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1.1 Introduction

In this chapter, we demonstrate the use of machine learning for the automated
design of matching markets. This extends the reach of optimal design to problems
that are challenging to solve analytically and provides new directions for economic
theory, identifying gaps in current understanding.

This is a data-driven approach and assumes access to samples of agent values or
preferences and makes use of differentiable representations of the rules of matching
markets in enabling gradient-based optimization. We refer to this research agenda
as that of differentiable economics. The framework involves the following four steps:

1. Design an artificial neural network architecture that provides a differentiable
representation of a mapping from inputs such as preference reports to outcomes
such as a distribution on matchings.

2. Formulate a loss function and define other quantities of interest, for example the
degree to which incentive-compatibility is violated.

3. Adopt a suitable training procedure to minimize expected loss while incorporat-
ing constraints such as incentive compatibility.

4. Evaluate performance against baselines and interpret the learned mechanisms.

We first provide a primer on artificial neural networks in Section 1.2. Section 1.3
applies the framework to one-sided matching, and in particular to the design of
revenue-optimal multi-item auctions. Section 1.4 applies the framework to a two-
sided matching, and in particular to understand the design frontier between stability
and strategy-proofness. In Section 1.5, we outline a number of open problems and
interesting future directions.

1.2 Artificial Neural Networks

An artificial neural network (ANN) is a non-linear model of computation inspired
by the brain that is commonly used in machine learning. Each unit in an ANN
consists of a non-linear activation function applied to a weighted sum of inputs. See
Figure 1.1 left, where linear sum ¢ = wgy + E;.le w;q;, for inputs q¢1,...,qy, with
weights w1, ..., wy and bias term wy. o : R — R denotes the activation function
and the output is o(¢). Some commonly used activation functions are the sigmoid,
tanh, and the ReLU or LeakyReLU activation functions (see Figure 1.2).

In a fully-connected, feed-forward ANN, several such units are stacked together
and organized in layers, such that the outputs of some units become inputs to others
(see Figure 1.1 right).

Let « € R? denote the input to an ANN and y € R” the output. w®, w® . w®
denote the weights corresponding to each of R > 1 hidden layers, with J,. units
in layer r. w1 denotes the weights in the output layer. The weights w =
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Figure 1.1 Left: A single unit in an artificial neural network. Right: A two-hidden layer,
fully-connected, feed-forward artificial neural network.

{w®,w® . wBHDY are the parameters to learn, with the network defining non-
linear function y = f*(x).

Let wg) be the weight associated with the input from unit 4 in layer » — 1 (or
input z; if 7 = 1) to unit j in layer r (or output unit y; if r = R+ 1), and let wé;)
denote the associated bias term. The output y € R™ is computed as follows:

d
hP = g<w§,§> +Zw£;)xi>, vie{l,..., i} (1.1)
=1
Jr—1
WY =olwy) + 3wV vie {1, ), Yre {2, R (12)
=1
JR
y; = g<wg§+1) + Zw§f+1)h§R)>7 vie{l,...,n} (1.3)
=1

Learning is formulated as finding parameters w that minimizes a loss function
with respect to a distribution F' on inputs z. A common approach is supervised
learning, where there is a target function f* and the loss function is

L(w) = Bonrp [loss(f*(x), f*(2))], (1.4)

where loss is a differentiable function that quantifies how well f* approximates f*.
In application to economic design, the loss function will not come from supervision
but directly captures the economic concept of interest.

ANNSs are trained by updating parameters w to minimize loss on training data
through a gradient descent procedure. A typical approach is to repeatedly sample a
set of examples (a mini-batch) from the training data, with the parameters updated
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Figure 1.2 Top-Left: The sigmoid function maps a real number to the range [0, 1]. Top-
Right: The tanh function is a scaled sigmoid function and is zero-centered and maps real

numbers to the range [—1, 1]. Bottom: The ReLU and LeakyReLU are piece-wise linear
functions that map reals to reals.

on mini-batch 7 through a single iteration of stochastic gradient descent (SGD):
wi; = Wi — @ X lerjE(T)(w), for each ¢,j, and r € {1,..., R+ 1}. (1.5)

Here, o > 0 is the learning rate and L£(7)(w) denotes the average loss on the
examples in the 7th mini-batch. Open-source software frameworks such as PyTorch
and TensorFlow can be used to define and train ANNs.

1.3 Optimal Auction Design

We first illustrate the framework of differentiable economics on one-sided matching
and the design of revenue-optimal auctions. This is a suitable problem to study
because the optimal auction for the sale of two items is not fully understood from
an analytical viewpoint.

An ANN is used to provide a differentiable representation for the allocation rule
and payment rule. The aim is to learn the rules of an auction that minimize negated
expected revenue while providing a close approximation to strategy-proofness.
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1.3.1 Preliminaries

Let B denote a set of n buyers and G a set of m items. For additive valuations,et
v;; > 0 denote the value of buyer ¢ for item j, so that buyer i’s total value for
a set of items S is Zjes vi;. Let V' denote the valuation domain, with buyer i’s
valuation represented through v; = (vi1,...,vm) € V. Let v = (v1,...,v,) denote
a valuation profile.

For a buyer with a unit-demand valuation, its value for a set S is max;eg v;; and
its value for the most preferred item. In effect, a unit-demand buyer is interested in
buying at most one item. We work in a probabilistic setting, where the valuation
v; of buyer 7 is distributed i.i.d. according to distribution function Fy .

Let X denote the set of feasible allocations, i.e., the set of allocations in which
each item is allocated at most once. For x € X, let x; = (41, . .., Z;mn) denote buyer
i’s allocation, with z;; € {0,1} to indicate whether or not it is allocated item j.

An auction A = (g,p) is defined by an allocation rule g : V" — A(X) and a
payment rule p : V" — R™. A(X) is the probability simplex on feasible allocations,
and g maps a reported valuation profile ¥ to a possibly randomized allocation g(v).
The payment rule defines, for each buyer i, the expected payment t; = p(?).

We assume quasilinear utility, so that a buyer’s utility is equal to the expected
value minus payment. The following quantity plays an important role in learning
approximately strategy-proof auctions.

Definition 1 (Regret) Buyer i’s regret for truthful bidding on valuation profile
v in auction A = (g,p), and when all the other buyers are truthful, is

regret; (v) = max [ (v;(g(v}, v—i)) = pi(vi, v-3)) = (vilg(v)) = ps(v)) ], (16)
where v_; = (V1, ..., Vi—1,Vit1s--,Vp)-

A buyer’s regret is the maximum amount by which it can increase its utility
relative to truthful reporting by reporting a non-truthful valuation. This connects
with the notion of strategy-proofness (see Chapter ?7). An auction is strategy-proof
if and only if every buyer has zero regret on every valuation profile.

1.3.2 Methodology

Step 1: Design an artificial neural network

We use a single neural network with two feed-forward components, namely the
allocation component g* and the payment component p* (see Figure 1.3). Each
component consist of multiple hidden layers (h(") and ¢(") in the figure) and an
output layer. The components communicate through the value of the allocation.
This is the RegretNet architecture. The input is n X m reals, corresponding to
bids. We write b = (b1,...,b,), where b; = (b;1,...,bim), and b;; denotes the
reported value (bid) of buyer ¢ for item j. The network provides a differentiable



Learning markets 7
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Figure 1.3 The allocation and payment component of the RegretNet architecture for a
multi-item auction with n additive buyers and m items. The allocation component is a
feed-forward network with R(= 2) layers and softmax activation functions to determine
the randomized allocation z. The payment component is a feed-forward network with
S (= 2) layers and sigmoid functions to determine the payment of each buyer as a fraction
of the buyer’s expected value (making use of the randomized allocation z).

representation of the auction rules. Let w, and w, denote the parameters in the
allocation and payment component, respectively, with w = (wq,w,) € R?, for d
parameters.

The allocation component is function g% : V" — A(X) and consists of two fully-
connected hidden layers, with 100 units in each layer, each with tanh activations,
and a fully-connected output layer. For each item j € G, this outputs a vector
Z1js ...y 2ng With D01 25 < 1. 25 is the probability of allocating item j to buyer
i. Each output unit uses a softmaz activation function, where

5!
e”ii

—T (1.7)
Zkii e%ki

— / ro _
2zij = 80ftmaz; (21, -+ Znj> Zny1j) =
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/
where z;;,

from the previous layer and z

for each ¢ € [n], is the result of taking a weighted sum of the outputs
n41,; controls the probability that the item is not
allocated (e ~ 2.72 is Euler’s number).

Remark 2 The network architecture can represent allocation rules that tend to
bundle items together, for example the value of z;; may be high when zy; is high,
for items j # k and buyer 1.

The payment component is function p* : V™ — R™ and consists of two fully-
connected hidden layers, with 100 units in each layer each with tanh activations
and a fully-connected output layer. For each buyer ¢ € [n], there is an output unit
that represents the expected payment ¢; € R for the bid inputs.

To ensure individual rationality (IR), with a buyer not charged more than its
reported value, the network computes a fractional payment, t; € [0,1] for buyer
i, which is the fraction of the buyer’s reported value that it will be charged. This
comes from a sigmoid function o (¢;) applied to the weighted sum from the previous
layer. Given allocation z, the expected payment by buyer i is

m

j=1
Remark 3 The expected payment from RegretNet can be interpreted as a lottery
on payments, charging buyer i the amount #; x Z;”:l x;5b;; for 0-1 allocation z. In
this way, the buyer’s payment is no greater than its bid value for the realized
allocation.

For buyers with unit-demand valuations, we modify the allocation component to
allocate at most one item to each buyer. The payment component is unchanged.
The modified allocation component outputs two scores, s € RtDxm and ¢ ¢
R™*(m+1) “and computes the row-wise softmax and column-wise softmax of each
of s and s, respectively. The probability z;; is given by the minimum of the corre-
sponding normalized scores:

Sij

!
. esii e’ii
Zij :mln{zn+1 S R } (1.9)

Skj
k=1¢" k=1 €7

Step 2: Formulate a loss function and quantify the violation of strategy-proofness

The loss function is the expected negated revenue and minimizing loss is equivalent
to maximizing revenue. For training data D = {v() ... 0P}, consisting of L
valuation profiles sampled i.i.d. from the valuation distribution, the empirical loss
is

I

Lw) = =33 pr ), (1.10)

{=11
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Let regret,;(v; w) denote the regret to buyer ¢ at valuation profile v given an auc-
tion with parameters w. Given that regret is non-negative, the auction is strategy-
proof up to zero measure events if and only if, for all buyers ¢ € [n], we have

Ey,opvx..xrv [regret;(v;w)] = 0. (1.11)

We quantity the wviolation of strategy-proofness to buyer i as

L
1
rgt;(w) = ZZregreti(v(z);w). (1.12)
=1

The training problem is:
min £(w) (1.13)

s.t. rgt;(w) =0, Vi€ [n].

Step 3: Adopt a training procedure

The training procedure uses gradient descent and augmented Lagrangian optimiza-
tion. This solves a sequence of unconstrained optimization problems, for each of step
k €0,1,..., where the constraints on regret are incorporated within the objective.
The kth step seeks parameters w*) to minimize

NG (k) p 2
C(w; Agh,p) = L(w) + > Aot s X rgt;(w) + 5 % > gty (w)?, (1.14)

i€[n] i€[n]

where )\Ef;zl € R is the Lagrangian multiplier for buyer i. C(w; /\(Tlgcz7p) augments a
Lagrangian function with a quadratic penalty term, with parameter p > 0. This
modified objective penalizes revenue by a quantity that depends on the degree of
violation of strategy-proofness.

We initialize )\Sﬂgl’i = 0. Given solution w®) in step k, the Lagrangian multipliers
are updated according to rule

k k
Nyt = Nghs + px gt (w®). (1.15)

For each step k, the training procedure uses multiple SGD mini-batch iterations
to approximately solve

w* Y ¢ arg min,, C(w; )\gzz,p). (1.16)

The gradient of revenue with respect to w is straightforward to calculate. For
regret, the gradient is complicated by the nested maximization (1.6). To handle
this, we first find a defeating valuation, @Z@), for buyer ¢ at valuation profile v(®) (or
just vy)
utility than reporting truthfully. Given this, we approximate the gradient of regret

if there is no such mis-report). This is a valuation that provides better
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as the gradient of the difference in utility to the buyer at report v, compared to

its true report:
0 ~(2 l ~(£ 0 l
V|09 (00, 0D) = p (51, 0D) = (g7 (0 ) — pEO))] . (117)

For a given valuation profile v we search for a defeating valuation for buyer
i by following gradient ascent in input space, considering the buyer’s utility with
respect to its reported value (fixing the network parameters). This is in the style
of adversarial machine learning. For each buyer, we use multiple random starting
valuations and take the best mis-report as the defeating valuation.

Although the training problem is non-convex, we have found that Lagrangian
optimization with SGD, together with gradient-ascent on inputs to find defeating
valuations, can reliably learn auctions with near-optimal revenue and a very small
violation of strategy-proofness.

1.3.3 Illustrative Experimental Results

We first present results for single-buyer, two-item environments, for which there
exist optimal designs from auction theory:

e 2 items, a single additive buyer, with item values z1,z2 ~ U|0, 1], on item 1 and
item 2, respectively. See Figure 1.4 (a).

e 2 items, a single additive buyer, with item 1 value x; ~ U4, 16] and item 2 value
x9 ~ U[4,7]. See Figure 1.4 (b).

e 2 items, a single unit-demand buyer, with item values x1, z9 ~ UJ[0, 1], on item 1
and item 2, respectively. See Figure 1.4 (c).

e 2 items, a single unit-demand buyer, with item values x1, x5 ~ U[2,3], on item 1
and item 2, respectively. See Figure 1.4 (d).

Table 1.1 summarizes the revenue and per-agent regret for the learned auctions,
as evaluated on test data. For all four environments, the revenue is very close to
the optimal revenue. For the additive U[0, 1] environment the revenue in RegretNet
is slightly higher than optimal, reflecting that it is not quite strategy-proof (while
assuming truthful reports for evaluating revenue).

Figures 1.4 (a)—(d) compare the learned allocation rules with the optimal designs
from economic theory. We super-impose on the density plots for RegretNet the
optimal allocation rule, with different regions delineated by dashed lines and the
number in a region giving the probability the item is allocated by the optimal rule.
Not only is the revenue very close to optimal (Table 1.1), the allocation rules also
capture the structure of the optimal designs.

Figure 1.5 gives results for a setting with two items and two additive buyers where
the item values are i.i.d. uniform on interval [0,1]. This is complicated enough
that there is no known theoretically-optimal design. As a baseline we compare
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(a) Single buyer, additive valuation, item values z1,z2 ~ U[0, 1]
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(b) Single buyer, additive valuation, item values x1 ~ U[4,16], z2 ~ [4,7]
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(d) Single buyer, unit-demand valuation, item values z1,z2 ~ U[2, 3]

Figure 1.4 The allocation rule of a learned RegretNet auction for four different settings.
We plot the probability of allocating item 1 (Left) and item 2 (Right), as a function of
the buyer’s value. The theoretically-optimal allocation rule is superimposed, with different
allocation regions in the optimal rule delineated by dashed lines (the number in a region
gives the probability the item is allocated in the optimal rule).
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Economic environment Optimal RegretNet

rev rev (norm) regret
2 item, 1 additive buyer, z1,z2 ~ UJ0, 1] 0.550 0.554 (100.7%) < 0.001
2 item, 1 additive buyer, 1 ~ U[4, 16], x2 ~ U[4,7] 9.781 9.734 (99.5%) < 0.001
2 item, 1 unit-demand buyer, z1,z2 ~ U[0, 1] 0.384 0.384 (100.0%) < 0.001
2 item, 1 unit-demand buyer, z1,z2 ~ U[2, 3] 2.137 2.137 (100.0%) < 0.001

Table 1.1 Ezpected revenue and expected, per-agent regret from RegretNet in
single-buyer auction settings, comparing with the theoretically-optimal revenue
(and also giving the normalized revenue, as a fraction of the optimal revenue).

1.0 0.10
= RegretNet
== AMD Baseline 0.084
v 097
S| e = = ] k]
§ 5,0.06 1
()
g e f 0.04
- n 0. 7
3 &
Fo7
' 0.021
0.6 - - - - 0.00+— : - - :
0 1 2 3 4 0 1 2 3 4
No. of iterations le5 No. of iterations le5

Figure 1.5 The test revenue and test regret from RegretNet as a function of training
iterations (number of mini-batch updates) for an auction with two items and two additive
buyers, with values U|0, 1] for each item. The baseline represents the performance of the
previous best result from automated mechanism design.

with the previous best results from automated mechanism design (AM), which
searches for the best auction in a parametrized family of strategy-proof auctions.
The revenue falls during training, reflecting an improvement in strategy-proofness.
The network learns an auction with essentially zero regret and expected revenue of
0.878, compared with revenue of 0.867 from the AMD baseline.

1.4 Two-Sided Matching

In this section, we turn to the automated design of two-sided matching markets. It
is well known to be impossible to achieve both strategy-proofness and stability in
two-sided matching ?7?. And yet little is known about how to tradeoff between these
two properties. Here, we illustrate the use of differentiable economics to explore the
design frontier between strategy-proofness and stability and suggest new targets for
economic theory.
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1.4.1 Preliminaries

Let W denote a set of n workers and F denote a set of m firms. Each worker can
be matched to at most one firm and each firm to at most one worker.

A matching p is a set of (worker, firm) pairs, with each worker and firm partic-
ipating in at most one match. Let B denote the set of all matchings. If a worker
or firm remains unmatched, we will say that it is matched to L. If (w, f) € p then
1 matches w to f, and we write pu(w) = f and p(f) = w. We write (w, L) € p
(resp. (L, f) € p) to denote that w (resp. f) is unmatched.

Each worker has a strict preference order =, over the set ' = F U {L}. Each
firm has a strict preference order =y over the set W = W U {L}. An agent prefers
to be unmatched than matched to others ranked below L (these are unacceptable,
while others are acceptable). If worker w prefers firm f to f’ then we represent this
as f =y [/, and similarly for firms. Let P denote the domain of preference profiles,
with profile == (>1,...,>n, >n+1,- -+, =n+tm) € P.

A pair (w, f) forms a blocking pair for matching u if w and f prefer each other to
their partners in g (or L in the case that either or both are unmatched). A matching
1 is stable if and only if there are no blocking pairs. A matching p satisfies individual
rationality (IR) if it is not blocked by any single agent, i.e., no worker or firm finds
its partner unacceptable.

Remark 4 Stability is not satisfied by an empty matching. For example, if a
matching p leaves a worker w and a firm f unmatched, where w finds f acceptable
and f finds w acceptable, then (w, f) is a blocking pair to p.

1.4.2 Randomized matchings

A randomized matching mechanism g takes a reported preference profile = and
maps this to a distribution g(>) € A(B) on matchings. A(B) denotes the proba-
bility simplex on matchings. r € [0, 1](**D*(m+1) denotes the marginal probability
Tws > 0 with which worker w is matched with firm f, for w € W and firm f € F.
We require 3z rwp = 1forallw € W, and 3, ey rwry = 1 for all f € F.

Theorem 5 (Birkhoff-von Neumann) Given a randomized matching r, there ex-
ists a distribution on matchings with marginal probabilities equal to r.

We also write g, f(>) to denote the marginal probability of matching worker w
(or L) and firm f (or L) at reported preference profile >. The following definition
generalizes the concept of stability to randomized matchings.

Definition 6 (Ex ante justified envy) A randomized matching r causes ex ante
justified envy if:
(1) some worker w prefers f over some (fractionally) matched firm f’ (including
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f'= 1) and firm f prefers w over some (fractionally) matched worker w’ (including
w’ = 1) (“w has envy towards w'” and “f has envy towards f’”), or

(2) some worker w finds a (fractionally) matched f’ € F' unacceptable, i.e. 7y >
0 and L >, f/, or some firm f finds a (fractionally) matched w’ € W unacceptable,
ie. ryp>0and L > w'.

A randomized matching r is ex ante stable if and only if it does not cause any ex
ante justified envy. Ex ante stability reduces to the standard concept of stability
for a deterministic matching. Part (2) of the definition requires that a randomized
matching 7 should satisfy IR; i.e., for any worker w with L =, f’ for firm f’ then
rwp =0, and any firm f with L >; w’ for worker w’ then ry s = 0.

To define strategy-proofness, say that u, : F' — R is a >, -utility for worker w
when uy, (f) > wy,(f') if and only if f =, f/, for all f, f' € F. We similarly define a
= g-utility for firm f. The following concept of ordinal strategy-proofness provides
a strong version of incentive compatibility for randomized matching markets.

Definition 7 (Ordinal strategy-proofness) A randomized matching mechanism g
satisfies ordinal strategy-proofness if and only if, for all agents i € W U F', for any
preference profile >, any >;-utility w; for agent ¢, and all reports >}, we have

Epimg(mim o) [i(p(0)] = Epng(mr =y [wiu(@))] - (1.18)

By this definition, no worker or firm can improve its expected utility by mis-
reporting its preferences whatever the utility function consistent with its prefer-
ences. For a deterministic mechanism, ordinal strategy-proofness reduces to strategy-
proofness and the requirement that no agent has an improving mis-report. In Sec-
tion 1.4.4 we introduce a weaker notion of strategy-proofness that we use for learning
making tradeoffs between strategy-proofness and stability.

1.4.3 Deferred Acceptance and RSD

Deferred-acceptance (DA) algorithms provide stable mechanisms and are strategy-
proof for the proposing side of the market.

Theorem 8 Worker- or firm-proposing DA is stable, but not ordinal strategy-
proof.

See Chapter 7?. We also define the following simple mechanism (see also Random
Priority in Chapter ?7).

Definition 9 (Random serial dictatorship (RSD)) Sample a priority order m on
the set W U F' uniformly at random, such that 71,72, ..., Tymin IS @ permutation
on W U F in decreasing order of priority. Proceed as follows:

e Initialize matching p to the empty matching.
e Inround k=1,...,m+n:
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— If participant 7, € W U F' is not yet matched in u, then add to matching p
the match between 7 and its most preferred, unmatched agent, or (g, L) if
all remaining possibilities are unacceptable.

Theorem 10 RSD is ordinal strategy-proof, but not stable.

Proof For ordinal strategy-proofness, observe that an agent’s own report has no
effect on the choices of higher-priority agents. Truthful reporting ensures that it
obtains its most preferred match of those available when it is its turn. RSD is not
stable because an agent (say f) may select as its match an agent on the other side
of the market for whom f is unacceptable.

O

1.4.4 Methodology

Step 1: Design an artificial neural network

We use a neural network with parameters § € R? to represent a matching mecha-
nism, g’ : P — A(B). We use a fully-connected, feed-forward neural network with 4
hidden layers, 256 units in each layer, leaky ReLLU activations, and a fully-connected
output layer. See Figure 1.6.

We represent preference orders at the input by adopting the equi-spaced utility
function, which is an evenly spaced valid utility. For preference profile -, the equi-
spaced utility for worker w € W and firm f € F is denoted as pj, = (D)1, - -, Piym)
and q? = (qTf,...,q:f) respectively. We also define p, | = 0 and qif = 0. For
example, we have:

e For a preference order > with wy : f1, fo, L, f3, we have p;; = (%,% —%)
e For a preference order = with wy : fi, fa, L, f3, f4, we have pw1 (% i —i %)
e For a preference order > with f; : ws, w1, ws, L, we have qf = (% 1 %)

In this way, the vector (p7y,...,Pfm, di1s- - > dim) Constitutes the input to the
network (2 x n x m numbers). The output of the network is a vector r € [0, 1]**™
with Z;”zl rw; < 1and >i" riy <1 for every every w € [n] and f € [m]. This
describes the marginal probabilities in a randomized matching for this input profile.
The network first outputs two sets of scores s € R(TDX™ and ¢ e RP*(m+1D) e
apply the softplus function (denoted by o) element-wise to these scores, where
o4+ (z) =In(1 + €®). To ensure IR, we first construct a Boolean mask variable 3y,
which is zero only when the match is unacceptable to one or both the worker and
firm, i.e., when L >, for L > w. We set Bnq1,f =1for f € F and Bym+1 =1
for w € W. We multiply the scores s and s’ element-wise with the corresponding
Boolean mask variable to compute § € RIS *™ and § € RZX ™Y,

For each w € W, we have 5,5 = By In(1 + e/ ), for all f € F. For each f € F,
we have §;Uf = BuwrIn(1+ e“";uf)7 for all w € W. We normalize § along the rows and
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column — wise
normalization

Q 711 = min{811, 81}
C} Pt = min{énr, 81}

AR
S . N .

Q T1m = min{1m, 31, }
() rem =min{snn, &)

TOW — Wise
normalization

Figure 1.6 Matching network g for a set of n workers and m firms. Given inputs p,q €
R™ ™ the matching network is a feed-forward neural network with R hidden layers that
uses softplus activation to generate non-negative scores and normalization to compute the
marginal probabilities in the randomized matching. We additionally generate a Boolean
mask matrix, 8, and multiply it with the score matrix before normalization to ensure IR
by making the probability of matches that are unacceptable zero.

5" along the columns to obtain normalized scores, § and §' respectively. The match
probability ry, for worker w € W and firm f € F, is computed as the minimum
of the normalized scores:

3, s
T = min wf wf . (1.19)

—3 . o
DopreF Swf 2w eW Sury

We have 7,y = 0 whenever 3,y = 0, and every matching in the support of the
distribution will be IR. Based on this construction, the allocation matrix r is always
weakly doubly stochastic (allowing for workers and firms to go unmatched) and can
be decomposed to a convex combination of 0-1 weakly doubly stochastic matrices.

Step 2: Formulate a loss function and quantify the violation of strategy-proofness
and stability

To train the neural network we formulate a loss function £ on training data D =
{>(1), ey >(L>}, with each preference profile sampled i.i.d. from a distribution on
profiles. The loss function is designed to represent the trade-off between strategy-
proofness and stability.

Recall that ¢?(>~) € [0,1]"*™ denotes the randomized matching. We write g¥ | (=
)=1-37" 6% ,(-) and g§ ;(-) = 1=, ¢5,;(~) to denote the probability of
worker w and firm f being unmatched, respectively. For worker w and firm f, we
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define the stability violation at profile > as

stvws (g%, =)= (Z gg)/f(>-) -max{q,, ; — qp 5,0} +gif(>) -max{q;f,0}> (1.20)

w/=1

m
X Z g&f/(*) : maX{PZf _PZf”O} +g0. () -max{pzf,O} .
fr=1

This captures the first kind of ex ante justified envy in Definition 6, which is
in regard to fractionally matched partners. We ignore the second kind of ex ante
justified envy in defining the loss function because the learned mechanisms satisfy
IR through the use of the Boolean mask matrix.

The overall stability violation of mechanism ¢? on profile > is defined as

sto(g?, ) = % (% T %) SN stous(g”,-). (1.21)

w=1 f=1

The expected stability violation is STV(g?) = E. [stv(ge,>)]. We also write
stv(g?) to denote the average stability violation across multiple profiles.

Theorem 11 A randomized matching mechanism ¢° is ex ante stable up to zero-
measure events if and only if STV(g?) = 0.

Proof Since stu(g?, =) > 0, then STV(¢%) = B, [stv(g9,>-)] = 0 if and only if
stv(ge, =) = 0 except on zero measure events. Moreover, stv(997 =) = 0 implies
stv(g?, =) =0 for all w € W, all f € F. This is equivalent to no ex ante justified
envy. For firm f, this means V' # w, qgf < qg,f if gi,f > 0 and g =< 0 if
q4 ¢ > 0. Then there is no ex ante justified envy for firm f. Analogously, there is
no ex ante justified envy for worker w. If ¢? is ex ante stable, it trivially implies
STV (g?) = 0 by definition. O

Example 12 Consider a market with 3 workers and 3 firms, and the following
preference profile (>):

wit fo, fs, fr, L f1rwr, wa,ws, L
wy : fo, f1, f3, L forwe,ws wy, L
ws t f1, f3, f2, L [zt wg,wi,we, L
The matching found by worker-proposing DA is (wy, f3), (wa, f2), (w3, f1). This is

a stable matching. Now consider the matching under RSD. We generate all possible
priority orders and calculate the marginal matching probabilities as

=
—

oles o= )|
O Blw e
ool Zl= ¥l
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Here, fo and ws are the most preferred options for ws and f5 respectively, and
they would prefer to be matched with each other always rather than being frac-
tionally matched. Thus (ws, f2) has ex ante justified envy and RSD is not stable.

The stability violations are (1.20):

11

0 0 5553
Stvwf (gRSD7 >‘) - ﬁ 514 0
0 0 0

RSD’ >_) _ 17

By (1.21), the overall stability violation is stv(g = 5"

We turn now to strategy-proofness. For this, we relax the requirement of ordi-
nal strategy-proofness and consider incentive alignment for the equi-spaced utility
function, denoted uEEQ) for agent i. We say that a randomized mechanism is strategy-
proof for the equi-spaced utility (SP) if and only if, for all agents ¢ € W U F', for any
preference profile >, and all reports >, we have

Byt [P0 2 Bugoor oy [ )] (122)

Let ugeq)(r; =) = Epor [ugeq) (u(z))] denote the expected utility for randomized

matching 7. We define the regret to agent ¢ at preference order > as

vegret;(g°, ) = max [ul (¢ (=}, =) ) — (g (im0 ], (1:23)
R
where = _;= (>1,...,>i—1, =it1,- -+, =n+m). Lhe per-agent regret on profile > is
regret(g°, =) = = Z regret,, (g7, =) + k= Zregret (¢°,-) (1.24)
’ 2\ " e o M rer e . .

We define the ezpected regret as RGT(g%) = E [regret(¢°, )], and write rgt(¢”)
to denote the average per-agent regret across multiple profiles. We also refer to this
as the strategy-proof violation.

Theorem 13 A randomized matching mechanism ¢° is strategy-proof for equi-
spaced utility up to zero-measure events if and only if RGT(g%) = 0.

The proof is similar to Theorem 11. Also, if the mechanism is deterministic, then
zero expected regret implies that no agent can improve its preference ranking for
any mis-report (again up to measure zero events).

The training problem for trading off stability and strategy-proofness, with A €
[0, 1] to control the trade-off, is

ngn A sto(g?) + (1= N) - rgt(g°). (1.25)
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Step 3: Adopt a training procedure

As with RegretNet, we make use of SGD for training. The gradient of the violation
of stability with respect to parameters @ is straightforward to calculate. For regret,
the gradient is again made complicated by the nested maximization.

Given that two-sided matching has discrete types, for small problems we can
compute the best mis-report by enumeration. For agent i, this is

S0 e argmax,, [l (o0~ = D) = ul (" (=)~ (126)

We find the gradient of regret to agent ¢ with respect to parameters 6 by fixing
its mis-report accordingly and adopting truthful reports for others.
In addition, we define the per-agent IR violation at input profile >~ as

n m

irv(g?, =) = Z Z gfuf(>-) - (max{—quy, 0} + max{—py,r,0}). (1.27)

w=1 f=1

We write i7v(g?) to denote the average per-agent IR violation of a mechanism
across multiple profiles. This degree of IR violation captures the second kind of ex
ante justified envy in Definition 6 and is zero for the learned mechanisms and DA
but non-zero for RSD.

1.4.5 Illustrative Experimental Results

We study both uncorrelated and correlated preferences:

e Uncorrelated preference orders.

For each worker or firm, first sample uniformly at random from all preference
orders. Then, with probability pirunc > 0 (the truncation probability), choose at
random a position at which to truncate this agent’s preference order such that
all subsequent positions are unacceptable.

e (Correlated preference orders.

First sample a preference order for each agent as in the uncorrelated case. Also
sample, uniformly at random and independently and with the same truncation
probability, a special worker preference order >, and a special firm preference
order > .. Each agent adopts the special preference order with probability peorr >
0, i.e., > Or >, as appropriate to its side of the market.

We consider the following environments:

e n = 4 workers and m = 4 firms with uncorrelated preferences and pgune = 0.5.

e n = 4 workers and m = 4 firms with correlated preferences, and varying peorr =
{0.25,0.5,0.75} and pyrunc = 0.5.

e n = 4 workers and m = 4 firms with uncorrelated preferences and piyunc = 0.
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Figure 1.7 Truncated preference orders. The design frontier for the learned mechanisms
for different choices of A (red dots), and also showing RSD and the best of worker- and
firm-proposing DA for SP violation. The sub-figures vary in the assumed correlation on
preferences. The stability violation includes IR violation for RSD.
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Figure 1.8 Truncated preference orders. Top: Per-agent welfare compared with RSD and
the best of firm- and worker-proposing DA for welfare. Bottom: Stability violation and
SP violation. For DA this considers the best of firm- and worker-proposing DA for SP
violation. The stability violation for RSD is 0.171 and 0.176 for uncorrelated and correlated
preferences, respectively. The SP-violation for DA is 6e-03 and 5e-03 for uncorrelated and
correlated preferences, respectively. The stability violation includes IR violation for RSD.
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We vary parameter A between 0 to 1 in exploring the design frontier. In addition
to stability and strategy-proofness, we also calculate the expected per-agent welfare
for the equi-spaced utility function. We compare the learned mechanisms with RSD
and DA. Because RSD does not guarantee IR, we include its IR violation as part
of the reported stability violation. DA and the learned mechanisms satisfy IR.

We also calculate the similarity with DA. For preference profile >, the similarity
to the worker-proposing DA (with matching g*-P#) is the fraction of the matching
of the DA mechanism that is retained in the learned mechanism ¢%, and

2w f):gP (=1 G ()

sim(g%, =) = (1.28)

2w P o)=1 1
We define this analogously for firm-proposing DA, average the similarity across
multiple profiles for each of worker- and firm-proposing DA, and define similarity
sim(g?) as the maximum of these two quantities.
We also quantify the amount of randomization by computing the expected nor-
malized per-agent entropy. For preference profile >, we calculate the normalized
per-agent entropy (zero for a deterministic mechanism) as

g8 () logy gt 9%+ (=) logy g +(>)
H( ZZ : loginf ZZ f 10g22nf '

“’€Wf€F fEFweWw

(1.29)

See Figures 1.7 and 1.8 for the results in environments with truncation. For
Figure 1.7, we adopt as the DA baseline whichever of worker- and firm-proposing
DA is best in terms of average SP violation on test data. The learned design frontier
dominates the convex combination of DA and RSD.

For Figure 1.8, we adopt as the DA baseline whichever of worker- and firm-
proposing DA is best in terms of per-agent welfare on test data. Figure 1.9 shows
that for larger values of A (> 0.2) the ANN tends to learn a mechanism that is
deterministic and equivalent to a DA mechanism.

Considering Figures 1.7 and 1.8, we see that for very small A values (emphasizing
strategy-proofness) we learn mechanisms with welfare similar to that of RSD and
with very small SP violations but with better stability than RSD. For slightly larger
values of A, say around 3/64 for small correlations between preferences, we learn
mechanisms that are almost as stable as DA (stv < 0.01) but with much lower
SP violation (rgt < 0.001). These mechanisms have welfare that is intermediate
between RSD and DA. Comparing the scale of the y-axes in Figure 1.7, we see
that higher correlation between preferences has little effect on stability but tends
to remove opportunities for strategic behavior and improve strategy-proofness.

Figure 1.10 presents results for the environment without truncation (we still
allow truncation for mis-reports). Compared with the results in Figure 1.7, the SP
violation of DA is worse while the stability violation of RSD is better (because



22 Z. Feng, D. C. Parkes and S. S. Ravindranath

% similarity to DA vs A Normalized Entropy vs A
0.5+ 1} === Uncorrelated
g 2 | Pcorr =0.25
o I —— Peorr=0.50
_‘? _"g 0.3 —— Pcorr=0.75
5 191
= Uncorrelated ]
IS s 0.2
n Peorr =0.25 g
® Peorr = 0.50 201
Pcorr = 0.75
T T 0'0 T T T T T T
0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 1.9 Non-truncated preferences. Left: Similarity of the learned mechanisms with
DA. Right: Expected normalized per-agent entropy of the learned mechanisms.
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Figure 1.10 Non-truncated and uncorrelated preferences. Left: The design frontier for
the learned mechanisms for different choices of A (red dots) in an environment without
preference truncation, and also showing RSD and the best of worker- and firm-proposing
DA for SP violation. Right: Per-agent welfare, stability violation, and SP-violation. For
welfare, this considers the best of worker- and firm-proposing DA for welfare. For SP-
violation, this considers the best of worker- and firm-proposing DA for SP-violation. The
stability violation for RSD is 0.033 and the SP-violation for DA is 0.05.

there can be no violation of IR). It is interesting that the learned mechanisms
are able to achieve similar performance to the settings with truncation: very low
stability violation (stv < 0.005) and very low SP violation (rgt < 0.001). Whereas
DA is stable on all inputs, including truncated inputs, the learned mechanisms can
adopt different behaviors on profiles with truncations, recognizing that this does
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not affect in-distribution stability. To illustrate this, suppose firm f; has preference
order we, wy, w3, wys, L and suppose DA assigns the firm to wy, its least preferred
worker. Now, f; may truncate to we, w1, L, w3, wy, in which case a DA might match
the firm to wq, its second preferred worker. By comparison, the ANN can learn
not to match the firm to any worker after this truncation, improving SP without
compromising stability.

Taken as a whole, these results suggest new directions for economic theory. For
example, are there mechanisms that for some distributions are provably almost as
stable as DA and yet considerably more strategy-proof, and can these mechanisms
and distributions be characterized? Are there mechanisms that for some distri-
butions are provably almost as strategy-proof as RSD and yet considerably more
stable, and can these mechanisms and distributions be characterized?

1.5 Discussion

We have seen that ANNs are a flexible tool with which to design and study matching
markets. In addition to the matching problems described in this chapter, ANNs have
been applied to the following settings:

e Small combinatorial auctions, which are auctions in which a buyer’s value for a
package of items can be super-additive in its value for individual items.

e Bayesian incentive-compatible auctions for buyers with budget constraints.

e Incentive-aligned social choice mechanisms such as multi-facility location.

e Auctions that allocate items efficiently while also minimizing the total expected
payment collected from buyers.

Differentiable economics has also led to the discovery of provably-optimal auc-
tions by making use of an architecture (RochetNet) that provides exact strategy-
proofness for single-buyer settings. Methodological developments include the use
of methods from robust machine learning to certify the worst-case violation of
strategy-proofness of a learned mechanism as well as ANN architectures that im-
pose symmetry on auction rules.

There are a number of interesting future directions, including new applications,
for example to contract design, double auctions, or collusion-proof auctions. We
need architectural innovations that incorporate characterization results from eco-
nomic theory, and methods that provide robustness to adversarial inputs and trans-
form learned mechanisms with approximate properties of interest to those with
exact properties. Scaling to larger combinatorial auction problems will require the
use of succinct representations of inputs and outputs. The communication of results
back to economic theory will be aided through methods to interpret learned mech-
anisms, as well as lower- and upper-bounds on performance that serve to confirm
opportunities for new theoretical development.
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1.6 Chapter Notes

The agenda of automated mechanism design (AMD) was introduced by Conitzer
and Sandholm (2002) and early work makes use of integer programming and linear
programming. Later, there was work on optimizing within parametrized classes of
mechanisms, leading for example to the AMD baseline in Figure 1.5 (Guo and
Conitzer, 2010; Sandholm and Likhodedov, 2015).

The network architecture discussed in Section 1.3 is the RegretNet architecture
from Diitting et al. (2019), who also provide generalization bounds for regret and
revenue and experimental results for small combinatorial auctions; see also Diitting
et al. (2020) for the single buyer RochetNet architecture, which is exactly strategy-
proof and has been used to support conjectures and discover new, provably-optimal
auctions. Shen et al. (2019) also derive theoretically optimal designs using a varia-
tion on RochetNet. Earlier, Cole and Roughgarden (2014) introduced the study of
the sample complexity for optimal auction design. Diitting et al. (2015) introduced
expected ez post regret to quantify approximate strategy-proofness in studying the
application of support-vector machines to AMD.

Differentiable economics has been applied to budget-constrained auction de-
sign (Feng et al., 2018), multi-facility location (Golowich et al., 2018), and payment-
minimizing mechanism design (Tacchetti et al., 2019). Curry et al. (2020) demon-
strate how to develop certificates for approximate strategy-proofness. Rahme et al.
(2021) introduce permutation-equivariance into ANN architectures as a way to im-
pose symmetry on learned auctions. Working with Bayesian incentive compatibility
rather than dominant-strategy incentive compatibility, Daskalakis and Weinberg
(2012) and Conitzer et al. (2020) provide transforms of e-IC mechanisms into IC
mechanisms.

The development in this chapter of the application to two-sided matching design
follows Ravindranath et al. (2021), who adopt ordinal SP and quantify the violation
of first-order stochastic dominance rather than adopt ex post regret and equi-utility
as in the present chapter. The results are qualitatively similar to those presented
here. The decomposition theorem is discussed in Chapter ??, and Budish et al.
(2013) provide a general result that applies when some agents are unmatched. The
concept of ex ante justified envy is due to Kesten and Unver (2015). Narasimhan
et al. (2016) apply support-vector machines to the design of stable matching mech-
anisms, finding rules on the stable matching polytope (see Chapter ?7).

The results presented here use the PyTorch deep learning library and the Adam
optimizer with a learning rate of @ = 0.001. For the auction results, we use aug-
mented Lagrangian solver across 80 steps (with p = 1), where each step involves
5,000 mini-batch SGD iterations, each mini-batch consisting of 128 valuation pro-
files. For each profile, 25 iterations of gradient ascent are used to find a defeating
valuation for each buyer. For the matching results, we train for 50,000 mini-batch
based SGD iterations, with each mini-batch consisting of 1,024 preference profiles.
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