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Abstract

We initiate the study of helpful behavior in the setting of two-player Atari games, suitably
modified to provide cooperative incentives. Our main interest is to understand whether
reinforcement learning can be used to achieve robust, helpful behavior— where one agent
is trained to help a second, partner agent. Robustness requires the helpful Al to be able
to cooperate effectively with a diverse set of partners. We study this question with both
artificial partner agents as well as human participants (introducing a new, web-based
framework for the study of human-with-Al behavior). We achieve positive results in both
Space Invaders and Fall Down, as well as successful transfer to human partners, including
with people who are asked to deliberately follow unexpected behaviors.

1 Introduction

As we anticipate a future of systems of Als, interacting in ever-increasing ways and with each other
as well as with people, it is important to develop methods to promote cooperation. This need for
cooperation is relevant, for example, in settings with automated vehicles [1]], home robotics [14], as
well as in military domains, where UAVs assist teams of soldiers [31].

In this paper, we seek to advance the study of cooperative behavior through suitably modified,
two-player Atari games. Although closed and relatively simple environments, there is a rich, recent
tradition of using Atari to drive advances in Al [23,[24]]. Atari games are designed to be fun for people
to play, are challenging enough to test Al methods, and also provide a rich landscape of domains
that has been well-studied in single-player settings [36} e.g.]. To the best of our knowledge, Atari
games have not been used so far as a test-bed for the study of cooperative behavior. Here, we modify
two-player Atari games to provide them with cooperative incentives. For two-player Space Invaders,
for example, we reconfigure the game dynamics so that players maximize the joint score and so there
is no bonus for loss of life of the other player

Our main interest is to understand whether reinforcement learning can be used to achieve helpful
behavior— where one agent is trained to help a second, partner agent. We seek robust helpful
behavior: the helpful Al should be able to cooperate effectively with a diverse set of partners. We
study this question with both artificial partner agents as well as human participants (introducing a
new, web-based framework for the study of human-Al behavior in the context of Atari games)

We use ACKTR [36] for reinforcement learning (as provided as part of OpenAl Baselines [8]]), together
with OpenAl Gym [4] and Arcade Learning Environment (ALE) (3} 21]. ALE is built around the
Stella Atari 2600 emulator. We modify OpenAl Gym and ALE to work with two players, and modify
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2We also develop a modified, two-player Fall Down, reconfigured so that players maximize the joint score
and the game ends on either player’s loss of life, as with Space Invaders. For a complete list of Atari 2600 game,
we refer the reader to https://en.wikipedia.org/wiki/List_of_Atari_2600_games,

3 All experiments are conducted subject to oversight by an Institutional Review Board (IRB).

Cooperative Al Workshop at the 34th Conference on Neural Information Processing Systems (NeurIPS 2020).
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OpenAl Gym to allow for deploying frozen policies alongside policies that are training. To ALE, we
add functionality to write to the Atari emulator’s RAM; e.g., to check robustness, and modulate play
in various ways, for example using random start positions. We also introduce the Javatari Learning
Environment, which makes use of a modified version of Javatari [26]] to allow for in-browser Atari
play by humans together with an Al player and support the efficient crowdsourcing of trajectories.

To explain our results, we need to introduce a few different concepts. First, to train regular, non-
helper Al behaviors, we use ACKTR with a double-headed policy (controlling both players), and
for different points along a training curve we extract and freeze single-agent policies. We refer to
these as agent policies S; through S4, corresponding to increasing skills (S; is novice, and Sy is
expert level, representing training ACKTR until converged). Through reward modifications we also
develop agents with diverse behaviors; e.g., agents that prefer to be close to each other, or further
apart. Trained agents can be paired with self, e.g., So — S, or paired with another type of agent,
e.g., S — S3. We also train Helper-Als to best-respond to specific, target behaviors, for example
H(S5) is a Helper-Al that is trained to best-respond to Ss. H(S3) — S5 represents the configuration
in which this Helper-Al is deployed along with S5. Whereas Helper-Als such as H (.S5) are trained
to convergence, we also train helper agents for a smaller number of episodes— a bounded-helper-Al
such as bH (S2) is trained to best-respond to S for the same number of episodes as are used to train
the S5 agent (so that bH (S2) — S5 is comparable in training effort to So — Sa).

The experimental results, stated here for two-player Space Invaders, show the following:

1. (Helpful behavior vs. expert behavior) Whereas pairing a non-expert Al with an expert-level
Al leads to performance that is worse than when paired with self (e.g., Sy — S2 is worse
than Sy — S), Helper-Als provide a substantial boost in joint score (e.g., H(S2) — S is
better than Sy — S5).

2. (Robust helpful behavior) For all non-expert Als (.S through S3), pairing this agent with a
Helper-Al that is trained for an off-target behavior, say H (S2)—Ss, provides an improvement
in performance relative to paired with self.

3. (Robust helpful behavior, bounded helpers) For all non-expert Als (S through S3), pairing
this agent with a bounded-Helper-Al that is trained for an off-target behavior, say bH (S2) —
Ss, provides an improvement in performance relative to paired with self (and similarly for a
bounded-Helper-Al trained for on-target behavior).

4. (Robust human transfer) Helper-Als (including bounded-helper-Als) improve performance
when paired with people, relative to pairing people with medium-skill or high-skill non-
helper Als (e.g., H (S2) — Human is better than S — Human). This performance superiority
is maintained even when people follow unexpected behaviors, either through random
teleporting to a different location or asking players to “do something unusual".

We also study a special kind of helper agent, referred to as an Intervention-Al. In addition to taking
actions as one of the two players, an Intervention-Al can also take over for the second, partner agent
for some period of time (while incurring a per-action cost), seeking to prevent catastrophic mistakes.
We use two-player Fall Down to support a comparative study of Intervention-Als, showing that even
small amounts of intervention are especially beneficial in Fall DownE]

These results show that robust, helpful behavior can be achieved in the Space Invaders environment
by using RL to learn to best respond to the behavior of another agent, and that this provides far better
performance than pairing the partner with an expert agent. The success with Helper-Als does not
come from over-fitting to the behavior of a particular partner— we show robust performance when
paired with partners not encountered during training, including artificial agents as well as players
controlled by people. Looking forward, and given the richness of the family of Atari 2600 games,
we anticipate that this Atari framework will support further study into how to bring humans and
Als together in diverse settings, and we plan to make the two-player Atari framework and Javatari
Learning Environment available for use by other researchers.

Related Work. Prior work has modeled a helperful agent as a leader in a Stackelberg leader-
follower model, with the second, partner agent assumed to respond to the leader (perhaps with an

“We also confirmed result (1) above for Fall Down, but have not confirmed (2) through (4) because of
computational budget constraints.



incorrect model of the world) [9]. Our model turns this around, studying Helper-Als that adapt to a
target behavior, and we test these Helper-Als when matched with other, off-target behaviors. This
reframing is appropriate when it is the Al that should adapt to the human actor, rather than the other
way around.

Nikolaidis et al. [25] and Crandall et al. [7] study human-AlI collaboration in a repeated setting,
the latter paper also introducing mechanisms for communication to facilitate cooperative behavior.
Carroll et al. [6] demonstrate the gains from deriving faithful models of human behavior in the
collaborative two player game, Overcooked. We differ in studying the robustness of helper behaviors
to misspecifications of partner agents. Although technically quite different, work on shared autonomy
(e.g., [18,130]) relates to the Intervention-Al concept in the present paper.

Other work studies a setting where the Al needs to infer the reward function by observing a human
policy, with the human giving demonstrations [15]]. Similar steering and teaching settings have been
analyzed in environment design (e.g., [37]]), machine teaching (e.g., [34]]), and advice giving (e.g.,
[2]). In contrast to these works, we consider an Al that is well-informed about the world, but needs to
work effectively with another actor who might not be perfectly rational. There has also been work on
cooperative Al that makes use of online learning to adapt to another agent [[12| 28| e.g.]. Other work
has consider strategic behavior in multi-agent systems and recognized the importance of modelling
other actors [10, (13| 22} 27, 29, e.g.], as well as the importance of responding to a diverse set of
behaviors in the context of ad hoc teaming [5,[33]]. There is also broader body of loosely related work
on topics such as cooperation in social dilemmas [20}, e.g.], learning to communicate [[11} e.g.], and
social influence [17, e.g.].

2 Preliminaries

Two agents (players), P; and Ps, act in a world described by a two-agent Markov Decision Process.
The MDP is defined by tuple (S, .4; x As, k, R, so,7), where S is the state space, A; and A5 are
the action spaces for P; and P, respectively, actions denoted by a1 and as, « is the transition kernel
and provides the probability k(s’|s, (a1, as)) of joint action (a1, as) leading to s’, conditioned on
state s, R : S — R is the reward function, s is the starting state, and -y is the discount factor. We
denote by 7 the end of a game, in our context, a random variable for the time when a life is lost. We
focus on stationary Markov policies.

2.1 Differently-skilled Als

A joint policy, denoted by 7, defines the probability 7(a1, as|s) that joint action (ay, as) is taken
in state s. The objective is to maximize the discounted sum of the obtained rewards, with utility

u(n) = [Zthl YL R(s4)]s0, 7'('], where s; is obtained by executing policy  for ¢ steps, starting

from the initial state so. We also write 7 = (w1, 7m2), where the individual policies 71 (a1|s) and
ma(az|s) are defined in the natural way to reflect masking the action of the other player.

An optimal joint policy is denoted by 7* € argmax, u(w). We use the term skill to refer to the
expected reward of a joint policy. Apart from the optimal joint policy, we also consider a set of joint
policies TT* = {7*|\ € {1, ..., A}}, whose elements satisfy u(7*t) > u(732),¥A; > \y. Parameter
A > 0 represents the skill level.

Training. We train joint policies for differing amounts of experience and denote as S; through
Sy the (single player) non-helper Al agents that correspond to the actions of player 2 at different
snapshots?| We choose S; through S4 to correspond to joint policies that are reasonably spaced
in score, where Sy is an expert player and obtained through joint training until performance is no
longer improving (200,000 parameter updates, where an update occurs every 80 frames, in each of 32
parallel environments)ﬂ To obtain agents S1, So, and .S3, we train for 10,000, 30,000, and 50,000
parameter updates respectively.

>This is player 2 defined by the emulator, however, this choice is arbitrary and we could choose either player.

SAll training is done with ACKTR [36], as implemented in the OpenAl baselines [8]], and keeping the
hyperparameters at their default values (see the Appendix for details). We use 32 CPU cores together with one
GPU. When training to control a Helper-Al we modify the ACKTR implementation to allow for a second, frozen
policy corresponding to a particular behavior of a partner agent.
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Figure 1: We train a joint policy in the two-player modes of Space Invaders and Fall Down to obtain a
set of differently-skilled, single-actor Als, i.e., S1, So, and S5, in increasing levels of skill. We train a
Helper-Al agent, H(S;), H(S2), and H(S3), considering each of Sy, So and Ss as a target behavior,
respectively. We test these Helper-Als in pairings with various off-target Als as well as with people.

2.2 Behaviorally-Diverse Als

We also train two, behaviorally-diverse Als, as a way to provide additional off-target behaviors and
test the robustness of Helper-Als. For this, we use reward shaping, and we construct Als under a
preference to be distant from each other and under a preference to be close to each other, modifying
the reward during training (training only; we still report the total score without “distancing rewards").
In particular, we train an S2-close and S-distant agent, for a number of parameter updates that
achieve a similar performance in self-play as ng We defer the details to the Appendix.

3 Learning Cooperative Behaviors

3.1 Helper-Als

Helper-Als are obtained by considering different target behaviors, i.e., fixing the policy of one player
and training a policy for the other player. For example, we can consider the target behavior as 72, for

B

some skill \. The Helper-AlI for this target behavior, denoted by 7;'", is given by

ﬁ"\ € arg max u(my, m3). )
™

P A *[A

From the optimality of 7}, we have u(m;, 1) > w(n}, 72) and u(}*, 2) > u(x?, 72), where
7] is corresponds to an expert-skill policy. We see in our experiments that this performance advantage
can be large, and even when paired with off-target behaviors. Note that u(7?, 773‘1) need not be an
increasing function in A for A > A;: higher skill need not imply better collaboration. This is another
question that we will study in our experiments. In the following, we will denote the Helper-Al for
target behavior S; by H(.S;). Helper-Als are trained against different target behaviors for 100,000
parameter updates.

3.2 Intervention-Als

An Intervention-Al is a helpful agent that can act in the world and also take actions for the other
player (overruling that player). The action space of an Intervention-Al that represents player P;
is A1 x (Az U {no-op}). The action it suggests for player P, is adopted when it is not no-op.
Intervention-Als can be defined for different target behaviors. They are also parameterized by a
cost cing, representing the cost incurred for overriding the other player; e.g., resulting from the
additional burden or effort caused by the intervention. As an example, the Intervention-AI 7**7 for
a target-behavior with skill X is composed of the policy 7 for actions of player P; and policy 75 for

"For Space Invaders, these Als achieve average scores in self-play of 1,111, 1,141 and 1,134, for Sa-close
and S>-distant, and S> respectively.



actions of player Po, and
I € argmax[u (1, Z(mh, m3))
T, Th

7C(7T1aI(7T/277T£\);Cint)L (2)

where 7 is an intervention operator that defines the induced, joint policy, and C(-) is the ex-
pected value of the discounted sum of the intervention costs. The intervention operator is
defined to provide the action of 73 when 75 chooses no-op and the action provided by 7

otherwise. Let u(7*M 73) = wu(n) ,I(ﬂ;p"z, 73)), and similarly C(7*M 72 cin) =
C (71, Z(7y, 72); Cint ). We have
w(w ™ 7)) > u(r ™ m3) = C(r N mds cin)
A
u(m*™ME 1)) — C(m* N ) eing) > u(ﬂ‘ , 7)),
where the first inequality uses C'(-) > 0 and the second inequality follows because Helper-Al 7} N is

a feasible Intervention-Al (setting as =no-op always) with zero cost. As a result, an Intervention-Al
will dominate a Helper-Al in terms of on-target performance.

Training. For the Intervention-Al, after clipping rewards to [0, 1], we consider per-action costs in
the range [0.01, 0.05] for Space Invaders and in the range [0.005, 0.05] for Fall Down. This range
of costs provides a range in the rate of per-action intervention from 1% to 60% for Space Invaders,
and 1% to 63% for Fall Down We report the total score, without intervention costs, so that the
scores with intervention-Als are directly comparable to settings without an Intervention-Al. The
Intervention-Als are trained for 100,000 parameter updates.

3.3 Bounded Helper-Als

We also train Bounded-Helper-Als, which are Helper-Als that are trained against a target behavior
for a limited number of parameter updates. In particular, we fix the number of updates to match up
against a baseline of interest. For target behavior So, for example, we consider the Bounded-Helper-
Al denoted bH (S5), that is trained for the same number of parameter updates as Sa, i.e., 30,000
parameter updates, and analogously for the other Bounded-Helper-Als.

3.4 Helper-Als trained with Random Position Initialization

For the human experiments we also consider Helper-Als that are trained for randomly initialized
starting positions of the players. The hypothesis is that this provides additional robustness through
exposure to new states; e.g., the players having switched sides, or the players near the middle of the
screen with no aliens killed. We first train agents, analogously to .51, So, and S5 with randomized
starting positions every new game and wave of aliens and including a reward penalty for crossing from
the randomly generated side. We denote these agents as R, Ra, ..., R3. We then train a Helper-Al
with randomized starting positions and the same reward penalty; e.g., RH(R2) is a randomized
Helper-Al trained with Ry as the target.

4 Experiments: Helper-Als with Als

In two-player Space Invaders, the players score points by hitting invading aliens or the command ship.
The aliens also shoot, and the game ends when either player is hit or the aliens reach the bottom of
the screen (landing on Earth). We modify the ROM to make it cooperative: (1) we remove the bonus
for the other agent being killed, and (2) we make the points scored for hitting the enemy command
ship the same in 1- and 2-player modes. We also make use of being able to read and write to RAME]
We provide the experimental results in Table[T} We observe the following:

8 At 60 frames per second, 1% corresponds to 1 intervention/minute.

“We read from RAM to calculate joint reward and gain state information used to modify rewards in order to
train the diverse behaviors (close and distance preferences). We write to RAM to randomize the start position of
players during training.



The Behavior of the Matched Al

S1 So Sa-close | Sy-distant S3
Performance with self 878 1,134 1,111 1,141 2,141
... with expert skill agent 694 963 457 711 1,826

with Helper-Al trained for

S1 1,701 2,294 1,185 1,449
Sa 1,587 2,434 1,227 1,548

So-close 1,254 1,836 1,932 1,405
So-distant 1,414 2,197 1,210 2,375
S3 1,282 2,204 1,220 1,670
S5 (bounded helper) 1,337 2,148 1,193 1,550

Table 1: Two Player, Cooperative Space Invaders. Game score, averaged over 100 games, of pairing
an agent (columns) with different agents (rows): whether another copy of itself, a higher-skilled
agent, or Helper-Als, both on-target and off-target. While the strongest performance is by Helper-Als
paired with the agents that they have been trained with, the benefit to using a Helper-Al is positive
for all of the pairings. The Bounded-Helper-Al also provides a uniform advantage related to self-play
and matching with the expert skill agent.

agent 2
S1 5 S3 Sy
with self 46.0 774 120.2 248.1
with Sy 327 443 79.1 -
with Helper-AI || 63.8 93.7 151.9 -

Table 2: Two-player, Cooperative Fall Down. The game score for different skill levels of agent two
from low (S7) to high (Sy), averaged over 100 games. Agent two is paired with itself, with the high
skill agent Sy, and with Helper-Al. The collaboration of an Al with its on-target Helper-Al achieves
the highest score, while pairing an Al with S, can degrade the joint performance.

(1) There is a substantial and uniform improvement in terms of score from pairing an Al with its
on-target Helper-Al compared to pairing the Al agent with another copy of itself. When expressed as
the percentage of score increase, the improvement has the average of 94% across the Als tested, at it
ranges from 74% for Ss-close to 115% for S,.

(2) There is always some benefit for pairing an Al with an off-target Helper-Al, with some
behaviorally-diverse Als appearing to require more specialized on-target training (the S-close
agent only receives a substantial benefit from an on-target Helper-Al, although off-target Helper-Als
are still able to achieve comparable performance to a pairing with another Ss-close agent without
experiencing the modified rewards used to train Ss-close).

(3) The Helper-Al with limited training, bH (S2) is still able to improve performance for partner
agents, although its effect is less than a fully-trained Helper-Al. This suggests that effective helpful
behavior can be learned quickly and also still transfer to environments with off-target Als.

We have also tested the performance of Helper-Als in Fall Down. The results closely follow what we
see for Space Invaders (Table[2)). Pairing an AI with its on-target Helper-Al leads to a significant
increase in the joint performance, with the improvement ranging from 21% to 39%. Pairing an Al
with .Sy leads to degraded performance, except when the Al is of the same type (S4). The goal in Fall
Down is for players to fall through gaps in the platforms, while the screen scrolls up. A player loses
their life if they fail to fall through a gap when the platforms reach the top of the screen@]

1We make a couple of modifications to make Fall Down more suitable for our study. First, we terminate
the game when the first life is lost, providing cooperative incentives. Second, we modify the RAM to fix the
scrolling speed to stop it increasing during the game, because this allows for a greater range of skill by agents



4.1 Understanding Helper-AI Behavior

We also collect data to understand how the Helper-Als are able to help less-skilled agents. One piece
of information is to consider the reasons for episode termination. For this, we focus on agents S5, Sy
and the Helper-Al agent trained with Ss, i.e., H(S2). There are four reasons that an episode may end
(Player 1 hit, Player 2 hit, Both players hit, Aliens Land). We extract these from emulator RAM. To
survive, a player must both avoid getting hit and prevent the invaders from landing by hitting them.
In the following we summarize what we find. A more detailed version of the results can be found in
the Appendix. When S5 is paired with itself, the observed probability of either player getting hit is
approximately equal, and the probability of the aliens landing is 18%. However, when player 1 is
replaced with Sy, while that player is individually less likely to get hit (presumably due to its higher
skill), the miscoordination of letting the aliens land goes up to 25%. On the other hand, when player
1 is replaced with H(52), not only is it much less likely to get hit (presumably by being aware of
which invaders its partner agent, So, is able to reliably hit), but overall miscoordination goes down to
15%.

4.2 Intervention Als

Intervention-Als are able to improve the score relative to on-target Helper-Als even with about
1% interventions, suggesting that they are able to learn to intervene effectively. We are especially
interested to understand the different effect of intervention in Fall Down vs. Space Invaders. In Space
Invaders, an Intervention-Al that intervenes 1% of the time increases the average score to 2,534 for
pairing with S5 (a 4% benefit relative to a Helper-Al). In Fall Down, the Intervention-Al increases the
average score for pairing with S5 to 104.1 (an 11% benefit relative to a Helper-Al). The interventions
are qualitatively different. For Space Invaders and a small intervention cost (and 1% interventions),
there is an average of 17% interventions directly after a previous intervention (meaning that the agent
chooses to intervene for multiple actions in a row). In Fall Down, the analogous number is 58% while
the total number of interventions, normalized by game length, in the two games is essentially the
same. Intervention-Als in Fall Down learn that a longer sequence of interventions is necessary to
improve performance. This can be understood from the differing dynamics in the two environments:
survival in Space Invaders is as simple as dodging a missile, but in Fall Down requires navigating to
the platform below while avoiding interference from the other player. We provide a more detailed set
of results on Intervention Als in the Appendix.

5 Helper-Al Transfer to Human Partners

In this section, we describe the results from deploying different Helper-Als together with humans.
For this, we use a new crowdsourcing environment, which we refer to as the Javatari Learning
Environment (JLE). JLE supports running Atari games in a web browser, including with the various
affordances we consider and with the game populated by an Al agent (e.g., Sy or H(S53)). JLE is
described in the Appendix.

We run a number of experiments, each with 10 distinct human subjects recruited from Amazon
Mechanical Turk, paired with different Al agents. We limit participation to those based in the U.S.,
who had previously completed 10,000 tasks with a 98% approval rate, i.e., relatively experienced
workers. The humans are unaware which Al they were playing together with, and whether it was
supposed to be helpful or not. In the Appendix, we provide additional details on instructions given to
participants and our quality control mechanisms.

The human participants were paired with (1) the high-skill AI Sy, (2) the medium-skill AI Ss, (3)
the Helper-Al trained with Sa, H(S2), and (4) the limited training Helper-AlI trained with So, i.e.,
bH (S3). We also wanted to study whether designing Helper-Als that are exposed to more diverse
starting states will make them more robust to unexpected changes in the environment. To test this,
we also consider the performance of H(S3) and RH (Rs) in the human experiments (RH (Rz) and
R, are agents with random position initialization, see Section [3.4). We also promote unexpected
behavior by the human subjects. We introduce two different kinds of shocks, each repeated twice

(the unmodified game increases the scrolling speed to arbitrarily high values, which effectively truncates the
episode length).



[ Al Agent || Paired with S, [ Paired with Humans

So 1,134 704
Sy 963 545
H(S,) 2,434 1,547
bH(S5) 2,148 1,083
H(S>) - 950 (shock environment)
RH(R3) - 1,260 (shock environment)

Table 3: Comparing the performance of different Al agents, both standard Als such as S5 and Sy
as well as Helper-Als, including Bounded-Helper-Als, when paired with either Sy or with human
subjects. In the bottom half of the table we report the results for comparing the performance of
Helper-Al H (S3) and a Helper-Al trained with randomization RH (R5) in human experiments where
the players were sometimes randomly teleported to different positions and sometimes asked to do
something unexpected for a period of time.

during the experiment: (1) randomly teleporting each player to a different locationE] and (2) asking
the human to “do something unusual” for 20 seconds)' “| This second treatment is designed as a proxy
for humans acting at least somewhat adversarially to their partner, and we observed behaviors such as
the human participant moving rapidly back and forth, stopping shooting, and trying to get very close
to the Al

Helper-Als are able to improve performance when paired with humans, relative to using either the
medium-skill agent Sy or the expert skill agent Sy (Table [3). In addition, we observe the same
pattern with human subjects as with Als, in that pairing with the expert-level Al actually hurts
performance. Also, the Helper-Al trained with randomization, RH (Rz), was able to perform better
in the experiments in which shocks are introduced into the environment, suggesting a useful direction
in training Helper-Als that are robust to unexpected shifts in the environment.

In the Appendix, we provide additional results that qualitatively compare the strategies of different
agents, and indicate that agents of different types (humans, Non-Helper-Als, and Helper-Als) have
qualitatively different behavior.

6 Conclusion

We have presented the first study of cooperation in the setting of two-player Atari games (suitably
modified to provide cooperative incentives). Through a simple application of reinforcement learning,
we have demonstrated success in the design of Helper-Als with robust performance in cooperative Al
settings, both with off-target behaviors of other Als and with people.

The JLE framework is quite flexible, with its ability to support AI-Al as well as human-AlI collabora-
tion, competition, and even mixed cooperative-competitive dynamics (by choosing the appropriate
reward functions). Atari games are extremely well documented, and the ability to write to emulator
RAM also allows essentially arbitrary changes to the game environments. In future work, we plan
to extend our results to different Atari games, and study variations with Helper-Als that have only
partial information regarding the joint goal (e.g., in the context of Atari games, the joint score).
It will be interesting to understand which types of environments support robust helpful behavior
through simple RL behaviors, as studied here, and where more sophisticated Helper-Al designs will
be needed. Also of interest is to employ imitation learning (building from [[16} |32} [35]]), applied
to crowdsourced human trajectories, in order to model human behavior and train Helper-Als with
human models as targets. We envision a loop between crowdsourcing (and imitation learning) to
model human behavior, and reinforcement learning for the design of Helper-Al policies.

"'The teleportation treatment appeared after three minutes and seven minutes of game play (with the following
warning to the human player: You and your partner are about to be teleported!).

2The unexpected action treatment appeared after five minutes and nine minutes of game play, with the
message: Now do something unexpected!. After 20 more seconds, the message Back to normal! Keep playing as
you were before. would appear.
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Appendix A: Atari 2600 Platform Architecture and Reading/Writing RAM
with the Modified Arcade Learning Environment

The Atari 2600, which uses a MOS Technology 6507 microprocesso has 128 bytes of RAM.
The RAM completely encodes a game state. In addition, there is a ROM which dictates the game
dynamics, and is a binary file compiled from MOS 6502 assembly. The original ALE framework
[13, 21] allows researchers to read from the RAM of the Atari emulator, corresponding to various
in-game elements, including score, positions of the players, and enemies. We use this throughout our
experiments, including the ability to determine the position of the agents and thus create close and
distant variants, as described in Section 2.2

In the framework that we have built, we also added the capability for writing to the RAM, which
allows us to modify any in-game variables, including the game dynamics. There are many reasons
for finding this capability as interesting and useful: (1) it allows us to replay game trajectories and
compare the behavior of different agents given a fixed starting game state; (2) it allows us to modify
the world in ways that may differ from the original game logic (e.g., teleporting agents between
different parts of the screen, making the shields in Space Invaders indestructible or removing them,
etc.); (3) it allows us to directly modify the in-game rewards in accordance with any of these aspects,
which makes them indistinguishable from the original game logic from a player’s perspective, and is
especially relevant when pairing Als with human players.

There are two common types of ROMs for the Atari 2600: 4 kilobyte ROMs, and 8 kilobyte ROMs
that use bank switching since the Atari’s processor can not address this amount of external memory.
The 4KB games are much easier to disassemble and reassemble, since the memory addresses do not
change during program execution. Space Invaders is a 4 KB game, while Fall Down is an 8 KB game;
this is largely why we chose to make all changes to Fall Down only through the emulator. In Fall
Down, as in many bank-switched games, one of the banks is used only for a game mode selection
screen (as seen in Figure2)).

Figure 2: Screenshots from Banks 1 and 2 in Fall Down. The memory addresses in Tables[4]and[5]all
refer to Bank 2.

As described in Tables [] and [5] there are some key variables within the games. Notably, these
can be completely different game-to-game. The memory addressing is of the form 00xy, where
xz € {8,9,A,B,C,D,E,F}and y € {0,1,2,3,4,5,6,7,8,9, A, B,C, D, E, F'}. Each address
can hold one byte. Thus, we obtain the 128 bytes of addressable RAM, since |z| x |y| = 8-16 = 128.

As is common in bank-switched games, there is a special indicator byte in Fall Down for whether we
are in Bank 1 (the game mode selection screen) or in Bank 2 (the game). Specifically, if memory
location F9 contains the hexademical value 18, we are in Bank 1, and if it contains hexadecimal value
AF, then we are in Bank 2. Once a game has started, the value in this memory location is also a proxy
for being in the terminal state in bank-switched games, given that the ROM has a special instruction
to switch banks when the game is over, going from Bank 2 to Bank 1.

Most Atari games, including Space Invaders and Fall Down, have Game Modes (as mentioned in
Table[)), controlled by particular locations in the RAM. The different game modes available in Space
Invaders are illustrated in Figure|3| There are 112 game modes in total, which have various features,

13 A slightly more powerful cousin of the MOS 6507, the MOS 6502, was used in many of the most famous
personal computer systems, including the Commodore 64, the Apple I and ][, and others.
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Variable Space Invaders | Fall Down
Game Mode DC F6
Lives () -
Player 1 x-position 9C D5
Player 2 x-position 9D D6
Player 1 y-position - D7
Player 2 y-position - D8

Table 4: RAM locations of environment variables for Space Invaders and Fall Down.

such as moving shields, attacker shots that don’t move in a straight line, attacker shots that move
quickly, and invisible attackers; the game modes can be grouped into the following (with all possible
combinations of game features possible in each mode):

1. [game modes 1 - 16] single player

2. [game modes 17 - 32] opposing players, where each player interacts in a separate world
(fighting their own set of invaders), alternating turns/worlds

3. [game modes 33 - 48] opposing players playing at the same time; a player gets 200 points if
the other player dies,

4. [game modes 49 - 64] same as #3, but ability to shoot alternates between the players

5. [game modes 65 - 80] partnership game, where one player can only move the cannon left
and the other player can only move the cannon right; who can fire the cannon alternates

6. [game modes 81 - 96] partnership game, where the players alternate control of the cannon
until a shot is fired, and then control switches

7. [game modes 97 - 112] partnership game, where one player can move the cannon and the
other can fire it

Without modification, none of these game modes are quite appropriate for a cooperative game setting
and designing Helper-Als. #2 does not feature players even interacting with the same environment,
#4 has temporal dependence between the action set available to the player, in that part of the action
set is disabled for one player until the other player takes an action, #6 is similar except that a player
can’t act at all until the other player has acted (and the resulting state is entirely the effect of the other
player’s actions), and #7 does not have the same action set for the two players. The closest to the
desired setting for a cooperative game is #3, but this mode has the problem that a player gets 200
points if the other player is killed.

Thus, we use DiStellan]to disassemble the Space Invaders ROM, and modify the appropriate lines
of assembly to remove this point bonusE] We also modify the ROM to make the points awarded for
hitting the command ship consistent across the one-player and two-player games, so that performance
can be readily compared. We reassemble the modified assembly with dasnm All of our experiments
with two-player Space Invaders use game mode 33, along with these two modifications to the ROM.

Fall Down has nine game modes, selected from the mode selection screen in Bank 1 or by writing
directly to RAM. Some modes have the human play against an Atari provided “AI”. This is a heuristic
agent provided as part of the game ROM, and that gets information about the location of the next
platform gap and thus the direction in which to go. The different game modes are:

1. Human vs. Al

2. Human vs. Al, easy mode (the Al is not as effective, in that it does not move in the air, until
it has landed on the next platform)

3. Human vs. Al, advanced mode (the scroll speed is initialized at a higher value)

“Presently offline, but an archived version is available at https://web.archive.org/web/
20180618000759/https://sourceforge.net/projects/distellal

"Note that changes like this could instead be accomplished via writing to the RAM and immediately
subtracting the point at the appropriate time.

16 Available at https://dasm-assembler.github.io
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Figure 3: An illustration of the different game modes available in Space Invaders, excerpted from the
Atari 2600 Space Invaders manual.

4. Human vs. Al, pass-by mode (the players can pass by each each, instead of interfering with
each other’s movements and “bouncing off each other”)

5. Human vs. Al, invisibility mode (the background color is alternated so that one of the
players is temporarily invisible during game play)

6. Human vs. Human
7. Human vs. Human, advanced mode (the scroll speed is initialized at a higher value)

8. Human vs. Human, pass-by mode (the players can pass by each each, instead of interfering
with each other’s movements and “bouncing off each other”)

9. Human vs. Human, invisibility mode (the background color is alternated so that one of the
players is temporarily invisible during game play)

For all of our experiments with Fall Down, we use game mode #6, with either our RL-based Als or
people controlling the players.

Difficulty modes are not part of the RAM but controlled via an emulated hardware switch, with a
difficulty switch for each player. This is controlled in ALE via the setDifficulty(difficulty)
functionE The difficulty modes can be set separately for each player. In Space Invaders, the higher
difficulty corresponds to wider players, meaning that it is easier to get hit, while the capacity to fire
remains the same. Here, we adopt the “easy mode” for both players.

In Fall Down, the higher difficulty level disables screen wrap-around, where walking off the screen
to the left brings the player back to the right and vice-versa. We adopt the “hard mode” for both
players. The effect is that the players can more easily interfere with each other’s actions by physically
blocking the other agent, or can choose to jump to make room for the other agent, and thus there is a
greater coordination aspect and more of an opportunity to study the use of Helper-Als. Playing in
different difficulty modes can also be used as a limited in-game resource.

Appendix B: Training Agents in Multi-player Atari

Our technical stack for training agents in multi-player Atari is illustrated on the left side of Figure[7]
It consists of modifications to ALE to allow access to controlling the second player (in the original
version of ALE, only single-player modes of the games are supported). In addition, we provide hooks
to the score representation for the second player, which allows us to specify the reward to the agents

7From the ALE code: “If the first bit is 1, then it will put the left difficulty switch to A (otherwise leave it on
B). If the second bit is 1, then it will put the right difficulty switch to A (otherwise leave it on B).*
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Variable Space Invaders | Fall Down
Player 1 Score (hundreds) E6 F3
Player 2 Score (hundreds) E7 F4
Player 1 Score (ones) ES8 F1
Player 2 Score (ones) E9 F2
Scroll Speed - 8D
# Aliens/Animation Speed 91 -
Wave Mode AA -
Shields AB, AC, ..., C5 -

Table 5: RAM locations of other important environment variables for Space Invaders and Fall Down.
(Unclipped) scores are determined by adding 100 times the hundreds score to the ones score for each
player. For example, in Space Invaders, Player 1’s score is 100 - val(E6) + val(E8), and player
2’s score is 100 - val(E7) 4+ val(E9). When Space Invaders is not yet in active game mode (i.e.,
the demo or attract mode, which precedes the start of the game and is used for selecting the game
modes), the memory locations for score will hold different values, corresponding to the game mode
and number of players, so these registers are only in use during actual game play. The Wave Mode
variable refers to how far from the bottom of the screen new waves of aliens start (decreasing over
time, up to a certain limit). Shields are represented by 27 RAM locations (meaning that 21% of
in-game RAM was used just for displaying the shields’ state), with each location corresponding to
part of each of the three shields. Shields are automatically hidden in later wave modes.

Points
per target
Row 6 30
Row 5 25
Row 4 20
Row 3 15
Row 2 10
Row 1 5

Figure 4: An illustration of the points awarded for hitting each space invader, excerpted from the
Atari 2600 Space Invaders manual.

as being the joint reward (i.e., the sum of the rewards for Players 1 and 2) in the fully cooperative
setting. We also introduce support for Fall Down, which was not previously included in ALE. It is
important to note that while making changes to a ROM (as described in the previous section for Space
Invaders) can also be accomplished by appropriate modifications via the emulator, the reverse is not
true; there are changes to the game dynamics, such as introducing intervention Als or rewarding
certain behavioral patterns, that can be made only via the emulator.

Reward clipping is useful when using reinforcement learning in games such as Space Invaders, to
stabilize the learning procss and to allow sharing hyperparameters, such as the learning rate, to be
shared across games [23| 24]]. There is no reward clipping necessary in Fall Down, because the
rewards are already in {0, 1}. A result of reward clipping is that the Al is unaware of the actual points
scored for hitting enemies, as depicted in Figure 4] both during training and testing. Humans playing
the game, however, observe the actual points given. Exploring the potential differences between
human and Al game play due to reward clipping is left to future work.

Diverse Agent Behaviors

As depicted in Figures [5] and [6] the two-player training procedure that we use can also train
behaviorally-diverse Als when suitable auxiliary rewards are introduced into the training process.
The amount of the reward must be large enough to encourage the desired behavior, but also not so
large that it disrupts the process of learning effective performance in the environment.

For Space Invaders, we provide an additional reward of 0.1 (with normal in-game rewards clipped,
as usual) when the inter-player distance is in the range [5, 25] (for mode close) and at least 45 (for
mode distant), where the distance can range from O to 82, as determined by RAM. For Fall Down,
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Figure 5: Frames from close agents playing 2-Player Cooperative Space Invaders. The players (green
and yellow) remain close to each other throughout the game.

Figure 6: Frames from distant agents playing 2-Player Cooperative Space Invaders. The players
(green and yellow) remain quite far from each other throughout the game.

we provide an additional reward of 0.025 for an inter-player distance at most 70 (for mode close) and
at least 150 (for mode a’istantm

Appendix C: Javatari Learning Environment

The Javatari Learning Environment (JLE) consists of a server running our modified multi-player
Atari framework based around ALE and a lightweight front-end using Javatari. JLE allows for trained
Al agents to play alongside humans in a web browser, built around a modified version of the Javatari
emulator, communicating continuously with a server running a technical stack based around our
modified Atari framework. The key idea here is to send only the emulator RAM to the web browser,
and return the actions taken by the human. This allows for complete compatibility between ALE and
Javatari, because the transitions between states are generated by ALE’s Stella emulator The design
of our Javatari Learning Environment is illustrated in Figure

Appendix D: Intervention-AI Experiments

Here, we expand on the discussion in Section Intervention Als. Tables E] and [/| show the results of
using Intervention-Als that intervene infrequently across different skill levels. Notably, they are able
to improve the score relative to on-target Helper-Als even with about 1% interventions, suggesting
that they are able to learn to intervene effectively.

8The positions of the agents are encoded in the emulator RAM state. This set-up is able to generate agents
with qualitatively different behavior. In Space Invaders, the close agents have on average 1/8 of the screen
distance between them while the distant agents have on average 3/4 of the screen distance between them,
compared with a typical distance of 1/2 without these modifications. In Fall Down, we use the Euclidean distance
in (x,y) coordinates. In Space Invaders, we use [5,25] as the distance threshold for training close agents to
prevent the players from favoring occupying exactly the same position, which is a pathological behavior that
results from rewarding them for any distance < 25.

“The emulated game dynamics are different between Stella and Javatari at the trajectory level. Similar
incompatibility at the frame level was observed by [19].

15



trained Al agents

. . - RN
Helper-Al Training Javatari Learning Environment
2-player OpenAl Baselines .
actions
2-player OpenAI Gym
2-player ALE Javatari
Stella
emulator state
server web browser

Figure 7: Technical framework: We use 2-player modifications of ALE, OpenAl Gym, and the
OpenAl Baselines, modify the Atari emulator Stella to allow us to write to the RAM, including during
game play. The Javatari Learning Environment allows for trained Al agents to play alongside humans
in a web browser, built around a modified version of the Javatari emulator, and communicating
continuously with a server running a technical stack based around our modified Atari framework.
This allows for complete compatibility between ALE and Javatari because the transitions between
states are generated by ALE’s Stella emulator.

[ agent2 [[ cost % intervene  score |

S1 0.05 2% 1,772
St 0.025 20% 1,927
S1 0.01 58% 3,680
So 0.05 1% 2,534
So 0.025 19% 3,234
So 0.01 59% 4,787
Ss 0.05 1% 3,985
Ss 0.025 19% 4,367
Ss 0.01 60% 5,029

Table 6: Two-player, Cooperative Space Invaders. Game score with Intervention-Al, varying the cost
for intervention, averaged over 100 games, and with each of S, S5 and S5 as agent two. As the cost
for intervention decreases, the Intervention-Al takes more actions, and the average score improves.

Another measure of the effectiveness of an Intervention-Al is how frequently the action that it takes
is different from the action that its partner would have taken had it not intervened. The results from
studying this effect are in Tables [§]and [0] The fraction of effective interventions increases with
lower-skilled partners, and with fewer total interventions. Of course, the counterfactual action is
never exposed to the Intervention-Al, although a more sophisticated form of Intervention-Al training
might include this in the state, to prevent it from intervening when its partner is likely to take the
given action anyway.

Different kinds of interventions are left to future work, including changes in the fabric of the games
themselves, such as adjusting a game-specific variable like scroll speed, changing the difficulty switch
for the other player, changing positions with the other player, and so on. It is also left to future work
to consider trajectory-level counterfactuals, i.e., to what extent the interventions are able to shift the
distribution of states, and whether they effectively alter the occupancy measures of low-quality states.
The Intervention-Al framework also has the benefit of being able to make any single-player game
into a 2-player game, where the Intervention-Al is modified so that it does not typically act, but can
act when it chooses to intervene on behalf of the other player.

Appendix E: Understanding Helper-Al Behavior

Here we provide more detailed results on behavioral differences among agents. As an illustrative
example of Helper-Al Behavior, we consider Ss, S4, and the on-target Helper-Al agents H(Ss3) in
Space Invaders. In cooperative self-play, S3 achieves an average score of 2,141 over 100 games,
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agent2 [[ cost % intervene  score |

S 0.05 2% 91.5
S, 0.02 27% 111.8
S, 0.01 52% 128.0
Sy 0.005 63% 170.3
S, 0.05 1% 104.1
S, 0.02 25% 151.6
S, 0.01 50% 160.3
S, 0.005 61% 171.7
S 0.05 1% 182.9
S, 0.02 19% 203.8
Ss 0.01 47% 210.7
Ss 0.005 57% 214.0

Table 7: Two-player, Cooperative Fall Down. Game score with Intervention-Al, varying cost for
intervention, averaged over 100 games, and with each of S, S5 and S3 as agent two. As the cost for
intervention decreases, the Intervention-Al takes more actions, and the average score improves.

[ agent 2 [[ cost % effective |
[ agent 2 [[ cost % effective | gl 88; ;g?
. 0
St 0.05 85% !

S1 0.01 66%

St 0.025 81%
S1 0.005 64%

S1 0.01 82%
S 0.05 74%

So 0.05 82%
So 0.02 70%

So 0.025 80%
So 0.01 65%

So 0.01 79%
So 0.005 65%

Ss 0.05 81%
Ss 0.05 2%

Ss 0.025 80%
s 001 770 Ss 0.02 71%
3 ' 2 Ss 0.01 65%
Table 8: Two-player, Cooperative Space In- Ss 0.005 65%

vaders. Percent effective interventions, vary-
ing the cost for intervention, averaged over 100
games, and with each of S7, S5 and S5 as agent
two.

Table 9: Two-player, Cooperative Fall Down.
Percent effective interventions, varying the
cost for intervention, averaged over 100
games, and with each of S7, S5 and S5 as
agent two.

with about 49% of the points scored by P; and 51% of the points scored by P». When paired with
Helper-Al, they achieve an average score of 3,844, and S5 scores about 40% of the points (1,538
points on average). In other words, the S35 agent actually plays substantially better with Helper-Al,
scoring 40% more points on average, compared to the performance of one of the agents in cooperative
self—plaﬂ Since scoring points comes from hitting aliens — which appear in waves of 36 — an
increased score corresponds to surviving more waves of attackers. Thus, we can directly observe
the benefits of pairing Helper-Al agents with weaker agents: they actually make the weaker agents

themselves perform better, as opposed to doing all of the work for them.

Table [10| summarizes the results that indicate the reasons for episode termination. These results
are explained in the main text, and they indicate that coordination increases if on of the agents in
two-agent interaction S;-.5; is replaced by Helper-Als H (S;), and decreases if it is S; is replaced by
Sy.

2L ooking at the raw number of enemies hit (as opposed to game score), the results are essentially unchanged.

'Surprisingly, when Ss is paired with the more-skilled agent Sy, we see the opposite effect. Together, they
achieve an average score of 1,826 points, with S4 scoring about 54% of the points. This translates to S5 scoring
840 points on average, i.e., playing about 30% worse when paired with S, than in cooperative self-play. In
addition to being killed sooner, the miscoordination results in allowing the aliens to land more frequently, thus
ending the game.
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Reason for Player 1 Player2  Observed
Episode Ending Probability
Player 1 Hit So So 40%
Player 2 Hit So So 38%
Both Players Hit So So 4%
Aliens Land So So 18%
Player 1 Hit S4 So 33%
Player 2 Hit Sy Sa 42%
Both Players Hit Sy So 0%
Aliens Land Sy So 25%
Player 1 Hit H(S2) Sa 19%
Player 2 Hit H(S2) Sa 60%
Both Players Hit | H(S5) Sa 6%
Aliens Land H(S2) Sa 15%

Table 10: Comparing the reasons for episode termination in two-player, Cooperative Space Invaders
over 100 games, with S2 as Player 2, and varying Player 1.
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Figure 8: Location distribution of humans, Non-Helper Als, and Helper-Als in Space Invaders,
over approximately 800,000 total locations. The possible locations range from 35 (left-most) to
117 (right-most). The human player starts at location 117 and the Als start at location 35, and are
automatically moved to these locations at the beginning of each new wave of aliens. Helper-Als tend
to spend less time at their initial location and play more in the center of the screen than non-Helper
Als.

Qualitative assessment of behavioral differences.

Interestingly, agents of different types (humans, Non-Helper-Als, and Helper-Als) have qualitatively
different behavior. This can be seen from the location distributions of Non-Helper-Als, Helper-Als,
and humans in Figure[§] Here, the possible locations range from 35 (the left-most location on the
screen) to 117 (the right-most location on the screen). The human player starts each game at location
117, and the Als start each game at location 35, and are automatically moved to these locations at the
beginning of each new wave of aliens (i.e., when 36 aliens are hit). We observe that human players
have a wider range than Als, and spend somewhat more time at their initial location. Some human
players also spend a non-trivial amount of time at the left-most location, suggesting that they are
exploring the possible locations during the game, which we do not observe in Als. Helper-Als tend to
spend less time at their initial location and play more in the center of the screen than non-Helper Als.

The action distribution for Non-Helper Als, Helper-Als, and humans are provided in Figure[9] and the
observed probabilities for action bigrams are in Tables [T} [T2} [[3] We observe that humans are much
more likely not to act at all, and that Helper-Als are less likely to move left (away from the human
player) than Non-Helper Als. Human players are less likely to take actions that require simultaneous
key-presses (right-fire and left-fire). In addition, all players appear to prefer to take the same action
repeatedly, but humans appear not to switch actions that would be tricky to execute physically (for
instance, almost never taking the left action immediately after the right action). Also, Helper-Als
appear to be less likely to repeat the same action.
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Figure 9: Action distribution of humans, Non-Helper Als, and Helper-Als in Space Invaders, over
approximately 800,000 total actions. The possible actions are NO-OP (do nothing), fire, move left,
move right, move right and fire, or move left and fire. Helper-Als are less likely to move left (away
from the human player) than Non-Helper Als.

Human || NO-OP | FIRE | RIGHT | LEFT | R+FIRE | L+FIRE |

NO-OP 85% 8% 3% 4% 0% 0%
FIRE 41% 55% 1% 1% 1% 1%
RIGHT 12% 1% 84% 0% 2% 0%
LEFT 12% 1% 0% 84% 0% 2%
R+FIRE 10% 13% 32% 0% 45% 0%
L+FIRE 10% 11% 0% 31% 0% 48%

Table 11: Observed probabilities for action bigrams in Space Invaders, for humans in human
experiments. These represent the row-conditioned observed probabilities of action pairs for humans.

Non-HelperAl || NO-OP | FIRE | RIGHT | LEFT | R+FIRE | L+FIRE |

NO-OP 41% 11% 14% 14% 10% 10%
FIRE 9% 41% 9% 8% 15% 19%
RIGHT 11% 10% 53% 7% 14% 5%
LEFT 13% 9% 8% 46% 7% 17%
R+FIRE 8% 16% 13% 5% 47% 10%
L+FIRE 8% 20% 5% 15% 9% 42%
Table 12: Observed probabilities for action bigrams in Space Invaders, using Non-Helper Al in

human experiments. These represent the row-conditioned observed probabilities of action pairs for
Non-Helper Als.

Helper-Al || NO-OP [ FIRE | RIGHT | LEFT | R+FIRE | L+FIRE |

NO-OP 20% 18% 20% 14% 13% 16%
FIRE 11% 28% 13% 9% 16% 23%
RIGHT 14% 13% 39% 8% 18% 9%
LEFT 14% 13% 11% 29% 9% 23%
R+FIRE 10% 16% 18% 6% 39% 11%
L+FIRE 10% 20% 8% 14% 10% 38%
Table 13: Observed probabilities for action bigrams in Space Invaders, using Helper-Al in human

experiments. These represent the row-conditioned observed probabilities of action pairs for Helper-
Als.
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‘We are conducting an experiment about how humans play games together with Als. Click the link below to participate in the experiment. At the end of the experiment, you will receive a code to
paste into the box below to receive credit for completing the experiment.

You will be paid $1.50 for completing the assignment in full, which consists of playing Space Invaders together with an Al for 10 minutes. You must try your best to maximize your
joint score.

Bonus: If you are still on your first life when the time limit is reached, you will be able to keep playing, and will receive a bonus payment proportional to your total score!

Make sure to leave this window open as you complete the experiment. When you are finished, you will return to this page to paste the code into the box.

Experiment link: The link will appear here only if you accept this HIT.

Provide the completion code here: | .o 123456

Figure 10: Instructions given to human subjects on Amazon Mechanical Turk.

Appendix F: Amazon Mechanical Turk Experiments

In this section we provide additional informtion on our AMT experiments. Figure[T0[shows the in-
structions given to the participants before they choose whether to accept the task (Human Intelligence
Task, abbreviated as HIT). As we metnioned in the main text, we limited participation to those based
in the U.S., who had previously completed 10,000 tasks with a 98% approval rate, i.e., relatively
experienced workers. We paid workers 1.50 USD for 10 minutes of gameplay, regardless of the
number of games that they played, and ran experiments on weekdays from 4 - 8 PM EDT /1 - 5 PM
PDT. Games from subjects that did not interact with the system or that left before the entire 10 minute
experiment was complete were dropped from the dataset. The humans were unaware which Al they
were playing together with, and whether it was supposed to be helpful or not. To help incentivize the
participants to play their best, we added the possibility of a bonus payment of up to 1.50 USD if they
were still on their first game during the 10 minute experiment (i.e., neither the participants nor the
Al partner had lost a life). At this point they could chose to extend game play. None of the subjects
chose to do so.
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