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Peer prediction mechanisms incentivize agents to truthfully report their signals, in the absence of a verification

mechanism, by comparing their reports with those of their peers. Prior work in this area is essentially restricted

to the case of homogeneous agents, whose signal distributions are identical. This is limiting in many domains,

where we would expect agents to differ in taste, judgment and reliability. Although the Correlated Agreement

(CA) mechanism [34] can be extended to handle heterogeneous agents, there is a new challenge of efficiently

estimating agent signal types. We solve this problem by clustering agents based on their reporting behavior,

proposing amechanism that works with clusters of agents and designing algorithms that learn such a clustering.

In this way, we also connect peer prediction with the Dawid and Skene [6] literature on latent types. We retain

the robustness against coordinated misreports of the CA mechanism, achieving an approximate incentive

guarantee of ε-informed truthfulness. We show on real data that this incentive approximation is reasonable in

practice, even with a small number of clusters.

Additional Key Words and Phrases: Peer Prediction; Information Elicitation; Clustering; Tensor Decompsition

ACM Reference Format:
Arpit Agarwal, Debmalya Mandal, David C. Parkes, and Nisarg Shah. 2019. Peer Prediction with Heterogeneous

Users. ACM Transactions on Economics and Computation 0, 0, Article 00 ( 2019), 28 pages. https://doi.org/

0000001.0000001

1 INTRODUCTION
Peer prediction is the problem of information elicitation without verification. Peer prediction

mechanisms incentivize users to provide honest reports when the reports cannot be verified, either

because there is no objective ground truth or because it is costly to acquire the ground truth. Peer

prediction mechanisms leverage correlation in the reports of peers in order to score contributions.

The main challenge of peer prediction is to incentivize agents to put effort to obtain a signal or form

an opinion and then honestly report to the system. In recent years, peer prediction has been studied

in several domains, including peer assessment in massively open online courses (MOOCs) [Gao

et al., 2016, Shnayder and Parkes, 2016], for feedback on local places in a city [Mandal et al., 2016],

and in the context of collaborative sensing platforms [Radanovic and Faltings, 2015a].
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The simplest peer prediction mechanism is output agreement, which pairs up two users and

rewards them in the event that their reports agree (the ESP game [von Ahn and Dabbish, 2004] can

be interpreted this way). However, output agreement is not incentive aligned for reports of a priori
unlikely signals. As a result, there has been a lot of attention in recent years on finding methods

that work more generally and provide robustness to coordinated misreports.

All existing, general methods are essentially restricted to settings with homogeneous participants,

whose signal distributions are identical. This is a poor fit with many suggested applications of peer

prediction. Consider for example, the problem of peer assessment in MOOCs. DeBoer et al. [2013]

and Wilkowski et al. [2014] observe that students differ based on their geographical locations,

educational backgrounds, and level of commitment, and indeed the heterogeneity of assessment is

clear from a study of Coursera data [Kulkarni et al., 2015]. Simpson et al. [2013] observed that the

users participating in a citizen science project can be categorized into five distinct groups based on

their behavioral patterns in classifying an image as a Supernovae or not. A similar problem occurs

in determining whether a news headline is offensive or not. Depending on which social community

a user belongs to, we should expect to get different opinions [Zafar et al., 2016]. Moreover, Allcott

and Gentzkow [2017] report that leading to the 2016 U.S. presidential election, people were more

likely to believe the stories that favored their preferred candidate; Fourney et al. [2017] find that

there is very low connectivity among Trump and Clinton supporters on social networks, which

leads to confirmation bias among the two groups and clear heterogeneity about how they believe

whether a news is “fake” or not.

One obstacle to designing peer prediction mechanisms for heterogeneous agents is an impos-

sibility result. No mechanism can provide strict incentive for truth-telling to a population of

heterogeneous agents without knowledge of their signal distributions [Radanovic and Faltings,

2015c]. This negative result holds for minimal mechanisms, which only elicit signals and not beliefs

from agents. One way to alleviate this problem, without going to non-minimal mechanisms, is to

use reports from the agents across multiple tasks to estimate their signal distributions. This is our

goal: we want to design minimal peer prediction mechanisms for heterogeneous agents that use

reports from the agents for both learning and scoring. We also want to provide robustness against

coordinated misreports.

As a starting point, we consider the correlated agreement (CA) mechanism proposed by Shnayder

et al. [2016]. If the agents are homogeneous and the designer has knowledge of their joint signal

distribution, the CA mechanism is informed truthful, i.e. no strategy profile, even if coordinated, can

provide more expected payment than truth-telling, and the expected payment under an uninformed

strategy (where an agent’s report is independent of her signal) is strictly less than the expected

payment under truth-telling. These two properties remove any incentive for coordinated deviations

and strictly incentivize the agents to put effort in acquiring signals, respectively. In a detail-free

variation, in which the designer learns the signal distribution from reports, approximate incentive

alignment is provided (still maintaining the second property as a strict guarantee.) The detail-free

CA mechanism can be extended to handle agent heterogeneity, but a naïve approach would require

learning the joint signal distributions between every pair of agents, and the total number of reports

that need to be collected would be prohibitive for many settings.

Our contributions: We design the first minimal and detail-free mechanism for peer prediction

with heterogeneous agents, where the learning component has sample complexity that is only

linear in the number of agents, while providing an incentive guarantee of approximate informed

truthfulness. Like the CA mechanism, this is a multi-task mechanism in that each agent makes

reports across multiple tasks. Since our mechanism has a learning component, the task assignments

to agents should be such that both the goals of incentive alignment and learning are simultaneously
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achieved. We consider two assignment schemes under which these goals can be achieved and

analyze the sample complexity of our methods for these schemes.

The mechanism clusters the agents based on their reported behavior and learns the pairwise

correlations between these clusters. The clustering introduces one component of the incentive

approximation, and could be problematic in the absence of a good clustering such that agents

within a cluster behave similarly. Using eight real-world datasets, which contain reports of users

on crowdsourcing platforms for multiple labeling tasks, we show that the clustering error is small

in practice even when using a relatively small number of clusters. The second component of the

incentive approximation stems from the need to learn the pairwise correlations between clusters;

this component can be made arbitrarily small using a sufficient number of signal reports.

Another contribution of this work is to connect, we believe for the first time, the peer predic-

tion literature with the extensive and influential literature on latent, confusion matrix models of

label aggregation [Dawid and Skene, 1979b]. The Dawid-Skene model assumes that signals are

generated independently, conditional on a latent attribute of a task and according to an agent’s

confusion matrix. We cluster the agents based on their confusion matrices and then estimate the

average confusion matrices within clusters using recent developments in tensor decomposition

algorithms [Anandkumar et al., 2014, Zhang et al., 2016]. These average confusion matrices are

then used to learn the pairwise correlations between clusters and design reward schemes to achieve

approximate informed truthfulness.

In effect, the mechanism learns how to map one agent’s signal reports onto the signal reports of

the other agents. For example, consider the context of a MOOC, in which an agent in the “accurate”

cluster accurately provides grades, an agent in the “extremal” cluster only uses grades ‘A’ and

‘E’, and an agent in the “contrarian” cluster flips good grades for bad grades and vice-versa. The

mechanism might learn to positively score an ‘A’ report from an “extremal” agent matched with a

‘B’ report from an “accurate” agent, or matched with an ‘E’ report from a “contrarian” agent for

the same essay. In practice, our mechanism will train on the data collected during a semester of

peer assessment reports, and then cluster the students, estimate the pairwise signal distributions

between clusters, and accordingly score the students (i.e., the scoring is done retroactively).

1.1 Related Work
We focus our discussion on related work about minimal mechanisms, but remark that we are not

aware of any non-minimal mechanisms (following from the work of Prelec [2004]) that handle

agent heterogeneity. Miller et al. [2005] introduce the peer prediction problem, and proposed

an incentive-aligned mechanism for the single-task setting. However, their mechanism requires

knowledge of the joint signal distribution and is vulnerable to coordinated misreports. In regard to

coordinated misreports, Jurca et al. [2009] show how to eliminate uninformative, pure-strategy

equilibria through a three-peer mechanism, and Kong et al. [2016] provide a method to design

robust, single-task, binary signal mechanisms (but need knowledge of the joint signal distribution).

Frongillo and Witkowski [2017] provide a characterization of minimal (single task) peer prediction

mechanisms.

Witkowski and Parkes [2013] introduce the combination of learning and peer prediction, coupling

the estimation of the signal prior together with the shadowing mechanism. Some results make use

of reports from a large population. Radanovic and Faltings [2015b], for example, establish robust

incentive properties in a large-market limit where both the number of tasks and the number of

agents assigned to each task grow without bound. Radanovic et al. [2016] provide complementary

theoretical results, giving a mechanism in which truthfulness is the equilibrium with the high-

est payoff in the asymptote of a large population and with a structural property on the signal

distribution.
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Dasgupta and Ghosh [2013] show that robustness to coordinated misreports can be achieved for

binary signals in a small population by using a multi-task mechanism. The idea is to reward agents

if they provide the same signal on the same task, but punish them if one agent’s report on one task

is the same as another’s on a different task. The Correlated Agreement (CA) mechanism [Shnayder

et al., 2016] generalizes this mechanism to handle multiple signals, and uses reports to estimate the

correlation structure on pairs of signals without compromising incentives. In related work, Kong

and Schoenebeck [2016] show that many peer prediction mechanisms can be derived within a

single information-theoretic framework. Their results use different technical tools than those

used by Shnayder et al. [2016], and also include a different multi-signal generalization of the

Dasgupta-Ghosh mechanism that provides robustness against coordinated misreports in the limit of

a large number of tasks. Shnayder et al. [2016] adopt replicator dynamics as a model of population

learning in peer prediction, and confirm that thesemulti-taskmechanisms (including themechanism

by Kamble et al. [2015]) are successful at avoiding uninformed equilibria.

There are very few results on handling agent heterogeneity in peer prediction. For binary

signals, the method of Dasgupta and Ghosh [2013] is likely to be an effective solution because their

assumption on correlation structure will tend to hold for most reasonable models of heterogeneity.

But it will break down for more than two signals, as explained by Shnayder et al. [2016]. Moreover,

although the CA mechanism can in principle be extended to handle heterogeneity, it is not clear

how the required statistical information about joint signal distributions can be efficiently learned

and coupled with an analysis of approximate incentives. For a setting with binary signals and

where each task has one of a fixed number of latent types, Kamble et al. [2015] design a mechanism

that provides strict incentive compatibility for a suitably large number of heterogeneous agents,

and when the number of tasks grows without bound (while allowing each agent to only provide

reports on a bounded number of tasks). Their result is restricted to binary signals, and requires a

strong regularity assumption on the generative model of signals.

Finally, we consider only binary effort of a user, i.e. the agent either invests effort and receives

an informed signal or does not invest effort and receives an uninformed signal. Shnayder et al.

[2016] work with the binary effort setting and provide strict incentive for being truthful. Therefore,

as long as the mechanism designer is aware of the cost of investing effort, the payments can be

scaled to cover the cost of investing effort. The importance of motivating effort in the context of

peer prediction has also been considered by Liu and Chen [2017b] and Witkowski et al. [2013].
1

See Mandal et al. [2016] for a setting with heterogeneous tasks but homogeneous agents. Liu and

Chen [2017a] also designed single-task peer prediction mechanism for the same setting but only

when each task is associated with a latent ground truth,

2 MODEL
Let notation [t] denote {1, . . . , t} for t ∈ N. We consider a population of agents P = [ℓ], and use

indices such as p and q to refer to agents from this population. There is a set of tasks M = [m].
When an agent performs a task, she receives a signal from N = [n]. As mentioned before, we

assume that the effort of an agent is binary. We also assume that the tasks are ex ante identical,
that is, the signals of an agent for different tasks are sampled i.i.d. We use Sp to denote the random

variable for the signal of agent p for a task.

We work in the setting where the agents are heterogeneous, i.e., the distribution of signals can

be different for different agents. We say that agents vary by signal type. Let Dp,q(i, j) denote the

1
Cai et al. [2015] work in a different model, showing how to achieve optimal statistical estimation from data provided

by rational agents. They only focus on the cost of effort. They do not consider possible misreports, and thus their mechanism

is also vulnerable to coordinated misreports.
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joint probability that agent p receives signal i while agent q receives signal j on a random task. Let

Dp (i) and Dq(j) denote the corresponding marginal probabilities. We define the Delta matrix ∆p,q
between agents p and q as

∆p,q(i, j) = Dp,q(i, j) − Dp (i) · Dq(j), ∀i, j ∈ [n]. (1)

Example 2.1. For two agents p and q, consider the following joint signal distribution Dp,q is

Dp,q =

[
0.4 0.1
0.1 0.4

]
with marginal distributions Dp = Dq = [0.5 0.5], the Delta matrix ∆p,q is

∆p,q =

[
0.4 0.1
0.1 0.4

]
−

[
0.5
0.5

]
·
[
0.5 0.5

]
=

[
0.15 −0.15

−0.15 0.15

]
.

Shnayder et al. [2016] show that it is without loss of generality for the class of mechanisms we

study in this paper to assume that an agent’s strategy is uniform across different tasks. Given this,

letRp denote the random variable for the report of agentp for a task. The strategy of agentp, denoted

Fp , defines the distribution of reports for each possible signal i , with F
p
ir = Pr(Rp = r |Sp = i).

The collection of agent strategies, denoted {Fp }p∈P , is the strategy profile. A strategy of agent p is

informed if there exist distinct i, j ∈ [n] and r ∈ [n] such that F
p
ir , F

p
jr , i.e., if not all rows of F

p
are

identical. We say that a strategy is uninformed otherwise.

2.1 Multi-Task Peer Prediction
We consider multi-task peer prediction mechanisms. In particular, we adapt the correlated agreement
(CA) mechanism [Shnayder et al., 2016] to our setting with heterogeneous agents. For every pair

of agents p,q ∈ P , we define a scoring matrix Sp,q : [n] × [n] → R as a means of scoring agent

reports.
2
We randomly divide (without the knowledge of an agent) the set of tasks performed by

each agent into nonempty sets of bonus tasks and penalty tasks. For agent p, we denote the set of
her bonus tasks byM

p
1
and the set of her penalty tasks byM

p
2
.

To calculate the payment to an agent p for a bonus task t ∈ M
p
1
, we do the following:

(1) Randomly select an agent q ∈ P \ {p} such that t ∈ M
q
1
, and the setM

p
2
∪M

q
2
has at least 2

distinct tasks, and call q the peer of p.
(2) Pick tasks t ′ ∈ M

p
2
and t ′′ ∈ M

q
2
randomly such that t ′ , t ′′ (t ′ and t ′′ are the penalty tasks

for agents p and q respectively)

(3) Let the reports of agent p on tasks t and t ′ be r tp and r t
′

p , respectively and the reports of agent

q on tasks t and t ′′ be r tq and r t
′′

q respectively.

(4) The payment of agent p for task t is then Sp,q(r
t
p , r

t
q) − Sp,q(r

t ′
p , r

t ′′
q ).

The total payment to an agent is the sum of payments for the agent’s bonus tasks. We assume that

from an agent’s perspective, every other agent is equally likely to be her peer. This requires agents

not to know each other’s task assignments. In Section 4 we give two task assignment schemes

which satisfy this property that from an agent’s perspective all peers are equally likely.

2
Multi-task peer prediction mechanisms for homogeneous agents need a single Delta and a single scoring matrix.
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The expected payment to agent p for any bonus task performed by her, equal across all bonus

tasks as the tasks are ex ante identical, is given as

up (F
p , {Fq}q,p ) =

1

ℓ − 1

∑
q,p


∑
i, j

Dp,q(i, j)
∑
rp,rq

F
p
irp F

q
jrqSp,q(rp , rq)

−
∑
i

Dp (i)
∑
rp

F
p
irp

∑
j

Dq(j)
∑
rq

F
q
jrqSp,q(rp , rq)


=

1

ℓ − 1

∑
q,p


∑
i, j

(
Dp,q(i, j) − Dp (i)Dq(j)

) ∑
rp,rq

F
p
irp F

q
jrqSp,q(rp , rq)


=

1

ℓ − 1

∑
q,p

∑
i, j

∆p,q(i, j)
∑
rp,rq

F
p
irp F

q
jrqSp,q(rp , rq)

Using the fact that there exist optimal solutions to linear functions that are extremal, it is easy to

show that there always exists an optimal strategy for agent p that is deterministic (see also Shnayder

et al. [2016]).

Lemma 2.2. For every player p, and any strategies of others, there always exists an optimal strategy
Fp maximizing up that is deterministic.

Hereafter, we assume without loss of generality that agent strategies are deterministic. For a

deterministic strategy Fp of agent p, we will slightly abuse notation and write F
p
i to denote the

signal reported by agent p when she observes signal i . For a deterministic strategy profile {Fq}q∈P ,
the expected payment to agent p is

up (F
p , {Fq}q,p ) =

1

ℓ − 1

∑
q,p

∑
i, j

∆p,q(i, j) · Sp,q(F
p
i , F

q
j ). (2)

2.2 Informed Truthfulness
Following Shnayder et al. [2016], we define the notion of approximate informed truthfulness for a

multi-task peer prediction mechanism.

Definition 2.3. (ε-informed truthfulness) We say that a multi-task peer prediction mechanism

is ε-informed truthful, for some ε > 0, if and only if for every strategy profile {Fq}q∈P and every

agent p ∈ P , we have up (I, {I}q,p ) > up (F
p , {Fq}q,p ) − ε , where I is the truthful strategy, and

up (I, {I}q,p ) > up (F
p
0
, {Fq}q,p ) where F

p
0
is an uninformed strategy.

An ε-informed truthful mechanism ensures that every agent prefers (up to ε) the truthful strategy
profile over any other strategy profile, and strictly prefers the truthful strategy profile over any

uninformed strategy. Moreover, no coordinated strategy profile provides more expected utility than

the truthful strategy profile (upto ε). For a small ε , this is responsive to the main concerns about

incentives in peer prediction: a minimal opportunity for coordinated manipulations, and a strict

incentive to invest effort in collecting and reporting an informative signal.
3

3
We do not model the cost of effort explicitly in this paper, but a binary cost model (effort→ signal, no-effort→ no

signal) can be handled in a straightforward way. See Shnayder et al. [2016].
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2.3 Agent Clustering
While the natural extension of the detail-free CA mechanism to our setting with heterogeneous

agents preserves informed truthfulness, it would require learning the Delta matrix between ev-

ery pair of agents. In order to learn this from data without additional assumptions, we would

require Ω(ℓ2) samples, which will often be impractical. Rather, the number of reports in a practical

mechanism should scale closer to linearly in the number of agents.

In response, we will assume that agents can be (approximately) clustered into a bounded number

K of agent signal types, with all agents of the same type having nearly identical signal distributions.

Let G1, . . . ,GK denote a partitioning of agents into K clusters. With a slight abuse of notation, we

also use G(p) to denote the cluster to which agent p belongs.

Definition 2.4. We say that clusteringG1, . . . ,GK is ε1-accurate, for some ε1 > 0, if for every pair

of agents p,q ∈ P ,
∥∆p,q − ∆G(p),G(q)∥1 6 ε1, (3)

where ∆G(p),G(q) is the cluster Delta matrix between clusters G(p) and G(q), defined as the average

of the Delta matrices between agents in G(p) and agents in G(q):

∆Gs ,Gt =

{
1

|Gs |× |Gt |

∑
p∈Gs ,q∈Gt

∆p,q if s , t
1

|Gs |2−Gs

∑
p,q∈Gs ,q,p ∆p,q if s = t

.

Example 2.5. Let there be 4 agents p,q, r and s . Let the pairwise Delta matrices be the following

∆p,q =

[
0.15 −0.15

−0.15 0.15

]
, ∆p,r =

[
−0.15 0.15

0.15 −0.15

]
, ∆p,s =

[
−0.05 0.05

0.05 −0.05

]
∆q,r =

[
−0.05 0.05

0.05 −0.05

]
, ∆q,s =

[
−0.15 0.15

0.15 −0.15

]
, ∆r,s =

[
0.15 −0.15

−0.15 0.15

]
In this example, agents p and q tend to agree with each other, while agents r and s tend to agree

with each other while disagreeing with p and q. Let the clustering be G1,G2 where p,q belong to

G1 and r , s belong to G2. Then the cluster Delta matrices are the following

∆G1,G1
=

[
0.15 −0.15

−0.15 0.15

]
, ∆G1,G2

=

[
−0.1 0.1
0.1 −0.1

]
, ∆G2,G2

=

[
0.15 −0.15

−0.15 0.15

]
.

It is easy to observe that G1,G2 is a 0.2-accurate clustering.

Our mechanism will use an estimate of ∆G(p),G(q) (instead of ∆p,q ) to define the scoring matrix

Sp,q . Thus, the incentive approximation will directly depend on the accuracy of the clustering as

well as how good the estimate of ∆G(p),G(q) is.

There is an inverse relationship between the number of clusters K and the clustering accuracy

ε1: the higher the K , the lower the ε1. In the extreme, we can let every agent be a separate cluster

(K = ℓ), which results in ε1 = 0. But a small number of clusters is essential for a reasonable sample

complexity as we need to learn O(K2) cluster Delta matrices. For instance, in Example 2.5 we need

to learn 3 Delta matrices with clustering, as opposed to 6 without clustering. In Section 4, we give

a learning algorithm that can learn all the pairwise cluster Delta matrices with Õ(K) samples given

a clustering of the agents. In Section 5, we show using real-world data that a reasonably small

clustering error can be achieved with relatively few clusters.

3 CORRELATED AGREEMENT FOR CLUSTERED, HETEROGENEOUS AGENTS
In this section we define mechanism CAHU, presented as Algorithm 1, which takes as input a

clustering as well as estimates of the cluster Delta matrices. Specifically, CAHU takes as input a

clustering G1, . . . ,GK , together with estimates of cluster Delta matrices {∆Gs ,Gt }s,t ∈[K ].
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Definition 3.1. We say that a clustering {Gs }s ∈[K ] and the estimates {∆Gs ,Gt }s,t ∈[K ] are (ε1, ε2)-

accurate if

• ∥∆p,q − ∆G(p),G(q)∥1 6 ε1 for all agents p,q ∈ P , i.e., the clustering is ε1-accurate, and

• ∥∆Gs ,Gt − ∆Gs ,Gt ∥1 6 ε2 for all clusters s, t ∈ [K], i.e., the cluster Delta matrix estimates are

ε2-accurate.

When we have a clustering and estimates of the delta matrices which are (ε1, ε2)-accurate, we

prove that the CAHU mechanism is (ε1 + ε2)-informed truthful. In Section 4, we present algorithms

that can learn an ε1-accurate clustering and ε2-accurate estimates of cluster Delta matrices.

Throughout the rest of this section, we will use ε1 to denote the clustering error and ε2 to denote

the learning error. We remark that the clustering error ε1 is determined by the level of similarity

present in agent signal-report behavior, as well as the number of clusters K used, whereas the

learning error ε2 depends on how many samples the learning algorithm sees.

Algorithm 1Mechanism CAHU

Input:
A clustering G1, . . . ,GK such that ∥∆p,q − ∆G(p),G(q)∥1 6 ε1 for all p,q ∈ P ;

estimates {∆Gs ,Gt }s,t ∈[K ] such that ∥∆Gs ,Gt − ∆Gs ,Gt ∥1 6 ε2 for all s, t ∈ [K]; and

for each agent p ∈ P , her bonus tasksM
p
1
, penalty tasksM

p
2
, and responses {r

p
b }b ∈M

p
1
∪Mp

2

.

Method:
1: for every agent p ∈ P do
2: for every task b ∈ M

p
1
do ◃ Reward response r

p
b

3: q ← uniformly at random conditioned on b ∈ M
q
1
∪M

q
2
and (either

��Mq
2

�� > 2,
��Mp

2

�� > 2

orM
q
2
, M

p
2
) ◃ Peer agent

4: Pick tasks b ′ ∈ M
p
2
and b ′′ ∈ M

q
2
randomly such that b ′ , b ′′ ◃ Penalty tasks

5: SG(p),G(q) ← Sign(∆G(p),G(q))
†

6: Reward to agent p for task b is SG(p),G(q)

(
r
p
b , r

q
b

)
− SG(p),G(q)

(
r
p
b′, r

q
b′′

)
7: end for
8: end for

†
Sign(x ) = 1 if x > 0, and 0 otherwise.

3.1 Analysis of CAHU
Because mechanism CAHU uses scoring matrix SG(p),G(q) to reward agent p given peer agent q
in place of a separate scoring matrix Sp,q for every pair of agents (p,q), the payoff equation (2)

transforms to

up (F
p , {Fq}q,p ) =

1

ℓ − 1

∑
q∈P\{p }

∑
i, j

∆p,q(i, j) · SG(p),G(q)(F
p
i , F

q
j ). (4)

Next, we prove a sequence of results that show that mechanism CAHU is (ε1 + ε2)-informed

truthful when the clustering is ε1-accurate and the cluster Delta matrix estimates are ε2-accurate.

We first show that the mechanism would be (exactly) informed truthful if it used the Delta matrices

between agents instead of using estimates of cluster Delta matrices. In the following we use u∗p (·)
(resp. up (·)) to denote the utility of agent p under the CA (resp. CAHU) mechanism.
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Lemma 3.2. For a strategy profile {Fq}q∈P and an agent p ∈ P , define

u∗p (F
p , {Fq}q,p ) =

1

ℓ − 1

∑
q∈P\{p }

∑
i, j

∆p,q(i, j) · Sp,q(F
p
i , F

q
j ),

where Sp,q(i, j) = Sign(∆p,q(i, j)) for all i, j ∈ [n]. Then, u∗p (I, {I}q,p ) > u∗p (F
p , {Fq}q,p ). Moreover,

for any uninformed strategy Fp = r , u∗p (I, {I}q,p ) > u∗p (r , {F
q}q,p ).

Proof. Note that

u∗p (I, {I}q,p ) =
1

ℓ − 1

∑
q∈P\{p }

∑
i, j

∆p,q(i, j) · Sp,q(i, j)

=
1

ℓ − 1

∑
q∈P\{p }

∑
i, j :∆p,q (i, j)>0

∆p,q(i, j)

>
1

ℓ − 1

∑
q∈P\{p }

∑
i, j

∆p,q(i, j) · Sp,q(F
p
i , F

q
j )

= u∗p (F
p , {Fq}q,p ),

where the inequality follows because Sp,q(i, j) ∈ {0, 1}.
For an uninformed strategy Fp = r we have

u∗p (r , {F
q}q,p ) =

1

ℓ − 1

∑
q∈P\{p }

∑
i, j

∆p,q(i, j) · Sp,q(r , F
q
j )

=
1

ℓ − 1

∑
q∈P\{p }

∑
j

Sp,q(r , F
q
j )

(∑
i

∆p,q(i, j)

)
= 0

The last equality follows since the row / column sum of delta matrices is zero. On the other hand,

u∗p (I, {I}q,p ), being a sum of only positive entries, is strictly greater than 0. �

We now use this result to prove one of our main theorems, which is the desired informed

truthfulness guarantee about mechanism CAHU.

Theorem 3.3. With (ε1, ε2)-accurate clustering and learning, mechanism CAHU is (ε1+ε2)-informed
truthful if minp u

∗
p (I, {I}q,p ) > ε1. In particular,

(1) For every profile {Fq}q∈P and agent p ∈ P , we have up (I, {I}q,p ) > up (F
p , {Fq}q,p ) − ε1 − ε2.

(2) For any uninformed strategy F
p
0
, up (F

p
0
, {Fq}q,p ) < up (I, {I}q,p ).

Proof. Fix a strategy profile {Fq}q∈P . We first show that u∗p (I, {I}q,p ) > up (F
p , {Fq}q,p ), and

then show that |u∗p (I, {I}q,p ) − up (I, {I}q,p )| 6 ε1 + ε2. These together imply that up (I, {I}q,p ) >
up (F

p , {Fq}q,p ) − ε1 − ε2. To prove the former, note that

u∗p (I, {I}q,p ) =
1

ℓ − 1

∑
q∈P\{p }

∑
i, j

∆p,q(i, j) · Sp,q(F
p
i , F

q
j )

=
1

ℓ − 1

∑
q∈P\{p }

∑
i, j :∆p,q (i, j)>0

∆p,q(i, j)

>
1

ℓ − 1

∑
q∈P\{p }

∑
i, j

∆p,q(i, j) · SG(p),G(q)(F
p
i , F

q
j )

= up (F
p , {Fq}q,p ) ,
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where the inequality again follows because SG(p),G(q)(i, j) ∈ {0, 1}. For the latter, we have

|u∗p (I, {I}q,p ) − up (I, {I}q,p )| =

������ 1

ℓ − 1

∑
q∈P\{p }

∑
i, j

∆p,q(i, j)
(
Sign(∆p,q)i, j − Sign(∆G(p),G(q))i, j

) ������
(5)

6
1

ℓ − 1

∑
q∈P\{p }

∑
i, j

|∆p,q(i, j)
(
Sign(∆p,q)i, j − Sign(∆G(p),G(q))i, j

)
|

6
1

ℓ − 1

∑
q∈P\{p }

∑
i, j

|∆p,q(i, j) − ∆G(p),G(q)(i, j)|

=
1

ℓ − 1

∑
q∈P\{p }

∥∆p,q − ∆G(p),G(q)∥1

6
1

ℓ − 1

∑
q∈P\{p }

∥∆p,q − ∆G(p),G(q)∥1 + ∥∆G(p),G(q) − ∆G(p),G(q)∥1

6
1

ℓ − 1

∑
q∈P\{p }

ε1 + ε2 = ε1 + ε2.

To show that the third transition holds, we show that |a · (Sign(a) − Sign(b))| 6 |a − b | for all
real numbers a,b ∈ R. When Sign(a) = Sign(b), this holds trivially. When Sign(a) , Sign(b), note
that the RHS becomes |a | + |b |, which is an upper bound on the LHS, which becomes |a |. The
penultimate transition holds by ε1-accurate clustering and ε2-accurate estimates of cluster Delta

matrices. This proves the first part of the theorem.

Now, we prove the second part of the theorem. Consider an uninformed strategy Fp = r of agent
p. Then,

up (r , {F
q}q,p ) =

1

ℓ − 1

∑
q∈P\{p }

∑
i, j

∆p,q(i, j) · SG(p),G(q)(r , F
q
j )

=
1

ℓ − 1

∑
q∈P\{p }

∑
j

SG(p),G(q)(r , F
q
j )

(∑
i

∆p,q(i, j)

)
= 0,

where the last equality follows because the rows and columns of∆p,q sum to zero. Since |u∗p (I, {I}q,p )−
up (I, {I}q,p )| 6 ε1 + ε2 we have

up (I, {I}q,p ) > u∗p (I, {I}q,p ) − ε1 − ε2 > τ − ε2

for some τ > 0 as u∗p (I, {I}q,p ) > ε1. Since the delta matrices can be learned within any required

accuracy, ε2 can be made smaller than τ to ensure that up (I, {I}q,p ) > 0. �

The CAHU mechanism always ensures that there is no strategy profile which gives an expected

utility more than ε1 + ε2 above truthful reporting. The condition minp u
∗
p (I, {I}q,p ) > ε1 is required

to ensure that any uninformed strategy gives strictly less than the truth-telling equilibrium. This is

important to promote effort in collecting and reporting an informative signal. Writing it out, this

condition requires that for each agent p the following holds :

1

ℓ − 1

∑
q,p

∑
i, j :∆p,q (i, j)>0

∆p,q(i, j) > ε1. (6)
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In particular, a sufficient condition for this property is that for every pair of agents the expected

reward on a bonus task in the CA mechanism when making truthful reports is at least ε1, i.e. for

every pair of agents p and q, ∑
i, j :∆p,q (i, j)>0

∆p,q(i, j) > ε1. (7)

In turn, as pointed out by Shnayder et al. [2016], the LHS in (7) quantity can be interpreted as

a measure of how much positive correlation there is in the joint distribution on signals between

a pair of agents. Note that it is not important that this is same-signal correlation. For example,

this quantity would be large between an accurate and an always-wrong agent in a binary-signal

domain, since the positive correlation would be between one agent’s report and the flipped report

from the other agent.

The incentive properties of the mechanism are retained when used together with learning the

cluster structure and cluster Delta matrices. However, we do assume that the agents do not reveal

their task assignments to each other. If the agents were aware of the identities of the tasks they are

assigned, they could coordinate on the task identifiers to arrive at a profitable coordinated strategy.

This is reasonable in practical settings as the number of tasks is often large. The next theorem

shows that even if the agents could set the scoring matrices to be an arbitrary function Ŝ through

any possible deviating strategies, it is still beneficial to use the scoring matrices estimated from

the truthful strategies. Let Ŝ be an arbitrary scoring function i.e. ŜGs ,Gt specifies the reward matrix

for two agents from two clustersGs and Gt . We will write ûp (F
p , {Fq}q,p ) to denote the expected

utility of agent p under the CAHU mechanism with the reward function Ŝ and strategy profile

(Fp , {Fq}q,p ).

Theorem 3.4. Let Ŝ be an arbitrary scoring function i.e. ŜGs ,Gt (i, j) is the reward when a user p
from cluster Gs and user q from cluster Gt report signals i and j respectively. Then for every profile
{Fq}q∈P and agent p ∈ P , we have
(1) up (I, {I}q,p ) > ûp (F

p , {Fq}q,p ) − ε1 − ε2.
(2) If minp u

∗
p (I, {I}q,p ) > ε , then for any uninformed strategy Fp

0
, ûp (F

p
0
, {Fq}q,p ) < up (I, {I}q,p ).

Proof.

u∗p (I, {I}q,p ) =
1

ℓ − 1

∑
q∈P\{p }

∑
i, j

∆p,q(i, j) · Sp,q(i, j)

=
1

ℓ − 1

∑
q∈P\{p }

∑
i, j :∆p,q (i, j)>0

∆p,q(i, j)

>
1

ℓ − 1

∑
q∈P\{p }

∑
i, j

∆p,q(i, j) · Ŝp,q(F
p
i , F

q
j )

= ûp (F
p , {Fq}q,p ),

Now the proof of theorem 3.3 shows that up (I, {I}q,p ) > u∗p (I, {I}q,p ) − ε1 − ε2. Using the result

above we get up (I, {I}q,p ) > ûp (I, {I}q,p ) − ε1 − ε2. It is also easy to see that ûp (F
p
0
, {Fq}q,p ) = 0

for any uninformed strategy F
p
0
and the proof of theorem 3.3 also shows that up (I, {I}q,p ) can be

made positive whenever minp u
∗
p (I, {I}q,p ) > ε . �

The above theorem implies that the incentive properties of our mechanism hold even when

agents are allowed to coordinate their strategies and the mechanism is learned using reports from

these coordinated strategies. To be precise, recall that up (I, {I}q,p ) is the expected payment to
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agent p when the mechanism learns the true Delta matrix and the agent reports truthfully. This

is no less than the expected payment minus ε1 + ε2 when the mechanism learns any other delta

matrices and the agents misreport in any arbitrary way.

4 LEARNING THE AGENT SIGNAL TYPES
In this section, we provide algorithms for learning a clustering of agent signal types from reports,

and further, for learning the cluster pairwise ∆ matrices. The estimates of the ∆ matrices can

then be used to give an approximate-informed truthful mechanism. Along the way, we couple our

methods with the latent “confusion matrix” methods of Dawid and Skene [1979b].

Recall thatm is the total number of tasks about which reports are collected. Reports onm1 of

these tasks will also be used for clustering, and reports on a furtherm2 of these tasks will be used

for learning the cluster pairwise ∆matrices. We consider two different schemes for assigning agents

to tasks for the purpose of clustering and learning (see Figures 1 and 2):

Fig. 1. Fixed Task Assignment Fig. 2. Uniform Task Assignment

(1) Fixed Task Assignment: Each agent is assigned to the same, random subset of tasks of size

m1 +m2 of the givenm tasks.

(2) Uniform Task Assignment: For clustering, we select two agents r1 and r2, uniformly at

random, to be reference agents. These agents are assigned to a subset of tasks of sizem1(< m).
For all other agents, we then assign a required number of tasks, s1, uniformly at random from

the set ofm1 tasks. For learning the cluster pairwise ∆-matrices, we also assign one agent

from each cluster to some subset of tasks of size s2, selected uniformly at random from a

second set ofm2(< m −m1) tasks.

For each assignment scheme, the analysis establishes that there are enough agents who have

done a sufficient number of joint tasks. Table 1 summarizes the sample complexity results, stating

them under two different assumptions about the way in which signals are generated.

4.1 Clustering
We proceed by presenting and analyzing a simple clustering algorithm.

Definition 4.1. A clustering G1, . . . ,GK is ε-good if for some γ > 0

G(q) = G(r ) ⇒ ∥∆pq − ∆pr ∥1 6 ε − 4γ ∀p ∈ [ℓ] \ {q, r } (8)

G(q) , G(r ) ⇒ ∥∆pq − ∆pr ∥1 > ε ∀p ∈ [ℓ] \ {q, r } (9)

†
For an arbitrarym2, this bound is Km2 as long asm2 is Ω

(
n7/(ε ′)2

)
‡
In the no assumption approach (resp. Dawid-Skene Model), ε ′ is the error in the estimation of the joint probability

distribution (resp. aggregate confusion matrix).
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No Assumption Dawid-Skene

Fixed Assignment

Clustering: Õ
(
ℓn2

γ 2

)
Learning: Õ

(
Kn2

(ε ′)2

) Clustering: Õ
(
ℓn2

γ 2

)
Learning: Õ

(
ℓn7

(ε ′)2

)
Uniform Assignment

Clustering: Õ
(
ℓn2

γ 2
+m1

)
Learning: Õ

(
Km7/8

2

√
n2

(ε ′)2

) Clustering: Õ
(
ℓn2

γ 2
+m1

)
Learning: Õ

(
Kn7

(ε ′)2

)
†

Table 1. Sample complexity for the CAHU mechanism. The rows indicate the assignment scheme and the
columns indicate the modeling assumption. Here ℓ is the number of agents, n is the number of signals, ε ′ is a
parameter that controls learning accuracy ‡ , γ is a clustering parameter, K is the number of clusters, andm1

(resp.m2) is the size of the set of tasks from which the tasks used for clustering (resp. learning) are sampled.

We first show that an ε-good clustering, if exists, must be unique.

Theorem 4.2. Suppose there exist two clustering {G j }j ∈[K ] and {Ti }i ∈[K ′] that are ε-good. Then
K ′ = K and G j = Tπ (j) for some permutation π over [K].

Proof. Suppose equations 8 and 9 hold with parameters γ1 and γ2 respectively for the clusterings

{G j }j ∈[K ] and {Ti }i ∈[K ′]. If possible, assume there exist Ti and G j such that Ti \G j , ∅, G j \Ti , ∅
and Ti ∩G j , ∅. Pick s ∈ Ti ∩G j and r ∈ G j \Ti . Then we must have, for any p < {q, s, r },

(1) ∥∆pr − ∆ps ∥1 > ε (inter-cluster distance in {Ti }i ∈[K ′])
(2) ∥∆pr − ∆ps ∥1 6 ε − 4γ1 (intra-cluster distance in {G j }j ∈[K ])

This is a contradiction. Now supposeK ′ > K . Then there must existTi andTk such thatTi ∪Tk ⊆ G j
for some j. Pick q ∈ Ti and r ∈ Tk . Then, for any p < {q, r }

(1) ∥∆pq − ∆pr ∥1 > ε (inter-cluster distance in {Ti }i ∈[K ′])
(2) ∥∆pq − ∆pr ∥1 6 ε − 4γ1 (intra-cluster distance in {G j }j ∈[K ])

This leads to a contradiction and proves that K ′ 6 K . Similarly we can prove K 6 K ′. Therefore,
we have shown that for each each G j there exists i such that G j = Ti . �

Since there is a unique ε-good clustering (up to a permutation), we will refer to this clustering

as the correct clustering. The assumption that there exists an ε-good clustering is stronger than Equa-

tion (3) introduced earlier.

˜O(
n
2 /γ

2 )
i

Õ(n 2

/γ 2

) qt

pt

Ct

Fig. 3. Algorithm 2 checks whether i and qt
are in the same cluster by estimating ∆pt ,qt
and ∆pt ,i .

In particular, identifying the correct clustering needs to

satisfy eq. (9), i.e. the ∆-matrices of two agents belong-

ing to two different clusters are different with respect

to every other agent. So, we need low inter-cluster sim-

ilarities in addition to high intra-cluster similarities. The

pseudo-code for the clustering algorithm is presented in

Algorithm 2. This algorithm iterates over the agents, and

forms clusters in a greedy manner. First, we prove that

as long as we can find an agent pt that has Ω
(
n2

log(ℓ/δ )
γ 2

)
tasks in common with both qt and i , then the clustering

produced by Algorithm 2 is correct with probability at

least 1 − δ .



Agarwal, Mandal, Parkes, and Shah

Algorithm 2 Clustering

Input: ε,γ such that there exists an ε-good clustering with parameter γ .

Output: A clustering {Ĝt }
K̂
t=1

1: Ĝ ← ∅, K̂ ← 0 ◃ Ĝ is the list of clusters, K̂ = |Ĝ |
2: Make a new cluster Ĝ1 and add agent 1

3: Add Ĝ1 to Ĝ, K̂ ← K̂ + 1

4: for i = 2, . . . , ℓ do
5: for t ∈ [K̂] do
6: Pick an arbitrary agent qt ∈ Ĝt
7: Pick pt ∈ [l] \ {i,qt } (Fixed) or pt ∈ {r1, r2} \ {i,qt } (Uniform), such that pt has at

least Ω(
n2

log(Kℓ/δ )
γ 2

) tasks in common with both qt and i

8: Let ∆̄pt ,qt be the empirical Delta matrix from reports of agents pt and qt
9: Let ∆̄pt ,i be the empirical Delta matrix from reports of agents pt and i
10: end for
11: if ∃t ∈ [K̂] : ∥∆̄pt ,qt − ∆̄pt ,i ∥1 6 ε − 2γ then
12: add i to Ĝt (with ties broken arbitrarily for t )
13: else
14: Make a new cluster ĜK̂+1

and add agent i to it

15: Add ĜK̂+1
to Ĝ, K̂ ← K̂ + 1

16: end if
17: end for

Theorem 4.3. If for all i ∈ P and qt ∈ G(i), there exists
pt which has Ω

(
n2

log(ℓ/δ )
γ 2

)
tasks in common with both qt

and i , then Algorithm 2 recovers the correct clustering i.e. Ĝt = Gt for t = 1, . . . ,K with probability at
least 1 − δ .

We need two key technical lemmas to prove theorem 4.3. The first lemma shows that in order

to estimate ∆p,q with an L1 distance of at most γ , it is sufficient to estimate the joint probability

distribution Dp,q with an L1 distance of at most γ/3. With this, we can estimate the delta matrices

of agent pairs from the joint empirical distributions of their reports.

Lemma 4.4. For all p,q ∈ P , ∥D̄p,q − Dp,q ∥1 6 γ/3⇒ ∥∆̄p,q − ∆p,q ∥1 6 γ .

Proof.

∥∆̄p,q − ∆p,q ∥1 =
∑
i, j

��D̄p,q(i, j) − D̄p (i)D̄q(j) −
(
Dp,q(i, j) − Dp (i)Dq(j)

) ��
=

∑
i, j

��D̄p,q(i, j) − Dp,q(i, j)
�� +∑

i, j

��D̄p (i)D̄q(j) − D̄p (i)Dq(j) + D̄p (i)Dq(j) − Dp (i)Dq(j)
��

6 γ/3 +
∑
i

D̄p (i)
∑
j

��D̄q(j) − Dq(j)
�� +∑

j

Dq(j)
∑
i

��D̄p (i) − Dp (i)
��

6 γ/3 +
∑
j

��D̄q(j) − Dq(j)
�� +∑

i

��D̄p (i) − Dp (i)
��

6 γ/3 +
∑
i, j

��D̄p,q(i, j) − Dp,q(i, j)
�� +∑

i, j

��D̄p,q(i, j) − Dp,q(i, j)
��

6 γ ,
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as required. �

The second lemma is about learning the empirical distributions of reports of pairs of agents. This

can be proved using Theorems 3.1 and 2.2 from the work of Devroye and Lugosi [2012].

Lemma 4.5. Any distribution over a finite domain Ω is learnable within a L1 distance of d with
probability at least 1 − δ , by observing O

(
|Ω |
d2

log(1/δ )
)
samples from the distribution.

We can use the above lemma to show that the joint distributions of reports of agents can be

learned to within an L1 distance γ with probability at least 1−δ/Kℓ, by observingO
(
n2

γ 2
log(Kℓ/δ )

)
reports on joint tasks.

Corollary 4.6. For any agent pair p,q ∈ P , the joint distribution of their reports Dp,q is learnable

within a L1 distance of γ using O
(
n2

γ 2
log(Kℓ/δ )

)
reports on joint tasks with probability at least

1 − δ/Kℓ.

We are now ready to prove Theorem 4.3.

Proof. (of Theorem 4.3) The proof is by induction on the number of agents ℓ. Suppose all the
agents up to and including i − 1 have been clustered correctly. Consider the i-th agent and suppose

i belongs to the cluster Gt . Suppose Ĝt , ∅. Then using the triangle inequality we have

∥∆̄pt ,qt − ∆̄pt ,i ∥1 6 ∥∆̄pt ,qt − ∆pt ,qt ∥1 + ∥∆pt ,qt − ∆pt ,i ∥1 + ∥∆̄pt ,i − ∆pt ,i ∥1

Since qt ∈ Gt , we have ∥∆pt ,qt − ∆pt ,i ∥1 6 ε/2 − 4γ . Moreover, using lemma 4.4 and corollary 4.6

we have that, with probability at least 1 − δ/Kℓ, ∥∆̄pt ,qt − ∆pt ,qt ∥1 6 γ and ∥∆̄pt ,i − ∆pt ,i ∥ 6 γ .
This ensures that ∥∆̄pt ,qt − ∆̄pt ,i ∥1 6 ε/2 − 2γ . On the other hand pick any cluster Gs such that

s , t and Ĝs , ∅. Then

∥∆̄ps ,qs − ∆̄ps ,i ∥1 > ∥∆ps ,qs − ∆ps ,i ∥ − ∥∆̄ps ,qs − ∆ps ,qs ∥1 − ∥∆̄ps ,i − ∆ps ,i ∥1

Since i < Gs we have ∥∆ps ,qs − ∆ps ,i ∥1 > ε/2. Again, with probability at least 1 − δ/Kℓ, we have
∥∆̄ps ,qs − ∆ps ,qs ∥1 6 γ and ∥∆̄ps ,i − ∆ps ,i ∥1 6 γ . This ensures that ∥∆̄ps ,qs − ∆̄ps ,i ∥1 > ε/2 − 2γ .

This ensures that condition on line (11) is violated for all clusters s , t . If Ĝt , ∅ this condition is

satisfied and agent i added to cluster Ĝt , otherwise the algorithm makes a new cluster with agent i .
Now note that the algorithm makes a new cluster only when it sees an agent belonging to a new

cluster. This implies that K̂ = K . Taking a union bound over the K choices of qs for the K clusters,

we see that agent i is assigned to its correct cluster with probability at least 1 − δ/ℓ. Finally, taking
a union bound over all the ℓ agents we get the desired result. �

Next we show how the assumption in regard to task overlap is satisfied under each assignment

scheme, and characterize the sample complexity of learning the clusterings under each scheme. In

the fixed assignment scheme, all the agents are assigned to the same set ofm1 = Ω(n
2

γ 2
log(Kℓ/δ ))

tasks. Thus, for each agent pair qt and i , any other agent in the population can act as pt . The total

number of tasks performed is O
(
ℓn2

γ 2
log(Kℓ/δ )

)
.

In the uniform assignment scheme, we select two agents r1 and r2 uniformly at random to be

reference agents, and assign these agents to each of m1 = Ω(n
2

γ 2
log(Kℓ/δ )) tasks. For all other

agents we then assign s1 = Ω(n
2

γ 2
log(Kℓ/δ )) tasks uniformly at random from this set ofm1 tasks.

Ifm1 = s1, then the uniform task assignment is the same as fixed task assignment. However, in

applications (e.g., [Karger et al., 2011]), where one wants the task assignments to be more uniform

across tasks, it will make sense to use a larger value ofm1. The reference agent r1 can act as pt
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for all agent pairs qt and i other than r1. Similarly, reference r2 can act as pt for all agent pairs
qt and i other than r2. If qt = r1 and i = r2 or qt = r2 and i = r1, then any other agent can act as

pt . The total number of tasks performed is Ω( ℓn
2

γ 2
log(Kℓ/δ ) +m1), which is sufficient for the high

probability result.

4.2 Learning the Cluster Pairwise ∆ Matrices
We proceed now under the assumption that the agents are clustered into K groups, G1, . . . ,GK .

Our goal is to estimate the cluster-pairwise delta matrices ∆Gs ,Gt as required by Algorithm 1. We

estimate the ∆Gs ,Gt under two different settings: when we have no model of the signal distribution,

and in the Dawid-Skene latent attribute model.

Algorithm 3 Learning-∆-No-Assumption

1: for t = 1, . . . ,K do
2: Chose agent qt ∈ Gt arbitrarily.

3: end for
4: for each pair of clusters Gs ,Gt do
5: Let qs and qt be the chosen agents for Gs and Gt , respectively.

6: Let D̄qs ,qt be the empirical estimate of Dqs ,qt such that ∥D̄qs ,qt − Dqs ,qt ∥1 6 ε ′ with
probability at least 1 − δ/K2

7: Let ∆̄qs ,qt be the empirical Delta matrix computed using D̄qs ,qt
8: Set ∆̄Gs ,Gt = ∆̄qs ,qt
9: end for

4.2.1 Learning the ∆-Matrices with No Assumption. We first characterize the sample com-

plexity of learning the ∆-matrices in the absence of any modeling assumptions. In order to estimate

∆̄Gs ,Gt , Algorithm 3 first picks agent qs from cluster Gs , estimates ∆̄qs ,qt and use this estimate in

place of ∆̄Gs ,Gt . For the fixed assignment scheme, we assign the agents qs to the same set of tasks

of size O
(

n2

(ε ′)2 log(K/δ )
)
. For the uniform assignment scheme, we assign the agents to subsets of

tasks of an appropriate size among the pool ofm2 tasks.

Theorem 4.7. Given an ε-good clustering {Gs }
K
s=1

, if the number of shared tasks between any pair of

agents qs ,qt isO
(

n2

(ε ′)2 log(K/δ )
)
, then algorithm 3 guarantees that for all s, t , ∥∆̄Gs ,Gt − ∆Gs ,Gt ∥1 6

3ε ′ + 2ε with probability at least 1 − δ . The total number of samples collected by the algorithm is

O
(
Kn2

(ε ′)2 log(K/δ )
) (

resp. O
(
Km7/8

2

√
n2

(ε ′)2 log(K/δ )
)
w.h.p.

)
under the fixed (resp. uniform) assignment

scheme.

We first prove a sequence of lemmas that will be used to prove the result.

Lemma 4.8. For every pair of agents p,q, we have

∥∆p,q − ∆G(p),G(q)∥1 6 2 · max

a,b,c ∈P :G(a)=G(b)
∥∆a,c − ∆b,c ∥1.
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Proof. Let ∆p,G(q) =
1

|G(q) |
∑

r ∈G(q) ∆p,r , then using the property of clusters we have

∥∆p,q − ∆G(p),G(q)∥1 =





∆p,q −
1

|G(p)| |G(q)|

∑
u ∈G(p),v ∈G(q) ∆u,v






1

=





 1

|G(p)| |G(q)|

∑
u ∈G(p),v ∈G(q)

(
∆p,q − ∆u,v

)




1

6
1

|G(p)| |G(q)|

∑
u ∈G(p),v ∈G(q)

∥∆p,q − ∆u,v ∥1

6
1

|G(p)| |G(q)|

∑
u ∈G(p),v ∈G(q)

∥∆p,q − ∆u,q ∥1 + ∥∆u,q − ∆u,v ∥1

6
1

|G(p)| |G(q)|

∑
u ∈G(p),v ∈G(q)

2 max

a,b,c ∈P :G(a)=G(b)
∥∆a,c − ∆b,c ∥1

= 2 max

a,b,c ∈P :G(a)=G(b)
∥∆a,c − ∆b,c ∥1,

as required. �

The next lemma characterizes the error made by Algorithm 3 in estimating the ∆Gs ,Gt -matrices.

Lemma 4.9. For any two agents p ∈ Gs and q ∈ Gt , ∥D̄p,q − Dp,q ∥1 6 ε ′ ⇒ ∥∆̄p,q − ∆Gs ,Gt ∥1 6
3ε ′ + 2ε .

Proof. Lemma 4.4 shows that ∥D̄p,q − Dp,q ∥1 6 ε ′⇒ ∥∆̄p,q − ∆p,q ∥1 6 3ε ′.
Now,

∥∆̄p,q − ∆Gs ,Gt ∥1 6 ∥∆̄p,q − ∆p,q ∥1 + ∥∆p,q − ∆Gs ,Gt ∥1 6 3ε ′ + 2ε .

The last inequality uses Lemma 4.8 �

Proof. (Theorem 4.7) By Lemma 4.5, to estimate Dp,q within a distance of ε ′ with probability at

least 1 − δ/K2
, we need O

(
n2

(ε ′)2 log(K2/δ )
)
. By a union bound over the K2

pairs of clusters we see

that with probability at least 1 − δ , we have ∥D̄qs ,qt − Dqs ,qt ∥1 6 ε ′. This proves the first part of
the theorem. When the assignment scheme is fixed, we can assign all the same tasks to K agents

{qt }
K
t=1

, and hence the total number of samples is multiplied by K .

On the other hand, under the uniform assignment scheme, suppose each agent {qt }
K
t=1

is assigned

to a subset of s2 tasks selected uniformly at random from the pool of m2 tasks. Now consider

any two agents qs and qt . Let Xi be an indicator random variable which is 1 when i ∈ [m2] is

included in tasks of qs , and 0 otherwise. Also, let Yi be a similar random variable for the tasks

of qt . Let Zi = Xi × Yi . The probability that both agents are assigned to a particular task i ,
Pr(Zi = 1) = (s2/m2)

2
. Therefore, the expected number of overlapping tasks among the two agents

ism2 ·

(
s2

m2

)
2

=
s2

2

m2

, i.e. E [
∑

i Zi ] =
s2

2

m2

. Now, we want to bound the deviations from this expectations.

Let R j = E

[∑m2

i=1
Zi |X1, · · · ,X j ,Y1, · · · ,Yj

]
, then R j is a Doob martingale sequence for

∑j
i=1

Zi .
Also, it is easy to see that this martingale sequence is bounded by 1, i.e. |R j+1 − R j | 6 1. Therefore,

we apply the Azuma-Hoeffding bound (Lemma 4.10)as

Pr

[�����∑
i

Zi

����� > s2

2

2m2

]
6 2 exp

{
−

s4

2

8m3

2

}
.
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Now substituting s2 =m
7/8

2
· L1/2

where L = O
(

n2

(ε ′)2 log(K2/δ )
)
, we get

Pr

[∑
i

Zi < m
3/4

2
L/2

]
6 2 exp

{
−
√
m2L

2
}
.

Taking a union bound over K2
pairs of agents, if each agent completesm7/8

2
· L1/2

tasks selected

uniformly at random from the pool ofm2 tasks, then the probability that any pair of agents has

number of shared tasks L is at least 1 − K2
exp{−

√
m2L

2}, which is exponentially small inm2. �

Lemma 4.10. Suppose Xn ,n > 1 is a martingale such that X0 = 0 and |Xi − Xi−1 | 6 1 for each
1 6 i 6 n. Then for every t > 0

Pr [|Xn | > t] 6 2 exp

{
−t2/2n

}
4.2.2 Learning the ∆-matrices Under the Dawid-SkeneModel. In this section, we assume

that the agents receive signals according to the Dawid and Skene [1979a] model. Here, each task

has a latent attribute and each agent has a confusion matrix to parameterize its signal distribution

conditioned on this latent value. More formally:

• Let {πk }
n
k=1

denote the prior probability over n latent values.

• Agent p has confusion matrix Cp ∈ Rn×n , such that C
p
i j = Dp (Sp = j |T = i) where T is the

latent value. Given this, the joint signal distribution for a pair of agents p and q is

Dp,q(Sp = i, Sq = j) =
n∑

k=1

πkC
p
kiC

q
k j , (10)

and the marginal signal distribution for agent p is

Dp (Sp = i) =
n∑

k=1

πkC
p
ki . (11)

For cluster Gt , we write C
t = 1

|Gt |

∑
p∈Gt

Cp
to denote the aggregate confusion matrix of Gt . As

before, we assume that we are given an ε-good clustering, G1, . . . ,GK , of the agents. Our goal is to

provide an estimate of the ∆Gs ,Gt -matrices.

Lemma 4.11 proves that in order to estimate ∆Gs ,Gt within an L1 distance of ε ′, it is enough
to estimate the aggregate confusion matrices within an L1 distance of ε ′/4. So in order to learn

the pairwise delta matrices between clusters, we first ensure that for each cluster Gt , we have

∥C̄t −Ct ∥1 6 ε ′/4 with probability at least 1−δ/K , and then use the following formula to compute

the delta matrices:

∆Gs ,Gt (i, j) =
n∑

k=1

πkC̄
s
kiC̄

t
k j −

n∑
k=1

πkC̄
s
ki

n∑
k=1

πkC̄
t
k j (12)

Lemma 4.11. ForallGa ,Gb , ∥C̄a−Ca ∥1 6 ε ′/4 and ∥C̄b −Cb ∥1 6 ε ′/4⇒ ∥∆̄Ga,Gb −∆Ga,Gb ∥ 6 ε ′.
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Proof.

∆Ga,Gb (i, j) =
1

|Ga | |Gb |

∑
p∈Ga,q∈Gb

∆p,q(i, j) =
1

|Ga | |Gb |

∑
p∈Ga,q∈Gb

Dp,q(i, j) − Dp (i)Dq(j)

=
1

|Ga | |Gb |

∑
p∈Ga,q∈Gb

∑
k

πkC
p
kiC

q
k j −

∑
k

πkC
p
ki

∑
k

C
q
k j

=
∑
k

πk
©­« 1

|Ga |

∑
p∈Ga

C
p
ki

ª®¬ ©­« 1

|Gb |

∑
q∈Gb

C
q
k j

ª®¬
−

∑
k

πk
©­« 1

|Ga |

∑
p∈Ga

C
p
ki

ª®¬
∑
k

πk
©­« 1

|Gb |

∑
q∈Gb

C
q
k j

ª®¬
=

∑
k

πkC
a
kiC

b
k j −

∑
k

πkC
a
ki

∑
k

πkC
b
k j

Now

∥∆̄Ga,Gb − ∆Ga,Gb ∥1 =
∑
i, j

��∆̄Ga,Gb (i, j) − ∆Ga,Gb (i, j)
��

=
∑
i, j

�����∑
k

πkC̄
a
kiC̄

b
k j −

∑
k

πkC̄
a
ki

∑
k

πkC̄
b
k j −

(∑
k

πkC
a
kiC

b
k j −

∑
k

πkC
a
ki

∑
k

πkC
b
k j

)�����
6

∑
i, j

�����∑
k

πkC̄
a
kiC̄

b
k j −

∑
k

πkC
a
kiC

b
k j

����� +∑
i, j

�����∑
k

πkC̄
a
ki

∑
k

πkC̄
b
k j −

∑
k

πkC
a
ki

∑
k

πkC
b
k j

�����
=

∑
i, j

�����∑
k

πkC̄
a
kiC̄

b
k j −

∑
k

πkC̄
a
kiC

b
k j +

∑
k

πkC̄
a
kiC

b
k j −

∑
k

πkC
a
kiC

b
k j

�����
+

∑
i, j

�����∑
k

πkC̄
a
ki

∑
k

πkC̄
b
k j −

∑
k

πkC̄
a
ki

∑
k

πkC
b
k j +

∑
k

πkC̄
a
ki

∑
k

πkC
b
k j −

∑
k

πkC
a
ki

∑
k

πkC
b
k j

�����
=

∑
k

πk
∑
j

���C̄b
k j −C

b
k j

���∑
i

C̄a
ki +

∑
k

πk
∑
i

��C̄a
ki −C

a
ki

��∑
j

Cb
k j

+
∑
k

πk
∑
i

C̄a
ki

∑
k ′

πk ′
∑
j

���C̄b
k ′j −C

b
k ′j

��� +∑
k

πk
∑
j

Cb
k j

∑
k ′

πk ′
∑
i

��C̄a
k ′i −C

a
k ′i

��
= 2

∑
k

πk
∑
j

���C̄b
k j −C

b
k j

��� + 2

∑
k

πk
∑
i

���C̄a
ki −C

b
ki

���
6 2∥C̄a −Ca ∥1 + 2∥C̄b −Cb ∥1 6 4 × ε ′/4 = ε ′

�

We now turn to the estimation of the aggregate confusion matrix of each cluster. Let us assume

for now that the agents are assigned to the tasks according to the uniform assignment scheme, i.e.

agent p belonging to cluster Ga is assigned to a subset of Ba tasks selected uniformly at random

from a pool ofm2 tasks. For cluster Ga , we choose Ba =
m2

|Ga |
ln(

m2K
β ). This implies:

(1) For each j ∈ [m2], Pr [agent p ∈ Ga completes task j] =
log(m2K/β )
|Ga |

, i.e. each agent p in Ga is

equally likely to complete every task j.
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(2) Pr [task j is unlabeled by Ga] =
(
1 −

log(m2K/β )
|Ga |

) |Ga |

6 β
m2K

. Taking a union bound over the

m2 tasks and K clusters, we get the probability that any task is unlabeled is at most β . Now if

we choose β = 1/poly(m2), we observe that with probability at least 1 − 1/poly(m2), each

task j is labeled by some agent in each cluster when Ba = Õ(
m2

|Ga |
).

All that is left to do is to provide an algorithm and sample complexity for learning the aggregate

confusion matrices. For this, we will use n dimensional unit vectors to denote the reports of the

agents (recall that there are n possible signals). In particular agent p’s report on task j , rpj ∈ {0, 1}
n
.

If p’s report on task j is c , then the c-th coordinate of rpj is 1 and all the other coordinates are 0. The

expected value of agent p’s report on the jth task is E

[
rpj

]
=

∑n
k=1

πkC
p
k The aggregated report for

a cluster Gt is given as Rt j =
1

|Gt |

∑
p∈Gt

rpj .

Suppose we want to estimate the aggregate confusion matrix C1
of some cluster G1. To do so,

we first pick three clusters G1,G2 and G3 and write down the corresponding cross moments. Let

(a,b, c) be a permutation of the set {1, 2, 3}. We have:

M1 = E[Raj ] =
∑
k

πkC
a
k (13)

M2 = E[Raj ⊗ Rbj ] =
∑
k

πkC
a
k ⊗ C

b
k (14)

M3 = E[Raj ⊗ Rbj ⊗ Rc j ] =
∑
k

πkC
a
k ⊗ C

b
k ⊗ C

c
k (15)

The cross moments are asymmetric, however using Theorem 3.6 in the work by Anandkumar

et al. [2014], we can write the cross-moments in a symmetric form.

Lemma 4.12. Assume that the vectors {Ct
1
, . . . ,Ct

n} are linearly independent for each t ∈ {1, 2, 3}.
For any permutation (a,b, c) of the set {1, 2, 3} define

R′aj = E

[
Rc j ⊗ Rbj

] (
E

[
Raj ⊗ Rbj

] )−1

Raj

R′bj = E

[
Rc j ⊗ Raj

] (
E

[
Rbj ⊗ Raj

] )−1

Rbj

M2 = E

[
R′aj ⊗ R

′
bj

]
andM3 = E

[
R′aj ⊗ R

′
bj ⊗ Rc j

]
ThenM2 =

n∑
k=1

πkC
c
k ⊗ C

c
k and M3 =

n∑
k=1

πkC
c
k ⊗ C

c
k ⊗ C

c
k

We cannot compute themoments exactly, but rather estimate themoments from samples observed

from different tasks. Furthermore, for a given task j, instead of exactly computing the aggregate

label Rдj , we select one agent p uniformly at random from Gд and use agent p’s report on task j as

a proxy for Rдj . We will denote the corresponding report as R̃дj . The next lemma proves that the

cross-moments of {R̃дj }
K
д=1

and {Rдj }
K
д=1

are the same.

Lemma 4.13. (1) For any group Ga , E

[
R̃aj

]
= E

[
Raj

]
(2) For any pair of groups Ga and Gb , E

[
R̃aj ⊗ R̃bj

]
= E

[
Raj ⊗ Rbj

]
(3) For any three groups Ga ,Gb and Gc , E

[
R̃aj ⊗ R̃bj ⊗ R̃c j

]
= E

[
Raj ⊗ Rbj ⊗ Rc j

]
Proof.
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1. First moments of {R̃дj }
K
д=1

and {Rдj }
K
д=1

are equal :

E

[
R̃aj

]
=

1

|Ga |

∑
p∈Ga

E

[
rpj ] = E[Raj

]
2. Second order cross-moments of {R̃дj }

K
д=1

and {Rдj }
K
д=1

are equal :

E

[
R̃aj ⊗ R̃bj

]
=

∑
k

πkE

[
R̃aj ⊗ R̃bj |yj = k

]
=

∑
k

πkE

[
R̃aj |yj = k

]
⊗ E

[
R̃bj |yj = k

]
=

∑
k

πk
©­« 1

|Ga |

∑
p∈Ga

C
p
k
ª®¬ ⊗ ©­« 1

|Gb |

∑
q∈Gb

C
q
k
ª®¬ =

∑
k

πkC
a
k ⊗ C

b
k = E

[
Raj ⊗ Rbj

]
3. Third order cross-moments of {R̃дj }

K
д=1

and {Rдj }
K
д=1

are equal :

E

[
R̃aj ⊗ R̃bj ⊗ R̃c j

]
=

∑
k

πkE

[
R̃aj ⊗ R̃bj ⊗ R̃c j |yj = k

]
=

∑
k

πkE

[
R̃aj |yj = k

]
⊗ E

[
R̃bj |yj = k

]
⊗ E

[
R̃c j |yj = k

]
=

∑
k

πk
©­« 1

|Ga |

∑
p∈Ga

C
p
k
ª®¬ ⊗ ©­« 1

|Gb |

∑
q∈Gb

C
q
k
ª®¬ ⊗

(
1

|Gc |

∑
r ∈Gc

Cr
k

)
=

∑
k

πkC
a
k ⊗ C

b
k ⊗ C

c
k = E

[
Raj ⊗ Rbj ⊗ Rc j

]
�

The next set of equations show how to approximate the momentsM2 andM3:

R̂′aj =

(
1

m2

m2∑
j′=1

R̃c j′ ⊗ R̃bj′

) (
1

m2

m2∑
j′=1

R̃aj′ ⊗ R̃bj′

)−1

R̃aj (16)

R̂′bj =

(
1

m2

m2∑
j′=1

R̃c j′ ⊗ R̃aj′

) (
1

m2

m2∑
j′=1

R̃bj′ ⊗ R̃aj′

)−1

R̃bj (17)

M̂2 =
1

m2

m2∑
j′=1

R̂′aj′ ⊗ R̂
′
bj′ and M̂3 =

1

m2

m2∑
j′=1

R̂′aj′ ⊗ R̂
′
bj′ ⊗ R̃c j′ (18)

We use the tensor decomposition algorithm (4) on M̂2 and M̂3 to recover the aggregate confusion

matrix C̄c
and Π̄, where Π̄ is a diagonal matrix whose k-th component is π̄k , an estimate of πk . In or-

der to analyze the sample complexity of Algorithm 4, we need to make somemild assumptions about

the problem instance. For any two clustersGa andGb , define Sab = E

[
Raj ⊗ Rbj

]
=

∑n
k=1

πkC
a
k ⊗C

b
k .

We make the following assumptions:

(1) There exists σL > 0 such that σn(Sab ) > σL for each pair of clusters a and b, where σn(M) is
the n-th smallest eigenvalue ofM .

(2) κ = mint ∈[k ]mins ∈[n]minr,s
{
Ct
r r −C

t
r s

}
> 0

The first assumption implies that the matrices Sab are non-singular. The second assumption

implies that within a group, the probability of assigning the correct label is always higher than the
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Algorithm 4 Estimating Aggregate Confusion Matrix

Input: K clusters of agents G1,G2, . . . ,GK and the reports R̃дj ∈ {0, 1}
n
for j ∈ [m] and д ∈ [K]

Output: Estimate of the aggregate confusion matrices C̄д
for all д ∈ [K]

1: Partition the K clusters into groups of three

2: for Each group of three clusters {дa ,дb ,дc } do
3: for (a,b, c) ∈ {(дb ,дc ,дa), (дc ,дa ,дb ), (дa ,дb ,дc )} do
4: Compute the second and the third order moments M̂2 ∈ R

n×n
, M̂3 ∈ R

n×n×n
. ◃

Compute C̄д
and Π̄ by tensor decomposition

5: Compute whitening matrix Q̂ ∈ Rn×n such that Q̂T M̂2Q̂ = I
6: Compute eigenvalue-eigenvector pairs (α̂k , v̂k )

n
k=1

of the whitened tensor M̂3(Q̂, Q̂, Q̂)
by using the robust tensor power method

7: Compute ŵk = α̂−2

k and µ̂k = (Q̂
T )−1α̂v̂k

8: For k = 1, . . . ,n set the k-th column of C̄c
by some µ̂k whose k-th coordinate has the

greatest component, then set the k-th diagonal entry of Π̄ by ŵk
9: end for
10: end for

probability of assigning any incorrect label. The following theorem gives the number of tasks each

agent needs to complete to get an ε ′-estimate of the aggregate confusion matrices.

We will use the following two lemmas due to Zhang et al. [2016].

Lemma 4.14. For any ε̂ 6 σL/2, the second and the third empirical moments are bounded as

max{∥M̂2 −M2∥op , ∥M̂3 −M3∥op } 6 31ε̂/σ 3

L

with probability at least 1 − δ where δ = 6 exp

(
−(
√
m2ε̂ − 1)2

)
+ n exp

(
−(

√
m2/nε̂ − 1)2

)
Lemma 4.15. For any ε̂ 6 κ/2, if the empirical moments satisfy

max{∥M̂2 −M2∥op , ∥M̂3 −M3∥op } 6 ε̂H

for H := min

{
1

2

,
2σ 3/2

L

15n(24σ−1

L + 2

√
2)
,

σ 3/2

L

4

√
3/2σ 1/2

L + 8n(24/σL + 2

√
2)

}
then ∥C̄c−C∥op 6

√
nε̂, ∥Π̄−Π∥op 6 ε̂ with probability at least 1−δ where δ is defined in Lemma 4.14

Zhang et al. [2016] prove Lemma 4.14 when M̂2 is defined using the aggregate labels Rдj . However,

this lemma holds even if one uses the labels R̃дj . The proof is similar if one uses Lemma 4.13. We

now characterize the sample complexity of learning the aggregate confusion matrices.

Theorem 4.16. For any ε ′ 6 min

{
31

σ 2

L
, κ

2

}
n2 and δ > 0, if the size of the universe of shared tasks

m2 is at leastO
(

n7

(ε ′)2σ 11

L
log

( nK
δ

) )
, then we have ∥C̄t −Ct ∥1 6 ε ′ for each clusterGt . The total number

of samples collected by Algorithm 4 is Õ (Km2) under the uniform assignment scheme.

Proof. Substituting ε̂ = ε̂1Hσ 3

L/31 in lemma 4.14 we get

max{∥M̂2 −M2∥op , ∥M̂3 −M3∥op } 6 ε̂1H
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with probability at least 1−(6+n) exp

(
−

(
m1/2

2
ε̂1Hσ 3

L
31n1/2 − 1

)
2

)
. This substitution requires ε̂1Hσ 3

L/31 6

σL/2. Since H 6 1/2, it is sufficient to have

ε̂1 6 31/σ 2

L (19)

Now using Lemma 4.15 we see that ∥C̄c − C∥op 6
√
nε̂1 and ∥Π̄ − Π∥op 6 ε̂1 with the above

probability. It can be checked that H >
σ 5/2

L
230n . This implies that the bounds hold with probability at

least 1 − (6 + n) exp

(
−

(
m1/2

2
σ 11/2

L ε̂1

7130n3/2 − 1

)
2

)
. The second substitution requires

ε̂1 6 κ/2 (20)

Therefore to achieve a probability of at least 1 − δ we need

m2 >
7130

2n3

ε̂2

1
σ 11

L

©­«1 +

√
log

(
6 + n

δ

)ª®¬
2

It is sufficient that

m2 > Ω

(
n3

ε̂2

1
σ 11

L
log

(n
δ

))
to ensure ∥C̄c − C∥op 6

√
nε̂1. For each k , ∥C̄c

k − Ck ∥1 6
√
n∥C̄c

k − Ck ∥2 6
√
n∥C̄c − C ∥op 6

nε̂1. Substituting ε̂1 = ε̂ ′/n2
, we get ∥C̄c − C ∥1 =

∑n
k=1
∥C̄c

k − Ck ∥1 6 n2ε̂1 = ε̂ ′ when m2 =

Ω
(

n7

(ε̂ ′)2σ 11

L
log

( n
δ

) )
. By a union bound the result holds for all the clusters simultaneously with

probability at least 1−δK . Substituting δ/K instead of δ gives the bound on the number of samples.

Substituting ε̂ ′ = ε̂1/n
2
in equations 19 and 20, we get the desired bound on ε̂ ′.

Now to compute the total number of samples collected by the algorithm, note that each agent

in clusterGa provides
m2

|Ga |
log

(
Km2

β

)
samples. Therefore, total number of samples collected from

cluster Ga is m2 log

(
Km2

β

)
and the total number of samples collected over all the clusters is

Km2 log

(
Km2

β

)
. �

Discussion. If the algorithm chooses m2 = Õ
(

n7

(ε ′)2σ 11

L

)
, then the total number of samples

collected under the uniform assignment scheme is at most Õ
(

n7

(ε ′)2σ 11

L

)
. So far we have analyzed the

Dawid-Skene model under the uniform assignment scheme. When the assignment scheme is fixed,

the moments of Raj and R̃aj need not be the same. In this case we will have to run Algorithm 4

with respect to the actual aggregate labels {Rдj }
K
д=1

. This requires collecting samples from every

member of a cluster, leading to a sample complexity of O
(

ℓn7

(ε ′)2σ 11

L
log

( nK
δ

) )
In order to estimate the confusion matrices, Zhang et al. [2016] require each agent to provide

at leastO
(
n5

log((ℓ + n)/δ )/(ε ′)2
)
samples. Our algorithm requiresO

(
n7

log(nK/δ )/(ε ′)2
)
samples

from each cluster. The increase of n2
in the sample complexity comes about because we are

estimating the aggregate confusion matrices in L1 norm instead of the infinity norm. Moreover

when the number of clusters is small (K << ℓ), the number of samples required from each cluster

does not grow with ℓ. This improvement is due to the fact that, unlike Zhang et al. [2016], we do

not have to recover individual confusion matrices from the aggregate confusion matrices.
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Note that the Dawid and Skene [1979b] based approach, for the uniform assignment scheme,

does not require all agents to provide reports on the same set of shared tasks. Rather, we need

that for each group of three clusters (as partitioned by Algorithm 4 on line 1) and each task, there

exists one agent from the three clusters who completes the same task. In particular the reports

for different tasks can be acquired from different agents within the same cluster. The assignment

scheme makes sure that this property holds with high probability.

We now briefly compare the learning algorithms under the no-assumptions and model-based

approach. When it is difficult to assign agents to the same tasks, and when the number of signals is

small (which is often true in practice), the Dawid-Skene method has a strong advantage. Another

advantage of the Dawid-Skene method is that the learning error ε ′ can be made arbitrarily small

since each aggregate confusion matrix can be learned with arbitrary accuracy, whereas the true

learning error of the no-assumption approach is at least 2ε (see Theorem 4.7), and depends on the

problem instance.

5 CLUSTERING EXPERIMENTS
In this section, we study the clustering error on eight real-world, crowdsourcing datasets. Six of

these datasets are from the SQUARE benchmark [Sheshadri and Lease, 2013], selected to ensure a

sufficient density of worker labels across different latent attributes as well as the availability of latent

attributes for sufficiently many tasks. In addition, we also use the Stanford Dogs dataset [Khosla
et al., 2011] and the Expressions dataset [Mozafari et al., 2012, 2014]. Below, we briefly describe the

format of tasks, the number of agents ℓ, and the number of signals n for each dataset.
4

• Adult: Rating websites for their appropriateness, ℓ = 269, n = 4.

• BM: Sentiment analysis for tweets, ℓ = 83, n = 2.

• CI: Assessing websites for copyright infringement, ℓ = 10, n = 3.

• Dogs: Identifying species from images of dogs, ℓ = 109, n = 4.

• Expressions: Classifying images of human faces by expression, ℓ = 27, n = 4.

• HCB: Assessing relevance of web search results, ℓ = 766, n = 4.

• SpamCF: Assessing whether response to a crowdsourcing task was spam, ℓ = 150, n = 2.

• WB: Identifying whether the waterbird in the image is a duck, ℓ = 53, n = 2.

Recall that the maximum incentive an agent has to use a non-truthful strategy in the CAHU

mechanism can be upper-bounded in terms of two sources of error:

• The clustering error. This represents how “clusterable” the agents are. From theory, we have

the upper bound ε1 = maxp,q∈[ℓ] ∥∆p,q − ∆G(p),G(q)∥1.

• The learning error. This represents how accurate our estimates for the cluster Delta matrices

are. From theory, we have the upper bound ε2 = maxi, j ∈[K ] ∥∆Gi ,G j − ∆Gi ,G j ∥1.

Based on this, the CAHU mechanism is (ε1 + ε2)-informed truthful (Theorem 3.3) where ε1 is the

clustering error and ε2 is the learning error. Even with the best clustering, the clustering error ε1

cannot be made arbitrarily small because it depends on how close the signal distributions of the

agents are as well as the number of clusters. In contrast, the learning error ε2 of the no-assumption

approach is 3ε ′ + 2ε , (theorem 4.7) where the error due to ε ′ can indeed be made arbitrarily small

by simply acquiring more data about agents’ behavior. Similarly, the learning error ε2 in the Dawid-

Skene approach can be made arbitrarily small by acquiring more agent reports (theorem 4.16).

Hence the total error is dominated by the clustering error ε1.

For this reason, we focus on the clustering error, and show that it can be small even with

a relatively small number of clusters. Rather than the use the weak bound maxp,q∈[ℓ] ∥∆p,q −

4
We filter each dataset to remove tasks for which the latent attribute is unknown, and remove workers who only

perform such tasks. ℓ is the number of agents that remain after filtering.
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∆G(p),G(q)∥1 on the clustering error (which is nevertheless helpful for our theoretical results), we

use the following tighter bound from the proof of Theorem 3.3.

|u∗p (I, {I}q,p ) − up (I, {I}q,p )| =

������ 1

(ℓ − 1)

∑
q∈P\{p }

∑
i, j

∆p,q(i, j)
(
Sign(∆p,q)i, j − Sign(∆G(p),G(q))i, j

) ������
(21)

The datasets specify the latent value of each task. Because of this, we can adopt the Dawid-Skene

model, and estimate the confusion matrices from the frequency which with each agent p reports

each label j in the case of each latent attribute i .
Typical clustering algorithms take a distance metric over the space of data points and attempt to

minimize the maximum cluster diameter, which is the maximum distance between any two points

within a cluster. In contrast, our objective (the tighter bound on the incentive in Equation (5)) is a

complex function of the underlying confusion matrices. We therefore compare two approaches:

1) We cluster the confusion matrices using the standard k-means++ algorithm with the L2 norm

distance (available in Matlab), and hope that resulting clustering leads to a small incentive

bound.
5

2) In the following lemma, we derive a distance metric between confusion matrices for which

the maximum cluster diameter is provably an upper bound on the incentive, and use k-
means++ with this metric (implemented in Matlab).

6
Note that computing this metric requires

knowledge of the prior over the latent attribute.

Lemma 5.1. For all agents p,q, r , we have ∥∆p,q − ∆p,r ∥1 6 2 ·
∑

k πk
∑

j |C
q
k j −C

r
k j |.

Proof. We have

∥∆p,q − ∆p,r ∥1 =
∑
i, j

��∆p,q(i, j) − ∆p,r (i, j)
��

=
∑
i, j

��Dp,q(i, j) − Dp (i)Dq(j) − Dp,r (i, j) + Dp (i)Dr (j)
��

=
∑
i, j

��Dp,q(i, j) − Dp,r (i, j) − Dp (i)(Dq(j) − Dr (j))
��

=
∑
i, j

�����∑
k

πkC
p
kiC

q
k j −

∑
k

πkC
p
kiC

r
k j −

∑
k

πkC
p
ki

(∑
l

πlC
q
l j −

∑
l

πlC
r
l j

)�����
=

∑
i, j

�����∑
k

πkC
p
ki

(
C
q
k j −C

r
k j

)
−

∑
k

πkC
p
ki

(∑
l

πl

(
C
q
l j −C

r
l j

))�����
5
We use L2 norm rather than L1 norm because the standard k-means++ implementation uses as the centroid of a

cluster the confusion matrix that minimizes the sum of distances from the confusion matrices of the agents in the cluster.

For L2 norm, this amounts to averaging over the confusion matrices, which is precisely what we want. For L1 norm, this

amounts to taking a pointwise median, which does not even result in a valid confusion matrix. Perhaps for this reason, we

observe that using the L1 norm performs worse.

6
For computing the centroid of a cluster, we still average over the confusion matrices of the agents in the cluster. Also,

since the algorithm is no longer guaranteed to converge (indeed, we observe cycles), we restart the algorithm when a cycle

is detected, at most 10 times.
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Fig. 4. Incentive bound on each of the 8 different data
sets when using k-means++ with the L2 norm

Fig. 5. Incentive bound on each of the 8 different data
sets when using k-means++ with our custom metric

6
∑
j

∑
k

πk

���Cq
k j −C

r
k j

���∑
i

C
p
ki +

∑
j

∑
k

πk
∑
l

πl

���Cq
l j −C

r
l j

���∑
i

C
p
ki

=
∑
j

∑
k

πk

���Cq
k j −C

r
k j

��� +∑
j

∑
k

πk
∑
l

πl

���Cq
l j −C

r
l j

��� [Using

∑
i

C
p
ki = 1]

6
∑
k

πk
∑
j

���Cq
k j −C

r
k j

��� +∑
k

πk
∑
l

πl
∑
j

���Cq
l j −C

r
l j

���
=

∑
k

πk
∑
j

���Cq
k j −C

r
k j

��� +∑
l

πl
∑
j

���Cq
l j −C

r
l j

��� [Using

∑
k

πk = 1]

= 2 ·
∑
k

πk
∑
j

���Cq
k j −C

r
k j

��� ,
as required. �

Note that

∑
k πk

∑
j |C

q
k j −C

r
k j | 6 ∥C

q −Cr ∥1 because
∑

j

���Cq
l j −C

r
l j

��� 6 ∥Cq −Cr ∥1. Lemma 5.1,

along with Lemma 4.8, shows that the incentive is upper bounded by four times the maximum

cluster diameter under our metric. For each dataset, we vary the number of clusters K from 5%

to 15% of the number of agents in the dataset. We repeat the experiment 20 times, and select the

clustering that produces the smallest incentive bound. Figures 4 and 5 show the incentive bound

achieved using the standard L2 metric and using our custom metric, respectively. We see that the

incentive bound is small compared to the maximum payment of 1 by CAHU, even with the number

of clusters K as small as 15% of the number of workers. The number of agents does not seem to

affect this bound as long as the number of clusters is small relative to the number of agents. Using

our custom metric leads to a clustering with a noticeably better incentive bound.

6 CONCLUSION
We have provided the first, general solution to the problem of peer prediction with heterogeneous

agents. This is a compelling research direction, where new theory and algorithms can help to

guide practice. In particular, heterogeneity is likely to be quite ubiquitous due to differences in

taste, context, judgment, and reliability across users. Beyond testing these methods in a real-world

application such as marketing surveys, there remain interesting directions for ongoing research.

For example, is it possible to solve this problem with a similar sample complexity but without a

clustering approach? Is it possible to couple methods of peer prediction with optimal methods for
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inference in crowdsourced classification [Ok et al., 2016], and with methods for task assignment

in budgeted settings [Karger et al., 2014]? This should include attention to adaptive assignment

schemes [Khetan and Oh, 2016] that leverage generalized Dawid-Skene models [Zhou et al., 2015],

and could connect to the recent progress on task heterogeneity within peer prediction [Mandal

et al., 2016].
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