analysis while revealing some of the challenges of the
problem at hand. The setting, for example, formalizes a scenario
where the AI describes its policy to the human, and the episodes
are long enough that the AI can effectively observe the human’s
policy.
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the equation uses a vector notation to define the joint re-

turn, where dt,m is a row vector representing the state dis-

tribution at episode t and round m, while
〈

π1
t, rt

〉

is a

row-wise dot product whose result is a column vector with

|S| elements. Since this is an episodic framework, we

will assume the same starting state distribution, d1, for all

episodes t. However dt,m can differ across episodes since

policies π1
t and π2

t evolve.

We define the average return over all episodes as V̄ = 1
T
·

∑T
t=1 Vt. The objective is to output a sequence of agent

A1’s policies π1
1, ..., π1

T that maximize:

sup
π

1
1,...,π1

T

V̄ = sup
π

1
1,...,π1

T

1

T
·

T
∑

t=1

Vt.

The maximum possible value of V̄ over all combinations

of agent A1’s and agent A2’s policies is denoted as OPT.

Notice that this value is achievable using MDP planning

techniques, provided that we control both agents.

2.2. Policy Change Magnitude and Influences

We do not control agent A2, and we do note assume that

agent A2 follows a particular behavioral model. Rather, we

quantify the allowed behavior via the policy change mag-

nitude, which for agent A2 is defined as:

ρ2 = max
t>1,s

∑

a2∈A2

|π2
t(s, a

2)− π2
t−1(s, a

2)|

= max
t>1

∥

∥π2
t − π2

t−1

∥

∥

∞
,

where ‖·‖∞ is operator (induced) norm. In the case of

agentA2, we will be focusing on policy change magnitudes

ρ2 that are of the order O(T−α), where α is strictly grater

than 0. For instance, the assumption holds if agent A2 is a

learning agent that adopts the experts in MDP approach of

Even-Dar et al. (2005; 2009).

We also define the influence of an agent on the transition

dynamics. This measures how much an agent can influence

the transition dynamics through its policy. For agent A2,

the influence is defined as:

I2 = sup
π

1,π2 6=π
2′

∥

∥P
π

1,π2 − P
π

1,π2′

∥

∥

∞
∥

∥π2 − π2′
∥

∥

∞

,

where kernel (matrix) P
π

1,π2(s, snew) denotes the prob-

ability of transitioning from s to snew when the agents’

policies are π1 and π2 respectively.3 Influence is a mea-

sure of how much an agent affects the transition probabil-

ities by changing its policy. We are primarily interested

3Our notion of influence is similar to, although not the same
as, that of Dimitrakakis et al. (2017).

in using this notion to show how our approach compares

to the existing results from the online learning literature.

For I2 = 0, our setting relates to the single agent settings

of Even-Dar et al. (2005; 2009); Dick et al. (2014) where

rewards are non-stationary but transition probabilities are

fixed. In general, the influence I2 takes values in [0, 1] (see

Appendix B, Corollary 1). We can analogously define pol-

icy change magnitude ρ1, and influence I1 of agent A1.

2.3. Mixing Time and Q-values

We follow standard assumptions from the literature on on-

line learning in MDPs (e.g., see Even-Dar et al. (2005)),

and only consider transition kernels that have well-defined

stationary distributions. For the associated transition ker-

nel, we define a stationary state distribution d
π

1,π2 as the

one for which:

1. any initial state distribution converges to under poli-

cies π1 and π2;

2. and d
π

1,π2 · P
π

1,π2 = d
π

1,π2 .

Note that d
π

1,π2 is represented as a row vector with |S|
elements. Furthermore, as discussed in Even-Dar et al.

(2005), this implies that there exists a mixing time ω, such

that for all state distributions d and d′, we have
∥

∥d · P
π

1,π2 − d′ · P
π

1,π2

∥

∥

1
≤ e−

1
ω · ‖d− d′‖1 .

Due to this well-defined mixing time, we can define the

average reward of agent A1 when following policy π1 in

episode t as:

ηt(π
1) := η

π
2
t
(π1) = d

π
1,π2

t
·
〈

π1, rt
〉

,

where 〈., .〉 is row-wise dot product whose result is a col-

umn vector with |S| elements. The Q-value matrix for

agent A1 w.r.t. policy π1
t is defined as:

Qt(s, a
1) = E

[

∞
∑

m=1

(

rt(sm, a1m)− ηt(π
1
t)
)

|s, a1,π1
t

]

,

where sm and a1m are states and actions in round m, start-

ing from state s with action a1 and then using policy π1
t.

Moreover, the policy-wise Q-value (column) vector for π1

w.r.t. policy π1
t is defined by:

Qπ
1

t (s) = Ea1∼π
1(s)

[

Qt(s, a
1)
]

,

and in matrix notation Qπ
1

t =
〈

π1,Qt

〉

. The Q-values

satisfy the following Bellman equation:

Qt(s, a
1) = rt(s, a

1)− ηt(π
1
t) + P

π
2
t
(s, a1) ·Qπ

1
t

t ,

where P
π

2
t
(s, a1) defines the probability distribution over

next states given action a1 of agent A1 and policy π2
t

of agent A2 (here, P
π

2
t
(s, a1) is denoted as a row vec-

tor with |S| elements). For other useful properties of this

MDP framework we refer the reader to Appendix B.
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3. Smoothness and No-regret Dynamics

The goal is to output a sequence of agentA1’s policies π1
1,

..., π1
T so that the joint return V̄ is maximized. There are

two key challenges: (i) agent A2 policies could be sub-

optimal (or, even adversarial in the extreme case), and (ii)

agent A1 does not know the current policy of agent A2 at

the beginning of episode t.

Smoothness Criterion. To deal with the first challenge,

we consider a structural assumption that enables us to ap-

ply a regret analysis when quantifying the quality of a so-

lution w.r.t. the optimum. In particular, we assume that the

MDP is (λ, µ)-smooth:

Definition 1. We say that an MDP is (λ, µ)-smooth if there

exists a pair of policies (π1∗,π2∗) such that for every pol-

icy pair (π1,π2):

η
π

2(π1∗) ≥ λ · η
π

2∗(π1∗)− µ · η
π

2(π1),

η
π

2∗(π1∗) ≥ η
π

2 (π1).

This bounds the impact of agent A2’s policy on the aver-

age reward. In particular, there must exist an optimal pol-

icy pair (π1∗,π2∗) such that the negative impact of agent

A2 for choosing π2 6= π2∗ is controllable by an appropri-

ate choice of agent A1’s policy. This definition is a variant

of the smoothness notion introduced to study the “price-

of-anarchy” of non-cooperative games, including for learn-

ing dynamics (Roughgarden, 2009; Syrgkanis et al., 2015).

For the relationship between the smoothness parameters

and the properties of the MDP, we refer the reader to Ap-

pendix C. It is important to note that since we have a finite

number of rounds M per episode, OPT is not necessarily

the same as η
π

2∗(π1∗), and the policies that achieve OPT

need not lead to η
π

2∗(π1∗).

No-regret Learning. To address the second challenge, we

adopt the online learning framework and seek to minimize

regret R(T ):

R(T ) = sup
π

1

T
∑

t=1

[

ηt(π
1)− ηt(π

1
t)
]

. (1)

A policy sequence π1
1, ..., π1

T is no-regret if regret R(T )
is sublinear in T . An algorithm that outputs such sequences

is a no-regret algorithm — this intuitively means that the

agent’s performance is competitive w.r.t. any fixed policy.

Near-optimality of No-regret Dynamics. Because agent

A2 could be adapting to the policies of agent A1, this is

an adaptive learning setting, and the notion of regret can

become less useful. This is where the smoothness criterion

comes in. We will show that it suffices to minimize the

regret R(T ) in order to obtain near-optimal performance.

Using an analysis similar to Syrgkanis et al. (2015), we es-

tablish the near-optimality of no-regret dynamics defined

w.r.t. the optimal return OPT, as stated in the following

lemma:

Lemma 1. For a problem with (λ, µ)-smooth MDP, return

V̄ is lower bounded by:

V̄ ≥
λ

1 + µ
· OPT −

1

1 + µ
·
R(T )

T
− 2 ·

1 + λ
1+µ

M · (1− e−
1
ω )

.

Proof. See Appendix D for the proof.

Lemma 1 implies that as the number of episodes T and the

number of rounds M go to infinity, return V̄ converges to

a multiple λ
1+µ

of the optimum OPT, provided that agent

A1 is a no-regret learner. In the next section, we design

such no-regret learning algorithms for agent A1.

4. Learning Algorithms

We base our approach on the expert learning literature for

MDPs, in particular that of Even-Dar et al. (2005; 2009).

The basic idea is to associate each state with an experts al-

gorithm, and decide on a policy by examining the Q-values

of state-action pairs. Thus, the Q function represents a re-

ward function in the expert terminology.

4.1. Experts with Periodic Restarts: EXPRESTART

In cases when agent A2 has no influence on transitions,

the approach of Even-Dar et al. (2005; 2009) would yield

the no-regret guarantee. The main difficulty of the present

setting is that agent A2 can influence the transitions via its

policy. The hope is that as long as the magnitude of policy

change by agent A2 across episodes is not too large, agent

A1 can compensate for the non-stationarity by using only

recent history when updating its policy.

A simple way of implementing this principle is to use a no-

regret learning algorithm, but periodically restarting it, i.e.,

by splitting the full time horizon into segments of length

Γ, and applying the algorithm on each segment separately.

In this way, we have well-defined periods {1, ...,Γ}, {Γ +
1, ..., 2 · Γ}, ..., {T − Γ + 1, ..., T }. As a choice of an

expert algorithm (the algorithm associated with each state),

we use Optimistic Follow the Regularized Leader (OFTRL)

(Rakhlin & Sridharan, 2013; Syrgkanis et al., 2015). Our

policy updating rule for segment l, with starting point τ =
1 + (l − 1) · Γ, can be described as:

π1
t(s) = argmax

w∈PA1

(

t−1
∑

k=τ

Qk(s) +Qt−1(s)

)

w† +
R(w)

ǫ
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for t ∈ {τ, . . . , l · Γ}, and:

π1
t(s) = argmax

w∈PA1

R(w)

ǫ
for t = τ.

Qk(s) denotes a row of matrix Qk (see Section 2.3),4 w

is a row vector from probability simplex PA1 , † denotes

the transpose operator, R is a 1-strongly convex regular-

izer w.r.t. norm ‖·‖1, and ǫ is the learning rate. This

approach, henceforth referred to as experts with periodic

restarts (EXPRESTART), suffices to obtain sublinear regret

provided that the segment length Γ and learning rate ǫ are

properly set (see Appendix G).

One of the main drawbacks of experts with periodic restarts

is that it potentially results in abrupt changes in the pol-

icy of agent A1, this occurring when switching from one

segment to another. In practice, one might want to avoid

this, for example, because agent A2 (e.g., representing a

person) might negatively respond to such abrupt changes

in agent A1’s policy. Considering this, we design a new

experts algorithm that ensures gradual policy changes for

agent A1 across episodes, while achieving the same order

of regret guarantees (see Section 5.4 and Appendix G).

4.2. Experts with Double Recency Bias: EXPDRBIAS

Utilizing fixed segments, as in the approach of EX-

PRESTART, leads to potentially rapid policy changes after

each segment. To avoid this issue, we can for each episode

t consider a family of segments of different lengths: {t −
Γ, ..., t}, {t − Γ + 1, ..., t}, ..., {t − 1, t}, and run the

OFTRL algorithm on each segment separately. The pol-

icy in episode t can then be defined as the average of the

OFTRL outputs. This approach, henceforth referred to

as experts with double recency bias (EXPDRBIAS), can

be implemented through the following two ideas that bias

the policy selection rule towards recent information in a

twofold manner.

Recency Windowing. The first idea is what we call re-

cency windowing. Simply put, it specifies how far in the

history an agent should look when choosing a policy. More

precisely, we define a sliding window of size Γ and to de-

cide on policy π1
t we only use historical information from

periods after t − Γ. In particular, the updating rule of

OFTRL would be modified for t > 1 as π1
t(s) =

argmax
w∈PA1

( t−1
∑

k=max(1,t−Γ)

Qk(s) +Qt−1(s)

)

w† +
R(w)

ǫ
.

4Given π
1
t and π

2
t, we can calculate Qt from the Bellman

equation using standard dynamic programming techniques.

Algorithm 1: EXPDRBIAS

Input: History horizon Γ, learning rate ǫ
begin

Initialize: ∀s, compute π1
1(s) using Eq. (2)

for episode t ∈ {1, ..., T } do

∀s, commit to policy π1
t(s)

Obtain the return Vt

Observe agent A2’s policy π2
t

Calculate Q-values Qt

∀s, compute π1
t+1(s) using Eq. (3)

end

end

and:

π1
1(s) = argmax

w∈PA1

R(w)

ǫ
for t = 1. (2)

Recency Modulation. The second idea is what we call re-

cency modulation. This creates an averaging effect over the

policies computed by the experts with periodic restarts ap-

proach, for different possible starting points of the segmen-

tation. For episode t, recency modulation calculates policy

updates using recency windowing but considers windows

of different sizes. More precisely, we calculate updates

with window sizes 1 to Γ, and then average them to ob-

tain the final update. Lemma 3 shows that this updating

rule will not lead to abrupt changes in agent A1’s policy.

To summarize, agent A1 has the following policy update

rule for t > 1:

π1
t(s) =

1

Γ

Γ
∑

τ=1

wt,τ (s), (3)

where wt,τ (s) =

argmax
w∈PA1

( t−1
∑

k=max(1,t−τ)

Qk(s) +Qt−1(s)

)

w† +
R(w)

ǫ
.

For t = 1, we follow equation update (2). The full de-

scription of agent A1’s policy update using the approach

of EXPDRBIAS is given in Algorithm 1. As with EX-

PRESTART, EXPDRBIAS leads to a sub-linear regret for

a proper choice of ǫ and Γ, which in turn results in a near-

optimal behavior, as analyzed in the next section.

5. Theoretical Analysis of EXPDRBIAS

To bound regret R(T ), given by equation (1), it is useful to

express difference ηt(π
1)− ηt(π

1
t) in terms of Q-values.

In particular, one can show that this difference is equal to

d
π

1,π2
t
· (Qt

π
1

−Qt
π

1
t) (see Lemma 15 in Appendix B).
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By the definitions of Qt
π

1

and Qt
π

1
t , this implies:

ηt(π
1)− ηt(π

1
t) = d

π
1,π2

t
·
〈

π1 − π1
t,Qt

〉

.

If d
π

1,π2
t

was not dependent on t (e.g., if agent A2 was not

changing its policy), then bounding R(T ) would amount

to bounding the sum of terms
〈

π1 − π1
t,Qt

〉

. This

could be done with an approach that carefully combines

the proof techniques of Even-Dar et al. (2005) with the

OFTRL properties, in particular, regret bounded by vari-

ation in utilities (RVU) (Syrgkanis et al., 2015). However,

in our setting d
π

1,π2
t

is generally changing with t.

5.1. Change Magnitudes of Stationary Distributions

To account for this, we need to investigate how quickly dis-

tributions d
π

1,π2
t

change across episodes. Furthermore, to

utilize the RVU property, we need to do the same for dis-

tributions d
π

1
t,π2

t
. The following lemma provides bounds

on the respective change magnitudes.

Lemma 2. The difference between the stationary distribu-

tions of two consecutive episodes is upper bounded by:

∥

∥d
π

1
t,π2

t
− d

π
1
t−1,π2

t−1

∥

∥

1
≤

ρ1 + I2 · ρ2

1− e−
1
ω

.

Furthermore, for any policy π1:

∥

∥d
π

1,π2
t
− d

π
1,π2

t−1

∥

∥

1
≤

I2 · ρ2

1− e−
1
ω

.

Proof. See Appendix E.3.

5.2. Properties Based on OFTRL

The bounds on the change magnitudes of distributions

d
π

1,π2
t

and d
π

1
t,π2

t
, which will propagate to the final re-

sult, depend on agent A1’s policy change magnitude ρ1.

The following lemma provides a bound for ρ1 that, together

with the assumed bound on ρ2, is useful in establishing no-

regret guarantees.

Lemma 3. For any t > 1 and 1 < τ ≤ Γ, the change

magnitude of weights wt,τ in EXPDRBIAS is bounded by:

‖wt,τ −wt−1,τ−1‖∞ ≤ min

{

2,
9 · ǫ

1− e−
1
ω

}

Consequently:

ρ1 ≤ min

{

2,
9 · ǫ

1− e−
1
ω

+
2

Γ

}

.

Proof. See Appendix E.2.

Now, we turn to bounding the term
〈

π1 − π1
t,Qt

〉

.

Lemma 4 formalizes the RVU property for EXPDR-

BIAS using the L1 norm and its dual L∞ norm, de-

rived from results in the existing literature (Syrgkanis et al.,

2015).5 Lemma 4 shows that it is possible to bound
〈

π1 − π1
t,Qt

〉

by examining the change magnitudes of

Q-values.

Lemma 4. Consider EXPDRBIAS and let 1 denote col-

umn vector of ones with |S| elements. Then, for each

episode 1 ≤ t ≤ T − Γ + 1 of EXPDRBIAS , we have:

Γ
∑

τ=1

〈

π1 −wt+τ−1,τ ,Qt+τ−1

〉

≤ 1 ·

(

∆R

ǫ
+ ǫ ·

Γ
∑

τ=1

‖Qt+τ−1 −Qt+τ−2‖
2
max

−
1

4 · ǫ
·

Γ
∑

τ=1

‖wt+τ−1,τ −wt+τ−2,τ−1‖
2
∞

)

,

where wt+τ−1,τ are defined in (3), ∆R =
sup

w∈PA1
R(w) − infw∈PA1

R(w), and π1 is an

arbitrary policy of agent A1.

Proof. See Appendix E.1.

5.3. Change Magnitudes of Q-values

We now derive bounds on the change magnitudes of Q-

values that we use together with Lemma 4 to prove the

main results. We first bound the differenceQπ
1
t

t −Q
π

1
t−1

t−1 ,

which helps us in bounding the difference Qt −Qt−1.

Lemma 5. The difference between Q
π

1
t

t -values of two

consecutive episodes is upper bounded by:

∥

∥

∥Q
π

1
t

t −Q
π

1
t−1

t−1

∥

∥

∥

∞
≤ CQπ ,

where CQπ = 3 · ρ1+I2·ρ2

(1−e
−

1
ω )2

+ 2 · ρ1+ρ2

1−e
−

1
ω

.

Proof. See Appendix E.4 for the proof.

Lemma 6. The difference between Qt-values of two con-

secutive episodes is upper bounded by:

‖Qt −Qt−1‖
2
max ≤ C2

Q,

where CQ = CQπ +

(

3

1−e
1
ω

+ 1

)

· ρ1+2 · ρ2+
ρ1+I2·ρ2

1−e
−

1
ω

.

Proof. See Appendix E.5 for the proof.

For convenience, instead of directly using CQ, we consider

a variable Cω such that Cω ≥
CQ

max{ρ1,ρ2}
. The follow-

ing proposition gives a rather loose (but easy to interpret)

bound on Cω that satisfies the inequality.

5An extended version of the lemma, which is needed for the
main result, is provided in Appendix E.1.
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Proposition 1. There exists a constant Cω independent of

ρ1 and ρ2, such that:6

CQ

max{ρ1, ρ2}
≤ Cω ≤

18

(1− e−
1
ω )2

Proof. The claim is directly obtained from Lemma 5,

Lemma 6, and the fact that I2 ≤ 1 and 1

1−e
−

1
ω

≥ 1.

5.4. Regret Analysis and Main Results

We now come to the most important part of our analysis:

establishing the regret guarantees for EXPDRBIAS. Us-

ing the results from the previous subsections, we obtain the

following regret bound:

Theorem 1. Let the learning rate of EXPDRBIAS be

equal to ǫ = 1

Γ
1
4

and let k > 0 be such that ρ1 ≤ k · ǫ

and ρ2 ≤ k · ǫ. Then, the regret of EXPDRBIAS is upper-

bounded by:

R(T ) ≤ 2 ·
(

∆R + k2 · C2
ω

)

· T · Γ− 3
4

+
6 · I2 · ρ2

(1 − e−
1
ω )2

· T · Γ.

Proof. See Appendix F for the proof.

When agent A2 does not influence the transition kernel

through its policy, i.e., when I2 = 0, the regret is O(T
1
4 )

for Γ = T . In this case, we could have also applied the

original approach of Even-Dar et al. (2005; 2009), but in-

terestingly, it would result in a worse regret bound, i.e.,

O(T
1
2 ). By leveraging the fact that agent A2’s policy is

slowly changing, which corresponds to reward functions

in the setting of Even-Dar et al. (2005; 2009) not being

fully adversarial, we are able to improve on the worst-

case guarantees. The main reason for such an improve-

ment is our choice of the underlying experts algorithm,

i.e., OFTRL, that exploits the apparent predictability of

agent A2’s behavior. Similar arguments were made for

the repeated games settings (Rakhlin & Sridharan, 2013;

Syrgkanis et al., 2015), which correspond to our setting

when the MDP consists of only one state. Namely, in the

single state scenario, agent A2 does not influence transi-

tions, so the resulting regret is O(T
1
4 ), matching the results

of Syrgkanis et al. (2015).

In general, the regret depends on ρ2. If ρ2 = O(T−α) with

0 < α ≤ 7
4 , then Γ = O(T

4
7 ·α) equalizes the order of

the two regret components in Theorem 1 and leads to the

regret of O(T 1− 3
7 ·α). This brings us to the main result,

which provides a lower bound on the return V̄ :

6When ρ1 = ρ2 = 0, Cω ≥ 1.

Theorem 2. Assume that ρ2 = O(T−α) for α > 0. Let

ǫ = 1

Γ
1
4

and Γ = min{T
4
7 ·α, T }. Then, the regret of EXP-

DRBIAS is upper-bounded by:

R(T ) = O(Tmax{1− 3
7 ·α,

1
4}).

Furthermore, when the MDP is (λ, µ)-smooth, the return

of EXPDRBIAS is lower-bounded by:

V̄ ≥
λ

1 + µ
· OPT −O(Tmax{− 3

7 ·α,−
3
4 })−O(M−1).

Proof. Notice that 9·ǫ

1−e
−

1
ω

≥ 2
Γ for Γ ≥ 1. By Lemma

3, this implies that there exists a fixed k (not dependant on

T ) such that ρ1 ≤ k · ǫ for large enough T . Furthermore,

ǫ = T−min{ 4
7 ·α,

1
4 }, so there exists a fixed k such that ρ2 ≤

k · ǫ for large enough T . Hence, we can apply Theorem 1

to obtain an order-wise regret bound: O(T ·Γ− 3
4 )+O(ρ2 ·

T · Γ).

Now, consider two cases. First, let α ≤ 7
4 . Then, we obtain:

R(T ) = O(T · Γ− 3
4 ) +O(ρ2 · T · Γ)

= O(T · T− 3
4 ·

4
7 ·α) +O(T−α · T · T

4
7 ·α) = O(T 1− 3

7 ·α).

For the other case, i.e., when α ≥ 7
4 , we obtain:

R(T ) = O(T · Γ− 3
4 ) +O(ρ2 · T · Γ)

= O(T · T− 3
4 ) +O(T−α · T · T ) = O(T

1
4 ).

Therefore, R(T ) = O(Tmax{1− 3
7 ·α,

1
4 }), which proves the

first statement. By combining it with Lemma 1, we obtain

the second statement.

The multiplicative factors in the asymptotic bounds mainly

depend on mixing time ω. In particular they are dom-

inated by factor 1

1−e
−

1
ω

and its powers, as can be seen

from Lemma 1, Theorem 1, and Proposition 1. Note that

Lemma 3 allows us to upper bound k in Theorem 1 with

O

(

1

1−e
−

1
ω

)

. Furthermore, 1

1−e
−

1
ω

≈ ω for large enough

ω. Hence, these results imply O(ω6) dependency of the

asymptotic bounds on ω. This is larger than what one

might expect from the prior work, for example the bound

in Even-Dar et al. (2005; 2009) has O(ω2) dependency.

However, our setting is different, in that the presence of

agent A2 has an effect on transitions (from agent A1’s per-

spective), and so it is not surprising that the resulting de-

pendency on the mixing time is worse.

6. Hardness Result

Our formal guarantees assume that the policy change mag-

nitude ρ2 of agent A2 is a decreasing function in the num-

ber of episodes given by O(T−α) for α > 0. What if we
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relax this, and allow agent A2 to adapt independently of the

number of episodes? We show a hardness result for the set-

ting of α = 0, using a reduction from the online agnostic

parity learning problem (Abbasi et al., 2013). As argued in

Abbasi et al. (2013), the online to batch reduction implies

that the online version of agnostic parity learning is at least

as hard as its offline version, for which the best known algo-

rithm has complexity 2O(
n

log n ) (Kalai et al., 2008). In fact,

agnostic parity learning is a harder variant of the learning

with parity noise problem, widely believed to be compu-

tationally intractable (Blum et al., 2003; Pietrzak, 2012),

and thus often adopted as a hardness assumption (e.g.,

Sharan et al. (2018)).

Theorem 3. Assume that the policy change magnitude ρ2
of agent A2 is order Ω(1) and that its influence is I2 = 1.

If there exists a poly(|S|, T ) time algorithm that outputs a

policy sequence π1
1, ..., π1

T whose regret is O(poly(|S|) ·
T β) for β < 1, then there also exists a poly(|S|, T ) time

algorithm for online agnostic parity learning whose regret

is O(poly(|S|) · T β).

Proof. See Appendix H.

The proof relies on the result of Abbasi et al. (2013) (The-

orem 5), which reduces the online agnostic parity learning

problem to the adversarial shortest path problem, which

we reduce to our problem. Theorem 3 implies that when

α = 0, it is unlikely to obtain R(T ) that is sub-linear in T
given the current computational complexity results.

7. Related Work

Experts Learning in MDPs. Our framework is closely

related to that of Even-Dar et al. (2005; 2009), although

the presence of agent A2 means that we cannot directly

use their algorithmic approach. In fact, learning with an

arbitrarily changing transition is believed to be compu-

tationally intractable (Abbasi et al., 2013), and computa-

tionally efficient learning algorithms experience linear re-

gret (Yu & Mannor, 2009a; Abbasi et al., 2013). This is

where we make use of the bound on the magnitude of

agent A2’s policy change. Contrary to most of the existing

work, the changes in reward and transition kernel in our

model are non-oblivious and adapting to the learning algo-

rithm of agent A1. There have been a number of follow-

up works that either extend these results or improve them

for more specialized settings (Dick et al., 2014; Neu et al.,

2012; 2010; Dekel & Hazan, 2013). Agarwal et al. (2017)

and Singla et al. (2018) study the problem of learning with

experts advice where experts are not stationary and are

learning agents themselves. However, their focus is on de-

signing a meta-algorithm on how to coordinate with these

experts and is technically very different from ours.

Learning in Games. To relate the quality of an opti-

mal solution to agent A1’s regret, we use techniques sim-

ilar to those studied in the learning in games literature

(Blum et al., 2008; Roughgarden, 2009; Syrgkanis et al.,

2015). The fact that agent A2’s policy is changing

slowly enables us to utilize no-regret algorithms for learn-

ing in games with recency bias (Daskalakis et al., 2011;

Rakhlin & Sridharan, 2013; Syrgkanis et al., 2015), pro-

viding better regret bounds than through standard no-

regret learning techniques (Littlestone & Warmuth, 1994;

Freund & Schapire, 1997). The recent work by Wei et al.

(2017) studies two-player learning in zero-sum stochastic

games. Apart from focusing on zero-sum games, Wei et al.

(2017) adopt a different set of assumptions to derive regret

bounds and their results are not directly comparable to ours.

Furthermore, their algorithmic techniques are orthogonal

to those that we pursue; these differences are elaborated in

Wei et al. (2017).

Human AI Collaboration. The helper-AI prob-

lem (Dimitrakakis et al., 2017) is related to the present

work, in that an AI agent is designing its policy by account-

ing for human imperfections. The authors use a Stack-

leberg formulation of the problem in a single shot sce-

nario. Their model assumes that the AI agent knows the

behavioral model of the human agent, which is a best re-

sponse to the policy of the AI agent for an incorrect tran-

sition kernel. We relax this requirement by studying a

repeated human-AI interaction. Nikolaidis et al. (2017)

study a repeated human-AI interaction, but their setting

is more restrictive than ours as they do not model the

changes in the environment. In particular, they have a

repeated game setup, where the only aspect that changes

over time is the “state” of the human representing what

knowledge the human has about the robot’s payoffs. Prior

work also considers a learner that is aware of the pres-

ence of other actors (Foerster et al., 2018; Raileanu et al.,

2018). While these multi-agent learning approaches ac-

count for the evolving behavior of other actors, the underly-

ing assumption is typically that each agent follows a known

model.

Steering and Teaching. There is also a related literature

on “steering” the behavior of other agent. For example, (i)

the environment design framework of Zhang et al. (2009),

where one agent tries to steer the behavior of another

agent by modifying its reward function, (ii) the cooperative

inverse reinforcement learning of Hadfield-Menell et al.

(2016), where the human uses demonstrations to reveal a

proper reward function to the AI agent, and (iii) the advice-

based interaction model (Amir et al., 2016), where the goal

is to communicate advice to a sub-optimal agent on how

to act in the world. The latter approach is also in close

relationship to the machine teaching literature (Zhu et al.,

2018; Zhu, 2015; Singla et al., 2013; Cakmak & Lopes,

2012). Our work differs from this literature; we focus on
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joint decision-making, rather than teaching or steering.

8. Conclusion

In this paper, we have presented a two-agent MDP frame-

work in a collaborative setting. We considered the problem

of designing a no-regret algorithm for the first agent in the

presence of an adapting, second agent (for which we make

no assumptions about its behavior other than a requirement

that it adapts slowly enough). Our algorithm builds from

the ideas of experts learning in MDPs, and makes use of a

novel form of recency bias to achieve strong regret bounds.

In particular, we showed that in order for the first agent to

facilitate collaboration, it is critical that the second agent’s

policy changes are not abrupt. An interesting direction for

future work would be to consider the partial information

setting, in which, for example, agent A1 has only a noisy

estimate of agent A2’s policy.
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Szepesvári, C. Online learning in markov decision pro-

cesses with adversarially chosen transition probability

distributions. In NIPS, pp. 2508–2516, 2013.

Agarwal, A., Luo, H., Neyshabur, B., and Schapire, R. E.

Corralling a band of bandit algorithms. In COLT, pp.

12–38, 2017.

Amir, O., Kamar, E., Kolobov, A., and Grosz, B. Interac-

tive teaching strategies for agent training. In IJCAI, pp.

804–811, 2016.

Blum, A., Kalai, A., and Wasserman, H. Noise-tolerant

learning, the parity problem, and the statistical query

model. Journal of the ACM (JACM), 50(4):506–519,

2003.

Blum, A., Hajiaghayi, M., Ligett, K., and Roth, A. Regret

minimization and the price of total anarchy. In STOC,

pp. 373–382. ACM, 2008.

Boutilier, C. Planning, learning and coordination in multi-

agent decision processes. In Proceedings of the 6th con-

ference on Theoretical aspects of rationality and knowl-

edge, pp. 195–210, 1996.

Cakmak, M. and Lopes, M. Algorithmic and human teach-

ing of sequential decision tasks. In Twenty-Sixth AAAI

Conference on Artificial Intelligence, 2012.

Daskalakis, C., Deckelbaum, A., and Kim, A. Near-

optimal no-regret algorithms for zero-sum games. In

SODA, pp. 235–254, 2011.

Dekel, O. and Hazan, E. Better rates for any adversarial

deterministic mdp. In ICML, pp. 675–683, 2013.

Dick, T., Gyorgy, A., and Szepesvari, C. Online learn-

ing in markov decision processes with changing cost se-

quences. In ICML, pp. 512–520, 2014.

Dimitrakakis, C., Parkes, D. C., Radanovic, G., and Tylkin,

P. Multi-view decision processes: The helper-ai prob-

lem. In NIPS, pp. 5443–5452, 2017.

Even-Dar, E., Kakade, S. M., and Mansour, Y. Experts in a

markov decision process. In NIPS, pp. 401–408, 2005.

Even-Dar, E., Kakade, S. M., and Mansour, Y. Online

markov decision processes. Mathematics of Operations

Research, 34(3):726–736, 2009.

Foerster, J., Chen, R. Y., Al-Shedivat, M., Whiteson, S.,

Abbeel, P., and Mordatch, I. Learning with opponent-

learning awareness. In AAMAS, pp. 122–130, 2018.

Freund, Y. and Schapire, R. E. A decision-theoretic gener-

alization of on-line learning and an application to boost-

ing. Journal of computer and system sciences, 55(1):

119–139, 1997.

Hadfield-Menell, D., Russell, S. J., Abbeel, P., and Dragan,

A. Cooperative inverse reinforcement learning. In NIPS,

pp. 3909–3917, 2016.

Kalai, A. T., Mansour, Y., and Verbin, E. On agnostic

boosting and parity learning. In STOC, pp. 629–638,

2008.

Kanade, V. and Steinke, T. Learning hurdles for sleep-

ing experts. ACM Transactions on Computation Theory

(TOCT), 6(3):11, 2014.

Littlestone, N. and Warmuth, M. K. The weighted majority

algorithm. Information and computation, 108(2):212–

261, 1994.

Neu, G., Antos, A., György, A., and Szepesvári, C. Online
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A. List of Appendices

In this section we provide a brief description of the the content provided in the appendices of the paper.

1. Appendix B contains the statements and the corresponding proofs for the MDP properties that we used in proving the

technical results of the paper.

2. Appendix C provides a relationship between the smoothness parameters introduced in Section 3 and structural prop-

erties of our setting.

3. Appendix D provides the proof of Lemma 1, which connects no-regret learning with the optimization objective (see

Section 3).

4. Appendix E provides the proofs of the lemmas related to our algorithmic approach that are important for proving the

main results.

5. Appendix F provides the proof of Theorem 1, which establishes the regret bound of Algorithm 1 (see Section 5.4).

6. Appendix G describes the properties of experts with periodic restarts (see Section 4.1).

7. Appendix H provides the proof of Theorem 3, which establishes the hardness of achieving no-regret if agent A2’s

policy change is not a decreasing function in the number of episodes (see Section 6).
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B. Important MDP properties

To obtain our formal results, we derive several useful MDP properties.

B.1. Policy-reward bounds

The first policy reward bound we show is the upper-bound on the vector product between π1
t and rt.

Lemma 7. The policy-reward dot product is bounded by:

∥

∥

〈

π1
t, rt

〉∥

∥

∞
≤ 1.

Proof. The definition of 〈, 〉 gives us:

∥

∥

〈

π1
t, rt

〉∥

∥

∞
= max

s
|
∑

a1∈A

π1
t(s, a) · rt(s, a)| ≤ max

s

∑

a1∈A

|π1
t(s, a) · rt(s, a)| ≤ max

s

∑

a1∈A

π1
t(s, a) · |rt(s, a)|

≤ max
s

∑

a1∈A

π1
t(s, a) = 1,

where we used the triangle inequality and the boundedness of rewards.

Note that the lemma holds for any π1
t and rt (i.e., for any π1 and r). Furthermore, using the following two lemmas, we

also bound the difference between two consecutive policy-reward dot products. In particular:

Lemma 8. The following holds:

‖rt − rt−1‖max ≤
∥

∥π2
t − π2

t−1

∥

∥

∞
≤ ρ2,

∥

∥

〈

π1
t, rt

〉

−
〈

π1
t, rt−1

〉∥

∥

∞
≤ ρ2,

∥

∥

〈

π1
t, rt−1

〉

−
〈

π1
t−1, rt−1

〉∥

∥

∞
≤ ρ1,

for all t > 1.

Proof. To obtain the first inequality, note that:

‖rt − rt−1‖max = max
s,a1

|rt(s, a
1)− rt−1(s, a

1)| ≤ max
s,a1

|
∑

a2∈A2

r(s, a1, a2) · (π2
t(s, a

2)− π2
t−1(s, a

2))|

≤ max
s

∑

a2∈A2

|π2
t(s, a

2)− π2
t−1(s, a

2)| =
∥

∥π2
t − π2

t−1

∥

∥

∞
≤ ρ2,

where we used the triangle inequality and the fact that |r(s, a1, a2)| ≤ 1. The second inequality holds because:

∥

∥

〈

π1
t, rt

〉

−
〈

π1
t, rt−1

〉∥

∥

∞
=
∥

∥

〈

π1
t, rt − rt−1

〉∥

∥

∞
= max

s
|
∑

a1∈A1

π1
t(s, a

1) · (rt(s, a
1)− rt−1(s, a

1))|

≤ max
s,a1

|rt(s, a
1)− rt−1(s, a

1)| = ‖rt − rt−1‖max ≤ ρ2,

where we used the triangle inequality, the fact that π1
t(s, a

1) ∈ PA1 , and the first inequality of the lemma (proven above).

Finally, we have that:

∥

∥

〈

π1
t, rt−1

〉

−
〈

π1
t−1, rt−1

〉∥

∥

∞
=
∥

∥

〈

π1
t − π1

t−1, rt−1

〉∥

∥

∞
= max

s
|
∑

a1∈A1

(π1
t(s, a

1)− π1
t−1(s, a

1)) · rt−1(s, a
1)|

≤ max
s

∑

a1∈A1

|π1
t(s, a

1)− π1
t−1(s, a

1)| =
∥

∥π2
t − π2

t−1

∥

∥

∞
≤ ρ1,

where again we used the triangle inequality and the fact that |rt(s, a
1)| ≤ 1 (boundedness of rewards).

We will also need a bit different, albeit similar, statement when it comes to the third property of Lemma 8.
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Lemma 9. Let p, p′, and M be matrix of dimension |S| × |A1|, with restriction that the rows of p and p′ are elements of

probability simplex PA1 , i.e., p(s),p′(s) ∈ PA1 . The following holds:

‖〈p,M〉 − 〈p′,M〉‖∞ ≤ 2 · ‖M‖max .

Proof. Similar to the third claim in the previous lemma:

‖〈p,M〉 − 〈p′,M〉‖∞ = ‖〈p− p′,M〉‖∞ ≤ max
s

|
∑

a1∈A1

(p(s, a1)− p′(s, a1)) ·M(s, a1)|

≤ max
s

∑

a1∈A1

|p(s, a1)− p′(s, a1)| · ‖M‖max = 2 · ‖M‖max ,

where the last inequality is obtained from the fact that p(s),p′(s) ∈ PA1 .

B.2. Transition kernel bounds

The following lemma provides bounds on the effective transition kernel change due to the agents’ policy changes.

Lemma 10. For generic policies π1, π1′, π2, and π2′, we have:

∥

∥P
π

1,π2 − P
π

1,π2′

∥

∥

∞
≤
∥

∥

∥π
2 − π2′

∥

∥

∥

∞
≤ ρ2,

∥

∥P
π

1,π2 − P
π

1′,π2

∥

∥

∞
≤
∥

∥

∥π
1 − π1′

∥

∥

∥

∞
≤ ρ1

Proof. W.l.o.g., we restrict our analysis to the first inequality. We have:

∥

∥P
π

1,π2 − P
π

1,π2′

∥

∥

∞
= max

s

∑

snew∈S

|
∑

a1∈A1,a2∈A2

P (s, a1, a2, snew) · π
1(s, a1) · (π2(s, a2)− π2′(s, a2))|

≤ max
s

∑

snew∈S,a1∈A1,a2∈A2

P (s, a1, a2, snew) · π
1(s, a1) · |π2(s, a2)− π2′(s, a2)|

= max
s

∑

a1∈A1,a2∈A2

π1(s, a1) · |π2(s, a2)− π2′(s, a2)| = max
s

∑

a2∈A2

|π2(s, a2)− π2′(s, a2)|

=
∥

∥

∥π
2 − π2′

∥

∥

∥

∞
≤ ρ2.

where we used the fact that π1 ∈ PA1 , while P (s, a1, a2, snew) is an element of the probability simplex over the state

space for given s, a1 and a2.

The direct consequence of the lemma is the bound on agent A2’s influence:

Corollary 1. Influence I2 of agent A2 takes values in [0, 1].

Proof. The lower bound of I2 follows trivially from the definition. The upper bound is obtain from Lemma 10:

I2 = max
π

1,π2 6=π
2′

∥

∥P
π

1,π2 − P
π

1,π2′

∥

∥

∞
∥

∥π2 − π2′
∥

∥

∞

≤ max
π

1,π2 6=π
2′

∥

∥

∥π2 − π2′
∥

∥

∥

∞
∥

∥π2 − π2′
∥

∥

∞

= 1.

An analogous result holds for agent A1’s influence. Moreover, we provide bounds for kernel P
π

2
t
(s, a1) and its change

magnitude:

Lemma 11. For generic policies π2, and π2′, we have:

∥

∥P
π

2 (s, a1)− P
π

2′(s, a1)
∥

∥

1
≤
∥

∥

∥π
2(s)− π2′(s)

∥

∥

∥

1
,
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Proof. By the definition of P (s, a1, a2), we know that
∥

∥P (s, a1, a2)
∥

∥

1
= 1. Therefore:

∥

∥P
π

2(s, a1)− P
π

2′(s, a1)
∥

∥

1
≤

∥

∥

∥

∥

∥

∥

∑

a2∈A2

(π2(s, a2)− π2′(s, a2)) · P (s, a1, a2)

∥

∥

∥

∥

∥

∥

1

→ By the triangle inequality

≤
∑

a2∈A2

|π2(s, a2)− π2′(s, a2)| ·
∥

∥P (s, a1, a2)
∥

∥

1
≤
∑

a2∈A2

|π2(s, a2)− π2′(s, a2)| =
∥

∥

∥π
2(s)− π2′(s)

∥

∥

∥

1
.

B.3. State distribution bounds

In this subsection, we develop a series of bounds on state distribution difference important for the development of our

formal results. The first result quantifies the change in the state distribution difference due to the change of agentA2 policy.

Lemma 12. For generic policies π1, π1′, π2 and π2′, we have:

∥

∥d
π

1,π2 − d
π

1,π2′

∥

∥

1
≤

1

1− e−
1
ω

·
∥

∥P
π

1,π2 − P
π

1,π2′

∥

∥

∞
,

∥

∥d
π

1,π2 − d
π

1′,π2

∥

∥

1
≤

1

1− e−
1
ω

·
∥

∥P
π

1,π2 − P
π

1′,π2

∥

∥

∞
.

Proof. W.l.o.g., we restrict our analysis to the first inequality. We have:
∥

∥d
π

1,π2 − d
π

1,π2′

∥

∥

1
=
∥

∥d
π

1,π2 · P
π

1,π2 − d
π

1,π2′ ·P
π

1,π2′

∥

∥

1

→ by rearranging

=
∥

∥d
π

1,π2 · (P
π

1,π2 − P
π

1,π2′) + (d
π

1,π2 − d
π

1,π2′) ·P
π

1,π2′

∥

∥

1

→ by triangle inequality

≤
∥

∥d
π

1,π2 · (P
π

1,π2 − P
π

1,π2′)
∥

∥

1
+
∥

∥(d
π

1,π2 − d
π

1,π2′) · P
π

1,π2′

∥

∥

1

→ Def. operator norm and the mixing assumption

≤
∥

∥d
π

1,π2

∥

∥

1
·
∥

∥P
π

1,π2 − P
π

1,π2′

∥

∥

∞
+
∥

∥d
π

1,π2 − d
π

1,π2′

∥

∥

1
· e−

1
ω

≤
∥

∥P
π

1,π2 − P
π

1,π2′

∥

∥

∞
+
∥

∥d
π

1,π2 − d
π

1,π2′

∥

∥

1
· e−

1
ω .

By rearranging the terms we obtain the claim.

Now, let us also bound L1 distance between state distribution dt,m and stationary distributions d
π

1
t,π2

t
. We obtain the

following result following the calculations in Lemma 2 of (Even-Dar et al., 2005):

Lemma 13. The L1 distance between dt,m and d
π

1
t,π2

t
is for any T ≥ 1 bounded by:

∥

∥dt,m − d
π

1
t,π2

t

∥

∥

1
≤ 2 · e−

m−1
ω .

Proof. Using the properties of d and P and the mixing assumption, we have

∥

∥dt,m − d
π

1
t,π2

t

∥

∥

1
=
∥

∥(dt,m−1 − d
π

1
t,π2

t
) ·P

π
1
t,π2

t

∥

∥

1
≤
∥

∥dt,m−1 − d
π

1
t,π2

t

∥

∥

1
· e−

1
ω

→ By induction

≤
∥

∥dt,1 − d
π

1
t,π2

t

∥

∥

1
· e−

m−1
ω ≤ 2 · e−

m−1
ω

Furthermore, the following lemma describes the relation between the change rate of the distance between state distribution

dt,m and stationary distributions d
π

1
t,π2

t
. In particular, the lemma provides a bound on the cumulative distributional

change magnitude w.r.t. the agents’ policy change magnitudes.
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Lemma 14. For t > 1, let St,M denote the cumulative change magnitude of the L1 distance between dt,m and d
π

1
t,π2

t

over M rounds:

St,M =

M
∑

m=1

∥

∥(dt,m − d
π

1
t,π2

t
) − (dt−1,m − d

π
1
t−1,π2

t−1
)
∥

∥

1

Then limM→∞ St,M is bounded by:

lim
M→∞

St,M ≤ 3 ·
ρ1 + I2 · ρ2

(1− e−
1
ω )2

Proof. Due to the triangle inequality and Lemma 13, we have that:

∥

∥(dt,m − d
π

1
t,π2

t
)− (dt−1,m − d

π
1
t−1,π2

t−1
)
∥

∥

1
≤
∥

∥dt,m − d
π

1
t,π2

t

∥

∥

1
+
∥

∥dt−1,m − d
π

1
t−1,π2

t−1

∥

∥

1

≤ 4 · e−
m−1

ω .

Therefore, we know St,M converges absolutely and there exists limit limM→∞ St,M . Furthermore, since dt,1 = dt−1,1,

we have:

St,M −
∥

∥d
π

1
t,π2

t
− d

π
1
t−1,π2

t−1

∥

∥

1
=

M
∑

m=2

∥

∥(dt,m − d
π

1
t,π2

t
)− (dt−1,m − d

π
1
t−1,π2

t−1
)
∥

∥

1

→ By dP = d properties

≤

M
∑

m=2

∥

∥(dt,m−1 − d
π

1
t,π2

t
) ·P

π
1
t,π2

t
− (dt−1,m−1 − d

π
1
t−1,π2

t−1
) · P

π
1
t−1,π2

t−1

∥

∥

1

→ + and − additional terms and the triangle inequality

≤

M
∑

m=2

∥

∥((dt,m−1 − d
π

1
t,π2

t
)− (dt−1,m−1 − d

π
1
t−1,π2

t−1
)) · P

π
1
t,π2

t

∥

∥

1

+

M
∑

m=2

∥

∥(dt−1,m−1 − d
π

1
t−1,π2

t−1
) · (P

π
1
t,π2

t
− P

π
1
t−1,π2

t−1
)
∥

∥

1

→ Denote: d =
1

2
· (dt,m−1 + d

π
1
t−1,π2

t−1
) and d′ =

1

2
· (d

π
1
t,π2

t
+ dt−1,m−1)

=

M
∑

m=2

2 ·
∥

∥(d− d′) · P
π

1
t,π2

t

∥

∥

1
+

M
∑

m=2

∥

∥(dt−1,m−1 − d
π

1
t−1,π2

t−1
) · (P

π
1
t,π2

t
− P

π
1
t−1,π2

t−1
)
∥

∥

1

→ Bt the mixing assumption + Holder’s inequality and the operator norm definition

≤

M
∑

m=2

2 · ‖d− d′‖1 · e
− 1

ω +

M
∑

m=2

∥

∥dt−1,m−1 − d
π

1
t−1,π2

t−1

∥

∥

1
·
∥

∥P
π

1
t,π2

t
− P

π
1
t−1,π2

t−1

∥

∥

∞

→ By the triangle inequality

≤
M
∑

m=2

2 · ‖d− d′‖1 · e
− 1

ω +
M
∑

m=2

∥

∥dt−1,m−1 − d
π

1
t−1,π2

t−1

∥

∥

1
·
(∥

∥P
π

1
t,π2

t
− P

π
1
t−1,π2

t

∥

∥

∞
+
∥

∥P
π

1
t−1,π2

t
− P

π
1
t−1,π2

t−1

∥

∥

∞

)

→ Defs. of d and d′, def. of I2, and Lemma 10

≤
M
∑

m=2

∥

∥(dt,m−1 − d
π

1
t,π2

t
)− (dt−1,m−1 − d

π
1
t−1,π2

t−1
)
∥

∥

1
· e−

1
ω +

M
∑

m=2

∥

∥dt−1,m−1 − d
π

1
t−1,π2

t−1

∥

∥

1
· (ρ1 + I2 · ρ2)

→ Relabeling and Lemma 13

= e−
1
ω · SM−1 + 2 · (ρ1 + I2 · ρ2) ·

M−1
∑

m=1

e−
m−1

ω .
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Together with Lemma 2, this gives us:

SM − e−
1
ω · SM−1 ≤

ρ1 + I2 · ρ2

1− e−
1
ω

+ 2 · (ρ1 + I2 · ρ2) ·

M−1
∑

m=1

e−
m−1

ω ≤ 3 ·
ρ1 + I2 · ρ2

1− e−
1
ω

.

By taking the limit M → ∞, we obtain:

lim
M→∞

SM ≤ 3 ·
ρ1 + I2 · ρ2

(1− e−
1
ω )2

,

which completes the proof.

B.4. Average Reward

Now, we relate the average reward to Q-values, which is important for the analysis of our algorithmic approaches. The

following result is an adaptation of Lemma 7 of (Even-Dar et al., 2005) to our setting:

Lemma 15. For any joint policy π, we have:

ηt(π
1)− ηt(π

1
t) = d

π
1,π2

t
· (Qt

π
1

−Qt
π

1
t).

Proof. By the definition of Qt
π

1

:

d
π

1,π2
t
·Qt

π
1

= d
π

1,π2
t
·
〈

π1,Qt

〉

.

The Bellman equation gives us:

Qt(s1, a
1) = rt(s1, a

1)− ηt(π
1
t) + P

π
2
t
(s1, a

1) ·Qt
π

1
t .

Plugging its right hand side into the right hand side of the above equation, we obtain:

d
π

1,π2
t
·Qt

π
1

= d
π

1,π2
t
·
〈

π1, rt
〉

− d
π

1,π2
t
· 1 · ηt(π

1
t) + d

π
1,π2

t
·P

π
1,π2

t
·Qt

π
1
t

= ηt(π
1)− ηt(π

1
t) + d

π
1,π2

t
·Qt

π
1
t ,

where 1 is a column vector of ones with |S| elements. Rearranging yields the result.

B.5. Bound on Q-values

To make our analysis sound, we also ought to bound the Q-values themselves. We can use an approach similar to Lemma

3 of (Even-Dar et al., 2005) to obtain:

Lemma 16. It holds that

∥

∥

∥Q
π

1
t

t

∥

∥

∥

∞
≤ 2

1−e
−

1
ω

, and consequently |Qt(s, a
1)| ≤ 3

1−e
−

1
ω

and ‖Qt‖max ≤ 3

1−e
−

1
ω

.

Proof. To evaluate Qπ
1
t

t (s), consider d1(s
′) = 1s=s′ . Then, from Lemma 13 we know that:

∣

∣E
[

rt(sm, a1m)− ηt(π
1
t)|s1 = s,π1

t

]∣

∣ =
∣

∣E
[

rt(sm, a1m)− ηt(π
1
t)|d1,π

1
t

]∣

∣

=
∣

∣dt,m ·
〈

π1, rt
〉

− d
π

1,π2
t
·
〈

π1, rt
〉∣

∣ ≤
∥

∥dt,m − d
π

1
t,π2

t

∥

∥

1
≤ 2 · e−

m−1
ω

where we used the fact that ηt(π
1) = d

π
1,π2

t
·
〈

π1, rt
〉

. Therefore, we obtain that:

|Qπ
1
t

t (s)| =

∣

∣

∣

∣

∣

E

[

∞
∑

m=1

rt(sm, a1m)− ηt(π
1
t)|s1 = s,π1

t

]∣

∣

∣

∣

∣

≤ E

[

∞
∑

m=1

∣

∣rt(sm, a1m)− ηt(π
1
t)
∣

∣ |s1 = s,π1
t

]

≤

∞
∑

m=1

2 · e−
m−1

ω ≤
2

1− e−
1
ω

,
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which proves the first statement.

The second inequality (and hence, the third) can be obtained from the Bellman’s equation:

|Qt(s, a
1)| = |rt(s, a

1)− ηt(π
1
t) + P

π
2
t
(s, a1) ·Qπ

1
t

t |

→ By the triangle inequality

≤ |rt(s, a
1)− ηt(π

1
t)|+ |P

π
2
t
(s, a1) ·Qπ

1
t

t |

→ By Holder’s inequality

≤ 1 +
∥

∥P
π

2
t
(s, a1)

∥

∥

1
·
∥

∥

∥Q
π

1
t

t

∥

∥

∥

∞
≤ 1 +

2

1− e−
1
ω

≤
3

1− e−
1
ω

.
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C. Connection to the smoothness parameters

Interestingly, we can link the notion of influence to that of the smoothness criterion. To do so, it is useful to define the

diameter of the policy space for each of the two agents. For agent A1(and analogously for agent A2), the diameter is

defined as:

∆π1 = sup
π

1,π1′ 6=π
1

∑

a1∈Ai

|π1(s, a1)− π1′(s, a1)|

= sup
π

1,π1′ 6=π
1

∥

∥

∥π
1 − π1′

∥

∥

∥

∞
.

For simplicity of exposure, we will assume that the reward function is only a function of state, and that we can determine

a lower bound on the optimal average reward η
π

2∗(π1∗), denoted by η̂ ≤ η
π

2∗(π1∗), as well as the mixing time ω. Let us

relate the maximum average reward to the influence variables using factors:

κi =
(

1− e−
1
ω

)

·
η̂

2 · Ii ·∆πi

,

which approach infinity as Ii → 0 or ∆πi
→ 0. Intuitively, agent i with low influence or low diameter will not be able to

negatively influence the obtained reward, implying higher κi. The following proposition gives a more exact relationship

between the smoothness parameters (λ, µ) and factors κi.

Proposition 2. Consider an MDP with a reward function that is only a function of state (i.e., r(s, a1, a2) = r(s, a1
′
, a2

′
))

and the agents’ policy spaces with for which κ2 ≥ κ1 > 1. Then the MDP is (λ, µ)-smooth with:

λ ≤
p1

p1 − p2
·
2 · κ2 − 1

2 · κ2
,

µ ≥
p2

p1 − p2
·
2 · κ1 − 1

2 · κ1 − 2
,

where p1 and p2 are free parameters such that p1 > p2 ≥ 0.

Proof. See below.

Condition κ2 ≥ κ1 > 1 simply tells us that agent A1 is more influential than agent A2, while the optimal average reward

is by a factor greater than the agents’ influences. As κ2 → ∞, we have that the upper bound on λ approaches p1

p1−p2
. By

setting p2 = 0, we obtain that λ is equal to 1, which means that agent A1’s optimal policy is the same as when she assumes

that agent A2 is acting optimally. Hence, agent A1 can technically, with a proper policy, achieve zero regret. In general,

κ2 will indicate the degradation in utility, i.e., minimum value of agent A1’s regret over the possible choices of agent A2’s

policy. We can similarly analyze other cases.

C.1. Proof of Proposition 2

Bound on the differences of average rewards To prove the proposition we use the following bounds on the difference

between average rewards:

Lemma 17. Consider the policies from Definition 1 and assume that reward function is only state dependent. It holds that:

|η
π

2(π1∗)− η
π

2∗(π1∗)| ≤
1

1− e−
1
ω

· I2 ·∆π2 ,

|η
π

2(π1∗)− η
π

2 (π1)| ≤
1

1− e−
1
ω

· I1 ·∆π1 ,

|η
π

2∗(π1∗)− η
π

2(π1)| ≤
1

1− e−
1
ω

· (I1 ·∆π1 + I2 ·∆π2).

Proof. Using the definition of η:

|η
π

2(π1∗)− η
π

2∗(π1∗)| ≤
∣

∣

∣
d
π

1∗,π2 ·
〈

π1∗, r
π

2

〉

− d
π

1∗,π2∗ ·
〈

π1∗, r
π

2∗

〉∣

∣

∣
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→ by the triangle inequality and + and − additional terms

≤
∣

∣

∣
d
π

1∗,π2 ·
〈

π1∗, r
π

2

〉

− d
π

1∗,π2∗ ·
〈

π1∗, r
π

2

〉∣

∣

∣
+
∣

∣

∣
d
π

1∗,π2∗ ·
〈

π1∗, r
π

2

〉

− d
π

1∗,π2∗ ·
〈

π1∗, r
π

2∗

〉∣

∣

∣

→ by Holder’s inequality

≤
∥

∥d
π

1∗,π2 − d
π

1∗,π2∗

∥

∥

1
·
∥

∥

∥

〈

π1∗, r
π

2

〉∥

∥

∥

∞
+
∥

∥d
π

1∗,π2∗

∥

∥

1
·
∥

∥

∥

〈

π1∗, r
π

2

〉

−
〈

π1∗, r
π

2∗

〉∥

∥

∥

∞

→ (Generalized) Lemma 7 + reward func. is only state dependent, i.e., r
π

2 = r∗

≤
∥

∥d
π

1∗,π2 − d
π

1∗,π2∗

∥

∥

1

→ Lemma 12

≤
1

1− e−
1
ω

·
∥

∥P
π

1∗,π2 − P
π

1∗,π2∗

∥

∥

∞

→ Bt the definition of influence

≤
1

1− e−
1
ω

· I2 ·∆π2

The second inequality follows analogously (one can think of it as reversing roles for agent A1 and agent A2). The third is

obtained by combining the first two and using the triangle inequality.

Proof of the proposition

Proof. From Lemma 17, we have that:

p1 · ηπ2(π1∗) ≥ p1 · ηπ2∗(π1∗)− p1 ·
1

1− e−
1
ω

· I2 ·∆π2 ,

− p2 · ηπ2 (π1∗) ≥ −p2 · ηπ2(π1)− p2 ·
1

1− e−
1
ω

· I1 ·∆π1 ,

which gives us:

(p1 − p2) · ηπ2(π1∗) ≥ p1 ·

(

η
π

2∗(π1∗)−
1

1− e−
1
ω

· I2 ·∆π2

)

− p2 ·

(

η
π

2(π1) +
1

1− e−
1
ω

· I1 ·∆π1

)

Now notice that:

−
1

1− e−
1
ω

· I2 ·∆π2 = −
η̂

2 · κ2
≥ −

η
π

2∗(π1∗)

2 · κ2
.

Furthermore, from Lemma 17, we have:

−
1

1− e−
1
ω

· I1 ·∆π1 ≥ −
η
π

2(π1) · 1

1−e
−

1
ω

· I1 ·∆π1

η
π

2∗(π1∗)− 1

1−e
−

1
ω

· I1 ·∆π1 −
1

1−e
−

1
ω

· I2 ·∆π2

≥ −
η
π

2(π1) · 1

1−e
−

1
ω

· I1 ·∆π1

η̂ − 1

1−e
−

1
ω

· I1 ·∆π1 −
1

1−e
−

1
ω

· I2 ·∆π2

= −
η
π

2(π1) · 1
κ1

2− 1
κ1

− 1
κ2

→ By κ1 ≤ κ2 and κ1 > 1

≥ −
η
π

2∗(π1∗)

2 · (κ1 − 1)
.

By putting this together, we obtain:

(p1 − p2) · ηπ2 (π1∗) ≥ p1 · ηπ2∗(π1∗) ·

(

1−
1

2 · κ2

)

− p2 · ηπ2(π1) ·

(

1 +
1

2 · (κ1 − 1)

)

.
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Therefore, we have that λ and µ have to satisfy:

λ ≤
p1

p1 − p2
·
2 · κ2 − 1

2 · κ2
,

µ ≥
p2

p1 − p2
·
2 · κ1 − 1

2 · κ1 − 2
.
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D. Proof of Lemma 1

Proof. Let us first express Vt in terms of ηt. We have:

Vt =
1

M
·

M
∑

m=1

dt,m ·
〈

π1
t, rt

〉

=
1

M
·

M
∑

m=1

d
π

1
t,π2

t
·
〈

π1
t, rt

〉

+
1

M
·

M
∑

m=1

(dt,m − d
π

1
t,π2

t
) ·
〈

π1
t, rt

〉

≥
1

M
·

M
∑

m=1

d
π

1
t,π2

t
·
〈

π1
t, rt

〉

−

∣

∣

∣

∣

∣

1

M
·

M
∑

m=1

(dt,m − d
π

1
t,π2

t
) ·
〈

π1
t, rt

〉

∣

∣

∣

∣

∣

→ Using the triangle and Holder’s inequalities

≥
1

M
·

M
∑

m=1

d
π

1
t,π2

t
·
〈

π1
t, rt

〉

−
1

M
·

M
∑

m=1

∥

∥dt,m − d
π

1
t,π2

t

∥

∥

1
·
∥

∥

〈

π1
t, rt

〉∥

∥

∞

= ηt(π
1
t)−

1

M
·

M
∑

m=1

∥

∥dt,m − d
π

1
t,π2

t

∥

∥

1
.

Due to Lemma 13, the summation in the second term is bounded by:

M
∑

m=1

∥

∥dt,m − d
π

1
t,π2

t

∥

∥

1
≤
∥

∥dt,1 − d
π

1
t,π2

t

∥

∥

1
·

M
∑

m=1

e−
m−1

ω ≤
2

1− e−
1
ω

,

Therefore:

Vt ≥ ηt(π
1
t)−

2

M · (1− e−
1
ω )

,

that is:

V̄ ≥
1

T

T
∑

t=1

ηt(π
1
t)−

2

M · (1− e−
1
ω )

. (4)

Now we follow the analysis of (Syrgkanis et al., 2015) to connect
∑T

t=1 ηt(π
1
t) to the optimum average reward:

T
∑

t=1

ηt(π
1
t) ≥

T
∑

t=1

ηt(π
1∗)−R(T )

→ Using the smoothness assumption

≥

T
∑

t=1

[

λ · η
π

2∗(π1∗)− µ · ηt(π
1
t)
]

−R(T ),

implying:

T
∑

t=1

ηt(π
1
t) ≥

λ

1 + µ
η
π

2∗(π1∗)−
1

1 + µ
R(T ).

Now, suppose that π1
OPT and π2

OPT are two policies that achieve OPT. Using the same approach as for lower-bounding

Vt, we can upper-bound OPT by:

OPT ≤ η
π

2
OPT
(π1

OPT) +
2

M · (1 − e−
1
ω )

,
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where η
π

2
OPT
(π1

OPT) is the average reward for policies π1
OPT and π2

OPT . Due to the optimality of η
π

2∗(π1∗), we know

that η
π

2∗(π1∗) ≥ η
π

2
OPT
(π1

OPT), which gives us:

OPT ≤ η
π

2∗(π1∗) +
2

M · (1− e−
1
ω )

,

and further:

T
∑

t=1

ηt(π
1
t) ≥

λ

1 + µ
OPT −

1

1 + µ
R(T )−

λ

1 + µ
·

2

M · (1− e−
1
ω )

.

Combining this with (4) we obtain the claim.
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E. Useful Lemmas and Proposition for Regret Analysis

E.1. Proof of Lemma 4

Proof. The claim follows from Proposition 7 in (Syrgkanis et al., 2015) (more precisely, Theorem 19 and Lemma 20) by

noting that the loss function is Qt and that the update of wt,τ (s) corresponds to OFTRL. That is, for each state s and

1 ≤ t ≤ T − Γ + 1:

Γ
∑

τ=1

Qt+τ−1(s) · (π
1(s)−wt+τ−1,τ (s))

† ≤
∆R

ǫ
+ ǫ ·

Γ
∑

τ=1

‖Qt+τ−1(s)−Qt+τ−2(s)‖
2
∞ −

−
1

4 · ǫ
·

Γ
∑

τ=1

‖wt+τ−1,τ (s)−wt+τ−2,τ−1(s)‖
2
1 ,

which implies the statement. (Note that for w(s)-difference we use ‖·‖1, whereas for w-difference we use ‖·‖∞.)

We provide a more general version of the lemma that we actually use in the proof of our main result.

Lemma 18. Let θ(t) = min{τ |t + τ − 1 ≥ 1, τ ≥ 1} and Θ(t) = max{τ |t+ τ − 1 ≤ T, τ ≤ Γ} and 1 denote column

vector of ones with |S| elements. Then, for each episode −Γ + 2 ≤ t ≤ T we have:

Θ(t)
∑

τ=θ(t)

〈

π1 −wt+τ−1,τ ,Qt+τ−1

〉

≤

≤ 1 ·





∆R

ǫ
+ ǫ ·

Θ(t)
∑

τ=θ(t)

‖Qt+τ−1 −Qt+τ−2‖
2
max

−
1

4 · ǫ
·

Θ(t)
∑

τ=θ(t)

‖wt+τ−1,τ −wt+τ−2,τ−1‖
2
∞



 ,

where ∆R = sup
w∈PA1

R(w) − infw∈PA1
R(w) and π1 is an arbitrary policy of agent A1.

Proof. As with Lemma 4, the claim follows from Proposition 7 in (Syrgkanis et al., 2015) (more precisely, Theorem 19

and Lemma 20) by noting that the loss function is Qt and that the update of wτ,k(s) corresponds to OFTRL. Note that for

1 ≤ t ≤ T − Γ + 1, Lemma 4 yields the claim. We recognize two other cases. First, for t < 1, define t′ = |t| + 1. We

have:

Θ(t)
∑

τ=θ(t)

Qt+τ−1(s) · (π
1(s)−wt,τ (s))

† =

Γ−t′
∑

τ=1

Qτ (s) · (π
1(s)−wτ,τ+t′(s))

†

≤
∆R

ǫ
+ ǫ ·

Γ−t
∑

τ=1

‖Qτ (s)−Qτ−1(s)‖
2
∞ −

1

4 · ǫ
·

Γ−t
∑

τ=1

‖wτ,τ+t′(s)−wτ−1,τ−1+t′(s)‖
2
1

=
∆R

ǫ
+ ǫ ·

Θ(t)
∑

τ=θ(t)

‖Qt+τ−1(s)−Qt+τ−2(s)‖
2
∞ −

1

4 · ǫ
·

Θ(t)
∑

τ=θ(t)

‖wt+τ−1,τ(s)−wt+τ−2,τ−1(s)‖
2
1 .

Second, for t > T − Γ + 1, we have:

Θ(t)
∑

τ=θ(t)

Qt+τ−1(s) · (π
1(s)−wt+τ−1,τ−t+1(s))

† =

T
∑

τ=t

Qτ (s) · (π
1(s)−wτ,τ−t+1(s))

†

≤
∆R

ǫ
+ ǫ ·

T
∑

τ=t

‖Qτ (s)−Qτ−1(s)‖
2
∞ −

1

4 · ǫ
·

T
∑

τ=t

‖wτ,τ−t+1(s)−wτ−1,τ−t(s)‖
2
1
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=
∆R

ǫ
+ ǫ ·

Θ(t)
∑

τ=θ(t)

‖Qt+τ−1(s)−Qt+τ−2(s)‖
2
∞ −

1

4 · ǫ
·

Θ(t)
∑

τ=θ(t)

‖wt+τ−1,τ(s)−wt+τ−2,τ−1(s)‖
2
1 .

Putting everything together, for each state s:

Θ(t)
∑

τ=θ(t)

Qt+τ−1(s) · (π
1(s)−wt+τ−1,τ (s))

† ≤
∆R

ǫ
+ ǫ ·

Θ(t)
∑

τ=θ(t)

‖Qt+τ−1(s)−Qt+τ−2(s)‖
2
∞ −

−
1

4 · ǫ
·

Θ(t)
∑

τ=θ(t)

‖wt+τ−1,τ(s)−wt+τ−2,τ−1(s)‖
2
1 ,

which implies the statement. (Note that for w(s)-difference we use ‖·‖1, whereas for w-difference we use ‖·‖∞.)

E.2. Proof of Lemma 3

Proof. The first claim follows from Lemma 20 in (Syrgkanis et al., 2015) by noting that wt,τ are updated using OFTRL

(see also Section 3.2 in (Syrgkanis et al., 2015)), while Q-values are bounded by 3

1−e
−

1
ω

(see Lemma 16). In particular

from Lemma 20 in (Syrgkanis et al., 2015), the triangle inequality, and Lemma 16, it follows:

‖wt,τ (s)−wt−1,τ−1(s)‖1 ≤ ǫ · ‖Qt−1(s)−Qt(s)‖∞ + ǫ · ‖Qt(s)‖∞ ≤ 2 · ǫ · ‖Qt(s)‖∞ + ǫ · ‖Qt−1(s)‖∞

≤ ǫ ·
9

1− e−
1
ω

.

By taking into account that wt,τ ∈ PA1 , we know that ‖wt,τ (s)−wt−1,τ−1(s)‖1 ≤ 2, which together with the above

proofs the first claim.

The second claim follows from the first claim, the triangle inequality, and the fact that wt,τ ∈ PA1 (so that

‖wt,τ1 −wt−1,τ2‖∞ ≤ 2):

∥

∥π1
t − π1

t−1

∥

∥

∞
=

1

Γ

∥

∥

∥

∥

∥

Γ
∑

τ=1

wt,τ −wt−1,τ

∥

∥

∥

∥

∥

∞

≤
1

Γ

∥

∥

∥

∥

∥

Γ
∑

τ=2

wt,τ −wt−1,τ−1

∥

∥

∥

∥

∥

∞

+
1

Γ
· ‖wt,1 −wt−1,Γ‖∞

≤
1

Γ

Γ
∑

τ=2

‖wt,τ −wt−1,τ−1‖∞ +
2

Γ
≤ ǫ ·

6

1− e−
1
ω

+
2

Γ
,

for t > 1. Since π1
t ∈ PA1 , we have that

∥

∥π1
t(s)− π1

t−1(s)
∥

∥

1
≤ 2, which completes the proof of the second claim.

E.3. Proof of Lemma 2

Proof. By the triangle inequality, we have:
∥

∥d
π

1
t,π2

t
− d

π
1
t−1,π2

t−1

∥

∥

1
≤
∥

∥d
π

1
t,π2

t
− d

π
1
t,π2

t−1

∥

∥

1
+
∥

∥d
π

1
t,π2

t−1
− d

π
1
t−1,π2

t−1

∥

∥

1
,

so we bound each term on the right hand side of the inequality. Due to Lemma 12 and the definition of the influence, we

have:

∥

∥d
π

1
t,π2

t
− d

π
1
t,π2

t−1

∥

∥

1
≤

∥

∥P
π

1,π2 − P
π

1,π2′

∥

∥

∞

1− e−
1
ω

≤
I2 ·

∥

∥π2
t − π2

t−1

∥

∥

∞

1− e−
1
ω

.

Using the fact that
∥

∥π2
t − π2

t−1

∥

∥

∞
≤ ρ2, we obtain:

∥

∥d
π

1
t,π2

t
− d

π
1
t,π2

t−1

∥

∥

1
≤

I2 · ρ2

1− e−
1
ω

.

Symmetrically, except that we do not quantify agent A1’s influence (i.e., instead use Lemma 10):
∥

∥d
π

1
t,π2

t−1
− d

π
1
t−1,π2

t−1

∥

∥

1
≤

ρ1

1− e−
1
ω

.

The seconds claim of the lemma follows directly from the analysis above, i.e., from Lemma 12 and the definitions of I2
and ρ2.
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E.4. Proof of Lemma 5

Proof. Notice that:
∥

∥

∥Q
π

1
t

t −Q
π

1
t−1

t−1

∥

∥

∥

∞
= max

s
|Qπ

1
t

t (s)−Q
π

1
t−1

t−1 (s)|,

so it suffices to bound |Qπ
1
t

t (s) −Q
π

1
t−1

t−1 (s)| for an arbitrary state s. To calculate Q
π

1
t

t (s) −Q
π

1
t−1

t−1 (s), denote a row

vector of ones with |S| elements by 1 and set the initial state distribution to d1(s
′) = 1s=s′ (i.e., the initial state is s).

As shown in the proof of Lemma 3 of (Even-Dar et al., 2005), Qt(s, a) can be represented as an infinite time series that

converges in absolute values. This implies:

Q
π

1
t

t (s)−Q
π

1
t−1

t−1 (s) =
∞
∑

m=1

(

dt,m ·
〈

π1
t, rt

〉

− 1 · ηt(π
1
t)
)

−
∞
∑

m=1

(

dt−1,m

〈

π1
t−1, rt−1

〉

− 1 · ηt−1(π
1
t−1)

)

=

∞
∑

m=1

(

d
π

1
t,π2

t
·
〈

π1
t, rt

〉

− 1 · ηt(π
1
t)− d

π
1
t−1,π2

t−1
·
〈

π1
t−1, rt−1

〉

+ 1 · ηt−1(π
1
t−1)

+ (dt,m − d
π

1
t,π2

t
) ·
〈

π1
t, rt

〉

− (dt−1,m − d
π

1
t−1,π2

t−1
) ·
〈

π1
t−1, rt−1

〉

)

→ By the definition of avg. rev.

=

∞
∑

m=1

(

(dt,m − d
π

1
t,π2

t
) ·
〈

π1
t, rt

〉

− (dt−1,m − d
π

1
t−1,π2

t−1
) ·
〈

π1
t−1, rt−1

〉

)

→ By rearranging, + and − additional terms

=
∞
∑

m=1

((dt,m − d
π

1
t,π2

t
)− (dt−1,m − d

π
1
t−1,π2

t−1
)) ·
〈

π1
t, rt

〉

+

∞
∑

m=1

(dt−1,m − d
π

1
t−1,π2

t−1
) · (
〈

π1
t, rt

〉

−
〈

π1
t, rt−1

〉

)

+

∞
∑

m=1

(dt−1,m − d
π

1
t−1,π2

t−1
) · (
〈

π1
t, rt−1

〉

−
〈

π1
t−1, rt−1

〉

)

Using the triangle and Holder’s inequalities, we obtain:

|Qπ
1
t

t (s)−Q
π

1
t−1

t−1 (s)| ≤

=

∞
∑

m=1

∥

∥(dt,m − d
π

1
t,π2

t
)− (dt−1,m − d

π
1
t−1,π2

t−1
)
∥

∥

1
·
∥

∥

〈

π1
t, rt

〉∥

∥

∞

+

∞
∑

m=1

∥

∥dt−1,m − d
π

1
t−1,π2

t−1

∥

∥

1
·
∥

∥

〈

π1
t, rt

〉

−
〈

π1
t, rt−1

〉∥

∥

∞

+

∞
∑

m=1

∥

∥dt−1,m − d
π

1
t−1,π2

t−1

∥

∥

1
·
∥

∥

〈

π1
t, rt−1

〉

−
〈

π1
t−1, rt−1

〉∥

∥

∞

→ By Lemma 7 and Lemma 8

≤

∞
∑

m=1

∥

∥(dt,m − d
π

1
t,π2

t
)− (dt−1,m − d

π
1
t−1,π2

t−1
)
∥

∥

1
+ ρ2 ·

∞
∑

m=1

∥

∥dt−1,m − d
π

1
t−1,π2

t−1

∥

∥

1

+ ρ1 ·

∞
∑

m=1

∥

∥dt−1,m − d
π

1
t−1,π2

t−1

∥

∥

1

→ By Lemma 14 and Lemma 13

≤ 3 ·
ρ1 + I2 · ρ2

(1− e−
1
ω )2

++2 · (ρ1 + ρ2) ·

∞
∑

m=1

e−
m−1

ω
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≤ 3 ·
ρ1 + I2 · ρ2

(1− e−
1
ω )2

+ 2 ·
ρ1 + ρ2

1− e−
1
ω

which completes the proof.

E.5. Proof of Lemma 6

Proof. Using the recursive definition of Q-values and the triangle inequality, we obtain:

‖Qt −Qt−1‖max ≤ ‖rt − rt−1‖max + |ηt(π
1
t)− ηt(π

1
t−1)| +max

s,a1
|P

π
2
t
(s, a1) ·Qπ

1
t

t − P
π

2
t−1

(s, a1, ) ·Q
π

1
t−1

t−1 |.

The bound of the first term is given in Lemma 8. For the second term, we have:

|ηt(π
1
t)− ηt(π

1
t−1)| = |d

π
1
t,π2

t
·
〈

π1
t, rt

〉

− d
π

1
t−1,π2

t−1
·
〈

π1
t−1, rt−1

〉

|

→ + and − additional terms and the triangle inequality

≤ |(d
π

1
t,π2

t
− d

π
1
t−1,π2

t−1
) ·
〈

π1
t, rt

〉

|+ |d
π

1
t−1,π2

t−1
·
〈

π1
t − π1

t−1, rt
〉

|+ |d
π

1
t−1,π2

t−1
·
〈

π1
t−1, rt − rt−1

〉

|

→ By Holder’s inequality and bound. d, r, π

≤
∥

∥d
π

1
t,π2

t
− d

π
1
t−1,π2

t−1

∥

∥

1

∥

∥

〈

π1
t, rt

〉∥

∥

∞
+
∥

∥d
π

1
t−1,π2

t−1

∥

∥

1
·
∥

∥

〈

π1
t − π1

t−1, rt
〉∥

∥

∞

+
∥

∥d
π

1
t−1,π2

t−1

∥

∥

1
·
∥

∥

〈

π1
t−1, rt − rt−1

〉∥

∥

∞

→ By Lemma 7 and and ‖d‖1 = 1

≤
∥

∥d
π

1
t,π2

t
− d

π
1
t−1,π2

t−1

∥

∥

1
+
∥

∥

〈

π1
t − π1

t−1, rt
〉∥

∥

∞
+
∥

∥

〈

π1
t−1, rt − rt−1

〉∥

∥

∞

→ By Lemma 2 and Lemma 8

≤
ρ1 + I2 · ρ2

1− e−
1
ω

+ ρ1 + ρ2

Finally, the third term is bounded by:

max
s,a1

|P
π

2
t
(s, a1, ) ·Qπ

1
t

t − P
π

2
t−1

(s, a1) ·Q
π

1
t−1

t−1 |

→ + and − additional terms and the triangle inequality

≤ max
s,a1

|P
π

2
t
(s, a1, ) · (Qπ

1
t

t −Q
π

1
t−1

t−1 )|+max
s,a1

|(P
π

2
t
(s, a1)− P

π
2
t−1

(s, a1)) ·Q
π

1
t−1

t−1 |

→ Using Holder’s inequality

≤ max
s,a1

∥

∥P
π

2
t
(s, a1)

∥

∥

1
·
∥

∥

∥Q
π

1
t

t −Q
π

1
t−1

t−1

∥

∥

∥

∞
+max

s,a1

∥

∥P
π

2
t
(s, a1)− P

π
2
t−1

(s, a1)
∥

∥

1
·
∥

∥

∥Q
π

1
t−1

t−1

∥

∥

∥

∞

→ By Lemma 11 and
∥

∥P
π

2(s, a1)
∥

∥

1
= 1

≤
∥

∥

∥Q
π

1
t

t −Q
π

1
t−1

t−1

∥

∥

∥

∞
+max

s

∥

∥π2
t(s)− π2

t−1(s)
∥

∥

1
·
∥

∥

∥Q
π

1
t−1

t−1

∥

∥

∥

∞

=
∥

∥

∥Q
π

1
t

t −Q
π

1
t−1

t−1

∥

∥

∥

∞
+
∥

∥π2 − π2
t−1

∥

∥

∞
·
∥

∥

∥Q
π

1
t−1

t−1

∥

∥

∥

∞

→ By Lemma 5 and Lemma 16

≤ CQπ +
3

1− e
1
ω

· ρ1.

By summing the three bounds, we obtain the claim.
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F. Proof of Theorem 1

Proof. Lemma 15 provides the following useful identity:

T
∑

t=1

ηt(π
1)− ηt(π

1
t) =

T
∑

t=1

d
π

1,π2
t
· (Qt

π
1

−Qt
π

1
t).

Furthermore, by the definition of Qt
π

1

and Qt
π

1
t , we have:

Qt
π

1

−Qt
π

1
t =

〈

π1 − π1
t,Qt

〉

.

Using the two identities, gives:

T
∑

t=1

ηt(π
1)− ηt(π

1
t) =

T
∑

t=1

d
π

1,π2
t
·
〈

π1 − π1
t,Qt

〉

=
T
∑

t=1

d
π

1,π2
t
·

〈

π1 −
1

Γ

Γ
∑

τ=1

wt,τ ,Qt

〉

=
1

Γ
· d

π
1,π2

1
·
〈

π1 −w1,Γ,Q1

〉

+
1

Γ
·
(

d
π

1,π2
1
·
〈

π1 −w1,Γ−1,Q1

〉

+ d
π

1,π2
2
·
〈

π1 −w2,Γ,Q2

〉)

+ · · ·

+

T−Γ
∑

t=1

Γ
∑

τ=1

d
π

1,π2
t+τ−1

·
〈

π1 −wt+τ−1,τ ,Qt+τ−1

〉

+ · · ·

+
1

Γ
·
(

d
π

1,π2
T−1

·
〈

π1 −wT−1,1,QT−1

〉

+ d
π

1,π2
T
·
〈

π1 −wT,2,QT

〉)

+
1

Γ
· d

π
1,π2

T
·
〈

π1 −wT,1,QT

〉

=
1

Γ
·

T
∑

t=−Γ+2

Θ(t)
∑

τ=θ(t)

d
π

1,π2
t+τ−1

·
〈

π1 −wt+τ−1,τ ,Qt+τ−1

〉

where we introduced θ(t) = min{τ |t + τ − 1 ≥ 1, τ ≥ 1} and Θ(t) = max{τ |t+ τ − 1 ≤ T, τ ≤ Γ} as in Lemma 18.

Now, by replacing d
π

1,π2
t+τ−1

with d
π

1,π2
t+θ(t)−1

, it follows that the above is equal to:

1

Γ
·

T
∑

t=−Γ+2

Θ(t)
∑

τ=θ(t)

d
π

1,π2
t+θ(t)−1

·
〈

π1 −wt+τ−1,τ ,Qt+τ−1

〉

+
1

Γ
·

T
∑

t=−Γ+2

Θ(t)
∑

τ=θ(t)

(d
π

1,π2
t+τ−1

− d
π

1,π2
t+θ(t)−1

) ·
〈

π1 −wt+τ−1,τ ,Qt+τ−1

〉

We bound the two terms separately, starting with the first term. Since d
π

1,π2
θ(t)

is independent of τ , the first term is equal

to:

1

Γ
·

T
∑

t=−Γ+2

Θ(t)
∑

τ=θ(t)

d
π

1,π2
t+θ(t)−1

·
〈

π1 −wt+τ−1,τ ,Qt+τ−1

〉

=
1

Γ
·

T
∑

t=−Γ+2

d
π

1,π2
t+θ(t)−1

·

Θ(t)
∑

τ=θ(t)

〈

π1 −wt+τ−1,τ ,Qt+τ−1

〉

,

which is by Lemma 18 bounded by:

1

Γ
·

T
∑

t=−Γ+2

d
π

1,π2
t+θ(t)−1

· 1 ·

(

∆R

ǫ
+ ǫ ·

Θ(t)
∑

τ=θ(t)

‖Qt+τ−1 −Qt+τ−2‖
2
max −

1

4 · ǫ
·

Θ(t)
∑

τ=θ(t)

‖wt+τ−1,τ −wt+τ−2,τ−1‖
2
∞




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≤
1

Γ
·

T
∑

t=−Γ+2

d
π

1,π2
t+θ(t)−1

· 1 ·





∆R

ǫ
+ ǫ ·

Θ(t)
∑

τ=θ(t)

‖Qt+τ−1 −Qt+τ−2‖
2
max





≤
1

Γ
·

T
∑

t=−Γ+2





∆R

ǫ
+ ǫ ·

Θ(t)
∑

τ=θ(t)

‖Qt+τ−1 −Qt+τ−2‖
2
max



 .

Proposition 1, Lemma 6 and Lemma 3 imply that the above is further bounded by:

1

Γ
·

T
∑

t=−Γ+2





∆R

ǫ
+ ǫ ·

Θ(t)
∑

τ=θ(t)

‖Qt+τ−1 −Qt+τ−2‖
2
max





→ Using Lemma 6 and Θ(t)− θ(t) ≤ Γ

≤
T + Γ

Γ
·

(

∆R

ǫ
+ Γ · ǫ · C2

Q

)

→ By the definition of Cω

≤
T + Γ

Γ
·

(

∆R

ǫ
+ Γ · ǫ · C2

ω ·max{ρ1
2, ρ2

2}

)

→ Using k · ǫ ≥ ρ1 and k · ǫ ≥ ρ2, and that Γ ≤ T

≤
2 · T

Γ
·

(

∆R

ǫ
+ k2 · Γ · ǫ3 · C2

ω

)

.

Notice that in the above analysis 1 denoted a row vector of ones with |S| elements. Finally, setting ǫ = 1

Γ
1
4

leads to the

upper bound:

2 · T

Γ

(

∆R

ǫ
+ k2 · Γ · ǫ3 · C2

ω

)

=
2 · T

Γ

(

∆R · Γ
1
4 + k2 · Γ

1
4 · ǫ3 · C2

ω

)

= 2 ·
(

∆R + k2 · C2
ω

)

· T · Γ− 3
4 .

The second term is bounded by its absolute value, which together with the triangle inequality and Holder’s inequality,

results in:

1

Γ
·

T
∑

t=−Γ+2

Θ(t)
∑

τ=θ(t)

(d
π

1,π2
t+τ−1

− d
π

1,π2
t+θ(t)−1

) ·
〈

π1 −wt+τ−1,τ ,Qt+τ−1

〉

≤
1

Γ
·

T
∑

t=−Γ+2

Θ(t)
∑

τ=θ(t)

∥

∥

∥
d
π

1,π2
t+τ−1

− d
π

1,π2
t+θ(t)−1

∥

∥

∥

1
·
∥

∥

〈

π1 −wt+τ−1,τ ,Qt+τ−1

〉∥

∥

∞
.

From Lemma 9 and Lemma 16 it follows that
∥

∥

〈

π1 −wt+τ−1,τ ,Qt+τ−1

〉∥

∥

∞
≤ 6

1−e
−

1
ω

, which leads to the upper bound:

1

Γ
·

T
∑

t=−Γ+2

Θ(t)
∑

τ=θ(t)

∥

∥

∥dπ
1,π2

t+τ−1
− d

π
1,π2

t+θ(t)−1

∥

∥

∥

1
·

6

1− e−
1
ω

,

which by identity:

d
π

1,π2
t+τ−1

− d
π

1,π2
t+θ(t)−1

= d
π

1,π2
t+τ−1

− d
π

1,π2
t+τ−2

+ d
π

1,π2
t+τ−2

− d
π

1,π2
t+τ−3

...

+ d
π

1,π2
t+θ(t)+1

− d
π

1,π2
t+θ(t)

+ d
π

1,π2
t+θ(t)

− d
π

1,π2
t+θ(t)−1
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=
τ−1
∑

k=θ(t)

(d
π

1,π2
t+k

− d
π

1,π2
t+k−1

),

and the triangle inequality is bounded by:

1

Γ
·

6

1− e−
1
ω

·
T
∑

t=−Γ+2

Θ(t)
∑

τ=θ(t)

τ−1
∑

k=θ(t)

∥

∥d
π

1,π2
t+k

− d
π

1,π2
t+k−1

∥

∥

1
.

Application of Lemma 2 additionally bounds the last term by:

1

Γ
·

6

1− e−
1
ω

·
T
∑

t=−Γ+2

Θ(t)
∑

τ=θ(t)

τ−1
∑

k=θ(t)

I2 · ρ2

1− e−
1
ω

=
1

Γ
·

6

1− e−
1
ω

·
I2 · ρ2

1− e−
1
ω

T
∑

t=−Γ+2

Θ(t)
∑

τ=θ(t)

(τ − 1)

≤
1

Γ
·

6 · I2 · ρ2

(1 − e−
1
ω )2

T
∑

t=−Γ+2

Γ2

2

≤
1

Γ
· (T + Γ) · Γ2 ·

3 · I2 · ρ2

(1 − e−
1
ω )2

= 2 · T · Γ ·
3 · I2 · ρ2

(1− e−
1
ω )2

Putting everything together, we obtain:

R(T ) =

T
∑

t=1

ηt(π
1)− ηt(π

1
t) ≤ 2 ·

(

∆R + k2 · C2
ω

)

· T · Γ− 3
4 +

6 · I2 · ρ2

(1 − e−
1
ω )2

· T · Γ.
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Algorithm 2: EXPRESTART (Experts with periodic restarts)

Input: Segment horizon Γ, learning rate ǫ;
begin

Initialize: ∀s, π1
1(s) = argmax

w∈PA1

R(w)
ǫ

;

for episode t ∈ {1, ..., T } do

Commit to policy π1
t;

Obtain the return Vt;

Observe agent A2’s policy π2
t;

Calculate Q-values Qt;

// Updating policy π1

// Reset the policy if segment ended

if t mod Γ = 0 then

for state s ∈ S do

π1
t+1(s) = argmax

w∈PA1

R(w)
ǫ

;

end

end

// Otherwise, calculate weights using a cropped horizon

else

for state s ∈ S do

τ = ⌊ t
Γ⌋;

π1
t+1(s) = argmax

w∈PA1

(
∑t

k=τ+1 Qk(s) +Qt(s)
)

w† + R(w)
ǫ

;

end

end

end

end

G. Properties of experts with periodic restarts

To prove the property of EXPRESTART that corresponds to Theorem 1, we need to change the claims of Lemma 4 and

Lemma 3. Lemma 2, Lemma 5, Lemma 6, and Proposition 1 hold for EXPRESTART (in general, but also for each segment

of length Γ separately). Therefore, we do not restate the claims of the latter results, but simply refer to them. Notice that,

after each segment in EXPRESTART, we should associate the next episode as if it was the first one. For example, the policy

at t = Γ + 1 is not based on historical data, so the algorithmic step that precedes is effectively t = 0, with a priori defined

Q0 and π1
0. For notational convenience, we use % to denote the mod operation. Furthermore, we will denote the policy

change magnitude of agent A1 within one segment by ρ1
Γ (note that ρ1 is generally greater than ρ1

Γ due to potentially

abrupt changes in agent A1’s policy between two segments).

Lemma 19. Consider EXPRESTART and let 1 denote column vector of ones with |S| elements. Then, for each l ∈
{0, 1, ..., ⌊T

Γ ⌋} we have:

(l+1)·Γ
∑

t=l·Γ+1

〈

π1 − π1
t,Qt

〉

≤ 1 ·





∆R

ǫ
+ ǫ ·

(l+1)·Γ
∑

t=l·Γ+1

∥

∥Qt −Q(t−1)%Γ

∥

∥

2

max
−

1

4 · ǫ
·

(l+1)·Γ
∑

t=l·Γ+1

∥

∥π1
t − π1

(t−1)%Γ

∥

∥

2

∞



 ,

where ∆R = sup
w∈PA1

R(w) − infw∈PA1
R(w) and π1 is an arbitrary policy of agent A1.

Proof. The claim follows from Proposition 7 in (Syrgkanis et al., 2015) (more precisely, Theorem 19 and Lemma 20) by

noting that the loss function is Qt and that the update of π1
t(s) corresponds to OFTRL. That is, for each state s and

l ∈ {0, 1, ..., ⌊T
Γ ⌋}:

(l+1)·Γ
∑

t=l·Γ+1

Qt(s) · (π
1(s)− π1

t(s))
† ≤

∆R

ǫ
+ ǫ ·

(l+1)·Γ
∑

t=l·Γ+1

∥

∥Qt(s)−Q(t−1)%Γ(s)
∥

∥

2

∞
−
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−
1

4 · ǫ
·

(l+1)·Γ
∑

t=l·Γ+1

∥

∥π1
t(s)− π1

(t−1)%Γ(s)
∥

∥

2

1
,

which implies the statement. (Note that for π1(s)-difference we use ‖·‖1, whereas for π1-difference we use ‖·‖∞.)

Lemma 20. Let l ∈ {0, 1, ..., ⌊T
Γ ⌋}. The policy change magnitude within one segment (t ∈ {l · Γ + 1, ..., (l + 1) · Γ}) of

EXPRESTART is bounded by:

∥

∥π1
t − π1

(t−1)%Γ

∥

∥

∞
≤ min

{

2, ǫ ·
9

1− e−
1
ω

}

.

Consequently:

ρ1
Γ ≤ min

{

2, ǫ ·
9

1− e−
1
ω

}

.

Proof. The claim follows from Lemma 20 in (Syrgkanis et al., 2015) by noting that π1
t(s) are updated using OFTRL (see

also Section 3.2 in (Syrgkanis et al., 2015)), while Q-values are bounded by 3

1−e
−

1
ω

(see Lemma 16). In particular from

Lemma 20 in (Syrgkanis et al., 2015), the triangle inequality, and Lemma 16, it follows:

∥

∥π1
t(s)− π1

(t−1)%Γ(s)
∥

∥

1
≤ ǫ ·

∥

∥Q(t−1)%Γ(s)−Qt(s)
∥

∥

∞
+ ǫ · ‖Qt(s)‖∞ ≤ 2 · ǫ · ‖Qt(s)‖∞ + ǫ ·

∥

∥Q(t−1)%Γ(s)
∥

∥

∞

≤ ǫ ·
9

1− e−
1
ω

.

By taking into account that π1
t ∈ PA1 , we know that

∥

∥π1
t(s)− π1

(t−1)%Γ(s)
∥

∥

1
≤ 2, which together with the above

proofs the first claim. The second claim follows by the definition.

Theorem 4. Let the learning rate of EXPRESTART be equal to ǫ = 1

Γ
1
4

, and let k > 0 be such that k · ǫ > ρ1
Γ and

k · ǫ > ρ2. Then, the regret of Algorithm 2 is upper-bounded by:

R(T ) ≤
(

∆R + k2 · C2
ω

)

· T · Γ− 3
4 +

3 · I2 · ρ2

(1− e−
1
ω )2

· T · Γ.

Proof. Lemma 15 provides the following useful identity:

T
∑

t=1

ηt(π
1)− ηt(π

1
t) =

T
∑

t=1

d
π

1,π2
t
· (Qt

π
1

−Qt
π

1
t).

Furthermore, by the definition of Qt
π

1

and Qt
π

1
t , we have:

Qt
π

1

−Qt
π

1
t =

〈

π1 − π1
t,Qt

〉

.

Using the two identities, gives:

T
∑

t=1

ηt(π
1)− ηt(π

1
t) =

T
∑

t=1

d
π

1,π2
t
·
〈

π1 − π1
t,Qt

〉

=

Γ
∑

t=1

d
π

1,π2
t
·
〈

π1 − π1
t,Qt

〉

+

2·Γ
∑

t=Γ+1

d
π

1,π2
t
·
〈

π1 − π1
t,Qt

〉

+ · · ·

+
T
∑

t=T−Γ+1

d
π

1,π2
t
·
〈

π1 − π1
t,Qt

〉

.
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We will proceed by analyzing only the first summand, i.e.,
∑Γ

t=1 dπ
1,π2

t
·
〈

π1 − π1
t,Qt

〉

. The others can be analyzed

analogously since experts with periodic restarts has the same behavior in all the segments (1, ...,Γ), (Γ + 1, ..., 2 · Γ), ...,

(T − Γ + 1, ..., T ). We can rewrite the first summand as:

Γ
∑

t=1

d
π

1,π2
t
·
〈

π1 − π1
t,Qt

〉

=

Γ
∑

t=1

d
π

1,π2
1
·
〈

π1 − π1
t,Qt

〉

+

Γ
∑

t=1

(d
π

1,π2
t
− d

π
1,π2

1
) ·
〈

π1 − π1
t,Qt

〉

,

and proceed by bounding each of the obtained terms (summations) independently. Due to Lemma 19, the first term is

bounded by:

Γ
∑

t=1

d
π

1,π2
1
·
〈

π1 − π1
t,Qt

〉

= d
π

1,π2
1
·

Γ
∑

t=1

〈

π1 − π1
t,Qt

〉

≤ d
π

1,π2
1
· 1 ·

(

∆R

ǫ
+ ǫ ·

Γ
∑

t=1

∥

∥Qt −Q(t−1)%Γ

∥

∥

2

max
−

1

4 · ǫ
·

Γ
∑

t=1

∥

∥π1
t − π1

(t−1)%Γ

∥

∥

2

∞

)

≤
∆R

ǫ
+ ǫ ·

Γ
∑

t=1

∥

∥Qt −Q(t−1)%Γ

∥

∥

2

max

Proposition 1 holds within segment (1, ...,Γ) (or any other segment), so Lemma 6 and Lemma 20 imply that the above is

further bounded by:

Γ
∑

t=1

d
π

1,π2
1
·
〈

π1 − π1
t,Qt

〉

≤
∆R

ǫ
+ ǫ ·

Γ
∑

t=1

∥

∥Qt −Q(t−1)%Γ

∥

∥

2

max

→ Using Lemma 6

≤
∆R

ǫ
+ Γ · ǫ · C2

Q

→ By the definition of Cω

≤
∆R

ǫ
+ Γ · ǫ · C2

ω ·max{ρ1
Γ2
, ρ2

2}

→ Using k · ǫ ≥ ρ1
Γ and k · ǫ ≥ ρ2

≤
∆R

ǫ
+ k2 · Γ · ǫ3 · C2

ω

Notice that in the above analysis 1 denoted a row vector of ones with |S| elements. Finally, setting ǫ = 1

Γ
1
4

leads to the

upper bound (∆R + k2 · C2
ω) · Γ

1
4 .

The second term is bounded by its absolute value, which together with the triangle inequality and Holder’s inequality,

results in:

Γ
∑

t=1

(d
π

1,π2
t
− d

π
1,π2

1
) ·
〈

π1 − π1
t,Qt

〉

≤
Γ
∑

t=1

∥

∥d
π

1,π2
t
− d

π
1,π2

1

∥

∥

1
·
∥

∥

〈

π1 − π1
t,Qt

〉∥

∥

∞
.

From Lemma 9 and Lemma 16 it follows that
∥

∥

〈

π1 − π1
t,Qt

〉∥

∥

∞
≤ 6

1−e
−

1
ω

, which leads to the upper bound:

Γ
∑

t=1

(d
π

1,π2
t
− d

π
1,π2

1
) ·
〈

π1 − π1
t,Qt

〉

≤

Γ
∑

t=1

∥

∥d
π

1,π2
t
− d

π
1,π2

1

∥

∥

1
·

6

1− e−
1
ω

,

which by identity:

d
π

1,π2
t
− d

π
1,π2

1
= d

π
1,π2

t
− d

π
1,π2

t−1

+ d
π

1,π2
t−2

− d
π

1,π2
t−3
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...

+ d
π

1,π2
3
− d

π
1,π2

2

+ d
π

1,π2
2
− d

π
1,π2

1

=

t−1
∑

k=1

(d
π

1,π2
k+1

− d
π

1,π2
k
),

and the triangle inequality is bounded by:

Γ
∑

t=1

(d
π

1,π2
t
− d

π
1,π2

1
) ·
〈

π1 − π1
t,Qt

〉

≤
6

1− e−
1
ω

·

Γ
∑

t=1

t−1
∑

k=1

∥

∥d
π

1,π2
k+1

− d
π

1,π2
k

∥

∥

1
.

Application of Lemma 2 additionally bounds the last term by:

6

1− e−
1
ω

·

Γ
∑

t=1

t−1
∑

k=1

I2 · ρ2

1− e−
1
ω

=
6

1− e−
1
ω

·
I2 · ρ2

1− e−
1
ω

·

Γ
∑

t=1

(t− 1)

≤
6

1− e−
1
ω

·
I2 · ρ2

1− e−
1
ω

·
Γ2

2

=
3

1− e−
1
ω

·
I2 · ρ2

1− e−
1
ω

· Γ2.

Therefore,
∑Γ

t=1 dπ
1,π2

t
·
〈

π1 − π1
t,Qt

〉

is bounded by:

Γ
∑

t=1

d
π

1,π2
t
·
〈

π1 − π1
t,Qt

〉

≤
(

∆R + k2 · C2
ω

)

· Γ
1
4 +

3

1− e−
1
ω

·
I2 · ρ2

1− e−
1
ω

· Γ2.

By including all the other segments, in total T
Γ of them (at most), we obtain:

R(T ) =

T
∑

t=1

ηt(π
1)− ηt(π

1
t) ≤

(

∆R + k2 · C2
ω

)

· T · Γ− 3
4 +

3 · I2 · ρ2

(1− e−
1
ω )2

· T · Γ.

Given that the bound in Theorem 4 is (order-wise) the same as the bound in Theorem 1, the statement of the main result of

the paper (Theorem 2) holds for experts with periodic restarts as well. Namely, one can easily adjust the proof of Theorem

2 so that the statement of the theorem holds for experts with periodic restarts (e.g., by utilizing Lemma 20 instead of

Lemma 3).
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H. Proof of Theorem 3

Proof. To obtain the hardness result, it suffices to reduce the adversarial online shortest path problem of (Abbasi et al.,

2013) to our setting in polynomial time — namely, the adversarial online shortest part problem is at least as hard as online

agnostic parity (see Theorem 5 in (Abbasi et al., 2013)), so the proposed reduction would yield the result.

In the online shortest path problem, at each round t, an agent has to select a path from a start node to an end node in a direct

acyclic graph gt. The graph gt is characterized by a start node, an end node, and L layers that contain other nodes with a

restriction that a node in layer l only connects to nodes in l− 1 (or start node if l = 1) and nodes in l+1 (or the end node if

l = L). The reward rgt (alternatively, loss) is revealed after the decision maker chooses a path in gt. Note that the proof of

Theorem 5 in (Abbasi et al., 2013), which shows the computational hardness of the problem, uses only binary rewards and

2 nodes per layer, each node having at least one successor (except the end node). Thus, to prove our theorem, it suffices

to reduce the simpler version of the online shortest problem to our problem in polynomial time. The simpler shortest part

problem is characterized by:

• A set of nodes Ngt , enumerated by n0, n1,0, n1,1, ..., nl,0, nl,1, ..., nL,0, nL,1, nL+1, where n0 is the start node, while

nL+1 is the end node.

• A time dependent set of directed edges Egt that define connections between nodes from layer l and nodes in layer l+1,

where only directed edges of type (n0, n1,0), (n0, n1,1), ..., (nl,0, nl+1,0), (nl,1, nl+1,0), (nl,0, nl+1,1), (nl,1, nl+1,1),
..., (nL,0, nL+1), (nL,1, nL+1), are allowed. We impose condition that each node n 6= nL+1 has an outgoing edge.

• A time dependent reward function rgt that takes values in {0, 1} and whose value rgt((n, n
′)) determines the weight of

edge (n, n′).

• A time dependent policy πg,t that defines a successor node for each node other than nL+1, e.g., πg,t(nl,1) = nl+1,0.

If node πg,t(nl,1) /∈ Egt , then we take an arbitrary (predefined) successor node of nl,1 that is in Egt . We can define a

value of each policy πg,t as:

Vt(πg,t) =
1

L
·

L
∑

l=1

rgt(π
l
g,t(n0), π

l+1
g,t (n0)),

where πl
g,t(n0) is defined inductively as πl

g,t(n0) = πg,t(π
l−1
g,t (n0)) with π0

g,t(n0) = n0.

• The objective is to be competitive w.r.t. any stationary policy π, that is, to minimize the regret
∑T

t=1(Vt(π)−Vt(πg,t)).

Reduction:

Defining MDP: Given a graph gt, let us define a corresponding MDP in our setting:

• We associate each node in gt with a state in MDP: state s0 corresponds to the start node n0; state sL+1 corresponds

to the end node nL+1; and for the nodes nl,0 and nl,1 in layer l, we define states sl,0 and sl,1 respectively. Therefore,

S = {s0, ..., sl,0, sl,1, ..., sL+1}.

• The action space for agent A1 describes possible choices in the online shortest path — A1 = {0, 1} corresponding

to the choice of a next node nl,0 or nl,1 from nodes nl−1,0 or nl−1,1. The action space for agent A2 is equal to

A2 = {a2a, a
2
0,0, a

2
0,1, a

2
1,0, , a

2
1,1, a

2
b,0, a

2
b,1, a

2
b,2, a

2
b,3}.

• All the transitions are deterministic given a1 and a2. The transitions from node sl,0 and sl,1 (for l < L) are primarily

determined by the action of agent A2:

– if it is equal to a2a, the next state remains the same,

– if it is a20,x, the next state is sl+1,0,

– if it is a21,x then the next state is sl+1,1,

– if it is a2b,x the next state is determined by agent A1’s action, i.e., the next state is sl+1,a1 .

That is, agent A1 only affects the transition if agent A2 selects a2b,x. Analogously we define transitions for s0, having

in mind that next layer is layer 1. From sL,0 and sL,1 the transitions lead to sL+1, unless a2 is equal to a2a, in which
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case the the state remains the same. From sL+1, all the transitions lead to s0. Put together:

P (s, a1, a1, snew) = 1
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






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


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


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
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





if s = s0 and snew = s0 and a2 = a2a

if s = s0 and snew = s1,0 and a2 = a20,x

if s = s0 and snew = s1,1 and a2 = a21,x

if s = s0 and snew = s1,a1 and a2 = a2b,x

if s = sl,x and snew = sl,x and a2 = a2a and 0 < l < L

if s = sl,x and snew = sl+1,0 and a2 = a20,x and 0 < l < L

if s = sl,x and snew = sl+1,1 and a2 = a21,x and 0 < l < L

if s = sl,x and snew = sl+1,a1 and a2 = a2b,x and 0 < l < L

if s = sL,x and snew = sL,x and a2 = a2a

if s = sL,x and snew = sL+1 and a2 6= a2a

if s = sL+1 and snew = s0

,

and it is 0 otherwise.

• For the reward function, we set:

r(s, a1, a2a) = 0,

r(s, a1, a20,0) = 0,

r(s, a1, a20,1) = 1,

r(s, a1, a21,0) = 0,

r(s, a1, a21,1) = 1,

r(s, a1, a2b,0) = 0,

r(s, a1, a2b,1) = 1a1=0,

r(s, a1, a2b,2) = 1a1=1,

r(s, a1, a2b,3) = 1.

This implies that agent A2 can control the reward of each (s, a1) pair by an appropriate action selection. In other, we

can simulate the weights (rewards) of graph gt by an appropriate choice of agent A2’s policy.

Defining policy π2
t: Let us now define the policy of agent A2 using graph gt — note rgt is not revealed to

agent A1 before episode t. Let us consider the case 0 < l ≤ L. First, we set π2
t(sl,x, a

2
a) = 1− ρ2, to ensure that policy

change of agent A2 is bounded by ρ2. For the other (sl,x, a
2) pairs, we set π2

t(sl,x, a
2) = 0 except:

• if node nl,x has only nl+1,i as a successor and rgt(nl,x, nl+1,i) = j, then π2
t(sl,x, a

2
i,j) = ρ2;

• if node nl,x has both nl+1,0 and nl+1,1 as successors, then π2
t(sl,x, a

2
b,r) = ρ2, where r = rgt(nl,x, nl+1,0) + 2 ·

rgt(nl,x, nl+1,1).

The first point ensures that when nl,x has only one successor, π2
t will allow transitions from sl,x only to the corresponding

successor as a2 will either be a20,j or a21,j . The choice of j in a2.,j ensures that the reward for that transition is equal

to the corresponding weight in graph gt since for a2i,0, the reward is 0 and for a2i,1, the reward is 1. The second point

ensures that when nl,x has both successors, the transition is dependent on agent A1’s action. This is true because agent

A2’s action is a2b,r, which defines transitions according to agent A1’s action a1. Notice that when a node has two possible

successors in gt, r encodes the associated weight (reward) values of the node’s output edges: r = 0 - weights are 0, r = 1
- the weight associate to transition nl,x → nl+1,0 is 1 and the other weight (associated with transition nl,x → nl+1,1) is

0, r = 2 - the other way around, r = 3 - both weights are 1. So r in a2b,r ensures that sl,x has the same reward profile as

node nl,x has on the corresponding transitions . Therefore, the inner layers of MDP are properly reflecting inner layers of

gt, except that we remain in each state with probability 1 − ρ2 irrespective of agent A1’s policy. Analogously we define

π2
t for s0, having in mind that the next later is layer 1, so the same holds for s0. The choice of π2

t(sL+1) is irrelevant for
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both transitions and rewards, so we can set it to π2
t(sL+1, a

2
a) = 1. To sumarize:

π2
t(s, a

2) = 1− ρ2

{

if s = s0 and and a2 = a2a

if s = sl,x and and a2 = a2a and 0 < l ≤ L

π2
t(s, a

2) = ρ2


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
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

















if s = s0 and (n0, n1,0) ∈ Egt and (n0, n1,1) /∈ Egt and a2 = a20,rgt(n0,n1,0)

if s = s0 and (n0, n1,0) /∈ Egt and (n0, n1,1) ∈ Egt and a2 = a21,rgt(n0,n1,1)

if s = s0 and (n0, n1,0) ∈ Egt and (n0, n1,1) ∈ Egt and a2 = a2b,r

if s = sl,x and (nl,x, nl+1,0) ∈ Egt and (nl,x, nl+1,1) /∈ Egt and a2 = a20,rgt(nl,x,nl+1,0)

if s = sl,x and (nl,x, nl+1,0) /∈ Egt and (nl,x, nl+1,1) ∈ Egt and a2 = a21,rgt(nl,x,nl+1,1)

if s = sl,x and (nl,x, nl+1,0) ∈ Egt and (nl,x, nl+1,1) ∈ Egt and a2 = a2b,r

π2
t(sL+1, a

2
a) = 1,

and π2
t(s, a

2) = 0 otherwise, where 0 < l ≤ L and r = rgt(nl,x, nl+1,0)+2 ·rgt(nl,x, nl+1,1). By these choices of agent

A2’s policy we have encoded the structure of gt, with the exception that in each state s 6= sL+1 we remain with probability

1− ρ2.

Finally, we ought to encode any policy πg,t with agent A1’s policy. Let us define π1
t as:

π1
t(s0) = 1

πg,t(n0)=n1,1

π1
t(sl,x) = 1

πg,t(nl,x)=nl+1,1

π1
t(sL,x) = π1

t(sL+1) = 0

where 0 < l < L. In other words, the action of choosing node nx,0 in the shortest path problem, corresponds to action

0, whereas the action of choosing node nx,1 in the shortest path problem, corresponds to action 1. Notice that agent A1’s

actions in states sL,x and sL+1 are not not important as they don’t affect the agent’s rewards nor transitions. Given that

π1
t represents πg,t, whereas with π2

t we have encoded the relevant details of gt in MDP, it follows that the the average

reward obtained for episode t in the MDP is equal to:

ηt(π
1
t) = Θ (ρ2) · Vt(πg,t).

Coefficient ρ2 comes from the fact that the number of rounds to reach state sL+1 from sL is expected to be 1
ρ2

·(L+1) (i.e.,

in each state the agents are expected to be 1
ρ2

rounds given that the probability of remaining in a state other than sL+1 is

1−ρ2), whereas it takes L+1 steps to reach the end node in the shortest path problem. Notice that Θ(ρ2) is not dependent

on time horizon T , while the reduction we described is efficient (polynomial in the problem parameters). Therefore, if we

can find an efficient no-regret algorithm for the setting of this paper, then we can also find an efficient no-regret learning

algorithm for the adversarial online shortest path problem, which implies the statement of the theorem.


