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Abstract
When machine predictors can achieve higher per-
formance than the human decision-makers they
support, improving the performance of human
decision-makers is often conflated with improving
machine accuracy. Here we propose a framework
to directly support human decision-making, in
which the role of machines is to reframe problems
rather than to prescribe actions through predic-
tion. Inspired by the success of representation
learning in improving performance of machine
predictors, our framework learns human-facing
representations optimized for human performance.
This “Mind Composed with Machine” framework
incorporates a human decision-making model di-
rectly into the representation learning paradigm
and is trained with a novel human-in-the-loop
training procedure. We empirically demonstrate
the successful application of the framework to
various tasks and representational forms.

1. Introduction

“No one ever made a decision because of a number.
They need a story.”

— Daniel Kahneman

Advancements in machine learning algorithms, as well as
increased data availability and computational power, have
led to the rise of predictive machines that outperform hu-
man experts in controlled experiments (Esteva et al., 2017;
Nickerson & Rogers, 2014; Tabibian et al., 2019). However,
human involvement remains important in many domains,
(Liu et al., 2019), especially those in which safety and equity
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are important considerations (Parikh et al., 2019; Barabas
et al., 2017) and where users have external information or
want to exercise agency and use their own judgment. In
these settings, humans are the final arbiters, and the goal of
algorithms is to produce useful decision aids.

Given that learning algorithms excel at prediction, previ-
ous efforts in this space have largely focused on providing
predictions as decision aids. This has led to a large body
of work on how to make predictions accessible to deci-
sion makers, whether through models that are interpretable
(Lakkaraju et al., 2016), or through explainable machine
learning, in which machine outputs (and so human inputs)
are assumed to be predictions and are augmented with expla-
nations (Ribeiro et al., 2016; Lundberg & Lee, 2017). We
see two main drawbacks to these approaches. First, setting
the role of machines to ‘predict, then explain’ reduces hu-
mans to auditors of the ‘expert’ machines (Lai & Tan, 2018).
With loss of agency, people are reluctant to adopt predic-
tions and even inclined to go against them (Bandura, 1989;
2010; Yeomans et al., 2017; Dietvorst et al., 2016; Yin et al.,
2019; Green & Chen, 2019b). This leads to a degradation
in performance of the human-machine pipeline over time
(Elmalech et al., 2015; Dietvorst et al., 2015; Logg, 2017;
Stevenson & Doleac, 2018). More importantly, these meth-
ods cannot adapt to the ways in which predictions are used,
and so are unable to adjust for systematic human errors or
to make use of human capabilities.

Moving beyond predictions, in this paper we advocate for
broader forms of learnable advice and capitalize on a differ-
ent strength of machine learning: the ability to learn useful
representations. Inspired by the success of representation
learning, in which deep neural networks learn data repre-
sentations that enable ‘simple’ (i.e., linear) predictors to
perform well (Bengio et al., 2013), we leverage neural ar-
chitectures to learn representations that best support human
decision-makers (Kahneman, 2011; Miller, 1956). Consider
a multi-layered neural network N = f ◦ φ composed of
a high-dimensional representation mapping φ and a pre-
dictor f . Our key proposal is to remove the predictor and
instead plug the human decision function h into the learning
framework to obtain h◦φ, allowing us to optimize the repre-
sentation mapping to directly improve human performance.

Our framework for optimizing h ◦ φ, which we refer to as
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‘Mind Composed with Machine’ (M◦M) contributes to work
that seeks to bridge machine learning with human-centric
design (Sutton et al., 2020; Venkatesh et al., 2003), and we
make two key contributions in this regard. First, rather than
machines that predict or decide, we train models that learn
how to reframe problems for a human decision-maker. We
learn to map problem instances to representational objects
such as plots, summaries, or avatars, aiming to capture prob-
lem structure and preserve user autonomy. This approach
of “advising through reframing” draws on work in the so-
cial sciences that shows that the quality of human decisions
depends on how problems are presented (Thompson, 1980;
Cosmides & Tooby, 1992; Gigerenzer & Hoffrage, 1995;
Kahneman & Tversky, 2013; Brown et al., 2013). Second,
rather than optimizing for machine performance, we directly
optimize for human performance. We learn representations
of inputs for which human decision-makers perform well
rather than those under which machines achieve high accu-
racy. In this, we view our approach as taking a step towards
promoting machine learning as a tool for human-intelligence
augmentation (Licklider, 1960; Engelbart, 1962).

The immediate difficulty in learning human-facing represen-
tations in M◦M is that h encodes how actual human decision-
makers respond to representational advice and so is not
amenable to differentiation (we cannot “backprop through
h.”) To overcome this, we propose an iterative human-in-
the-loop procedure that alternates between (i) learning a
differentiable surrogate model of human decision-making
at the current representation, and (ii) training the machine
model end-to-end using the current surrogate. For estimat-
ing the surrogate model we query actual humans for their
decisions given a current representation.

We demonstrate the M◦M framework on three distinct tasks,
designed with two goals in mind: to explore different forms
of human-facing representations and to highlight different
benefits that come from the framework. The first experi-
ment focuses on classifying point clouds in a controlled
environment. Here we show how the M◦M framework can
learn scatter-plot representations that allow for high human
accuracy without explicitly presenting machine-generated
predictions (or decisions). The second experiment consid-
ers loan approvals and adopts facial avatars as the form of
representational advice. Here we demonstrate that the frame-
work can be applied at scale (we train using∼ 5,000 queries
to Amazon mTurk) and also explore what representations
learn to encode and how these representations are used to
support human decision-making. The third experiment is de-
signed to demonstrate the capacity of our framework to sup-
port decision-making in ways that outperform either human
or machine alone. Here we use a simulated environment
to show how M◦M can learn a representation that enables
a human decision-maker to incorporate side-information
(consider e.g. a hospital setting, in which doctors have the

option to run additional tests or query the patient for infor-
mation not included in the machine model), even when this
information is known only to the user.

On the use of facial avatars: In our study on loan approval
we convey advice through a facial avatar that represents
an algorithmic assistant. We take care to ensure that users
understand this, and understand that the avatar does not
represent a loan applicant. We also restrict the avatar to
carefully chosen variations on the image of a single actor.
We are interested to experiment with facial avatars as rep-
resentations because facial avatars are high dimensional,
abstract (i.e., not an object that is in the domain studied),
and naturally accessible to people. We are aware of the
legitimate concerns regarding the use of faces in AI sys-
tems and the potential for discrimination (West & Crawford,
2019) and any use of facial representations in consequential
decision settings must be done with similar care.

2. Related Work
2.1. Modeling Human Factors

Recent studies have shown that the connections between
trust, accuracy, and explainability can be complex and nu-
anced. Human users tend to use algorithmic recommen-
dations less frequently than would be beneficial (Green
& Chen, 2019a; Lai & Tan, 2018), and user trust (as mea-
sured by agreement with algorithmic recommendation) does
not increase proportionately to model accuracy (Yin et al.,
2019). Increasing model interpretability may not increase
trust (as measured by agreement with the model), and may
decrease users’ ability to identify model errors (Poursabzi-
Sangdeh et al., 2018). Further, even when explanations
increase acceptance of model recommendations, they do not
increase self-reported user trust or willingness to use the
model in the future (Cramer et al., 2008). In fact, explana-
tions increase acceptance of model recommendations even
when they are nonsensical (Lai & Tan, 2019) or support
incorrect predictions (Bansal et al., 2020). At the same time,
understanding human interactions with machine learning
systems is crucial; for example, whether or not users re-
tain agency has been shown to affect users’ acceptance of
model predictions (Dietvorst et al., 2016), providing support
for our approach. Recent work acknowledges that human
decision processes must be considered when developing
decision support technology (Lai et al., 2020; Bansal et al.,
2019), and work in cognitive science has shown settings in
which accurate models of human decision-making can be
developed (Bourgin et al., 2019).

2.2. Humans in the Loop

Despite much recent interest in training with “humans in
the loop,” experimentation in this setting remains an excep-
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tionally challenging task. The field of interactive machine
learning has successfully used human queries to improve
machine performance in tasks where human preferences de-
termine the gold standard (Amershi et al., 2014), but human-
in-the-loop training has been less productive in adapting
predictive machines to better accommodate human decision-
makers. In the field of interpretable machine learning, opti-
mization for human usage generally relies on proxy metrics
of human interpretability in combination with machine ac-
curacy (Lage et al., 2019), with people only used to evaluate
performance at test time. A few exceptions have allowed
human feedback to guide model selection among similarly-
accurate machine-optimized models (Ross et al., 2017; Lage
et al., 2018), incorporating human preferences. In regard
to using human responses as part of a feedback loop to a
learning system, we are only aware of Lage et al. (2018),
and the authors actually abandoned attempts to train with
mTurkers.

2.3. Collaboration with Machine Arbiters

A related field considers learning when a machine learning
system should defer to a human user instead of making a
prediction. This setting, unlike ours, allows the machine
to bypass a human decision-maker (Madras et al., 2018;
Mozannar & Sontag, 2020; Wilder et al., 2020). In this
setting, human accuracy is considered to be fixed and inde-
pendent of the machine learning system, and in evaluation
human decisions are either fully simulated or based on pre-
viously gathered datasets.

3. Method
In a typical setting, a decision-making user is given an
instance x ∈ X . For clarity, consider X = Rd. Given x,
the user must decide on an action a ∈ A. For example, if x
are details of a loan application, then users can choose a ∈
{approve,deny}. Each instance is also associated with a
ground-truth outcome y ∈ Y , so that (x, y) is sampled from
an unknown distribution D. We assume that users seek to
choose actions that minimize an incurred loss `(y, a), with `
also known to the system designer; e.g., for loans, y denotes
whether a loan will be repaid. We consider the general class
of prediction policy problems (Kleinberg et al., 2015), where
the loss function is known and the difficulty in decision-
making is governed by how well y can be predicted.

We denote by h the human mapping from inputs to decisions
or actions. For example, a = h(x) denotes a decision
based on raw instances x. Other sources of input such as
explanations e or representations can be considered; e.g.,
a = h(x, ŷ, e) denotes a decision based on x together with
prediction ŷ and explanation e. We allow h to be either
deterministic or randomized, and conceptualize h as either
representing a particular target user or a stable distribution

over different kinds of users. We assume the mapping h is
fixed (if there is adaptation to a representation, then h can
be thought of as the end-point of this adaptation).

Crucially, we also allow machines to present users with
machine-generated advice γ(x), with human actions de-
noted as a = h(γ(x)). Users may additionally have access
to side information s that is unavailable to the machine, in
which case user actions are a = h(γ(x), s).1 Advice γ(x)
allows for a human-centric representation of the input, and
we seek to learn a mapping γ from inputs to representations
under which humans will make good decisions. The bench-
mark for evaluation is the expected loss of human actions
given this advice:

ED[`(y, a)], for a = h(γ(x)). (1)

3.1. Predictive Advice

A standard approach provides human users with machine-
generated predictions, ŷ = f(x), where f is optimized for
predictive accuracy and there is a straightforward mapping
from predictions to prescribed actions ŷ → ŷa (e.g., for
some known threshold, ‘probability of returning loan’ cor-
responds to ‘approve loan’). This is a special case of our
framework where advice γ = (x, ŷ), and the user is mod-
eled as a = ŷa = h(x, ŷ). The predictive model is trained
to minimize:

minf ED[`(y, ŷa)], for ŷ = f(x). (2)

In this approach, predictions f(x) are useful only to the
extent that they are followed. Moreover, predictions provide
only a scalar summary of the information in x, and limit
the degree to which users can exercise their cognitive and
decision-making capabilities; e.g., in the context of side
information.

3.2. Representational Advice

In M◦M, we allow advice γ to map inputs into represen-
tations that are designed to usefully convey information
to a human decision-maker (e.g., a scatterplot, a com-
pact linear model, or an avatar). Given a representation
class Γ we seek a mapping γ ∈ Γ that minimizes ex-
pected loss minγ∈Γ ED[`(y, h(γ(x)))]. With a training set
S = {(xi, yi)}mi=1 sampled from distribution D, and with
knowledge of the human mapping h, we would seek γ to
minimize the empirical loss:

min
γ∈Γ

m∑
i=1

`(yi, ai), for ai = h(γ(xi)), (3)

1This notion of machine-generated advice generalizes both
explanations (as γ = (x, ŷ, e), where e is the explanation) and
deferrals (as γ = (x, ȳ), where ȳ ∈ {0, 1, defer}, with a human
model that always accepts {0, 1}) (Madras et al., 2018).
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Figure 1. Left: The M◦M framework. The neural network learns a mapping φ from inputs x to representations z, such that when z is
visualized through ρ, representations elicit good human decisions. Right: Training alternates between (A) querying users for decisions on
the current representations, (B) using these to train a human surrogate network ĥ, and (C) re-training representations.

possibly under some form of regularization (more details
below). Here, Γ needs to be rich enough to contain
flexible mappings from inputs to representations while also
generating objects that are accessible to humans. To achieve
this, we decompose algorithmic advice γ(x) = ρ(φθ(x))
into two components:

• φθ : Rd → Rk is a parameterized embedding model with
learnable parameters θ ∈ Θ, that maps inputs into vector
representations z = φθ(x) ∈ Rk for some k > 1, and

• ρ : Rk → V is a visualization component that maps each
z into a visual object v = ρ(z) ∈ V (e.g., a scatterplot, a
facial avatar).

This decomposition is useful because for a given application
of M◦M we can now fix the visualization component ρ, and
seek to learn the embedding component φθ. This process
of learning a suitable embedding through feedback from
human users, is what we mean by “learning representations
by humans [from feedback], for humans.” Henceforth, it
is convenient to fold the visualization component ρ into
the human mapping h, and write h(z) to mean h(ρ(z)), for
embedding z = φθ(x). The training problem (3) becomes:

min
θ∈Θ

m∑
i=1

`(yi, ai), for ai = h(φθ(xi)), (4)

again, perhaps with some regularization. By solving (4), we
learn representations that promote good decisions by the
human user. See Figure 1 (left).

Regularization. Regularization may play a number of dif-
ferent roles: as with typical L2 regularization, it may be
used to reduce overfitting of the representation network,
encouraging representations that generalize better to new
data points. It may also be used to encourage some desired
property such as sparsity, which may be beneficial for many
visualizations, given the limited ability of human subjects
to process many variables simultaneously. Regularization
can also be used in our framework to encode domain knowl-
edge regarding desired properties of representations, for

example when the ideal representation has a known mathe-
matical property. We utilize this form of regularization in
Experiments 1 and 2.

Choosing Appropriate Visualizations. Determining the
form of representational advice that best-serves expert
decision-makers in any concrete task will likely require
in-depth domain knowledge and should be done with care.
The characterization of varying visualizations’ effects on
decision-making is sufficiently elaborate as to warrant its
own field of study (Lurie & Mason, 2007), and thus we
focus here on learning to adapt a particular choice of repre-
sentation from within a set of “approved” representational
forms.

3.3. Training Procedure, and Human Proxy

We adopt a neural network to model the parameterized em-
bedding φθ(x), and thus advice γ. The main difficulty in
optimizing (4) is that human actions {ai}mi=1 depend on
φθ(x) via an unknown h and yet gradients of θ must pass
through h. To handle this, we make use of a differentiable
surrogate for h, denoted ĥη : Rk → Γ with parameters
η ∈ H . We learn this surrogate, referring to it as “h-hat.”

The M◦M human-in-the-loop training procedure alternates
between two steps:

1. Use the current θ to gather samples of human decisions
a = h(z) on inputs z = φθ(x) and fit ĥη .

2. Find θ to optimize the performance of ĥη ◦ φθ for the
current η, as in (4).

Figure 1 (right) illustrates this process; for pseudocode see
Appendix A). Since ĥ is trained to be accurate for the
current embedding distribution rather than globally, ĥ is
unlikely to exactly match h. However, for learning to
improve, it suffices for ĥ to induce parameter gradients that
improve loss (see Figure 7 in the Appendix). Still, ĥ must
be periodically retrained because as parameters θ change,
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so does the induced distribution of representations z (and
ĥη may become less accurate).

Initialization of θ. In some applications, it may be useful
to initialize φ using a machine-only model with architec-
ture equal to ĥ(φ). In applications in which the human
must attend to the same features as the machine model,
this can help to focus φ on those features and minimize
exploration of representations that do not contain decision-
relevant information. This can be particularly useful when
the representation lies within the domain of the data (e.g.
plots, subsets).

When a desired initial distribution of representations is
known, φ can be positioned as the generator of a Wasser-
stein GAN (Arjovsky et al., 2017). In this case, the labels
are not used at all, and thus the initial mapping is used
only to achieve a certain coverage over the representation
space and not expected to encode feature information from
a machine-only model.

3.4. Handling Side Information

One way humans could surpass machines is through access
to side information s that is informative of outcome y yet
unknown to the machine. The M◦M framework can be
extended to learn a representation γ(x) that is optimal con-
ditioned on the existence of s, despite the machine having
no access to s. At test time, the human has access to s,
and so action a = h(φ(x), s). The observation is that the
ground-truth outcome y, which is available during training,
conveys information about s: if s is informative of y, then
there exist x for which the outcome y varies with s. Thus
(x, y) is jointly informative of s: for such x, knowing y and
modeling the mechanism y = gx(s) by which s affects y
for a given x would allow reverse-engineering the value
of s as g−1

x (y). Although s cannot generally be exactly
reconstructed without supervision on s (e.g. due to inexact
modeling or non-invertibility of gx), in some cases (x, y)
can be used to make useful inference about s. Intuitively,
note that for a given x, multiple y ∈ {y1 . . . yk} values
correspond to multiple s values. If h varies with s, without
access to s or y, the best ĥ(x) we can learn is Es∼S [h(x, s)].
With varied yi which correspond to different values of s, we
can learn ĥ(x, yi) = Es∼S|y=yi [h(x, s)] for each yi, which
allow ĥ to incorporate information about s.

4. Experimental Results
We report the results of three distinct experiments. Our
intent is to demonstrate the breadth of the framework’s
potential, and the experiments we present vary in the task,
the form of advice, their complexity and scale, and the
degree of human involvement (one experiment is simulated,
another uses thousands of mTurk queries). We defer some

of the experimental details to the Appendix.

Model Selection Experimenting with humans in-the-loop
is expensive and time-consuming, making standard prac-
tices for model selection such as cross-validation difficult to
carry out. This necessitates committing to a certain model
architecture at an early stage and after only minimal trail-
and-error. In our experiments, we rely on testing architec-
tures in a machine-only setting with various input and output
distributions to ensure sufficient flexibility to reproduce a va-
riety of potential mappings, as well as limited human testing
with responses from the authors. Our model choices pro-
duced favorable results with minimal tuning. We believe this
suggests some useful robustness of the approach to model
selection choices, but future work would be beneficial to
better understand sensitivity to model selection.

4.1. Decision-compatible Scatterplots

In the first experiment, we focus on learning useful, low-
dimensional representations of high-dimensional data, in the
form of scatterplots. To make high-dimensional data more
accessible to users, it is common practice to project into a
low-dimensional embedded space and reason based on a
visualization, for example a scatter plot or histogram. The
choice of how to project high-dimensional data into a lower-
dimensional space is consequential to decision-making
(Kiselev et al., 2019), and yet standard dimensionality-
reduction methods optimize statistical criteria (e.g., maxi-
mizing directional variation in PCA) rather than optimizing
for success in user interpretation. The M◦M framework
learns projections that, once visualized, directly support
good decisions.

We consider a setting where the goal is to correctly classify
objects in p-dimensional space, p > 2. Each x is a p-
dimensional point cloud consisting of m = 40 points in Rp
(so x ∈ R40p). Point clouds are constructed such that, when
orthogonally projected onto a particular linear 2D subspace
of Rp, denoted V , they form the shape of either an ‘X’ or
an ‘O’, this determining their true label y. All directions
orthogonal to V contain similarly scaled random noise. In
the experiment, we generate 1,000 examples of these point
clouds in 3D.

Subjects are presented with a series of scatterplots, which
visualize the point clouds for a given 2D projection, and
are asked to determine for each point cloud its label (‘X’
or ’O’). Whereas a projection onto V produces a useful
representation, most others do not, including those learned
from PCA. Our goal is to show that M◦M can use human
feedback to learn a projection (φ) that produces visually
meaningful scatterplots (ρ), leading to good decisions.
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Figure 2. 2D representations of point clouds. (A) Points in their
original 3D representation give little visual indication of class (X
or O). (B) Shapes become easily distinguishable when projected
onto an appropriate subspace (shown in bold). (Bottom) Learned
2D representations after each training round (‘X’, ‘O’ are overlaid).
The initial 2D projection (round 1), on which a machine-classifier
is fully accurate, is unintelligible to people. However, as training
progresses, feedback improves the projection until the class be-
comes visually apparent (round 4), with very high human accuracy.

Model. Here, representation φ plays the role of a dimen-
sionality reduction mapping. We use d = 3 and set φ to
be a 3x2 linear mapping with parameters θ as a 3x2 matrix.
This is augmented with an orthogonality penalty φTφ− I
to encourage matrices which represent rotations. For the hu-
man proxy model, we want to be able to roughly model the
visual perception of subjects. For this, we use for ĥ a small,
single-layer 3x3 convolutional network, that takes as inputs
a differentiable 6x6 histogram over the 2D projections.

Results. We recruited 12 computer science students to test
the M◦M framework.2 Participants watched an instructional
video and then completed a training and testing phase, each
having five rounds (with intermittent model optimization) of
15 queries to label plots as either ‘X’ or ‘O’. The results we
provide refer to the testing phase. Round 1 includes repre-
sentations based on a random initialization of model parame-
ters and therefore serves as a baseline condition. The results
show that participants achieve an average accuracy of 68%
in round 1, but improve to an average accuracy of 91% in
round 5, a significant improvement of 23% (p < .01, paired
t-test) with 75% of participants achieving 100% accuracy
by round 5. Subjects are never given machine-generated
predictions or feedback, and improvement from training
round 1 to testing round 1 is negligible (3%), suggesting
that progress is driven solely by the successful reframing of

2All experiments are conducted subject to ethical review by
the university’s IRB.

Figure 3. Different facial avatars, each avatar representing an algo-
rithmic assistant and not a loan applicant, and trained to provide
useful advice through facial expressions. The leftmost avatar is set
to a neutral expression (z = 0).

problem instances (not humans getting better at the task).

Figure 2 demonstrates a typical example of a five-round
sequential training progression. Initially, representations
produced by M◦M are difficult to classify when θ is initial-
ized arbitrarily. (This is also true when θ is initialized with a
fully accurate machine-only model.) As training progresses,
feedback regarding subject perception gradually rotates the
projection, revealing distinct class shapes. Training progress
is made as long as subject responses carry some machine-
discernible signal regarding the subject’s propensity to label
a plot as ‘X’ or ‘O’. M◦M utilizes these signals to update
the representations and improve human performance.

4.2. Decision-compatible Algorithmic Avatars

For this experiment we consider a real decision task and
use real data (approving loans), train with many humans
participants (mTurkers), and explore a novel form of rep-
resentational advice (facial avatars). Altogether we elicit
around 5,000 human decisions for training and evaluation.
Specifically we use the Lending Club dataset, focusing on
the resolved loans, i.e., loans that were paid in full (y = 1) or
defaulted (y = 0), and only using features that would have
been available to lenders at loan inception.3 The decision
task is to determine whether to approve a loan (a = 1) or not
(a = 0), and the loss function we use is `(y, a) = 1{y 6=a}.

Goals, Expectations, and Limitations. Whereas profes-
sional decision-makers are inclined to exercise their own
judgment and deviate from machine advice (Stevenson &
Doleac, 2019; De-Arteaga et al., 2020), mTurkers are non-
experts and are likely to follow machine predictions (Lai &
Tan, 2019; Yin et al., 2019).4 For this reason, the goal of the
experiment is not to demonstrate performance superiority
over purely predictive advice, nor to show that mTurkers can
become expert loan officers. Rather, the goal is to show that

3https://www.kaggle.com/wendykan/lending-club-loan-data
4We only know of Turk experiments where good human per-

formance from algorithmic advice can be attributed to humans
accepting the advice of accurate predictions (Lai et al., 2020).
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Figure 4. Human accuracy in the algorithmic advice condition
(‘avatar advice’) consistently increases over rounds. Performance
quickly surpasses the ‘no advice’ (data only) condition, and
steadily approaches performance of users observing algorithmic
predictions (‘predictive advice’), which in itself is lower than
machine-only performance (‘machine accuracy’). Human accu-
racy falls when faces are shuffled within predicted labels of ĥ,
confirming that faces convey useful, multi-variate information.

abstract representations can convey predictive advice in a
way that requires users to deliberate, and to explore whether
humans use learned representations differently than they
use machine predictions in making decisions. In Appendix
B we further discuss unique challenges encountered when
training with mTurkers in the loop.

Representations. With the aim of exploring broader
forms of representational advice, we make use of a facial
avatar, framed to users as an algorithmic assistant— not the
recipient of the loan —and communicating through its facial
expressions information that is relevant to a loan decision.
The avatar is based on a single, realistic-looking face capa-
ble of conveying versatile expressions (Figure 4 includes
some examples). Expressions vary along ten dimensions
including basic emotions (Du et al., 2014), social dimen-
sions (e.g., dominance and trustworthiness (Du et al., 2014;
Todorov et al., 2008)), and subtle changes in appearance
(e.g., eye gaze). Expressions are encoded by the representa-
tion vector z, with each entry corresponding to a different
facial dimension. Thus, vectors z can be thought of as
points in k-dimensional ‘face-space’ in which expressions
vary smoothly with z.

We are interested in facial avatars because they are abstract
(i.e., not in the domain of the input objects) and because they
have previously been validated as useful representations
of information (Chernoff, 1973; Lott & Durbridge, 1990).
They are also high-dimensional representations, and non-
linear in the input features; that is, faces are known to be
processed holistically with dependencies beyond the sum
of their parts (Richler et al., 2009). Faces also leverage
innate human cognition—immediate, effortless, and fairly
consistent processing of facial signals (Izard, 1994; Todorov

et al., 2008; Freeman & Johnson, 2016).

Through M◦M, we learn a mapping from inputs to avatars
that is useful for decision-making. Training is driven com-
pletely by human responses, and learned expressions reflect
usage patterns that users found to be useful, as opposed to
hand-coded mappings as in Chernoff faces (Chernoff, 1973).

Model and Training. We set φ to be a small, fully con-
nected network with a single 25-hidden unit layer, mapping
inputs to representation vectors z ∈ R9. The visualiza-
tion component ρ(z) creates avatars by morphing a set of
base images, each corresponding to a facial dimension, with
z used to weight the importance of each base image.5,6

For regularization, we additionally consider the loss of a
decoder network implemented by an additional neural net-
work, which attempts to reconstruct the input x from the
representation. This term encourages points in face-space
to preserve distances in instance-space at the cost of some
reduction in accuracy. This promotes representations that
carry more information about inputs than that implied by
simple predictions. For ĥ we use a small, fully connected
network with two layers of size 20 each, operating directly
on representation vectors z.

In collecting human decisions for training ĥ, mTurkers were
queried for their decisions regarding the approval or denial
of loan applications.7 New users were recruited at each
round to obtain reports that are as independent as possi-
ble and to control for any human learning. Each user was
queried for a random subset of 40 training examples, with
the number of users chosen to ensure that each example
would receive multiple responses (w.h.p.). For predictive
purposes, binary outputs were set to be the majority human
response. Each loan application was presented using the
most informative features as well as the avatar. We did not
relate to users any specific way in which they should use
avatar advice, and care was taken to ensure users under-
stood that the avatar does not itself represent an applicant.8

Appendix C.2 provides additional experimental details.

Results. Our results show that M◦M can learn represen-
tations that support good decisions through a complex, ab-
stract representation, and that this representation carries
multivariate information, making it qualitatively different
than prediction. As benchmarks, we consider the accuracy
of a trained neural network modelN (x) having architecture

5Morphed images were created using the Webmorph software
package (DeBruine & Tiddeman, 2016).

6All base images correspond to the same human actor, whose
corresponding avatar was used throughout the experiment.

7As all users share the same representation mapping, we re-
strict to US participants to promote greater cross-user consistency.

8Respondents who did not understand this point in a compre-
hension quiz were not permitted to complete the task.
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equal to ĥ ◦ φ (but otherwise unrelated to our human ex-
periments), as well as human performance under predictive
advice γ(x) = ỹ ∈ [0, 1] where ỹ is the predicted probabil-
ity of N (x). We also consider a condition with ‘shuffled’
avatar advice, which we describe below.

Figure 4 shows the training process and resulting test ac-
curacy (data is balanced so chance ≈ 0.5).9 At first, the
(randomly-initialized) representation φ produces arbitrary
avatars, and performance in the avatar condition is lower
than in the no-advice condition. This indicates that users
take into account the (initially uninformative) algorithmic
advice. As learning progresses, user feedback accumulates
and the accuracy from using the M◦M framework steadily
rises. After six rounds, avatar advice contributes to a boost
of 11.5% in accuracy (0.69) over the no-advice condition
(0.575), reaching 99% of the accuracy in the predictive ad-
vice condition (0.70). Performance in the predictive advice
condition does not reach machine accuracy (0.73), showing
that not all subjects follow predictive advice.

Analysis. We additionally explore what the representa-
tions learn, and how humans incorporate them into predic-
tions. One possible concern is that despite regularization,
learned avatars may simply convey stylized binary predic-
tions (e.g., happy or sad faces). To explore this, we added a
‘shuffled’ condition in which faces are shuffled within pre-
dicted labels of ĥ. As shown in Figure 4, shuffling degrades
performance, confirming that faces convey more informa-
tion than the system’s binary prediction. Moreover, the
avatars do not encode a univariate (but not binary) predic-
tion, and humans do not use the information in the same way
that they use numeric predictions: (i) no single feature of z
has a correlation with predicted human responses ĥ(z) of
more than R2 = 0.7, (ii) correlations of average human re-
sponse with features z are low (R2 ≤ 0.36 across features)
while responses in the predictive condition have R2 = 0.73
with the predictions, and (iii) users in the avatar condition
self-report using the data as much or more than the advice
83% of the time, compared to 47% for the predictive advice
condition.

At the same time, z preserves important information re-
garding x. To show this, we train linear models to predict
from z each of the data features: interest rate (RATE), loan
term (TERM), debt to income ratio (DTI), negative public
records (REC), annual income (INC), employment length
(EMP). Results show that z is highly informative of RATE
(R2 = 0.79) and TERM (0.57), mildly informative of REC
(−0.21), INC (0.23), and EMP (0.13), and has virtually no
predictive power of DTI (−0.03). Further inspecting model
coefficients reveals a complex pattern of how z carries infor-

9Results are Statistically significant under one-way ANOVA,
F(3, 196) = 2.98, p < 0.03.

mation regarding x (see Appendix C.2.4 for all coefficients).
E.g.: trustworthiness plays an important part in predicting
all features, whereas anger is virtually unused; happiness
and sadness do not play opposite roles—happiness is sig-
nificant in TERM, while sadness is significant in RATE; and
whereas EMP is linked almost exclusively to age variation,
INC is expressed by over half of the facial dimensions.

4.3. Incorporating Side Information

To demonstrate additional capabilities of M◦M we show
that the framework can also learn representations that al-
low a decision maker to leverage side information that is
unavailable to the machine. Access to side information is
one advantage humans may have over machines, and our
goal here is to show the potential of representations in elic-
iting decisions whose quality surpasses that attainable by
machines alone. We adopt simulation for this experiment
because it is challenging for non-experts (like mTurkers)
to outperform purely predictive advice, even with access
to additional side information. Simulation also allows us
to systematically vary the synthetic human model, and we
consider four distinct models of decision-making.

We consider a medical decision-making task in which doc-
tors must evaluate the health risk of incoming ER patients
and have access to a predictive model. 10 Here, we focus
on compact, linear models, and view the model coefficients
along with the input features as the representation, affecting
the decision process of doctors. Doctors additionally have
access to side information that is unavailable to the model
and may affect their decision. Our goal is to learn a model
that can account for how doctors use this side information.

Setup. There are four primary binary features x ∈ {0, 1}4:
diabetes (xd), cardiovascular disease (xc), race (xr), and
income level (xi). An integer ‘side-information’ variable
s ∈ {0, 1, 2, 3} encodes how long the patient’s condition
was allowed to progress before coming to the ER and is
available only to the doctor. We assume ground-truth risk y
is determined only by diabetes, cardiovascular disease, and
time to ER, through y = xd + xc + s, where xd, xc, s are
sampled independently. We also assume that xr, xi jointly
correlate with y (e.g. due to disparities in access), albeit
not perfectly, so that they carry some but not all signal in s,
whereas xd, xc do not; see Appendix C.3.1 for full details).
In this way, xr and xi offer predictive power beyond that
implied by their correlations with known health conditions
(xd, xc), but interfere with use of side information.

We model a decision maker who generally follows predictive
advice ŷ = fw(x) = 〈w, x〉, but with the capacity to adjust
the machine-generated risk scores at her discretion and in

10MDCalc.com is one example of a risk assessment calculator
for use by medical professionals.
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M◦M h(Machine)
Or 1.0 .894
Coarse Or .951 .891
Never .891 .891
Always 1.0 .674

Table 1. Performance of M◦M with side information on four syn-
thetic human models. Machine-only performance is 0.890.

a way that depends on the model through its coefficients w.
We assume that doctors are broadly aware of the correlation
structure of the problem, and are prone to incorporate the
available side information s into ŷ if they believe this will
give a better risk estimate. We model the decisions of a popu-
lation of doctors as incorporating s additively and with prob-
ability that decreases with the magnitude of either of the co-
efficients wr or wi. We refer to this as the or model and set
hor(x, s, w) = ŷ+ I(w)· s with I(w) ∝ 1/(max{wr, wi}).
We also consider simpler decision models: always using side
information (halways), never using side information (hnever),
and a coarse variant of hor using binarized side information,
hcoarse = ŷ + I(w)· 2·1{s ≥ 2}.

Model. The representation ρ(z) consists of x, coefficients
w (these are learned within φ), and ŷ = 〈w, x〉. 11 The
difficulty in optimizing φ is that s is never observed, and
our proposed solution is to use y (which is known at train
time) as a proxy for s when fitting ĥ, which is then used to
train φ (see Section 3). Since x and y jointly carry informa-
tion regarding s, we define ĥ(x, y;w) = 〈w, x〉 + ŝ(x, y),
where ŝ(x, y) = v0y +

∑4
j=1 vjxj , and v are parameters.

Note that it is enough that ŝ models how the user utilizes
side information, rather than the value of s directly; s is
never observed, and there is no guarantee about the relation
between ŝ and s.

Results. We compare M◦M to two other baselines: a
machine-only linear regression, and the human model h ap-
plied to this machine-only model, and evaluate performance
on the four synthetic human models (hor, hcoarse, hnever, and
halways). Both M◦M and the baselines use a linear model but
the model in M◦M is trained to take into account how users
incorporate side information. For evaluation, we consider
binarized labels ybin = 1{y > 3}.

We report results averaged over ten random data samples of
size 1,000 with an 80-20 train-test split. As Table 1 shows,
due to its flexibility in finding a representation that allows for
incorporation of side information by the user, M◦M reaches
100% accuracy for the or and always decision models. M◦M
maintains its advantage under the coarse-or decision model
(i.e., when doctors use imperfect information), and remains

11In an application, the system should convey to users that it is
aware they may have side information.

effective in settings where side information is never used.
The problem with the baseline model is that it includes
non-zero coefficients for all four features. This promotes
accuracy in a machine-only setting, and in the absence of
side information. Given this, the or and coarse-or decision
models only very rarely introduce the side information—
and this is indeed the best they can do given that the machine
model uses all four variables. In contrast, for the always
decision model the user always introduces side information,
causing over-counting of the time to ER effect on patient
outcomes (because of correlations between s and xr and xi).
In contrast, M◦M learns a linear model that is responsive to
the human decision-maker: for example, including non-zero
coefficients for only xd and xc with the or decision model.

5. Discussion
We have introduced a novel learning framework for support-
ing human decision-making. Rather than view algorithms as
experts, asked to explain their conclusions to people, we po-
sition algorithms as advisors whose goal is to help humans
make better decisions while retaining human agency. The
M◦M framework learns to provide representations of inputs
that provide advice and promote good decisions. We see this
as a promising direction for promoting synergies between
learning systems and people and hope that by tapping into
innate cognitive human strengths, learned representations
can improve human-machine collaboration by prioritizing
information, highlighting alternatives, and correcting biases.

Our hope is that centering humans in the decision process
will lead to augmenting intelligence but also facilitate trans-
parency. Unfortunately, this may not always be the case,
and ethical, legal, and societal aspects of systems that are
optimized to promote particular human decisions must be
subject to scrutiny by both researchers and practitioners.

We believe algorithmic decision support, when thoughtfully
deployed, exhibits great potential. Systems designed specifi-
cally to provide users with the information and framing they
need to make good decisions can harness the strengths of
both computer pattern recognition and human judgment and
information synthesis. We can hope that the combination of
mind and machine can do better than either alone. The ideas
presented in this paper serve as a step toward this goal.

We advocate for responsible and transparent deployment
of models with “h-hat-like” components, in which system
goals and user goals are aligned, and humans are aware of
what information they provide about their thought processes.
Opportunities and dangers of our framework generally re-
flect those of the broader field of persuasive technology, and
ethical guidelines developed in that community should be
carefully considered (Fogg, 1998; Berdichevsky & Neuen-
schwander, 1999).
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A. Optimization Algorithm

Algorithm 1 Alternating optimization algorithm

1: Initialize θ = θ0

2: repeat
3: x1, . . . , xn ∼ S {Sample n train examples}
4: zi ← φθ(xi) ∀ i ∈ [n] {Generate representations}
5: ai ← h(ρ(zi)) ∀ i ∈ [n] {Query human decisions}
6: T = {(zi, ai)}ni=1

7: η ← argminη′ ET [`(a, ĥη′(z))] {Train ĥ}
8: θ ← argminθ′ ES [`(y, ĥη(φθ′(x)))] {Train φ}
9: until convergence

B. General Optimization Issues
B.1. Initialization

Because acquiring human labels is expensive, it is important to initialize φ to map to a region of the representation space in
which there is variation and consistency in human reports, such that gradients lead to progress in subsequent rounds.

In some representation spaces, such as our 2D projections of noisy 3D rotated images, this is likely to be the case (almost
any 3D slice will retain some signal from the original 2D image). However, in 4+ dimensions, as well as with the subset
selection and avatar tasks, there are no such guarantees.

To minimize non-informative queries, we adopt two initialization strategies:

1. Initialization with a computer-only model: In scenarios in which the representation space is a (possibly discrete)
subset of input space, such as in subset selection, the initialization problem is to isolate the region of the input space
that is important for decision-making. In this situation, it can be useful to initialize with a computer-only classifier.
This classifier should share a representation-learning architecture with φ but can have any other classifying architecture
appended (although simpler is likely better for this purpose). This should result in some φ which at least focuses on the
features relevant for classification, if not necessarily in a human-interpretable format.

2. Initialization to a desired distribution with a WGAN: In scenarios in which the initialization problem is to isolate
a region of representation space into which to map all inputs, as in the avatar example, in which we wish to test
a variety of expressions without creating expression combinations which will appear overly strange to participants,
it can be useful to hand-design a starting distribution over representation space and initialize φ with a Wasserstein
GAN (Arjovsky et al., 2017). In this case, we use a Generator Network with the same architecture as φ but allow the
Discriminator Network to be of any effective architecture. As with the previous example, this results in an φ in which
the desired distribution is presented to users, but not necessarily in a way that reflects any human intuitive concept.

B.2. Convergence

As is true in general of gradient descent algorithms, the M◦M framework is not guaranteed to find a global optimum but
rather is likely to end up at a local optimum dependent on both the initialization of φ and ĥ. In our case, however, the
path of gradient descent is also dependent on the inherently stochastic selection and behavior of human users. If users
are inconsistent or user groups at different iterations are not drawn from the same behavior distribution, it is possible that
learning at one step of the algorithm could result in convergence to a suboptimal distribution for future users. It remains for
future work to test how robust machine learning methods might be adapted to this situation to mitigate this issue.

B.3. Regularization/Early Stopping

As mentioned in Section 3, training φ will in general shift the distribution of the representation space away from the region
on which we have collected labels for ĥ in the previous iterations, resulting in increasing uncertainty in the predicted
outcomes. We test a variety of methods to account for this, but developing a consistent scheme for choosing how best to
maximize the information in human labels remains future work.
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Figure 5. Images of x-o interface

• Regularization of ĥ: We test regularization of ĥ both with Dropout and L2 regularization, both of which help in
preventing overfitting, especially in early stages of training, when the representation distribution is not yet refined. As
training progresses and the distribution φθ(x) becomes more tightly defined, decreasing these regularization parameters
increases performance.

• Training ĥ with samples from previous iterations: We also found it helpful in early training iterations to reuse
samples from the previous human labeling round in training ĥ, as inspired by [Bobu et al. 2018]. 12 We weight these
samples equally and use only the previous round, but it may be reasonable in other applications to alter the weighting
scheme and number of rounds used.

• Early stopping based on Bayesian Linear Regression: In an attempt to quantify how the prediction uncertainly
changes as θ changes, we also implement Bayesian Linear Regression, found in [Riquelme et al., 2018] 13 to be a
simple but effective measure of uncertainty, over the last layer of ĥ(φθ) as we vary θ through training. We find that in
early iterations of training, this can be an effective stopping criterion for training of φ. Again, as training progresses,
we find that this mostly indicates only small changes in model uncertainty.

B.4. Human Input

Testing on mTurk presents various challenges for testing the M◦M framework:

• In some applications, such as loan approval, mTurk users are not experts. This makes it difficult to convince them that
anything is at stake (we found that bonuses did not meaningfully affect performance). It is also difficult to directly
measure effort, agency, trust, or autonomy, all of which result in higher variance in responses.

• In many other applications, the ground truth is generated by humans to begin with (for example, sentiment analysis).
Since we require ground truth for training, in these task it cannot be expected of humans to outperform machines.

• As the researchers found in (Lage et al., 2018), there can be a large variance in the time users take to complete a given
task. Researchers have found that around 25% of mTurk users complete several tasks at once or take breaks during

12Bobu, Andreea, et al. ”Adapting to continuously shifting domains.” (2018).
13Riquelme, Carlos, George Tucker, and Jasper Snoek. ”Deep bayesian bandits showdown.” International Conference on Learning

Representations. 2018.
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HITs [Moss and Litman, 2019].14 making it difficult to determine how closely Turkers are paying attention to a given
task. We use requirements of HIT approval rate greater than 98%, US only, and at least 5,000 HITs approved, as well
as a simple comprehension check.

• Turker populations can vary over time and within time periods, again leading to highly variable responses, which can
considerably effect the performance of learning.

• Recently, there have been concerns regarding the usage of automated bots within the mTurk communiy. Towards this
end, we incorporated in the experimental survey a required reading comprehension task and as well as a CAPTCHA
task, and filtered users that did not succeed in these.

C. Experimental Details
C.1. Decision-compatible 2D projections

In the experiment, we generate 1,000 examples of these point clouds in 3D. The class of φ is a 3x3 linear layer with no bias,
where we add a penalization term on φTφ− I during training to constrain the matrix to be orthogonal. Humans are shown
the result of passing the points through this layer and projecting onto the first two dimensions. The class of ĥ is a small
network with 1 3x3 convolutional layer creating 3 channels, 2x2 max pooling, and a sigmoid over a final linear layer. The
input to this network is a soft (differentiable) 6x6 histogram over the 2D projection shown to the human user.

We tested an interactive command line query and response game on 12 computer science students recruited on Slack and
email. Users filled out a consent form online, watched an instructional video, and then completed a training and testing
round, each with up to 5 rounds of 15 responses. Due to the nature of the training process, achieving 100% accuracy results
in φ not updating in the following round. With this in mind, if a user reached 100% accuracy in training, they immediately
progressed to testing. If a user reached 100% accuracy in testing, the program exited. φ was able to find a representation
that allowed for 100% accuracy 75% of the time, with an average 5 round improvement of 23% across all participants.
Many times the resulting projection appeared to be an ‘x’ and ‘o’, as in Figure 5, but occasionally it was user-specific. For
example, a user who associates straight lines with the ‘x’ may train the network to learn any projection for ‘x’ that includes
many points along a straight line.

The architecture of φ and ĥ are described in Section 4. For training, we use a fixed number of epochs (500 for ĥ and 300 for
φ) with base learning rates of .07 and .03, respectively, that increase with lower accuracy scores and decrease with each
iteration. We have found these parameters to work well in practice, but observed that results were not sensitive to their
selection. The interface allows the number of rounds and examples to be determined by the user, but often 100% accuracy
can be achieved after about 5 rounds of 15 examples each.

C.2. Decision-compatible algorithmic avatars

C.2.1. DATA PREPROCESSING.

We use the Lending Club dataset, which we filter to include only loans for which we know the resolution (either default or
paid in full, not loans currently in progress) and to remove all features that would not have been available at funding time.
We additionally drop loans that were paid off in a single lump sum payment of at least 5 times the normal installment. This
results in a dataset that is 49% defaulted and 51% repaid loans. Categorical features are transformed to one-hot variables.
There are roughly 95,000 examples remaining in this dataset, of which we split 20% into the test set.

C.2.2. LEARNING ARCHITECTURE AND PIPELINE.

The network φ takes as input the standardized loan data. Although the number of output dimension are R9, φ outputs vectors
in R11. This is because the some facial expressions do not naturally coexist as compound emotions, i.e., happiness and
sadness [Du et al., 2014]. 15 Hence, we must add some additional constraints to the output space, encoded in the extra
dimensions. For example, happiness and sadness are split into two separate parameters (rather than using one dimension
with positive for happiness and negative for sadness). The same is true of “happy surprise”, which is only allowed to

14A. J. Moss and L. Litman. How do most mturk workers work?, Mar 2019.
15Shichuan Du, Yong Tao, and Aleix M Martinez. Compound facial expressions of emotion. Proceedings of the National Academy of

Sciences, 111(15):E1454–E1462, 2014.
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Figure 6. Visualization of reconstruction component

(a) Loss in training ĥ over 3 rounds (b) Validation Accuracy in training φ over 3 rounds

Figure 7. ĥ does not necessarily have to match h well to lead to an increase in accuracy

coincide with happiness, as opposed to “sad surprise.” For parameters which have positive and negative versions, we use a
tanh function as the final nonlinearity, and for parameters which are positive only, we use a sigmoid function as the final
nonlinearity.

These parameters are programmatically mapped to a series of Webmorph (DeBruine & Tiddeman, 2016) transformation text
files, which are manually loaded into the batch transform/batch edit functions of Webmorph. We use base emotion images
from the CFEE database [Du et al., 2014] and trait identities from [Oosterhof and Todorov, 2008].16 This forms ρ for this
experiment.

The network φ is initialized with a WGAN to match a distribution of parameters chosen to output a fairly uniform distribution
of feasible faces. To achieve this, each parameter was chosen to be distributed according to one of the following: a clipped
N (0, 4), U [0, 1], or Beta(1,2). The choice of distribution was based on inspection as to what would give reasonable coverage
over the set of emotional representations we were interested in testing. In this initial version of φ, x values end up mapped
randomly to representations, as the WGAN has no objective other than distribution matching.

The hidden layer sizes of φ and ĥ were chosen via cross validation. For φ, we use the smallest architecture out of those
tested capable of recreating a wide distribution of representations z as the generator of the WGAN. For ĥ, we use the
smallest architecture out of those tested that achieves low error both in the computer-only simulation and with the first round
of human responses.

In the first experiment, we collect approximately 5 labels each (with minor variation due to a few mTurk users dropping out
mid-experiment) for the LASSO feature subset of 400 training set x points and their φ0 mappings (see Figure 9). a is taken
to be the percentage of users responding “approve” for each point.

To train ĥ, we generate 15 different training-test splits of the collected {z, a} pairs and compare the performance of variations
of ĥ in which it is either initialized randomly or with the ĥ from the previous iteration, trained with or without adding the
samples from the previous iteration, and ranging over different regularization parameters. We choose the training parameters

16Nikolaas N Oosterhof and Alexander Todorov. The functional basis of face evaluation. Proceedings of the National Academy of
Sciences, 105(32):11087–11092, 2008.
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(a) Training Rounds (‘Overall‘ here is average per user
score, rather than the score of the average response per
question)

(b) Test Round

Figure 8. Results by Reported User Type

and number of training epochs which result in the lowest average error across the 15 random splits. In the case of random
initialization, we choose the best out of 30 random seeds over the 15 splits.

To train φ, we fix ĥ and use batches of 30,000 samples per epoch from the training set, which has 75,933 examples in total.
To prevent mode collapse, wherein faces “binarize” to two prototypical exemplars, we add a reconstruction regularization
term R(x) = ‖x−ψ(φ(x))‖22 to the binary cross entropy accuracy loss, where ψ is a decoder implemented by an additional
neural network (see Figure 6). φ here also features a constraint penalty that prevents co-occurrence of incompatible emotions.

We train φ for 2,000 epochs with the Adam optimizer for a variety of values of α, where we use α to balance reconstruction
and accuracy loss in the form Ltotal = αLacc + (1− α)Lrec. We choose the value of α per round that optimally retains x
information while promoting accuracy by inspecting the accuracy vs. reconstruction MSE curve. We then perform Bayesian
Linear Regression over the final layer of the current ĥ for every 50th epoch of φ training and select the number of epochs to
use by the minimum of either 2,000 epochs or the epoch at which accuracy uncertainty has doubled. In all but the first step,
this resulted in using 2,000 epochs. At each of the 2-5th epochs, we choose only 200 training points to query. In the 6th
epoch we use 200 points from the test set.

C.2.3. SELF-REPORTED USER TYPE.

In the end of the survey, we ask users to report their decision method from among the following choices:

• I primarily relied on the data available

(a) (b)

Figure 9. Images from mTurk questionnaire



Learning Representations by Humans, for Humans

• I used the available data unless I had a strong feeling about the advice of the computer system

• I used both the available data and the advice of the computer system equally

• I used the advice of the computer system unless I had a strong feeling about the available data

• I primarily relied on the advice of the computer system

• Other

The percentage of users in each of these groups varied widely from round to round.

We consider the first two conditions to be the ‘Data’ group, the third to be the ‘Equal’ group, and the next two to be the
‘Computer Advice’ group. Although the trend is not statistically significant (at p = 0.05), likely due to the small number of
subjects per type per round, we find it interesting that the performance improved on average over training rounds for all
three types, of which the equal-consideration type performed best. For the data-inclined users, whose performance improved
to surpass that of the no-advice condition in as early as round two, this implies at least one of the following: users misreport
their decision method; users believe they are not influenced by the advice but are in fact influenced; or, as the algorithmic
evidence becomes apparently better, only the population of users who are comparatively skilled at using the data continue to
do so.

C.2.4. DIVERSITY IN AVATAR REPRESENTATION.

Figure 10 presents examples of visualized avatars. Avatars correspond to examples having either low or high human-
predicted probability (averaged across users) (top figure), and either low or high machine-predicted probability (lower
figure). For visualization purposes, avatars are aligned according to a uni-dimensional PCA projection of the inputs, so that
their spatial positioning captures the variance in the data. As can be seen, avatars are different for each predictive category
(positive or negative; human or machine), but also vary considerably within each predictive category, with variance eminent
across multiple facial dimensions.

We believe the additional dimensionality of the avatar representation relative to a numerical or binary prediction of default
is useful for two reasons. Most importantly, high dimensionality allows users to retain an ability to reason about their
decisions. In particular, avatars are useful because people likely have shared, mental reference points for faces. Moreover,
users with a more sophisticated mental reference space may be able to teach the advising system over time to match specific
reasoning patterns to specific characteristics. Additionally, when the advising system does not have a strong conviction
about a prediction, presenting neutral advice should encourage the user to revisit the data, whereas percentages above or
below the base rate of default (or 50%) may suffer from the anchoring effect.

C.2.5. FURTHER DETAILS ON INFORMATION LEARNED BY z.

Using cross-validated ridge regression to predict individual x variables from individual z variables results in the coefficients
of determination R2 (to 2 significant figures) shown in Table 2.

Using cross-validated ridge regression to predict individual x variables from all z variables (both standardized to mean 0,
std 1) results in the variable coefficients (to 2 significant figures) shown in Table 3.
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Figure 10. Richness of avatar representation. A visualization of 200 avatars randomly sampled from the held-out test set, grouped by
either human (top) or machine (bottom) predictive probability (0.2 in blue, 0.8 in orange, with a tolerance of 0.05). Avatars are positioned
based on a 1D PCA dimensionality reduction of their corresponding feature vectors z, along which a ‘gradient’ of facial changes can
be observed. Top: Here avatars are grouped by human predictive probability. The figure shows how for the same human decisions,
learning results in avatars of varied and complex facial expressions, conveying rich high-dimensional information. Interestingly, avatars
corresponding to loan denial exhibit more variance, suggesting that there may be more ‘reasons’ for denying a loan than for approving
one. Bottom: Here avatars are grouped by machine predictive probability. Since all examples in each group have the same predictive
probability, they are equally similar, which does not facilitate a clear notion for reasoning. In contrast, avatars maintain richness in
variation, and can be efficiently used for reasoning (e.g., via similarity arguments) and other downstream tasks.
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C.3. Incorporating Side Information

C.3.1. DATA GENERATION.

A directed graph showing the variable correlations is shown in Figure 11. The data in the side-information experiment is
generated as follows: A latent variable l0 ∼ N (.3, .1) introduces a low correlation between xi and xr by setting a common
mean for their Bernoulli probabilities l1, l2:

• l1, l2 ∼ Unif(max(l0 − .3, 0),min(l0 + .3, 1))

• xi ∼ Bernoulli(1− l1)

• xr ∼ Bernoulli(1− l2)

An additional latent variable l3 provides a similar correlation between xc and xd, which also correlate, respectively, with xi
and xr:

• l3 ∼ Unif(.5, .7)

• xc ∼ Bernoulli(l3 + xi)

• xd ∼ Bernoulli(l3 + xr)

Side information s is highly correlated with xr and xi but noisy: s is drawn from a normal distribution centered at xr + xi
before rounding to an integer value between 0 and 3.

• scont ∼ N (xr + xi, .5)

• s = max(0,min(3, round(scont)))

The integer outcome variable y is the sum of xc, xd, and s. The binary outcome variable ybin is thresholded at y > 3.

y = xc + xd + s; ; ybin = 1{y > 3}

C.3.2. LEARNING ARCHITECTURE.

The network φ contains a single linear layer with no bias which takes a constant (1) as an input and outputs a number zi for
each data dimension i.

The network ĥ takes as input (x,w, y). It contains one linear layer with no bias which takes as input [x, y] and outputs a
single number ŝ. The second linear layer (with bias) takes as input w and outputs the sigmoid activation of a single number,
switch, representing the propensity to incorporate s at w. It then outputs wᵀx+ switch · ŝ.

Table 2. Coefficients of Determination R2, predicting each x variable from each final z variable.
RATE TERM DT REC INC EMP

happiness 0.00 -0.15 -0.14 0.00 -0.01 0.00
sadness -0.01 -0.06 -0.10 0.00 -0.04 -0.07
trustworthiness 0.57 0.17 0.01 0.00 -0.01 -0.01
dominance 0.00 -0.01 0.03 -0.01 0.01 -0.01
hue 0.48 0.29 -0.02 0.00 -0.04 -0.02
eye gaze 0.42 0.46 -0.04 -0.40 -0.04 -0.17
age 0.23 0.22 -0.12 -0.21 0.17 0.04
anger -0.01 -0.02 -0.05 -0.02 -0.01 0.00
fear 0.04 0.00 -0.03 0.00 -0.01 -0.01
surprise -0.18 0.04 -0.01 -0.02 0.00 -0.04
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Figure 11. Relationship of variable correlations in the side information experiment

C.3.3. BASELINES.

• Machine Only: The best possible linear model (with bias) trained to predict y from x1 . . . x4.

• h(Machine): The human model h applied to the best possible linear model (with bias) trained to predict y from
x1 . . . x4.

h(Machine) = β0 + h(x, β1, . . . , β4, s)

where β are the coefficients selected by the machine-only regression.

C.3.4. HUMAN MODELS

• Always: The human always fully incorporates the side information,

h(x,w, s) = wᵀx+ s

• Never: The human never incorporates the side information,

h(x,w, s) = wᵀx

• Or: The human becomes less likely to incorporate side information as weight is put on xi, xr,

h(x,w, s) = wᵀx+ σ(1/max(max(xi, xr), .0001)− 2). · s

Note that max(.0001) is required to prevent numerical overflow, and -2 recenters the sigmoid to allow for values < .5.

• Coarse: The human incorporates s as in Or, but uses a coarse, noisy version of s, s′ = 2 · 1{s ≥ 2}

h(x,w, s) = wᵀx+ σ(1/max(max(xi, xr), .0001)− 2). · s′

Table 3. Coefficients of Ridge Regression, predicting each x variable from all final z variables.
RATE TERM DT REC INC EMP

happiness -0.07 -0.29 -0.10 -0.06 0.21 -0.07
sadness 0.16 0.07 0.07 -0.01 0.13 0.07
trustworthiness -0.62 -0.28 -0.05 -0.23 0.31 0.16
dominance 0.05 0.16 0.12 -0.13 -0.02 0.04
hue 0.27 0.20 0.19 0.03 0.01 -0.08
eye gaze 0.13 0.28 -0.10 0.13 -0.29 -0.04
age -0.09 0.14 0.12 -0.09 0.67 0.40
anger 0.00 0.00 0.00 0.00 0.00 0.00
fear 0.19 0.12 0.08 -0.07 0.04 0.00
surprise 0.07 0.12 0.03 -0.07 -0.06 0.13
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D. Select Turker quotes
• “I wasn’t always looking at just happiness or sadness. Sometimes the expressions seemed disingenuously happy, and

that also threw me off. I don’t know if that was intentional but it definitely effected my gut feeling and how I chose.”

• “In my opinion, the level of happiness or sadness, the degree of a smile or a frown, was used to represent applications
who were likely to be payed back. The more happy one looks, the better the chances of the client paying the loan off
(or at least what the survey information lead me to believe).”

• “I was more comfortable with facial expressions than numbers. I felt like a computer and I didn’t feel human anymore.
Didn’t like it at all.”


